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Abstract
The article presents a novel statistical framework for COVID-19 transmission monitoring and control, which 
was developed and deployed at The Ohio State University main campus in Columbus during the Autumn 
term of 2020. Our approach effectively handles prevalence data with interval censoring and explicitly 
incorporates changes in transmission dynamics and human behaviour. To illustrate the methodology’s 
usefulness, we apply it to both synthetic and actual student SARS-CoV-2 testing data collected at the OSU 
Columbus campus in late 2020.
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1 Introduction
In response to the COVID-19 pandemic, most American colleges and universities suspended on- 
campus residence and instruction in early March 2020, opting instead for online instruction 
(Rapanta et al., 2020). During the following summer, universities needed to decide whether to 
let students return to on-campus residence and resume in-person instruction. Furthermore, they 
needed to decide on measures to protect the health and the safety of students, faculty, staff, and 
the surrounding communities.

By Autumn 2020, multiple modelling and evaluation approaches were developed across the 
country to assess the feasibility and impact of various mitigation strategies, such as frequent, ran
dom testing of asymptomatic individuals, contact tracing and isolation, and capping of in-person 
class sizes. Some notable approaches involved full-scale agent- or network-based simulations par
ameterized using information from local epidemics and run forward to yield predictions through 
the end of an academic term. However, since such simulations often lacked access to reliable trans
mission data in the campus setting, the predictions carried high uncertainty (see, e.g. Arnst et al., 
2022; Cator et al., 2022; Chang et al., 2020; Enright et al., 2021; Frazier et al., 2022; Gressman & 
Peck, 2020; Hill et al., 2021; McCabe & Donnelly, 2021; Muller & Muller, 2021; 
Panovska-Griffiths et al., 2020; Rennert et al., 2021; Shah et al., 2022; Zhang et al., 2022). 
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Nevertheless, these studies were able to highlight the need for large-scale, frequent, randomized (if 
not ideally comprehensive) testing of asymptomatic individuals, which was adopted by many col
leges and universities that ultimately held in-person instruction during the 2020 Autumn semester.

The Ohio State University (OSU) partially resumed in-person instruction for the Autumn 2020 
semester and implemented a battery of strategies to control COVID-19 transmission on campus. 
The university conducted weekly routine polymerase chain reaction (PCR)-based screening for the 
SARS-CoV-2 virus among all (mostly undergraduate) students living on campus. In addition to 
aiding in isolation and contact tracing, trends in these data yielded insight into whether incidence 
on campus was increasing, decreasing or plateauing.

A naive strategy for estimating prevalence from this testing data could be to use the daily test 
positive rate (proportion of tests that returned a positive result each day) as an estimate of preva
lence, perhaps adjusting for imperfect sensitivity and specificity of the test. However, as argued in 
our earlier work (Schnell et al., 2024), and also illustrated with the aid of a toy example in Figure 1, 
the test positive rate is often biased as an estimator of prevalence in the nonremoved population 
under regular testing schemes such as the one used by OSU. Testing individuals once per week 
(or a similar block of time) with those testing positive subsequently isolated can induce correlation 
between the probability of being tested and the probability of being infectious.

Even though it does not appear to be widely recognized that the test positive rate may be biased 
in repeated testing scenarios, the bias is not the only reason why the test positive rate is a poor 
choice. The test positive rate also ignores the longitudinal information in the data. In a repeated 
testing setting where we observe a time series of tests for each individual, the data describe an 
interval-censored observation of the time each individual first became infectious. Moreover, test 
positive rates are not suitable for prediction purposes without an underlying transmission model. 
The test positive rate is commonly interpreted as an estimate of prevalence, both when the goal is 
to estimate prevalence and when the goal is to use prevalence estimates within a larger modelling 
framework (Kahanec et al., 2021). If such methods use data from a repeated testing setting, the 
bias of the test positive rate may be a significant limitation.

In order to monitor COVID-19 transmission among residential students at the OSU on its main 
campus in Columbus, Ohio, we adopted a mechanistic model-based approach that is not only 
faithful to the epidemiology of the disease but also adjusts for the testing scheme in a proper 
way using survival analytic tools. The resulting statistical approach, which we call the interval dy
namical survival analysis (IDSA), is our main statistical contribution in this article.

IDSA is a simple yet powerful modelling framework for the analysis of repeated testing data of a 
closed population. The underlying disease transmission mechanism is described as a discrete-time 

Figure 1. In this example, one-third of the population becomes infectious over the weekend but there are no 
additional infections during the week. When individuals are tested at random once per week, the test positive rate is 
one-third each day but the prevalence decreases as infectious individuals are detected and removed. If additional 
infections occur throughout the week, bias is still present because those ineligible to be tested on a given day have 
likely had less cumulative exposure hazard since their last negative test, compared with those eligible for testing.
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susceptible-exposed-infectious-removed (SEIR) compartmental model, which we fit to the re
peated testing data using the so-called dynamical survival analysis (DSA) approach described in 
KhudaBukhsh et al. (2023, 2020). The goal is to assess the ability of a repeated testing program 
to control on-campus (residential) outbreaks over the course of a fixed time horizon such as a se
mester. Our model allows for changes over time in the parameter values governing contact pat
terns, transmissibility, and social distancing. As the repeat testing data analysed here may be 
considered interval-censored, we refer to the approach as the interval DSA or the IDSA.

We developed a bespoke Markov chain Monte Carlo (MCMC) method to estimate the model 
parameters. The method, a Metropolis–Hastings (MH)-within-Gibbs algorithm, accounts for im
perfect tests and arbitrary testing schedules, and could be of potential statistical interest in its own 
right. Although the IDSA method was developed in the context of COVID-19, the method is gen
eral in that it can be applied to analyse and monitor the transmission of any disease among a closed 
population based on repeated testing data. Moreover, since the underlying transmission dynamics 
are described by means of a mechanistic model (the compartmental SEIR model chosen for con
venience in this article), the IDSA method can be used for predictive purposes as well.

The remainder of the article is organized as follows. In Section 2, we describe the IDSA model 
and its approach for parameter estimation and validation. In particular, Sections 2.4 and 2.6 de
scribe the data sources and the process of integrating data into our models. Section 3.2 presents a 
simulation study illustrating the model’s performance. In Section 3.3, we apply the model to data 
from weekly testing of OSU residential students in Autumn 2020. Finally, some concluding re
marks and an overview of related work are given in Section 4. Summary of notation in given in 
Table A1 in the Appendix.

2 Methods
2.1 Data structure
Repeated testing is performed in an on-campus population. We assume the following: 

1. All individuals are tested repeatedly (e.g. weekly), each time on a day of their choice within the 
fixed testing window.

2. The window between consecutive tests is shorter than the typical natural recovery time of the 
disease.

3. Upon testing positive, individuals are isolated and removed from the population, perhaps 
after some delay.

Note that under these assumptions, some infections may still go undetected, either due to imper
fect testing (see Section 2.5) or individuals recovering before they are tested. However, we expect 
that, given a reasonably sensitive test, most infections will be detected under these assumptions.

In the population, we assume to observe all individual test dates, test results (positive or nega
tive), and removal times (for individuals who test positive). A number of organizations (e.g. sports 
leagues, universities) have used such testing schemes in response to the COVID-19 pandemic 
(Maloney, 2021; Walke et al., 2020). The OSU tested and collected data from 8 August to 24 
November 2020 as part of the university’s plan to manage and mitigate COVID-19 cases during 
the autumn semester with students on campus (OSU Monitoring Team, 2021). The OSU’s policy 
was to test each of n = 12, 567 students living on campus weekly, keeping in mind that the natural 
recovery time for COVID-19 is thought to be between 10 and 14 days for the majority of cases 
(CDC, 2023). In the event of a positive test, the student was isolated for 10 days from the date 
of the test, in a designated quarantine/isolation (Q/I) location on campus, and contact tracing 
was initiated. Individuals identified as close contacts of a positive testing individual were quaran
tined for 14 days. Because the percentage of susceptible individuals in quarantine at any given time 
was small, we omitted this group from the model structure for simplicity. Students who tested 
positive and were subsequently isolated were removed from the testing pool for the next 90 days.

The OSU COVID-19 surveillance dataset consists of the dates of all tests for all students in the 
on-campus population, the outcomes of those tests, and the times individuals who tested positive 
entered isolation. Accordingly, with such data, we know the number of daily administered tests as 
well as daily test positive and negative rates. The number of daily tests at OSU along with the 
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corresponding daily positive count is presented in Figure 2. As per institutional policy, we depict 
only data from 11,645 students who were at least 18 years old at the start of the testing regime. As 
we may see from the plot, at least for a portion of the time interval, the volume of daily testing on 
the first 4 days of the week appears reasonably similar across different weeks. The corresponding 
volume of testing in the later part of the week is seen to be considerably lower.

2.2 Disease transmission model
The framework of our statistical model is based on the classical Reed-Frost type SEIR model of an 
epidemic spread (see, for instance, Chapter 2 in Andersson and Britton (2012)). This model sep
arates individuals in a population into four categories of susceptible (S), infected or exposed (E), 
infectious (I), and removed (R). The exposed are assumed to be infected but not yet infectious and 
the removed cannot be reinfected. We treat our population as closed, well mixed, and of known 
size. Below, we denote the initial susceptible population by n. Time is treated as a discrete, regular 
grid with units of days. We denote the counts of individuals in different categories (or compart
ments) at time t by St, Et, It, and Rt and assume that they evolve according to the following rules. 

• Each pair consisting of one individual from St−1 and one from It−1 has probability βt(n) of in
fectious contact, and each individual among St−1 who experiences such a contact becomes in
fected/exposed starting at t.

• Following infection/exposure, a susceptible individual enters the exposed (E) compartment. 
Each individual i among Et−1 becomes infectious after τi days where τi ∼ Poisson(ψ) + 1.

• Each infectious individual i among It−1 recovers after σi days, where σi ∼ Poisson(γ) + 1.
• Each infectious individual i among It−1 enters isolation at time ri, where ri is observed. We let 

ri = ∞ for individuals who never test positive.
• Taken together, the previous two rules imply that each individual i among It−1 enters the R 

compartment at time min {ωi + σi, ri}, where ωi is the time individual i entered the I 
compartment.

Note that we add 1 to our Poisson random variables to ensure that individuals cannot instantly 
transition from S to I or from E to R. The choice to draw τi and σi from a Poisson distribution ra
ther than the often-used Geometric distribution is motivated by the fact that such transition times 
are not in reality memoryless. The Poisson distribution concentrates these values around their 
population means, which may be more realistic. However, nothing about our model requires 

Figure 2. Testing volume for SARS-CoV-2 at OSU. This figure shows the daily number of tests administered to 
residential OSU students (18 years or older) starting from 17 August 2020 (Day 0). The bars are marked by testing 
result. Weekend testing volumes were typically lower (often zero on Sundays) and are shown in darker grey colour.
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that we use Poisson distributions, and one could other distributions as appropriate to the proper
ties of the underlying disease.

The choice to draw τi and σi from a Poisson distribution rather than the often-used Geometric 
distribution also means that the usual count process (St, Et, It, Rt) is no longer Markovian. In or
der to recover a Markovian process, we need information about individuals’ sojourn times in E 
and I. In particular, the vector (St, Et, It, Rt, τ, σ), where τ = {τi}

n
i=1 and σ = {σi}

n
i=1 describes a 

Markov process.
We assume that individuals in E are not yet detectable by RT-PCR testing as SARS-CoV-2 posi

tive. By contrast, individuals in I are both infectious and detectable, though the detection probabil
ity may be less than 1. While the time from initial infection (exposure) to detectability varies across 
individuals, it is typically shorter than 5 days (Hart et al., 2022; He et al., 2020; Larremore et al., 
2021), and the infectious period is typically around 10 days (CDC, 2023). Accordingly, we assume 
ψ = 3 and γ = 10 in our simulation study and data example.

Let Δt denote the daily decrease in the count of susceptibles. From the above discussion, we derive 
the following probability law for the daily increments of infection Δt+1 = −(St+1 − St) as follows:

Δt+1 | St, It, βt(n), n ∼ Binomial St, 1 − (1 − βt(n))It
􏼂 􏼃

. (1) 

The model parameters of interest are the rate of infection transmission βt(n) and the initial conditions 
S0, E0, and I0 (R0 = 0). An important feature of the model is that βt(n) depends on t and can poten
tially change at multiple time points. The model thus can accommodate behavioural changes over 
time, for example in response to perceived risk of infection, policy changes, weekend or holiday ef
fects, and more.

Our model implicitly assumes a homogeneous mixing structure, with the underlying population 
network characterized by a complete graph. We make this choice for the sake of tractability rather 
than realism; certainly, the true underlying mixing structure is inhomogeneous. However, as dem
onstrated by the works of KhudaBukhsh et al. (2023, 2020) and Rempała (2023), both for DSA 
and more generally, the population dynamics arising from a variety of underlying mixing struc
tures can often be approximated by a model with homogeneous mixing. We also acknowledge 
that observing mixing parameters can be challenging in many cases, such as the Ohio State student 
monitoring data. Despite attempts at Ohio State to use WiFi data for this purpose, the results were 
found to be ineffective for characterizing contact patterns (Banerji et al., 2023).

2.3 Survival and hazard functions
Our estimation approach builds on the DSA method developed by KhudaBukhsh et al. (2020). 
Specifically, we adapt the method to individual-level repeat testing data. There are several advan
tages of applying DSA to our setting such as the automatic correction for the interval censoring 
and the testing bias, both introduced by the data structure assumptions given in Section 2.1. 
See discussion in Section 3.1 for further details.

Consider the survival function St that describes the decay of susceptibles over time, along with its 
associated hazard function ht. Let δi be the time that individual i experiences infectious contact and 
enters the E compartment, with the convention that δi = ∞ if this never happens. Then St = P(δi > t), 
the probability that an initially susceptible individual is still susceptible at time t. Define βt(n) = βt/n 
when n is assumed to be large (i.e. we assume to have a large initial population of susceptibles). The 
probability that an initially susceptible individual stays susceptible until t is given by

St = P(δi > t) =
􏽙t−1

k=0

1 −
βk

n

􏼒 􏼓Ik

, (2) 

and thus the hazard function for a random susceptible being infected in [t, t + 1] is

ht+1 =
St − St+1

St
= 1 −

St+1

St
= 1 − 1 −

βt

n

􏼒 􏼓It

.
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We note that for large n, 1 − (1 − βt
n )It ≈ βtIt

n , which is the total rate of new infectious that appears in 
the mass action ODE form of this epidemic model.

As the E compartment is not observed (since individuals in E do not test positive), it is useful to 
consider the decay of the combined count of susceptible and exposed individuals. To this end, con
sider an initially susceptible individual. The probability that this individual has not yet entered I by 
time t can be computed by convolving over the transitions from S to E and E to I, giving

􏽥St =
􏽘t−1

k=1

1 − 1 −
βk

n

􏼒 􏼓Ik
􏼠 􏼡

Sk−1P(X > t − k) + St, 

where X ∼ Poisson[ψ] + 1.

2.4 Testing results and infection/exposure times
Since each on-campus student undergoes weekly SARS-CoV-2 testing, for each individual, we 
have available all test times and results. In particular, we know 

• tneg, the most recent time the individual was known to be susceptible or exposed, and
• t pos, the first time the individual was known to be infectious.

Note that it is possible that a particular individual was infectious the first time they were observed, 
in which case we set tneg = 0. It is also possible that a particular individual has never been observed 
to be infectious, in which case we set t pos = ∞.

We begin by considering the case where our test is perfectly sensitive and specific (we will later 
relax this assumption in Section 2.5. Given 􏽥St, tneg, and t pos, we can find the probability that an 
individual became infectious on a particular day as follows: 

• If tneg = i and t pos = j, then for each i < k ≤ j, the probability that this individual became infec

tious on day k is (􏽥Sk−1 −􏽥Sk)/(􏽥Si −􏽥S j).
• If tneg = 0 and t pos = j, then for each 0 < k ≤ j, the probability that this individual became in

fectious on day k is (􏽥Sk−1 −􏽥Sk)((1 − ρ) −􏽥S j), where ρ = I0/n.
• If tneg = i and t pos = ∞ and we have observed data until present time T, then for each i < T the 

probability that this individual became infectious before time T is PT := (􏽥Si −􏽥ST)􏽥Si and thus 
the probability this individual became infectious on day k with i < k ≤ T is 
PT(􏽥Sk−1 −􏽥Sk)/(􏽥Si −􏽥ST) = (􏽥Sk−1 −􏽥Sk)􏽥Si.

Of course, in practice tests are not perfect. However, we can adapt this idea of (imperfect) interval 
censoring to construct the distribution of ωi, the time individual i enters the I compartment, given 
the collection of all individual test results.

2.5 Imperfect test sensitivity
The PCR tests used at OSU were highly specific, and so our main concern is imperfect sensitivity, 
that is, the possibility of false negative results. Recall that ωi is the time individual i enters the I 
compartment (with the convention that ωi = ∞ if this never happens) and let Di be the collection 
of test dates and corresponding results for individual i. Suppose that when applied to individual i, 
our test has known sensitivity fi(·) that may depend on the time since individual i become infec
tious, which we call individual i’s age of infection. Our goal is to characterize the distribution 
of δi given the survival function St and the data. We first observe that if we additionally knew τi 

and σi then

P(Di |ωi, τi, σi, fi(·), St) 
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is straightforward to compute, since we know fi(·) and individual i’s age of infection at all times. 
We can then use Bayes Theorem to see that

P(ωi |Di, τi, σi, β, fi(·), St) =
P(Di |ωi, τi, σi, β, fi(·), St)P(ωi | τi, St)

􏽐
ωi

P(Di |ωi, τi, σi, β, fi(·), St)P(ωi | τi, St)
. (3) 

Then in order to compute P(ωi |Di, τi, σi, β, fi(·), St) it remains only to compute P(ωi | τi, St). We 
can note that since δi = ωi − τi, this is equivalent to computing P(δi | St), which is simply given by 
the hazard function. In practice, we do not observe τ and σ. However, in our Bayesian estimation 
framework, we can use data augmentation to condition on them as part of our sampler.

It is possible that the sensitivity f (·) is not precisely known, and the results of fitting the model are 
sensitive to changes in f (·). In such cases, we recommend fitting the model for multiple choices of 
f (·) and incorporating the variation in results into the uncertainty quantification. Of course, chan
ging f (·) will generally affect the results in a predictable way. Lower sensitivity will yield higher 
estimates of prevalence compared with the test positive rate and greater uncertainty about preva
lence while higher sensitivity will yield lower estimates of prevalence compared with the test posi
tive rate and less uncertainty about prevalence.

2.6 MCMC algorithm
We developed an iterated procedure implemented via a MH-within-Gibbs sampler algorithm to 
estimate the model parameters given the testing and removal data. Following initialization, we 
use the current prevalence estimate to compute the survival function (2). We then augment the 
data with the sojourn times in E and I, (τ, σ), and use this along with survival function and 
individual-level test results to propose daily incidence, which if accepted is then used to update 
the prevalence estimate. The detailed algorithm is as follows. 

1. Initialize {St}
T
t=1, {βt}

T
t=1, ω, τ, σ.

2. Propose (ω′, τ′, σ′) by proposing each component independently as follows:
(a) Propose τ′i ∼ Poisson(ψ) + 1 for i = 1, . . . , n independently.
(b) Propose σ′i ∼ Poisson(γ) + 1 for i = 1, . . . , n independently.

(c) Propose ω′i ∼ P(ω′i |Di, τi, σi, β, fi(·)) = P(Di |ωi, τi, σi, β, fi(·))P(ω′ | β, S)􏽐
ωi

P(Di |ωi, τi, σi, β, fi(·))P(ω′ | β, S)
, see (3).

3. Compute the derived quantities (St, Et, It, Rt), δt, ϵt, Δt for t = 1, . . . , T.
4. Compute the acceptance ratio

A =
L(ω′, τ′, σ′ | β, S, f (·))g(ω, τ, σ | β, S, f (·))
L(ω, τ, σ | β, S, f (·))g(ω′, τ′, σ′ | β, S, f (·))

, 

where L(·) is the likelihood and g(·) is the proposal distribution. (See Section A for the full der
ivation of the acceptance ratio.)

5. Accept and set (ω, τ, σ) = (ω′, τ′, σ′) with probability min(1, A).
6. Update βt by drawing βtIt/n ∼ Beta(Δt + at, St−1 − Δt + bt) for t = 1, . . . , T, where Beta(at, bt) 

is the prior on βt.
7. Update St given {(βt, It)}

T
t=1 using St = S0

􏽑t
k=1 (1 − βk

n )Ik , see (2). 
8. Go to step 2 and repeat until convergence.

This estimation scheme yields posterior samples for the survival function {St}
T
t=1, the infection par

ameter {βt}
T
t=1, the incidence ω, and the prevalence (as well as the other compartment counts) 

{(St, Et, It, Rt)}
T
t=1. We update {βt}

T
t=1 using a Beta-Binomial conjugate prior model, the incidence 

and prevalence counts via a MH step, and compute {St}
T
t=1 using (2). 

The main quantities of interest are the prevalence count and the transmission parameter βt. 
Because the individual-level testing data is informative about the times that individuals entered 
the I compartment, we expect to produce precise estimates of prevalence. In addition to fully mak
ing use of this information, the advantage of our model is that it adjusts for both imperfect test 
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sensitivity and the effect of the repeated testing schedule in a principled way and allows for the 
estimation of transmission. We expect more uncertainty about the transmission parameter βt, es
pecially during periods when βt is changing quickly with respect to the observed time.

We assume that ψ and γ, and fi(·) are known. In principle, we could additionally estimate γ. 
However, under our assumptions in Section 2.1, infectious individuals typically move to R via iso
lation rather than natural recovery. Since the interval between tests is shorter than the expected 
recovery time, most individuals who become infectious will test at least once while infectious, 
and assuming a reasonably sensitive test, likely test positive and move to isolation before they nat
urally recover. Because of this, the particular choice of γ has only a small effect on the model dy
namics, provided the choice is broadly reasonable. However, this also makes estimating γ difficult, 
as the observed data contains very little information about γ.

3 Results
3.1 Bias in naive, nonmechanistic modelling
Before we present the proposed IDSA model performance on data examples, let us first briefly dis
cuss the alternative nonmechanistic approaches often considered in similar contexts in the statis
tical literature. Indeed, by now a plethora of approaches to analysing COVID-19 occurrences via 
count-regression models have been proposed (see, e.g. Chan et al., 2021; Kianifard & Gallo, 1995
and references therein). In our current setting of repeated testing, it is perhaps especially tempting 
to entertain a simpler and more intuitive alternative to IDSA, by modelling the epidemic using dai
ly counts of tests administered and daily test positive rates. However, the sample of individuals 
tested each day is not random and depends on the specific testing regime. The daily test positive 
rate in the weekly testing scheme can be thought of as representative of the prevalence in the popu
lation eligible for testing on that day. However, the population ineligible for testing due to having 
already been tested that week has a smaller proportion of individuals in I because all those who 
were in I at the time of testing have since moved to R. Thus, the daily test positive rate overesti
mates the population prevalence except on the first day of each week. Some accounting for the in
teracting compartmental and testing processes is needed to obtain unbiased estimates of 
prevalence.

To give a simple example, we simulated 1,000 epidemic trajectories using similar settings as in 
Section 3.2 below. We assume perfect testing in this example in order to clearly illustrate our point; 
imperfect sensitivity biases the test positive rate downward compared with the prevalence and may 
make it difficult to observe the effects of the repeated testing schedule. We compare the naive es
timate of prevalence computed using the formula (daily test positive rate ∗(n − Rt)) with the true 
value of It, and averaged over the 1,000 simulations. The results are presented in the right panel of 
Figure 3, illustrating a positive bias in the implied prevalence that increases with the true It and also 
over the course of the week (the duration of testing window). Indeed, note that for any day in the 
week-long testing window beyond day one (d > 1), the daily test positive rate has to overestimate 
the prevalence, since individuals in the tested sample will test positive so long as their infection 
time is smaller than d. Since an individual’s test day is chosen uniformly at random from the 
days of the week, it is approximately independent of that individual’s infection day so that the 
bias gets accumulated over the testing window. Admittedly, this heuristic ignores the effect of nat
ural recoveries, but if the window between consecutive tests is shorter than the natural recovery 
time, which is an objective of the transmission control scheme (and is assumed in Section 3.3), 
then individuals who become infected and naturally recover between two consecutive scheduled 
tests will be rare.

In order to examine the implications of the bias of the test positive rate on the modelling strategy 
relying on daily incidence counts, the SEIR model and testing data were simulated (see Section 3.2
for details) giving us the hypothetical daily number of tests administered along with the daily test 
positive rate. Under the assumption that removals of infectious individuals are deterministic 
(occurring only at a fixed time after a positive test, and with no untested recoveries), we calculated 
the daily number of individuals in the S, E, or I compartments and fitted a Poisson generalized 
additive model to the simulated dataset. The model used the number of positive tests as the 
outcome variable, the log number of tests administered as the offset, and a penalized spline 
term for time via an adaptive spline basis (bs = ‘ad’) with otherwise default settings of the version 
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1.8–33 of R mgcv package function gam(). Prevalence estimates were then produced at each 
timepoint (day) by predicting the number of positive tests, if the entire nonremoved population 
had been tested (by setting the offset to the log number of nonremoved students). The results 
are shown in the right panel of Figure 3. As can clearly be seen from the plot, the Poisson model 
substantially overestimates the peak of the epidemic and exhibits large oscillations along the epi
demic trajectory that are consistent with the accumulated bias in the naive prevalence estimates. 
We thus see the naive Poisson model is in fact attempting to fit (with some smoothing) these incor
rect, overestimated prevalence values. Fitting a negative binomial model yielded similar results.

3.2 Simulation study
In order to assess the performance of the estimation algorithm proposed in Section 2.6, we performed 
a simulation study. We considered an SEIR epidemic in a population of size n = 10,000 over a period 
of T = 98 days (approximately one semester). In order to account for changing social behaviour and 
compliance with public health measures, we let βt vary over the course of the epidemic, setting 
βt = .32 for t = 1, . . . , 7, βt = .40 for t = 8, . . . , 14, βt = 0.05 for t = 15, . . . , 21, βt = 0.10 for 
t = 22, . . . , 56, βt = .3 for t = 57, . . . , 83, and βt = .2 for t = 84, . . . , 98. We let ψ = 3 and γ = 10 so 
that individuals’ sojourn times in E and I were Poisson(3) + 1 and Poisson(10) + 1 distributed re
spectively. We took the age of infection-dependent sensitivity for individual i fi(·) to be a triangle start
ing at .8 at the start of the individual’s infectious period, peaking at .9 30% of the way through the 
individual’s infectious period, and decaying back to .8 at the end of the individual’s infectious period. 
This is consistent with findings that viral loads for SARS-CoV-2 infections peak early in the infectious 
period (Larremore et al., 2021). The chosen magnitudes yield an ‘average’ sensitivity (the expected 
sensitivity of a test administered uniformly at random over the typical infectious period) consistent 
with sensitivity estimates in the meta-analysis of Butler-Laporte et al. (2021).

We assume that each individual in the population is tested weekly. We simulate this each week 
by numbering individuals 1, . . . , 10,000, permuting this sequence into a random order of individ
ual tests distributed approximately uniformly over 7 days, Monday through Sunday. Individuals 
who test positive are moved to isolation (removed and sent to the R compartment) 2 days after 
being tested to model the delay in test outcomes reporting. Individuals may enter the R compart
ment via natural recovery or isolation. However, because the typical test interval is shorter than 
the typical infection length, most individuals who enter the R compartment will do so via isolation.

We chose these settings for our simulation study because they produced an epidemic curve quali
tatively similar to the one observed among on-campus students during the Autumn 2020 semester 
at The OSU and are broadly consistent with what is known about ancestral SARS-CoV-2, which 
was the dominant strain at that time. The epidemic has a peak during the third week of the semes
ter followed by an extended period of low prevalence and then a second, smaller peak that begins 
to decay at the end of the semester.

Figure 3. Bias in testing-based estimates of prevalence. Left: The bars depict average differences between daily 
estimates of prevalence computed from daily test positive rates and the true values of It (solid line) averaged over 
the 1,000 simulations. The bias is seen to increase in the course of the week and with true It . The mechanism of the 
bias is explained in Figure 1. Right: Poisson GAM fit (solid lines) of the prevalence along with the naive prevalence 
estimate (dotted line) obtained by n∗(daily test positive rate) compared with the actual simulated counts (dots). The 
Poisson model is seen to severely overestimate It following the pattern of bias from the left panel. Although not 
shown here, similar results were also obtained using negative binomial regression model.
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For each individual, we recorded the times and results of all tests as well as the time the individ
ual was sent to isolation if that occurred. For comparison, we also record the true numbers of S, E, 
I, and R individuals each day. These numbers are not used to fit the model but rather to assess the 
quality of model fit. We fit the model using the algorithm in Section 2.6. We took the prior on βt as 
Beta(.5, .5/βt−1) to be weakly informative and centred on βt−1, although in practice, we found that 
the results are not much different if we instead use the noninformative prior Beta(1, 1) or the 
Jeffries prior Beta(.5, .5).

When running the MCMC, we proposed (ω′i, τ′i, σ′i) for only 10% of individuals in Step 2 on 
each iteration, which we found was helpful for obtaining a reasonable acceptance rate for our 
Metropolis step in 5. We ran the MCMC for 15,000 iterations, observing an acceptance rate of 
48.5%. We discarded the first 5,000 samples as burn-in and thinned the remaining 10,000 sample 
by a factor of 10, resulting in 1,000 posterior samples. MCMC diagnostics suggested no concerns 
with the mixing or convergence of the chain, and a representative sample of MCMC trace plots is 
given in Appendix B.

The results of the IDSA fit to the simulated data are presented in the two panels of Figure 4. In 
the left panel, we plotted prevalence It, along with its 2.5%, median, and 97.5% posterior quan
tiles over the time horizon of T = 98 days. The comparison of It with the median model prediction 
indicates a good fit, and the model correctly identifies the timing and size of the epidemic peaks. 
The 95% posterior interval covers 94.9% of the true values of It. Notably, our model also shows 
no evidence of systematically overestimating the prevalence due to the repeat testing regime. The 
uncertainty of our prevalence estimates is low, which we expect given that using the complete test
ing history of all individuals in the IDSA framework is highly informative about the prevalence. 
The uncertainty increases toward the end of the period because of the backfilling problem. That 
is, at the end of the period, there are infectious individuals whose next (likely positive) test is still 
in the future, and the model fit tends towards the expected continuation of the epidemic without 
knowing the results of these tests.

The left panel of Figure 4 shows the true value of βt against the 2.5%, median, and 97.5% pos
terior quantiles of βt. The uncertainty associated with our estimates of βt is larger, particularly at the 
beginning of the time period when there is not yet much information about transmission. However, 
we see that our estimates of βt correctly identify the trend even when βt is changing rapidly, and the 
posterior median provides a good estimate of βt during periods when the true value of βt is stable.

The code used to perform the simulation study and generate the figures can be found at https:// 
github.com/mwwascher/IDSA.

3.3 Analysis of OSU COVID-19 surveillance data
In this section, we present the data analysis that has motivated the IDSA model. We use the slightly 
altered1 surveillance dataset on student testing results collected by The OSU between 17 August 
and 24 November 2020 as part of the university’s plan to manage and mitigate COVID-19 during 

Figure 4. IDSA simulation study model fit over a 98-day period (chosen to match the timescale of the OSU data). 
Left: The model estimates of the prevalence represented by the posterior quantile plots (smooth curves) compared 
with the true value from the simulated trajectory. Right: Model-based posterior estimates of βt compared with the 
true values used to generate the simulated data.

1 Students who were minors were removed from our analysis as per institutional policy.
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the Autumn semester 2020 with students on campus. The OSU’s internal policy was to weekly test 
each of n = 12,567 students living on campus. In the event of a positive test, the student was iso
lated for 10 days and contact tracing was initiated. We observed that in most cases, there was a 
2-day delay between administering the test and quarantining positive testing students. Students 
who tested positive were subsequently quarantined and removed from the testing pool for 90 days.

The OSU dataset consists of the dates and results of all test for each individual, as well as the 
time each individual entered isolation, if that occurred. From this data, we can also compute 
the total number of tests administered each day and the daily number of positive and negative tests.

We fit the IDSA model to the data by applying the MH-within-Gibbs sampler algorithm de
scribed in Section 2.6. As in our simulation study, we let ψ = 3 and γ = 10 so that individuals’ so
journ times in E and I were Poisson(3) + 1 and Poisson(10) + 1 distributed, respectively. We took 
the age of infection-dependent sensitivity for individual i, fi(·), to be a triangle starting at .8 at the 
start of the individual’s infectious period, peaking at .9 30% of the way through the individual’s 
infectious period, and decaying back to .8 at the end of the individual’s infectious period.

We took the prior on βt as Beta(.5, .5/βt−1) to be weakly informative and centred on βt−1. When 
running the MCMC, we updated (ωi, τi, σi) for 1,000 (out of 11,645) individuals selected uniformly 
at random on each iteration, which we found helpful for obtaining a reasonable acceptance rate for 
the Metropolis step in 5. of our MCMC algorithm in Section 2.6. We ran the MCMC for 15,000 
iterations, observing an acceptance rate of 50.0%. We discarded the first 5,000 samples as burn-in 
and thinned the remaining 10,000 samples by a factor of 10, resulting in 1,000 posterior samples. 
See trace plots in Figure A1 in the Appendix.

The results of the IDSA fit to the OSU data are presented in the two panels of Figure 5. In the left 
panel, we plotted the 2.5%, median, and 97.5% posterior quantiles of the 5-day moving average 
of estimated prevalence against the observed test positive rate on days with at least 100 tests ad
ministered. We see that the estimated prevalence matches the general shape of the test positive rate. 
The true prevalence is unknown.

The observed test positive rate may differ from the true prevalence due to sampling error, im
perfect testing, and bias from the repeated testing schedule, so we do not expect that posterior es
timates necessarily cover the observed test positive rate values. In fact, we see that sampling error 
can be substantial, and the test positive rate sometimes exhibits large oscillations over a short time 
period (on days with relatively fewer tests). The IDSA prevalence estimates do not exhibit such 
large oscillations because IDSA uses the longitudinal information in the testing data. Because im
perfect testing creates a downward bias and the repeated test schedule creates an upward bias, it is 
not obvious whether we should expect the test positive rate to be systematically higher or lower 
than the true prevalence in this case.

The right panel of Figure 5 shows 2.5%, median, and 97.5% posterior quantiles of the trans
mission parameter βt. We observe that transmission is high early in the semester, consistent 
with a large peak in test positive rate and estimated prevalence, which is followed by an extended 

Figure 5. IDSA model fit to OSU COVID-19 data. Left: The model estimates of prevalence (lines within the 95% 
credibility envelope) versus n × daily test positive rate on days with at least 100 tests administered. Right: 
Model-based posterior estimate of the transmission parameter βt . The median and 2.5% and 97.5% quantiles of the 
posterior estimates are plotted as smooth solid curves within the 95% region of credibility. Because we assume 
testing is imperfect, the test positive rate is an underestimate of the true prevalence among those tested each day, 
and we do not necessarily expect the test positive rate to fall above the model estimates, even in the presence of 
upward bias due to the testing scheme.
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period of low to moderate transmission. The transmission parameter rises again toward the end of 
the semester where we see a second smaller peak in test positive rate and estimated prevalence.

Figure 6 compares the IDSA model estimates on the OSU data to a naive estimation method that 
obtains pointwise estimates and confidence intervals from the usual Binomial MLEs and associ
ated 95% confidence interval on this data. To compute the Binomial MLEs and associated confi
dence intervals adjusted for imperfect testing, we use the ‘average’ sensitivity (the expected 
sensitivity of a test administered uniformly at random over the typical infectious period) denoted 
by f and γ (as the naive method does not allow for dependence on age-of-infection). As expected 
given our heuristic and results in Section 3.1, we observe that the naive estimates tend to be larger 
and have greater uncertainty than the IDSA estimates, especially when prevalence is high.

4 Discussion and conclusions
There has been an exponential growth in the volume of mathematical epidemic modelling literature 
since the start of the COVID-19 pandemic. However, few researchers have concentrated on rigorous 
statistical models that consider repeat testing in closed populations, such as student communities on 
college campuses, as we have in our study. This issue was particularly pertinent in the early stages of 
the pandemic. Here, we discuss some recent works that are relevant and to some extent comparable 
to ours. In Chang et al. (2020), the authors built a fairly detailed model based on Kaplan (2020) ac
counting for important considerations such as test frequency, test specificity, and dependence of test 
sensitivity on time since infection. The authors of Paltiel et al. (2020) considered an extended discrete- 
time SEIR compartmental model for a hypothetical cohort of 5,000 students to suggest that frequent 
screening (every 2 days) of all students might be required to control outbreaks. Both Chang et al. 
(2020) and Paltiel et al. (2020) share some similarities with our work. The crucial differences are in 
the model description (ours appears to be simpler) and statistical methodology employed to estimate 
the model parameters. While Paltiel et al. (2020) is primarily a simulation-based study, Chang et al. 
(2020) borrows a number of parameter values from the literature. Another simulation-based work 
is Rennert et al. (2020), where the authors use an extended SEIR model to assess the role of presemester 
screening in averting early and large surges of COVID-19 infections. An advantage of works such as 
Rennert et al. (2020) is that they could be used to test potential intervention strategies in more realistic 
settings compared with traditional mass-action deterministic models. In a similar vein, the authors of 
Arnst et al. (2022) develop a MCMC-based Bayesian method to estimate a subset of parameters of a 
hybrid stochastic model for transmission of COVID-19 on the University of Liège campus. The starting 
point of their model development is a massive system of ordinary differential equations, which is typical 
of compartmental modelling approaches. In order to derive a likelihood function, they construct a 

Figure 6. Comparison of IDSA model fit to OSU COVID-19 data to a naive estimation method applied to this same data: 
The dots give pointwise daily prevalence estimates obtained from the usual Binomial MLE, and the associated solid 
band gives the pointwise 95% confidence intervals for these estimates. The solid lines defining the 95% credibility 
envelop are the IDSA estimates, as before. The naive estimates tend to be larger and have greater uncertainty 
compared with the IDSA estimates, particularly when prevalence is high. They are also not age-of-infection 
sensitivity-adjusted; therefore, they differ from those in the left panel of Figure 5. Refer to the text for details.
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corresponding continuous time Markov chain model, which can be approximated by a diffusion pro
cess in the limit of a large population. This is indeed a principled approach to parameter inference, not
withstanding the issues related to unidentifiable parameters, which they assume known from various 
sources.

In a recent article, Muller and Muller (2021) developed an SEIR-type compartmental model to study 
the spread of COVID-19 on a university campus among a homogeneously mixing population. They 
validate their model by fitting it to the data available from Villanova University’s COVID 
Dashboard for the Autumn 2020 semester. The difference between their work and ours is that they 
like Arnst et al. (2022) borrow the majority of their parameters from the literature. In a retrospective 
study Rennert et al. (2021), the authors considered a meta-population model using a cross-coupling 
matrix for SARS-CoV-2 transmission to evaluate testing strategies implemented by Clemson 
University. A similar study for the Cornell University is Frazier et al. (2022), where the authors fit 
the parameters by minimizing squared errors. As opposed to mass-action models, the authors of 
Hill et al. (2021) built an elaborate network-based model with four layers (corresponding to house
holds, study groups, societies, and social contacts) and used a combination of a maximum likelihood- 
based and literature-borrowed estimates to fit an SEIR-type model to study the transmission of 
COVID-19 in the UK university setting. A similar study is done in Enright et al. (2021). While popu
lation models require fewer parameters, agent-based models are often preferred because of their ability 
to capture realistic dynamics. Such an agent-based model was considered for instance in Cator et al. 
(2022). Although our approach is based on individual-level data, our model does not use an individual- 
level likelihood, like for instance in Bridgen et al. (2024) and Pokharel and Deardon (2022), but rather 
approximates it with the aggregated quantity, akin to the idea of the propagation of chaos in stochastic 
dynamical systems (see Cappelletti & Rempala, 2023).

An alternative approach to assessing potential infection risks involves collecting data on 
SARS-CoV-2 viral load from air and surface samples, as demonstrated by Zhang et al. (2022). 
Despite contextual and scientific similarities, findings in these articles may not generalize to other 
diseases and institutions due to variations in disease transmission models and parameters, espe
cially those derived from diverse literature sources. Consequently, the imperative for a statistical 
method persists, one built upon a simple disease transmission model that reliably estimates param
eters from repeated testing data.

Presented here is a statistical IDSA model providing estimates for prevalence count and transmis
sion rate. The model, showcased in Section 3, demonstrates promising fits in both synthetic data ex
amples and the analysis of OSU repeated testing data. The IDSA model’s flexibility in capturing 
changing epidemic patterns is attributed to allowing the key transmission parameter βt to vary 
with time and accounting for age-of-infection-dependent sensitivity. While fully identifiable, the 
model requires a sufficiently high volume of daily and weekly data for accurate fitting, as exemplified 
by the OSU dataset, where each week of repeated testing contributed approximately 12,000 new data 
points for parameter estimation. Although not detailed in this discussion, our experience with the 
IDSA model applied to the OSU dataset indicates favourable agreement between model forward pre
dictions and actual data, mitigating concerns related to overfitting in complex mechanistic models.

The analysis of the OSU dataset presented in this article represents one of the few comprehensive 
statistical studies of repeated SARS-CoV-2 testing data among a large population of US college under
graduates. For the OSU dataset, we assumed an approximately closed population, informed by evi
dence from the monitoring of wifi data (see Banerji et al., 2023), and disregarded the importation 
of infection from outside of campus. Therefore caution should be exercised in interpreting our trans
mission estimates for OSU in temporal regions of low prevalence. For instance, a consistent low-level 
importation of cases could lead to βt > 0, despite minimal transmission within the residential under
graduate community. For the sake of actual campus predictions in 2020 Autumn semester, we ex
panded the model to include a constant baseline level of positive tests per day to account for this. 
This baseline level may correspond to false positives, externally imported infections, or a combination 
of the two. Distinguishing between false positives and imported infections among these baseline pos
itives may require additional data and is closely tied to quantifying the significance of transmission 
between residential and off-campus members of the university community. We plan to explore this 
issue further in future work, employing a multi-population DSA model.

We note that with an increasing amount of residential surveillance data becoming avail
able, further extensions of the IDSA model beyond multi-populations are also possible. 
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However, even though such more general models may have the ability to adjust for different 
types of interactions and social mixing between groups, they still may not properly account 
for the social networks of contacts within different groups. Thus, additional work is needed 
for examining SARS-CoV-2 dynamics in relevant on- and off-campus populations, in order 
to further improve the accuracy of the IDSA model-based predictions. This is also left for 
future investigation as part of the expansion of the framework presented here. Despite these 
limitations, we anticipate that the presented framework will prove valuable both in a general 
sense and specifically in the context of introducing and assessing various intervention types, 
including different vaccination schemes for residents. This aligns with policy suggestions 
offered by the modelling community, such as those by Wang et al. (2021), at the initial 
rollout of the SARS-CoV-2 vaccines.
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Appendix A. Derivation of the MH acceptance ratio
The acceptance ratio for (ω′, τ′, σ′) in step 4. of our estimation procedure in Section 2.6 is given by

A =
L(ω′, τ′, σ′ | β, St, f (·))g(ω, τ, σ | β, St, f (·))
L(ω, τ, σ | β, St, f (·))g(ω′, τ′, σ′ | β, St, f (·))

, 

where L(ω, τ, σ | β, S, f (·)) is the likelihood and g(ω, τ, σ | β, St, f (·)) is the proposal distribution. 
We can compute

L(ω, τ, σ | β, St, f (·)) =
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, 

and we use the proposal distribution

g(ω, τ, σ | β, S, f (·)) =
􏽙n

i = 1

fτ(τi)

􏼠 􏼡
􏽙n

i = 1

fσ(σi)

􏼠 􏼡
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􏼠 􏼡

.

Note that P(ωi | τi, St) is the hazard at time ωi − τi, hωi−τi , and P(Di |ωi, τi, σi, β, S, fi(·))P(ωi | τi, St)􏽐
ωi

P(Di |ωi, τi, σi, β, S, fi(·))P(ωi | τi, St) 
is the 

conditional probability P(ωi |Di, τi, σi, β, St, fi(·)) obtained using Bayes rule in equation 3. After 
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some cancellation and rearranging, we see that

A =
L(ω′, τ′, σ′ | β, St, f (·))g(ω, τ, σ | β, St, f (·))
L(ω, τ, σ | β, St, f (·))g(ω′, τ′, σ′ | β, St, f (·))

=
􏽙T
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Appendix B. MCMC trace plots

Figure A1. Representative MCMC trace plots for the posteriors of βt and It for t = {14, 35, 77}. Overall, the 
diagnostic trace plots suggest good mixing and convergence properties of the chain, as well as no undue 
correlations among posterior parameters (plots not shown).
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Appendix C. Summary of notation
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