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ABSTRACT
Confronting measurements of the Lyman-α forest with cosmological hydrodynamical simulations has produced strin-
gent constraints on models of particle dark matter and the thermal and ionization state of the intergalactic medium.
We investigate the robustness of such models of the Lyman-α forest, focussing on the effect of particle initial con-
ditions on the Lyman-α forest statistics in cosmological SPH simulations. We study multiple particle initialization
algorithms in simulations that are designed to be identical in other respects. In agreement with the literature, we
find that the correct linear theory evolution is obtained when a glass-like configuration is used for initial unperturbed
gas particle positions alongside a regular grid configuration for dark matter particles and the use of non-identical
initial density perturbations for gas and dark matter. However, we report that this introduces a large scale-dependent
distortion in the one-dimensional Lyman-α transmission power spectrum at small scales (k > 0.05 s/km). The effect
is close to 50% at k ∼ 0.1 s/km, and persists at higher resolution. This can severely bias inferences in parameters such
as the dark matter particle mass. By considering multiple initial conditions codes and their variations, we also study
the impact of a variety of other assumptions and algorithmic choices, such as adaptive softening, background radia-
tion density, particle staggering, and perturbation theory accuracy, on the matter power spectrum, the Lyman-α flux
power spectrum, and the Lyman-α flux PDF. This work reveals possible pathways towards more accurate theoretical
models of the Lyman-α forest to match the quality of upcoming measurements.
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1 INTRODUCTION

The Lyman-α forest absorption features seen in high-redshift
quasar spectra are the pre-eminent tool for probing the small-
scale structure of the Universe. Properties of the absorption
lines that constitute the Lyman-α forest are sensitive to the
small-scale matter power spectrum as well as the thermal evo-
lution of baryons. Furthermore, the forest is relatively insensi-
tive to the non-linear baryonic physics at larger overdensities.
Consequently, hydrodynamical cosmological simulations can
be used in combination with Lyman-α forest measurements
to put excellent constraints on various cosmological proper-
ties (see Meiksin 2009 and McQuinn 2016 for reviews).

Examples of constraints on the cosmological small-scale
structure include constraints derived by various authors from
the Lyman-α forest on dark matter models that affect the
matter power spectrum at small scales. Multiple authors have
inferred lower bounds on the warm dark matter particle mass

⋆ E-mail: nabendu.khan@tifr.res.in

using Lyman-α forest statistics (Viel et al. 2005, 2008, 2013;
Iršič et al. 2017a; Baur et al. 2017; Palanque-Delabrouille
et al. 2020; Villasenor et al. 2023), with recent work report-
ing mx > 5.5 keV (Iršič et al. 2023). Similar work has yielded
constraints on the mass of a sterile neutrino (Viel et al. 2005,
2008; Baur et al. 2017; Garzilli et al. 2019) and fuzzy or ultra-
light axion dark matter mass (Iršič et al. 2017b; Armengaud
et al. 2017; Iršič et al. 2020; Rogers & Peiris 2021). Within
the ΛCDM model, numerous authors have used the Lyman-
α forest to constrain the thermal state of the IGM (Schaye
et al. 2000; Ricotti et al. 2000; Zaldarriaga et al. 2001; The-
uns et al. 2002; Lidz et al. 2010; Becker et al. 2011; Lee et al.
2015; Garzilli et al. 2017; Rorai et al. 2017a,b, 2018; Boera
et al. 2019; Walther et al. 2019; Hiss et al. 2019; Garaldi et al.
2019; Gaikwad et al. 2021, 2020; Villasenor et al. 2022). This
has resulted in the broad picture that the IGM temperature
T0 at mean density rises from about 5,000 K at z ≳ 5.4, peaks
at 15,000 K at z ∼ 3, and reduces to 7,000 K at z ≲ 2.

Most recent measurements of the statistics of the Lyman-α
forest have utilised measurements of a handful of quasars with
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2 Khan et al.

spectrographs on 8m-class telescopes, such as Keck/HIRES,
VLT/UVES, and VLT/XSHOOTER (Walther et al. 2018;
Boera et al. 2019; Karaçaylı et al. 2022). These measurements
have signal-to-noise ratios of 10–30. The typical resolution is
medium-to-high, with some spectra having a resolution of
R ∼ 4000–7000, and some R > 40000. This allows a mea-
surement of the one-dimensional Lyman-α flux power spec-
trum to well above k = 0.1 s/km, although at these small
scales, contamination due to metal-line absorption could be-
come a serious problem (Walther et al. 2018). The resultant
precision on the measurement of the flux power spectrum at
k ∼ 0.1 s/km is about 10%. At scales k ≲ 0.1 s/km, the
systematic errors are estimated to be about 20% of the sta-
tistical errors (Karaçaylı et al. 2022). Low-resolution quasar
spectra from surveys like SDSS, BOSS, and eBOSS, contain-
ing tens to hundreds of thousands of samples, are also uti-
lized for Lyman-α forest studies. These spectra have limited
resolution and signal-to-noise ratios. They are valuable for
measuring neutrino masses and background cosmology pa-
rameters but cannot effectively constrain warm dark matter
cosmologies or the thermal parameters of the IGM due to
their insufficient resolution for measuring the Lyman-α for-
est at small scales with k > 0.02 s/km.

The quality of Lyman-α forest data at small as well as
large scales is expected to improve dramatically in the near
future. DESI will increase the number of quasar spectra by
an order of magnitude (DESI Collaboration et al. 2016),
leading to order-of-magnitude improvement in constraints on
the slope ns and the running αs of the primordial curva-
ture power spectrum, and the sum of neutrino masses, and
a factor-of-two improvement in constraints on the effective
number of neutrino species. On the small scales, improve-
ment is expected from projects such as WEAVE-QSO (Pieri
et al. 2016). If the large-scale measurements have a spectral
resolution of R ∼ 2000 and a signal-to-noise ratio of ∼ 5,
and the small-scale measurements have R ∼ 40000 and a
signal-to-noise ratio of ≳ 30, the WEAVE-QSO survey will
substantially push the amount of intermediate quality data
with R ∼ 20000 and a signal-to-noise ratio of ≳ 20. This
will provide a means to study large-scale effects such as IGM
temperature fluctuations. A third improvement is the discov-
ery of more high-redshift quasars by surveys such as LSST
and Euclid. In the last decade, the number of quasars with
z > 6 grew fivefold thanks to deep wide-field optical-infrared
surveys such as CFHQS, VISTA/VIKING, Pan-STARRS1,
DECaLS, UKIDDS, and UHS. This pushed the number of
high-redshift targets for Lyman-α forest studies to 200. The
resultant increase in the number of Lyman-α forest measure-
ments has already allowed qualitatively new deductions about
the high-redshift universe (Gaikwad et al. 2020; Bosman et al.
2022). LSST will potentially increase this number to 10,000
(for i < 26; LSST Science Collaboration et al. 2009). In the
nearer term, Euclid is expected to find about 125 quasars
with 7 < z < 8, with potentially a handful of quasars with
even higher redshifts (Euclid Collaboration et al. 2019). Over
a longer time scale, 30m-class telescopes will give a further
boost to Lyman-α forest data, increasing the quality and
quantity of spectra to enable new ways of probing the IGM
(Skidmore et al. 2015; Maiolino et al. 2013).

These forthcoming improvements to data make it impera-
tive that theoretical modelling of the Lyman-α forest matches
measurements in accuracy. Not only would such models be re-

quired to be free of numerical errors to a high degree, but they
will also need to avoid poorly understood physical assump-
tions. A large amount of recent work has focussed on this
goal. Molaro et al. (2022) and Wu et al. (2019) investigated
the effect of ignoring reionization-induced large-scale spatial
fluctuations in the IGM temperature on the one-dimensional
flux power spectrum of the Lyman-α forest. Molaro et al.
(2022) found that for the 10% uncertainties on current mea-
surements, temperature fluctuations do not introduce any bi-
ases in the inference of dark matter or thermal parameters.
However, for 5% uncertainties, such as those expected in fu-
ture data, they find systematic shifts of about 1σ. Chabanier
et al. (2022) investigated the difference between results from
smoothed particle hydrodynamics (SPH) and Eulerian hy-
drodynamical computation. They found the one-dimensional
power spectrum results from both techniques agreed to be
better than a percent. They also found that SPH leads to
systematic biases in several Lyman-α forest statistics at high
redshift because of poor sampling in low-density regions.
Bolton & Becker (2009) investigated the effect of mass reso-
lution and box size of SPH simulation on the Lyman-α forest
spectra for 2 < z < 5. They found that the requirements
on simulations become more stringent towards higher red-
shifts because the typical densities probed by the Lyman-α
absorption lines are relatively lower. Walther et al. (2021)
did a similar analysis for Eulerian codes, finding that a box
size of 120 Mpc and a resolution of 30 kpc is required for
one-dimensional flux power spectrum predictions that are ac-
curate to 1%. These authors also investigated the accuracy
of the interpolation required to span the parameter space to
accurately infer model parameters from the data. Bird et al.
(2013) also compared Eulerian and SPH methods for mod-
elling the Lyman-α forest. Although they found some dif-
ferences between the two models at large neutral-hydrogen
column densities, there were no significant differences in the
column densities probed by the Lyman-α forest. Bird et al.
(2020) showed that most simulations of the Lyman-α forest
produce a large error in the linear-theory predictions for per-
turbations in dark matter and baryon densities. They argued
that this affects the one-dimensional flux power spectrum
predictions at the 5% level. Villasenor et al. (2021) inves-
tigated the role of photoheating and photoionization models
in Lyman-α forest simulations using their Eulerian code.

In this paper, we turn our attention to the accuracy of
the initial conditions used in cosmological hydrodynamical
simulations of the Lyman-α forest. In recent times, several
different algorithms and codes for generating initial condi-
tions have been used, without a detailed understanding of
the robustness of each of them for Lyman-α forest statis-
tics. We set up identical simulations using multiple codes
and compare multiple forest statistics. The outline of this
paper is as follows. Section 2 describes the current landscape
of methods used to set up initial conditions. We describe our
set-up in Section 3. Our results are presented in Section 4.
We end with a discussion of our findings in Section 5 and
a summary in Section 6. Our ΛCDM cosmological parame-
ters are Ωb = 0.0482, Ωm = 0.308, ΩΛ = 0.692, h = 0.678,
ns = 0.961, σ8 = 0.829, and YHe = 0.24 (Planck Collabora-
tion XVI 2014).
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Cosmological initial conditions 3

2 INITIAL CONDITIONS IN SPH-BASED
COSMOLOGICAL SIMULATIONS

The task of setting up initial conditions for cosmological sim-
ulations is to obtain a particle distribution inside a finite vol-
ume that represents a density field with Gaussian random
fluctuations around the mean. Such a density field should
model cosmological density perturbations at sufficiently early
times in the matter-dominated era. The resultant density
contrast

δ(x, t) =
ρ(x, t)

ρ̄(t)
− 1, (1)

can be expanded into its Fourier components as

δ(x, t) =
1

(2π)3/2

∫ ∞

−∞
d3k δ̃(k, t) exp (ik · x). (2)

As δ is a Gaussian random field with zero mean, it is fully
specified by its power spectrum, P (k, t), defined by

⟨δ̃(k, t) δ̃∗(k′, t)⟩ = P (k, t) δD(k− k′), (3)

where the angle brackets denote an ensemble average, k is the
magnitude of the vector k, and δD is the Dirac delta function.
The power spectrum P (k) has units of volume, often chosen
to be (cMpc/h)3. When perturbations are small, the power
spectrum is described by a transfer function T (k, t), so that

P (k, t) = T 2(k)D2(t)PR(k), (4)

where D(t) is the linear growth factor, and PR(k) is the di-
mensionless primordial curvature power spectrum, taken to
be of the form

PR(k) = As

(
k

k0

)ns

, (5)

where, with k0 = 0.05 cMpc−1, measurements favour the
power-law index ns = 0.961 and As = 2.2 × 10−9 (Planck
Collaboration XVI 2014).

In practice, one has to work with quantities defined on a
set of discrete points. Consider a Cartesian grid xp = p∆x,
with a uniform spacing ∆x in the three directions, spanning
the simulation volume. We assume that there are n points
in each direction, for a total of n3 points. When the density
contrast is evaluated at these discrete points, we can compute
the discrete Fourier transform as

δ̃kq =
1

n3/2

n−1∑
p=0

δ(xp) exp (−ikq · xp), (6)

where kq = 2πq/(n∆x) for q = 0, . . . , n − 1. The quantity
δ̃kq is related to the quantity δ̃(k) defined in Equation (2) by

δ̃(kq) = (∆x)3
( n

2π

)3/2

δ̃kq . (7)

This allows us to compute the power spectrum from Equa-
tion (3) at discrete points kq as

P (kq) = (∆x)3⟨|δ̃kq |
2⟩, (8)

where the angle brackets now denote the mean over all grid
points. All three-dimensional power spectra in this paper are
computed using Equation (8).

To specify the initial conditions of a cosmological simula-
tion, one must compute the transfer function T (k), defined
by Equation (4). This can be done to 0.1% accuracy using
Boltzmann solver codes such as CAMB (Lewis et al. 2000) or
CLASS (Lesgourgues 2011).

2.1 Generating initial conditions

With the above notation in place, we can now describe the
general procedure of setting up initial conditions for a cos-
mological simulation. This task can be split into two steps.
The first step involves creating a uniform distribution of par-
ticles. The second step is to displace these particles to achieve
a Gaussian random density distribution that has the required
power spectrum.

It is not trivial to set up a uniform mass distribution with
a finite number of particles (Bertschinger 1998). Simply dis-
tributing n particles randomly in the box leads to a den-
sity distribution with a non-zero white-noise power spectrum
that can lead to non-trivial structure formation even in the
absence of additional cosmological power. A conventional so-
lution to this problem is to position the particles in a regular
Cartesian cubic grid. This method is widely used in the lit-
erature, although it does suffer from problems. For instance,
the grid spacing imposes a characteristic length scale in the
simulation. The grid also breaks isotropy at small scales by
defining preferred directions. These problems are particularly
important to address in cosmological models with little or no
power at small scales, such as warm-dark-matter cosmolo-
gies. An alternative to using a grid distribution is to create
a so-called glass-like distribution of particles (Baugh et al.
1995; White 1996). To construct a glass-like distribution, one
starts from a random distribution of particle positions, which
is then evolved using a repulsive gravitational force. The glass
then shows no visible order or anisotropy on scales beyond a
few interparticle separations.

Once a uniform particle distribution is obtained, initial
conditions for cosmological simulations are derived by shift-
ing these particle positions by displacements designed to get a
Gaussian random density distribution with the desired power
spectrum. This is achieved in several stages. First, random
numbers representing Gaussian random density perturba-
tions with a flat, white-noise power spectrum are sampled us-
ing a random number generator, in real or Fourier space, and
then transformed so that they have the desired power spec-
trum (Peacock & Heavens 1985; Bardeen et al. 1986; Salmon
1996). Next, particle displacements are computed from these
sampled overdensities. This can be done by mapping the over-
densities to gravitational potential perturbations, which then
yield the concomitant particle displacements. The displace-
ments are used to modify the uniform particle positions of the
initial glass or grid. Lastly, consistent velocities are assigned
to the particles.

While this outline of the procedure to generate initial
conditions for cosmological simulations is generally uniform
across codes, many algorithmic variations exist. Some codes
use particle grids while others use particle glasses. Some codes
stagger gas and dark matter particles by adding a small ini-
tial separation between particle positions, but leave this sep-
aration to the user’s choice. Some codes sample white-noise
density perturbations in real space while others sample them
in Fourier space. The computation of particle displacements
from the density perturbations is done with a variety of as-
sumptions and accuracy levels of perturbation theory by dif-
ferent codes. Our purpose in this paper is to understand how
these differences in initial condition codes affect cosmological
simulation results relevant to the Lyman-α forest. In order
to do this, we now describe the methods behind the initial
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Code Perturbation sampling Displacement computation Velocity computation

NGenIC Fourier space Zel’dovich Equations (10) and (11)
2LPTic Fourier space 2LPT Equation (16)
CosmicIC real space Zel’dovich Equations (10) and (11)
MP-GenIC Fourier space Zel’dovich Equations (17) and (18)
MUSIC real space Zel’dovich or 2LPT Equations (10) and (11)

Table 1. An overview of important methodological similarities and differences between the initial conditions codes investigated in this
paper. Although NGenIC, CosmicIC, and MUSIC use the same Equations (10) and (11) for computing velocities, there are small differences
in their implementation. NGenIC approximates the quantity F (z) by Ω0.6

m (z). CosmicIC and MUSIC obtain F (z) using linear perturbation
theory, however MUSIC includes the contribution of the radiation energy density while doing so, whereas CosmicIC does not.

See text for details.

conditions codes that we compare in this paper, before look-
ing at the results from cosmological simulations using these
codes.

2.2 Initial conditions codes

We compare five initial conditions codes in this paper:
NGenIC, 2LPTic, CosmicIC, MP-GenIC, and MUSIC. We
begin by giving a brief description of the algorithms of these
codes.

2.2.1 NGenIC

NGenIC (Springel et al. 2005; Angulo et al. 2012) allows
the use of either glass and grid particle distributions, and
uses the Zel’dovich (1970) approximation to compute the
displacements. Gaussian density perturbations with the de-
sired power spectrum are sampled in NGenIC in Fourier
space. This is done by drawing random samples x and ϕ
from uniform distributions between 0 and 1, and 0 and
2π, respectively. Then, δ̃k = Reiϕ are the required Fourier-
space density perturbations with power spectrum P (k) if
R = (∆k)3/2

√
−P (k) log x with (∆k)3 being the Fourier-

space volume element defined by Equation (8). The Hermi-
tian symmetry condition, δ̃∗k = δ̃−k, is imposed to ensure that
the corresponding real-space perturbations are real.

Using the density perturbations, particle displacements
dk are computed using the Zel’dovich approximation as
(Zel’dovich 1970)

dk =
ik

k2
δk. (9)

These displacements are then transformed to the real space.
When the initial uniform particle distribution is on a grid, one
can simply add the real-space displacements to the particle
positions to get the desired particle distribution. This step
can be less than straightforward when the initial uniform
particle distribution is not on a grid. In this case, NGenIC
obtains the displacements at the particle positions by trilinear
interpolation on the displacement grid.

Finally, velocities are assigned to the displaced particles by
using the equations of motion to write

v(x) = aH(z)F (z)d(x), (10)

where d(x) are the real-space particle displacements, H is
the Hubble constant, z is the redshift at which the initial

conditions are desired, and

F (z) = − d lnD(z)

d ln (1 + z)
. (11)

In NGenIC, F (z) is approximated to be Ω0.6
m (z), where

Ωm = ρm(z)/ρ̄(z) is the cosmic matter density relative to
the mean. This grid-based NGenIC set-up was used in the
simulations belonging to the Sherwood (Bolton et al. 2017)
and the Sherwood-Relics (Puchwein et al. 2023) suites.

2.2.2 2LPTic

2LPTic (Scoccimarro 1998; Crocce et al. 2006; Scoccimarro
et al. 2012) is closely related to NGenIC. The two codes fol-
low identical procedures for setting up the initial uniform
particle distributions and density perturbations. They differ
in the computation of displacements and velocities, however,
as 2LPTic uses second-order Lagrangian perturbation the-
ory instead of the Zel’dovich approximation discussed above.
In this way, the particle displacements in Fourier space are
given by

dk = d
(1)
k + d

(2)
k , (12)

where d
(1)
k is the first-order contribution to the displacement,

given by the Zel’dovich approximation via Equation (9), and
d
(2)
k is the second-order contribution given by

d
(2)
k = −3

7

kS̃k

ik2
, (13)

where S̃k is the discrete Fourier transform of

S =
∑
i>j

[
d
(1)
i,i d

(1)
j,j − (d

(1)
i,j )

2
]
, (14)

with d
(1)
i,j being the derivative of the ith component of the

first-order real-space displacement vector d with respect to
the jth component of the position vector,

d
(1)
i,j =

∂d
(1)
i

∂xj
= ikjd

(1)
i . (15)

The corresponding velocities are given by

v(x) = aH(z)Ω3/5
m (z)d(1)(x) + 2aH(z)Ω4/7

m (z)d(2)(x). (16)

2.2.3 CosmicIC

CosmicIC (Lukić et al. 2015) is a Zel’dovich code that uses a
grid for the initial particle distribution. The code does not it-
self separate gas and dark matter particles, it instead leaves
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Cosmological initial conditions 5

this task to the gravity and hydrodynamics solver. To ob-
tain the density field, CosmicIC samples density values δ(xp)
from a Gaussian distribution with zero mean and unit vari-
ance at each point on a grid in the real space. These white-
noise perturbations are then discrete-Fourier transformed to
Fourier space. The real and imaginary parts of these Fourier-
transformed perturbations then follow a Gaussian distribu-
tion with zero mean and variance

√
n/2. These perturbations

are then multiplied by (∆k)3/2
√

P (k)/n to obtain Gaus-
sian density perturbations in the Fourier space with the
given power spectrum P (k). Displacements are then com-
puted from these Fourier space density perturbations using
the Zel’dovich approximation of Equation (9). The corre-
sponding velocities are computed using Equations (10) and
(11), however unlike NGenIC, CosmicIC does not approxi-
mate the quantity F (z) with Ω0.6

m (z). Instead, CosmicIC com-
putes F (z) using linear perturbation theory. While doing so
it ignores the radiation energy density.

2.2.4 MP-GenIC

MP-GenIC (Bird et al. 2020) allows for various ways of ini-
tialising the particle positions. Bird et al. (2020) showed that
initialising dark matter particles on a grid and gas particles
on a glass reproduces the expected linear evolution of the dif-
ference between the power spectra of gas and dark matter.
This is the strategy we adopt while using MP-GenIC in this
paper. MP-GenIC generates Gaussian density perturbations
with a given density power spectrum in an identical manner
to NGenIC and 2LPTic. The gas and dark matter densities
are then obtained by scaling the total matter density per-
turbations with the Fourier-space gas and dark matter den-
sity fractions obtained from CLASS (Lesgourgues 2011). The
corresponding displacements are obtained by means of the
Zel’dovich approximation, via Equation (9). This displace-
ment field is then transformed to real space. Gas particle dis-
placements are then obtained using trilinear interpolation.
Velocities are obtained from CLASS as transfer functions

vCDM(k) = δ̇CDM(k) = − ḣ(k)

2
, (17)

and

vb(k) = δ̇b(k) = −θb(k)−
ḣ(k)

2
, (18)

where h is the synchronous gauge density perturbation, and
θb is the baryon velocity divergence, both computed by
CLASS. These velocity transfer functions are sampled similar
to the density transfer functions. The resultant Fourier-space
velocities are then transformed to real space and interpolated
using CIC. MP-GenIC avoids spurious gravitational coupling
between gas and dark matter particles by evolving the pre-
displaced combined distribution of the two types of particles
with reversed gravity for a small number of time steps.

2.2.5 MUSIC

MUSIC (Hahn & Abel 2011) allows initialising the particle
load using either a grid or a glass. We use the grid in this
work. In contrast with NGenIC, MUSIC obtains real-space
Gaussian density perturbations with a given power spectrum

100 101

k [h/Mpc]

10−3

10−2

∆
2
(k

)

z = 99NGenIC grid

NGenIC glass

2LPTic

CosmicIC

MP-GenIC

MUSIC

linear theory

Figure 1. The three-dimensional power spectrum of the total mat-
ter density in the initial conditions used for our simulations, at
z = 99. We show results from the five codes that we study. For
NGenIC, we also show the result when using a glass-like instead of
a grid-based particle distribution for the initial unperturbed mat-
ter density. Most of the curves overlap each other for most of the
range of k values. The grey curve is the linear theory power spec-
trum computed using CLASS (Lesgourgues 2011). We see that in
the initial conditions, the matter density power spectrum between
the codes agrees very well. The only significant outliers are the
glass-based NGenIC and MP-GenIC set-ups.

by sampling a Gaussian variate with zero mean and unit vari-
ance on a grid. This Gaussian variate is then convolved with
the inverse Fourier transform of

√
P (k) to get the desired

density perturbations δ(x) on the grid. Particle displacements
are then obtained in a similar way as NGenIC following Equa-
tion (9). Velocities are also computed similar to NGenIC, us-
ing Equations (10) and (11). However, unlike NGenIC, MU-
SIC computes the quantity F (z) using linear perturbation
theory. While doing so, unlike CosmicIC, MUSIC includes
the radiation energy density. Finally, corrections are applied
to these velocities to compensate for inaccuracies caused by
discreteness.

2.3 Initial conditions for different particle
initialisation choices

Our fiducial simulations consist of five runs with the five ini-
tial condition set-ups from Table 1. Figure 1 shows the three-
dimensional spherically-averaged power spectrum of the to-
tal matter density contrast at z = 99 from our five fiducial
simulations. Also shown in this figure is the linear theory
result at this redshift, obtained using CLASS (Lesgourgues
2011). The figure also shows the power spectrum from the
glass-based NGenIC run, to compare to the corresponding
grid-based run.

We see that all grid-based simulations reproduce the the-
oretical linear power spectrum extremely well. (Most curves
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in Figure 1 completely overlap with each other.) The only
case with some difference is 2LPTic, where the use of the
second-order perturbation theory results in differences from
our fiducial run, but even these differences are sub-percent.
In contrast to these results, a large difference is seen in the
glass-based NGenIC run, which deviates from its grid-based
counterpart with suppression in power of close to 20% at
k = 20 h/cMpc and a strong enhancement in power of up to
a factor of 2 at larger values of k. This excess power in the
glass-based set-up is the well-known k4 enhancement due to
the growth of random gravitational instabilities during the
creation of the glass configuration (Bird et al. 2020). Indeed,
a similar enhancement is also seen in the MP-GenIC case,
although this is relatively smaller because MP-GenIC uses
glass only for the baryons.

While such small-scale enhancement suggests a numerical
error, Bird et al. (2020) pointed out that there might be
advantages in initialising gas particles on a glass. They ar-
gued that the MP-GenIC set-up, which uses distinct transfer
functions for gas and dark matter, and uses a glass-like con-
figuration for gas particles, can reproduce the linear theory
evolution of the power difference between gas and dark mat-
ter. Figure 2 shows this at z = 9. We show the difference
in the dark matter and gas power spectra in four runs, by
plotting the quantity η = (δ̃dm − δ̃gas)/2 at z = 9. (The
simulation details on the evolution from z = 99 to z = 9
are described in the next section.) The green curve shows
the power difference from our fiducial grid-based NGenIC
run, and the red curve shows the same quantity for our fidu-
cial MP-GenIC run. The yellow curve shows how the result
changes when we use identical transfer functions for gas and
dark matter in the MP-GenIC run. The blue curve shows the
power difference when we use a grid-based initialisation for
gas particles in the MP-GenIC run. For all four cases we have
shown the difference between simulated and the linear theory
value of η. In the linear theory, the power in dark matter and
baryons is calculated from the CLASS output using the ap-
propriate columns in the transfer function and total matter
power spectrum files. The transfer functions are calculated
as δcdm/b = δcdm/b/δtotal, where δcdm/b are from the CLASS
outputs and δtotal = (Ωbδb + Ωcdmδcdm)/(Ωb + Ωcdm). The
powers for both species are given by δcdm/b = δcdm/b

√
Ptot

and Ptot is obtained from the CLASS power spectrum out-
puts. As noted by Bird et al. (2020), we see here that only the
fiducial MP-GenIC run manages to reproduce the expected
linear evolution. Removing the glass, or removing the dif-
ference between the gas and dark matter transfer functions
results in a significant disagreement with the linear theory.

We will now see how these particle initialisation choices
affect the small-scale structure in the Lyman-α forest.

3 NON-LINEAR EVOLUTION

Our procedure for computing the non-linear gravitational and
hydrodynamical evolution is identical to the set-up used in
the Sherwood Simulation Suite (Bolton et al. 2017). We per-
form our simulations using the SPH code P-Gadget3, the
well-known modified version of the publicly available Gad-
get2 code (Springel et al. 2005). In this code the gravita-
tional forces are computed using the TreePM algorithm where
short-range forces are obtained using a tree method and long-

100 101

k [h/Mpc]

−0.04

−0.02

0.00

0.02

η
−
η
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n

ea
r

z = 9

NGenIC

MP-GenIC

MP-GenIC: Tdm(k) = Tgas(k)

MP-GenIC: gas on grid

Figure 2. The difference between the linear theory value of
η = (δ̃dm − δ̃gas)/2 and its value in four of our simulations at
z = 9. The green and red curves show the power difference from
our fiducial grid-based NGenIC run and our fiducial MP-GenIC
run, respectively. The yellow curve shows the result when we use
identical transfer functions for gas and dark matter in the MP-
GenIC run, while the blue curve shows the same when we use a
grid-based initialisation for gas particles in the MP-GenIC run. As
previously found by Bird et al. (2020), we see that only fiducial
MP-GenIC simulation recovers the correct linear theory evolution.

range forces are computed using mesh-based Fourier meth-
ods. In the tree algorithm, particles are grouped together
according to their distances and the force from each group is
approximated using a multipole expansion. In the particle-
mesh (PM) algorithm the density field is realised on a mesh
grid using CIC interpolation and the gravitational potential
is constructed by solving the Poisson’s equation. The mesh
dimension in each direction is set by the PMGRID parameter,
which we set to the cube root of the particle number in all
simulations presented in this paper. To avoid a singularity in
the force calculation when the particles move close to each
other, a softening parameter lsoft is introduced. We set this
to 1/25th of the mean inter-particle separation. Apart from
MP-GenIC, we use P-Gadget3 for splitting particles into gas
and dark matter. The dark matter and gas positions are then
calculated by adding constant vectors to the total matter
positions, keeping the centre of mass at the position of the
original particle. The constant separations are

δgas =
1

2

Ωm − Ωb

Ωm
d, and

δdm =
1

2

Ωb

Ωm
d,

where d = L/N is the inter-particle spacing. Our fiducial
simulation, described below, has d = 78.125 ckpc/h, δgas ∼
33 ckpc/h and δdm ∼ 6 ckpc/h. These separations are added
to the total matter positions along all three directions, so that
xgas = xgas − δgas, ygas = ygas − δgas, and zgas = zgas − δgas
for the gas particles, and xdm = xdm+δdm, ydm = ydm+δdm,
and zdm = zdm + δdm for the dark matter particles. Both
gas and dark matter particle velocities are assigned to be the
same as that of the original total matter particle. In the case
of the MP-GenIC, the particles are separately supplied to
P-Gadget3 as part of the initial conditions.

We run our simulations down to z = 2 and examine results
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Figure 3. The gas density distribution at z = 3 for our six primary simulations. Each slice shows the gas density projected over
78.125 ckpc/h. The simulations produce similar gas distributions, thanks to our use of the identical random phases in all of them.

at z = 9, 5, 4, 3, and 2. In addition to the cosmological evo-
lution of baryons and dark matter, P-Gadget3 implements
photoionization, photoheating, radiative cooling. We use the
QUICK_LYALPHA flag in the code to speed up the simulation by
making gas particles with overdensities of greater than 103

with temperature less than 105 K collisionless and removing
them from the hydrodynamic calculation. This does not af-
fect our study of the low-density IGM. The metagalactic UV
background is modelled according to a modified version of
the Haardt & Madau (2012) reionization model (see Bolton
et al. 2017 for details).

Our fiducial simulations use N = 2 × 2563 particles to
present the gas and the dark matter in a computational box
of comoving length 20h−1Mpc. We refer to these as the 20–
256 runs. Periodic boundary conditions are implemented. The
mass of dark matter particle is Mdm = 3.44× 107 M⊙/h and
the gas particles are of mass Mgas = 6.38×106 M⊙/h. We also
study higher resolution 20–512 and 20–1024 simulations. As
their names suggest, these simulations use 2× 5123 and 2×
10243 particles in the same volume as the 20–256 simulations.
In the 20–512 simulations, the dark matter and gas masses
are Mdm = 1.72 × 107 M⊙/h, and Mgas = 3.19 × 106 M⊙/h,
and we use PMGRID = 512 and lsoft = 1.5625 kpc. For the
20–1024 simulations, these quantities take the values Mdm =
0.86 × 107 M⊙/h, Mgas = 1.595 × 106 M⊙/h, PMGRID = 1024
and lsoft = 0.78125 kpc.

In order to compute the dark matter and gas density power

spectra, we project the output of the hydrodynamical simu-
lations on a uniform Cartesian grid. The densities for the
dark matter are calculated on a regular grid from the par-
ticle positions using the CIC kernel (Hockney & Eastwood
1981). The gas particles are projected on the grids by inte-
grating the SPH kernel on grid cells. The density contrast
δ = ρ/ρ̄− 1 is calculated for both dark matter and gas parti-
cles on each grid. Then the power spectrum is then calculated
using Equation (8). We set the number of cells in each direc-
tion for the grid in k-space to the cube root of the number of
particles. While computing the power spectrum of the dark
matter density, we deconvolve the CIC kernel.

The Lyman-α forest sightlines are extracted from the sim-
ulation box by selecting random points on the xy plane, and
choosing all lines to go in the z direction. Then the Lyα op-
tical depth is calculated as

τ(v) =
3A2p1sλ

3
Lyα

8πH(z)

∫ ∞

−∞
nHIϕ(v)dv, (19)

where nHI is the neutral hydrogen number density, λLyα is
the rest-frame Lyα wavelength, A2p1s is the Einstein A coef-
ficient and ϕ(v) is the Voigt line profile. The Lyα transmission
is then F = exp (−τ) Following standard practice for such op-
tically thin simulations, we normalise the transmission such
that the mean transmission has the observed value.

While deriving the one-dimensional power spectrum of the
Lyman-α transmission, we define the Lyman-α flux contrast
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Figure 4. The three-dimensional dimensionless power spectrum of the dark matter (top row) and gas density (bottom row) at z = 2, 3, 4,

and 5. Each panel shows results from our five primary simulations. Also shown are results from a glass-based NGenIC run, and a glass-
based NGenIC run that uses adaptive softening (indicated by ‘a. s.’ in the legend). The linear theory power spectrum is also shown at
each redshift. The difference panels show the relative difference from the grid-based NGenIC results.

analogous to the density contrast, given by δF = F/F̄ − 1,
where F̄ is the mean flux. The power pectrum is then com-
puted as

PF,1D(|k|) = vscale⟨δ̃Fδ̃∗F⟩, (20)

where vscale = aH(z)L, with L being the length of the box,
δ̃F is the Fourier transform of δF, and the ensemble average
is computed by averaging δ̃Fδ̃

∗
F over 5,000 sightlines for each

|k|.
We also perform a set of simulations with adaptive

softening of gas particles. This means that the gravita-
tional softening length of gas particles is set by the SPH
smoothing length. As mentioned above, the default gravi-
tational softening length for gas particles in our fiducials
simulations is the same as that of dark matter particles,
and is set to 1/25th of the mean interparticle separation
(Bolton et al. 2017). Adaptive softening can be enabled in
P-Gadget3 by setting the ADAPTIVE_GRAVSOFT_FORGAS and
ADAPTIVE_GRAVSOFT_FORGAS_HSML flags. The SPH smoothing
kernel length is proportional to the comoving distance to the
32nd neighbour (Springel et al. 2001). As a result, at high red-
shifts, when the universe is more homogeneous, the softening
length can be as large as three times the mean interparticle
separation. As we will see below, this suppresses small-scale
power in the gas density distribution.

4 RESULTS

Our fiducial simulations consist of five runs with the five ini-
tial condition set-ups from Table 1. The simulation specifica-
tions are as described above. We now present the results from

these simulations. We will also occasionally refer to variations
on these simulations. There are four such variations that we
consider. One of these uses NGenIC with a glass-like initial
particle load. Another employs the same glass-based NGenIC
set-up but with adaptive softening. In all other respects, these
runs are identical to our fiducial 20–256 runs. Our third and
fourth variations are the 20–512 and 20–1024 counterparts
of our fiducial 20–256 runs. These high-resolution runs have
been mentioned above in Section 3.

For each of the six simulations shown in Figure 1, two-
dimensional gas density distribution slices at z = 3 are shown
in Figure 3. Each slice has the thickness of a single grid cell,
which in our case is 78.125 kpc/h. The familiar non-linear
large-scale structure at this redshift is clearly seen. Further-
more, the structure in all simulations appears to be visually
identical, showing that we are using identical random num-
bers while generating the initial conditions.

4.1 Nonlinear matter power spectrum

The top four panels of Figure 4 show the three-dimensional
power spectrum of the dark matter density contrast at red-
shifts 2, 3, 4 and 5, in our five fiducial simulations. We also
show results from the simulation with glass-based NGenIC
and the one with adaptive softening. The linearly extrapo-
lated matter power spectrum at respective redshifts is also
shown. At the bottom of each panel the difference relative to
the grid-based NGenIC run is shown. Compared to Figure 1,
we can now see the power enhancement relative to linear the-
ory at small scales due to nonlinear evolution. As anticipated
in Figure 3, the power spectra agree between the different
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Figure 5. The gas overdensity, Lyman-α transmitted flux, gas temperature and gas peculiar velocity along a randomly chosen one-
dimensional skewer from our simulation boxes. Each panel shows results from our five primary simulations. Also shown are results from
a glass-based NGenIC run, and a glass-based NGenIC run that uses adaptive softening (indicated by ‘a. s.’ in the legend).

simulations to a large degree, but interesting differences are
now visible.

Overall, all power spectra are consistent within 10% over
the scales shown in Figure 4. The largest deviation from the
fiducial run is seen in the 2LPTic case, which exhibits more
power relative to the NGenIC run. The difference is at most
10% at the scale of k = 10h/cMpc, and decays with time. The
dark matter distribution in our glass-based NGenIC run has
less dark matter power at small scales relative to the NGenIC
grid. These differences appear to be enhanced when we use
adaptive softening, but in either case the differences decay
with time. Our CosmicIC results are nearly identical to those
from the NGenIC run. The MP-GenIC and MUSIC cases
show only small differences that appear well below 5% at all
redshifts shown here. The difference between the fiducial run
and the MUSIC case can potentially be partly explained by
the small difference between the value of the growth factor
used in the two codes (see Section 2).

The bottom four panels of Figure 4 show the three-
dimensional gas density power spectrum from the simula-
tions shown in the top panel, along with the linear theory
prediction, at redshifts 2, 3, 4 and 5. As before, we show the
relative difference from the grid-based NGenIC run at the
bottom of each panel. The simulations agree with each other
reasonably well, with differences of at the most 10% in the
gas density power spectrum. The greatest deviation is seen in
the glass-based runs, NGenIC and MP-GenIC. Both of these
runs produce gas power larger by ∼ 10% at small scales rel-
ative to the NGenIC using a grid. The differences appear to
increase towards the small scales resolved by the simulation.
This power enhancement is related to that seen in the ini-
tial conditions, shown in Figure 1, where we understood it to
be the result of the nonlinearities in the process of creating
the glass. We also see that this power enhancement reduces

with time as we go from z = 5 to 2 in Figure 4. Further, the
use of adaptive softening seems to remove the power excess,
as noted previously by O’Leary & McQuinn (2012). If we
compare the dark matter and gas density power spectra in
Figure 4, we can see that dark matter has more power than
gas at all scales and all redshifts. This can be understood
because of the exclusion of the gas particles that were turned
into stars in biased high-density regions. This results in the
attenuation of power at small as well as large scales for the
baryons (Kulkarni et al. 2015).

4.2 One-dimensional Lyman-α transmission power
spectrum

We now turn to the Lyman-α transmission properties of
our simulations. Figure 5 shows one-dimensional sightlines,
‘skewers’, from the simulations shown in Figure 4. All sight-
lines are shown at z = 3. We show the gas density, the Lyman-
α flux, gas temperature, and gas peculiar velocity along a
randomly chosen sightline. We normalise the simulations to
identical mean transmission values. We choose these to be the
measurements by Becker et al. (2013). As before, while the
seven simulations appear very similar, there are small differ-
ences. These appear to be largest near the density peaks and
troughs, with the MP-GenIC run being the widest outlier.
The Lyman-α transmission exaggerates these differences, so
that there is up to a 30% difference in the transmission. Small
differences also appear to be present in the gas temperature.
Most importantly, there are small differences in the peculiar
velocity. These small peculiar velocity differences will, how-
ever, have a large effect on the small-scale power spectrum of
the Lyman-α forest.

Figure 6 shows the one-dimensional Lyman-α flux power
spectrum from all the seven simulations at redshifts 2, 3,
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Figure 6. The one-dimensional Lyman-α transmission power spectrum at z = 2, 3, 4, and 5. Each panel shows results from our five
primary simulations. Also shown are results from a glass-based NGenIC run (orange curve), and a glass-based NGenIC run that uses
adaptive softening (green curve, indicated by ‘a. s.’ in the legend). We also show measurements by Walther et al. (2018), Boera et al.
(2019), and Karaçaylı et al. (2022). These data are only shown for context and as a measure of the current uncertainties. We make no
attempt at fitting the data with our models, which explains the mismatch between the simulations and the observations at some redshifts
and scales. The error panels show differences relative to the result from the grid-based NGenIC simulation. All spectra are normalised to
the observed mean transmission from Becker et al. (2013).

4 and 5. We show the dimensionless Lyman-α transmission
power spectrum. At the bottom of each panel, we show dif-
ferences relative to the grid-based NGenIC run. The figure
also shows measurements by Karaçaylı et al. (2022), Walther
et al. (2018), and Boera et al. (2019). While we make no at-
tempt the fit our simulations to these data, the uncertainty
estimates on the measurements provide a context while ex-
amining the differences in our simulations. A better agree-
ment would require a well-calibrated thermal model run at
higher resolution. We now see that the glass-based runs using
NGenIC and MP-GenIC severely disagree with the grid-based
result. The differences are worse in the case of MP-GenIC.
At k = 0.1 s/km at z = 5, MP-GenIC can yield difference in
excess of 50%. This is not only far in excess of the data un-
certainty, but is also enough to significantly bias inferences of
parameters such as the warm dark matter particle mass and
the IGM temperature. We will investigate the causes behind

these differences below. The differences decay with time to re-
duce to percent levels at z = 2. It is interesting to note that
the result from the glass-based NGenIC model deviates less
from the grid-based result than MP-GenIC. But both MP-
GenIC and the glass-based NGenIC runs show very similar
k-dependence of the power spectrum, indicating a common
origin for their behaviour. We also see that introducing adap-
tive softening in the glass-based NGenIC run removes the dif-
ferences from its grid-based counterpart. All other runs are
in excellent agreement with each other.

5 UNDERSTANDING THE SMALL-SCALE
DIFFERENCES

Figure 7 helps us understand the reasons behind the large
difference that we see between the Lyman-α flux power spec-
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Figure 7. The one-dimensional Lyman-α transmission power
spectrum from our NGenIC and MP-GenIC runs at z = 5. The blue
and green curves show our fiducial grid-based NGenIC and MP-
GenIC runs, respectively. The other curves show the power spec-
trum from the MP-GenIC run when the temperatures (grey curve),
peculiar velocities (yellow curve), or gas densities (red curve) in
this simulation are substituted by their corresponding values from
the NGenIC run. The simulations are normalised to the observed
mean flux in all cases, as described in the text. The bottom panel
shows the fractional change with respect to the NGenIC result.

trum from our NGenIC and MP-GenIC runs. This figure
shows the Lyman-α flux power spectrum at z = 5. The green
and blue curves show our fiducial results from MP-GenIC
and NGenIC, respectively. These power spectra are the same
as those in Figure 6 above. The other curves show the power
spectrum from the MP-GenIC run when the temperatures
(grey curve), peculiar velocities (yellow curve), or gas den-
sities (red curve) in this simulation are substituted by their
corresponding values from the NGenIC run. The simulations
are normalised to the observed value of the mean flux in all
cases. The bottom panel shows the fractional change with
respect to the NGenIC result. We see that there is no sig-
nificant difference between the gas temperatures in the two
simulations. When the gas temperature in the MP-GenIC
run is substituted by the NGenIC run, the Lyman-α flux PS
shows almost no change. But the effect is significant when we
substitute the gas velocity or the gas density. Gas velocity is
the greater effect between the two. At k > 0.2 s/km, almost
the entire difference between the power spectra comes from
gas velocity.

As Figure 8 shows this behaviour is entirely due to the nu-
merical choice of using a glass-like configuration for the gas
particles in our MP-GenIC run. The figure shows the rela-
tive change in the dark matter power spectrum (top panel),
the gas density power spectrum (middle panel), and the one-
dimensional Lyman-α flux power spectrum. Recall that there
are two important differences between our NGenIC and MP-
GenIC simulations: (a) the gas and dark matter initial power
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Figure 8. Effect of modifying the gas particle set-up in our
MP-GenIC run on the dark matter density power spectrum (top
panel), gas density power spectrum (middle panel), and the one-
dimensional Lyman-α flux power spectrum. The blue and green
curves show our fiducial grid-based NGenIC and MP-GenIC runs,
respectively. The grey curves show results from an MP-GenIC run
in which identical transfer functions are used for gas and dark mat-
ter density perturbations. The yellow curves show results from an
MP-GenIC run with different transfer functions but with the un-
perturbed initial positions of gas particles as well as dark matter
particles following a uniform grid. The error bars in the bottom
panel are uncertainties on the power spectrum measurements by
Boera et al. (2019).

spectra are identical in the NGenIC run, but these are differ-
ent in the MP-GenIC run, and (b) gas particles are initialised
on a grid in the NGenIC run whereas they are initialised on a
glass in the MP-GenIC run. Figure 8 investigates what hap-
pens when we remove each of these differences between the
two runs one at a time. The blue and green curves in this fig-
ure show various power spectra from our fiducial NGenIC and
MP-GenIC runs. The grey curve shows power spectra from
an MP-GenIC run in which we use identical initial transfer
functions for gas and dark matter. The yellow curves show
power spectra for an MP-GenIC run in which the gas and
dark matter transfer functions are distinct as before but now
the gas particle positions are initialised on a grid. We see that
the dark matter power spectra are nearly identical in all cases.
The small differences of ≲ 2% result partly from the choice
between the use of the total matter power spectrum and dark
matter power spectrum, but also due to a backreaction of the
large differences in the gas power spectra. However, the gas
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Figure 9. The three-dimensional power spectrum of the gas den-
sity at z = 99 in our NGenIC and MP-GenIC simulations. The
difference in the overall amplitude is due to the difference in the
transfer functions used in the two runs. The differences at the small
scales are due to the use of glass in MP-GenIC. The dashed curves
show the linearly extrapolated power spectra in the two cases.

density power spectra are significantly different. Here, we first
see that there is a broadband difference between the NGenIC
and MP-GenIC runs because of the difference in the transfer
functions. This difference vanishes at large scales when we
use the same transfer functions for gas and dark matter in
the MP-GenIC run. Next, at small scales, the order 10% dif-
ferences in the gas density power spectra are due to the adop-
tion of glass-like initial conditions. We see that this difference
goes away as we shift from glass to grid. Figure 9 shows that
these differences in the gas power spectra are already present
at z = 99. (In Figure 9, we also show the linearly extrap-
olated power spectra for the two simulations. We see that
both simulations show deviation from the linear theory pre-
diction at small scales. The NGenIC run underpredicts the
small-scale power. This is the result of smoothing due to the
SPH kernel. The MP-GenIC run overpredicts the small-scale
power. This is because of the use of glass.) Finally, turning
to the Lyman-α flux, the bottom panel of Figure 8 shows
that the Lyman-α flux power spectrum does not change at
all with the change in the gas initial power spectrum. How-
ever, it shows a big change when we shift from glass to grid.
Indeed, when we used a grid in our MP-GenIC run, the flux
PS is nearly identical to the NGenIC result. We are thus in
a situation that the set-up designed to reproduce the cor-
rect linear-theory behaviour ends up introducing significant
changes in the Lyman-α transmission power spectra.

All of the above results used our default 20–256 runs. How-
ever, this spatial resolution has been known to be insufficient
for convergence for the Lyman-α flux PS at z = 5 (Bolton &
Becker 2009; Rogers & Peiris 2021; Doughty et al. 2023). In
Figure 10, we look into the effect on the flux power spectrum
of the spatial resolution of our runs. We now do our NGenIC
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Figure 10. The top panel shows how the Lyman-α flux power
spectrum ratio between NGenIC and MP-GenIC changes with res-
olution. The middle panel shows the change in the MP-GenIC run
with resolution. The bottom panel shows the same for our NGenIC
run. Even at the highest resolution, there is a ∼ 50% difference in
the Lyman-α flux power spectrum from the two runs. The error
bars in each panel are uncertainties on the power spectrum mea-
surements by Boera et al. (2019). These are shown simply for a
comparison with the differences between the simulation curves.

and MP-GenIC runs at 20–512 and 20–1024 resolutions. In
each case, we set the value of PMGRID to the cube root of the
particle number, and we use a softening length that is 1/25
of the mean inter-particle spacing. See Appendix D for how
these results change if we change these settings. Note that 20–
1024 is the resolution used by many Lyman-α forest models
in the literature. We see in Figure 10 that even at our high-
est resolution there is upto 50% difference in the flux PS at
z = 0.1 s/km between our NGenIC run and MP-GenIC runs.
It is also important to note that the difference is scale depen-
dent, thus precluding the possibility of applying simple scale-
independent ‘resolution corrections’ to low-resolution runs.
(The enhancement in power at k ∼ 0.25 s/km, is similar in
shape to the enhancement that Iršič et al. (2023) find when
they increase the cumulative energy input per proton mass
at mean energy, u0. This suggests that heat injection might
also be playing a role in the behaviour of the power spectrum
in Figure 10. The value of u0 in our simulations is likely to
be higher than that in the reference simulation of Iršič et al.
(2023) due to earlier reionization in our models.)
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6 CONCLUSIONS

We have examined the effects of various assumptions and al-
gorithms used in setting up the cosmological initial conditions
for cosmological hydrodynamic simulations that are used to
model the Lyman-α forest. Our goal was to understand if
the predictions made by these models for the Lyman-α forest
are robust against algorithmic choices and other assumptions.
For this purpose, we designed simulations that were identi-
cal in all other respects, including in the manner of sampling
the Gaussian initial density distribution. We considered five
initial conditions codes, and studied four further variations
of some of these codes. Our conclusions are as follows:

• At the high redshifts typically used to initialise cosmo-
logical simulations, when initial conditions codes employ a
grid configuration for the initial unperturbed particle posi-
tions, their resultant perturbed density fields have a three-
dimensional matter density power spectrum that agrees with
the linear theory down to the smallest scales resolved in our
simulations. This is not the case, however, when a glass-like
configuration is used for the initial unperturbed particle po-
sitions. In these glass-based cases, the matter density power
spectrum shows a significant enhancement at small scales rel-
ative to linear theory. This is also the case when a glass-like
configuration is used only for gas particles.

• The non-linear dark matter and gas density power spec-
tra, at redshifts z = 5–2, agree to within 10% in all our
runs. For the dark matter density, the use of second-order La-
grangian perturbation theory causes the largest differences,
relative to runs that use the Zel’dovich approximation. The
use of adaptive softening can also lead to large differences
in the dark matter density power spectrum. For gas, the
largest difference is seen when a glass-like initial particle load
is used. There are also large broadband differences when sep-
arate transfer functions are used for gas and dark matter. All
of these differences, in dark matter and gas alike, decay with
time, and are relatively insignificant at z < 3. The small-scale
power enhancement can be offset by using adaptive softening.

• We report significant differences in the one-dimensional
Lyman-α transmission power spectrum between our grid-
based and glass-based runs. At k ∼ 0.1 s/km, the flux power
spectrum has differences of the order of 50% between our
grid-based NGenIC run and our MP-GenIC run that uses a
glass-like initial position for gas particles. These differences
are scale-dependent, and therefore have a significant potential
to bias any cosmological inferences made using similar mod-
els. These differences also appear to hold at high resolution.
The source of the difference appears to be the choice of glass-
like particle loads, which affects the small-scale gas velocities
and densities. Of these two runs, only the MP-GenIC run cor-
rectly reproduces the expected linear theory behaviour in the
difference of power between gas and dark matter densities.

It is not clear to us how important it is for models of the
small-scale structure of the Lyman-α forest to reproduce the
linear theory behaviour of the power difference between gas
and dark matter densities. Nonetheless, the means of achiev-
ing this via the use of glass-like particle configurations appear
to lead to large distortions in the Lyman-α flux power spec-
trum. These distortions can be considered a numerical arte-
fact, for two reasons. First, these distortions appear similar to
the distortions seen in fully glass-based runs, in which both

gas and dark matter particles are initialised on a glass, and
where this behaviour is understood to be a numerical feature.
Second, the matter density power spectrum in these runs fails
to agree with the linear theory at even high redshifts. For all
other things kept the same, this distortion causes an enhance-
ment in the flux power spectrum at small scale. This can bias
inferences in parameters such as the axion mass or the warm
dark matter particle mass, and can potentially explain some
of the very strict limits recently reported in the literature. In
this context, it is interesting to note that Hahn et al. (2021)
have also proposed a method to achieve the correct linear
theory growth of the difference in the gas and dark matter
density power spectra. In their approach the correct linear
theory evolution is obtained by implementing the transfer
functions as mass perturbation to each species, thus allow-
ing the use of grids for both the dark matter and gas. This
presents a potentially interesting alternative to consider in
future efforts in the developing more robust models of the
Lyman-α forest.
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APPENDIX A: PARTICLE OFFSETS IN INITIAL
CONDITIONS

As discussed above, in Section 2.2.1, we introduce an off-
set in gas particle positions relative to dark matter par-
ticle positions in our NGenIC run. This is done to avoid
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Figure A1. Effect of using a position offset in the initial gas and
dark matter particle positions on the three-dimensional dark mat-
ter density power spectrum (top panel), the three-dimensional gas
density power spectrum (middle panel), and the one-dimensional
Lyman-α transmission power spectrum (bottom panel). We plot
the ratio of the power spectrum from a simulation that does not
offset the particle positions, thus placing gas particles at the same
positions as the dark matter particles while starting the simulation.
In the blue curve, the default offset, explained in Section 2.2.1, is
used. Both simulations are 20–256 and use NGenIC.

spurious small-scale power due to gravitational coupling be-
tween the two species of particles. Figure A1 shows the effect
that not offsetting the particles has on the dark matter den-
sity power spectrum, the gas density power spectrum, and
the one-dimensional Lyman-α transmission power spectrum.
Only redshift z = 5 is shown for illustration. As noted by
O’Leary & McQuinn (2012), gravitational coupling between
gas and dark matter particles can lead to a significant excess
power at small scales. It is interesting to note that particle
offsets in a grid-based NGenIC run produce changes in the
transmission power spectrum that are similar to the changes
introduced when one goes from the grid-based NGenIC run
with offset to the MP-GenIC run (Figure 6). This suggests
that the differences between MP-GenIC and NGenIC could
be caused by particle coupling and two-body interactions.
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Figure B1. The one-dimensional Lyman-α transmission power
spectrum at z = 5 in a simulation that does not account for the
radiation density term (blue curve) and one that does account for
it (red curve). Both simulations use NGenIC with an initial power
spectrum derived using CLASS and normalised to give σ8 = 0.829

at z = 0.

APPENDIX B: EFFECT OF RADIATION

We use CLASS to obtain the initial power spectrum at
z = 99. This input power spectrum is normalised to obtain
our desired value of σ8 = 0.829 at z = 0. This normalisa-
tion is done using a growth factor that does not include the
radiation term, in order to be consistent with our use of the P-
Gadget3 code, which also does not include the radiation term
while evolving the density perturbations. Figure B1 shows the
effect that this has on the Lyman-α flux power spectrum rel-
ative to a P-Gadget3 run that uses the radiation term for
the background cosmological evolution for an identical in-
put power spectrum. The figure shows the power spectrum
from two 20–256 simulations using P-Gadget3, one of which
does not use the radiation density term (blue curve) and one
that does use it (red curve). Both simulations use our default
grid-based NGenIC set-up to compute the initial conditions,
so that the input power spectrum is normalised in identical
fashion in both cases. We see that an inconsistency in incor-
porating the radiation term leads to a small bias of less than
10% in the power at k ∼ 0.1 s/km. There is no significant
effect at larger scales.

APPENDIX C: STARTING REDSHIFT

Figure C1 shows the effects of changing the starting redshift
of our simulations from z = 99 to z = 199 and z = 49. This
has a very small impact on the result. The small differences
that do exist seem to indicate that the difference between
the power spectra in the MP-GenIC and NGenIC cases are
smaller for a smaller starting redshift. This observation, com-
bined with the similarity in the shape of the distortion seen
in the bottom panel of Figure A1 with that in Figure 7 and
other related figures, suggests that the distortions may arise
at least partly due to particle coupling. When the simulation
is started at a later redshift there is relatively less time for
the accumulation of particle coupling error, which explains
the behaviour seen in Figure C1.
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Figure C1. Dependence of our results on the starting redshift of
the simulations. The black and red curves show results from our
default NGenIC and MP-GenIC simulations, respectively, both of
which start at zinit = 99. The grey and orange curves show results
from the simulation when they are initialised at zinit = 199 instead.
The blue and green curves show the same for zinit = 49. Changing
the initialisation redshift does not have a large effect on the flux
power spectrum.

APPENDIX D: SOFTENING LENGTH
CONVERGENCE TEST

Figures D1 and D2 show how the result in Figure 10 depends
on the choice of the values of the PMGRID and lsoft param-
eters. The PMGRID parameter controls the resolution of the
mesh used in the PM force calculation. The softening length
lsoft controls the short-range interaction between particles.
The bottom panels of Figures D1 show that the results of
our 20–1024 simulation are not very sensitive to the value of
PMGRID. The same is true for the value of lsoft for the NGenIC
run. However, the MP-GenIC run shows significant changes
of the order of 10% in the flux power spectrum. Figure D2
shows that the difference in the power spectra in the two sim-
ulations worsens with decreasing softening length. The reduc-
tion in the difference between NGenIC and MP-GenIC with
increasing softening length suggests that the differences could
be caused by particle coupling and two-body interactions.

APPENDIX E: ONE-DIMENSIONAL Lyman-α
TRANSMISSION PDF

The Lyman-α flux probability distribution function (PDF)
is shown in Figure E1, with the differences relative to the
grid-based NGenIC run plotted at the bottom of each panel.
We also show measurements of the PDF by McDonald et al.
(2000), Kim et al. (2007), and Rollinde et al. (2013). To com-
pute the PDF, we took 50 equal-sized bins between 0 and
1. At z = 4 and 5, the flux PDF peaks at F = 0 but at
lower redshifts the mode moves to F = 1 as the forest be-
comes increasingly transparent. Like all the other statistics,
the difference between the simulations for Lyman-α trans-
mission PDF decreases with time. The differences are high-
est at z = 5. At these redshifts the PDF from the MP-GenIC
run shows almost 100% difference near F = 1 from that in

the grid-based NGenIC run. The glass-based NGenIC run is
discrepant too, but with smaller differences, of about 20%
at F = 1. Interestingly, using adaptive softening seems to
enhance these differences. There is good agreement between
the rest of the simulation, except perhaps in the case of 2LP-
Tic, which also shows about 20% differences, most likely as
a result of the higher accuracy of the density perturbation
computation.
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Figure D1. Gravitational softening length and PMGRID convergence tests for NGenIC and MP-GenIC at redshift z = 5. All four panels
show the change in the one-dimensional Lyman-α flux power spectrum with respect to one of the default run. This is shown by the green
curves in all the panels, and represents our default choice of lsoft = 0.78125 ckpc/h and PMGRID = 1024. The left panels show the results
for the NGenIC and the right panels are for the MP-GenIC initial condition generators. The red, orange and grey curves show the results
for softening lengths of 0.80, 1.33 and 2 times the default value keeping the PMGRID value to the default. From the upper two panels,
we can see that for NGenIC the power spectrum is converged with respect to the softening length, but that from the MP-GenIC had
not. MP-GenIC produces more power with reduced softening. In the lower panels, we use PMGRID = 512 for the cyan-colored curves. The
Lyman-α flux power spectrum does not change significantly with PMGRID in either of the codes.
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Figure D2. Dependence of the Lyman-α flux power ratio between MP-GenIC and NGenIC on the gravitational softening length. We
keep PMGRID fixed to the fiducial value of 1024 in all the curves here. The default softening length is shown by the green curve. The blue,
grey and orange curves are for softening lengths of 0.8, 1.33 and 2 times the default length. Reducing the softening length increases the
differences between the two codes.
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Figure E1. The PDF of Lyman-α transmission at z = 2, 3, 4, and 5. Each panel shows results from our five primary simulations. Also
shown are results from a glass-based NGenIC run, and a glass-based NGenIC run that uses adaptive softening (indicated by ‘a. s.’ in
the legend). We also show measurements by McDonald et al. (2000), Kim et al. (2007), and Rollinde et al. (2013). These data are only
shown for context and as a measure of the current uncertainties. We make no attempt at fitting the data with our models, which explains
the mismatch between the simulations and the observations at some redshifts and transmission values. The error panels show differences
relative to the result from the grid-based NGenIC simulation. All spectra are normalised to the observed mean transmission, the values
of which are given in the respective panels.
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