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Most ordinary differential equation (ODE) models used to describe biologi-
cal or physical systems must be solved approximately using numerical
methods. Perniciously, even those solvers that seem sufficiently accurate
for the forward problem, i.e. for obtaining an accurate simulation, might not
be sufficiently accurate for the inverse problem, i.e. for inferring the model
parameters from data. We show that for both fixed step and adaptive step
ODE solvers, solving the forward problem with insufficient accuracy can
distort likelihood surfaces, which might become jagged, causing inference
algorithms to get stuck in local ‘phantom’ optima. We demonstrate that
biases in inference arising from numerical approximation of ODEs are poten-
tially most severe in systems involving low noise and rapid nonlinear
dynamics. We reanalyse an ODE change point model previously fit to the
COVID-19 outbreak in Germany and show the effect of the step size on
simulation and inference results. We then fit a more complicated rain-
fall run-off model to hydrological data and illustrate the importance of
tuning solver tolerances to avoid distorted likelihood surfaces. Our results
indicate that, when performing inference for ODE model parameters, adap-
tive step size solver tolerances must be set cautiously and likelihood surfaces
should be inspected for characteristic signs of numerical issues.
1. Introduction
Many scientific phenomena involve time-varying signals or outputs. These
phenomena are often believed to obey some parametric model, whose parameter
values are a priori unknown but can be inferred from observed data. In this paper,
we present and analyse the key challenges that arise in parameter inferencewhen
models involve ordinary differential equations (ODEs). ODEs are used through-
out the biological and physical sciences to express dynamic processes; a few
examples among the myriad of their application areas include epidemiology
[1], hydrology [2], cardiac electrophysiology [3] and population dynamics [4].

In general, the differential equations used in scientific applications cannot
be solved analytically. However, a wide range of computational methods
have been developed to obtain a numerical approximation of their solutions.
(Solving the differential equation for a particular value of the parameters is
known as the forward problem.) While numerical algorithms to solve the forward
problem introduce error, the properties of this error are generally well under-
stood and can be controlled. In solvers using a fixed time step (discussed in
§3.2), the error can be reduced by decreasing the size of the time step [5]. In sol-
vers in which the time step is set adaptively (discussed in §3.3), the error is
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typically controlled through user-specified relative and absolute tolerances on the local truncation error (the error in the solution
introduced by a single time step of the solver) [6].

Our focus in this paper is on the interplay between the numerical approximations inherent in the forward problem and the inverse
problem, which consists of learning values of the parameters that are compatible with an observed time series. Widely used approaches
to the inverse problem include optimization of an objective function that measures the quality of fit between the model and the data
(e.g. maximum likelihood), or Bayesian approaches that generate samples from the posterior distribution of the parameters (e.g.
Markov chain Monte Carlo (MCMC)). These approaches to the inverse problem require the forward problem to be solved at multiple
different parameter values. Previous work (e.g. [7]) has demonstrated that numerical error in the forward problem is liable to introduce
errors in estimated parameters, and techniques have been developed to model the uncertainty in forward solutions and parameter
estimates arising from the approximation errors made by the solver [8]. One approach for analysing the errors in the inverse problem
that arise because of numerical approximation in the forward problem, is presented in [9]. In this approach, bounds are computed on
the Hellinger distance between the true parameter posterior distribution and the posterior arising from a numerically approximate
forward solution. For certain conditions on the forward solution and its numerical approximation (which our example models in
this paper satisfy), it can be shown that the error in the forward solution transfers to a bound on the Hellinger distance between
the true and numerically approximate posteriors [9, theorem 4.6, eqn 4.12]. This analysis, however, provides an asymptotic
result, and achieving accurate posteriors in practical problems is not necessarily straightforward. In particular, as we illustrate in
this paper, modest solver step sizes can produce accurate forward solutions but highly inaccurate log-likelihood surfaces which are
intractable for inference algorithms such as MCMC sampling.

Our paper provides an empirical analysis, involving both synthetic and real data, demonstrating the various characteristics
of errors in parameter likelihood surfaces that can appear due to solver inaccuracy. Our results demonstrate the importance of
ensuring that ODE solvers used during an inference algorithm are appropriately tuned for inference, which often requires the
ODE to be solved more accurately than for acceptable forward solutions.

The rest of this paper is organized as follows. In §2, we present the widely used independent and identically distributed Gaus-
sian noise log-likelihood function for fitting ODE models and derive a bound on the error in this log-likelihood arising from the
use of an approximate solution to the ODE. On the basis of this bound, and results presented subsequently, we argue that the
biases in inference results arising from numerical solvers are likely to be most severe in systems that have low noise and rapid
nonlinear dynamics. In §3, we study two broad classes of ODE solvers: those involving a fixed time step, and those involving
a time step set adaptively to control the error on the solution. For both classes of solver, we illustrate the effects that solver inac-
curacy can have on inference, and illustrate this using synthetic data. Additionally, in electronic supplementary material, §S3, we
study how smoothing approximations can reduce the influence of numerical error on computation of the likelihood. Finally, in §4
and §5, we consider inference of ODE models for real data series. In §4, we reanalyse an ODE model of disease transmission fit to
the COVID-19 outbreak in Germany and show that, when using a solver with a fixed time step, the choice of time step can alter
inference and simulation results, and in §5, we fit a rainfall runoff model to hydrological data to illustrate the pitfalls of performing
parameter inference using an adaptive step size solver with insufficient local tolerances.
2. Effects of numerical error on computation of the log-likelihood
2.1. Log-likelihood function for an ordinary differential equation model
We assume that time-series data fyigNi¼1; yi [ Rn are measured at time points ftigNi¼1. These data are believed to obey some function
g :Rl ! Rn of xðt; uÞ [ Rl, where x is the solution to an ordinary differential equation

dx
dt

¼ hðt, x, uÞ ð2:1Þ

and

xð0Þ ¼ x0, ð2:2Þ
for some function h that is informed by the relevant scientific theory and parametrized by the (potentially unknown) values
u [ Q , Rm. (In some inference problems, the initial value x0 is also an unknown parameter, or a function of unknown parameters.)
Equation (2.1) has been written as a first-order equation (i.e. only involving the first-order derivative of x); higher order differential
equations can be rewritten as systems of first-order equations.

Deterministic forward models never fully explain the variation in real observations. To make the forward model a feasible expla-
nation of the data, an additional stochastic component representing elements not modelled as part of the differential equation model
(for example, processes involved in the measurement of the signal, or a model of measurement error occurring in the sensor devices
used to collect the measurements) is included. This stochastic component is often included in additive form, yielding the proposed
data generating process

yi ¼ gðxðti; uÞÞ þ ei, ð2:3Þ
where ei is a mean-zero random variable specifying the noise process. Many choices for ei are possible, and in applied data analysis the
assumed distribution of this variable should be chosen carefully, as misspecification of ei can cause inaccurate inference results [10].
In this paper, for simplicity, we choose to generate synthetic data using the independent and identically distributed (IID) Gaussian
distribution. The IID Gaussian noise distribution is given by

ei �IIDNð0, s2Þ, ð2:4Þ
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with the parameter σ representing the standard deviation of the noise process, that is also inferred from the data togetherwith themodel
parameters θ. Choosing a particular noise process enables the joint probability of the observations to be expressed as a function of the
parameter values θ—this is known as a likelihood. Foran IIDGaussian noise process (equation (2.4)) and one-dimensional data points yi,
the log-likelihood for time-series data fyigNi¼1 takes the form

log pðy1, . . . , yN ju, sÞ ¼ �N
2
logð2pÞ �N

2
logðs2Þ � 1

2s2

XN
i¼1

ðyi � gðxðti; uÞÞÞ2: ð2:5Þ

The likelihood expresses the quality of the fit between the model output and the data, with higher values of the likelihood
indicating a superior fit. Thus, the values of θ most compatible with data can be found by maximizing the likelihood with respect
to θ (i.e. the method of maximum likelihood). Alternatively, the likelihood can be used together with a prior distribution on the
parameters (p(θ)) to infer the posterior distribution according to Bayes’ theorem

pðujy1, . . . , yNÞ ¼ pðy1, . . . , yN juÞpðuÞ
pðyÞ :

In this paper, we consider the typical case where the posterior cannot easily be expressed in closed form but can be approximated
using MCMC sampling methods [11].

2.2. Error in the log-likelihood arising from approximation of the forward solution
The data are assumed to obey the IID Gaussian log-likelihood, equation (2.5). We assume that x(ti; θ) is the true solution to the ODE at
time point ti, which is unavailable and approximated by x̂i. The deviation between x(ti; θ) and x̂i at any time point is given by the
global truncation error, e(ti)

eðtiÞ ¼ xðti; uÞ � x̂i:

In general, e(ti) is unknown, although, for particular numerical solvers, its magnitude might be bounded by some function of the step
size or some other quantity which can be used to tune the accuracy of the solver.

The log-likelihood available to the inference algorithm takes the same form as equation (2.5), but computed using the numerical
approximation x̂i instead of x(ti; θ). For brevity, we denote the accurate log-likelihood by L, and we denote the log-likelihood com-
puted using a numerical approximation by L0, which is given by

L0 ¼ �N
2
logð2pÞ �N

2
logðs2Þ � 1

2s2

XN
i¼1

ðyi � gðx̂iÞÞ2: ð2:6Þ

Theorem 2.1. Assuming Lipschitz continuity of the observation function g with Lipschitz constant K, the difference between L0 and L (both
computed at the parameter values θ, which are assumed to be those which generated the data) is bounded according to

jL� L0j �
XN
i¼1

K2

2s2 jeðtiÞj
2 þ K

s2 jeðtiÞjjyi � gðxðti; uÞÞj
� �

: ð2:7Þ

Proof. The proof is presented in electronic supplementary material, §S1. ▪

We observe an inverse relationship between σ and the bound of jL� L0j when e(ti) is held constant. Thus, when a solver is
tuned to yield a particular global truncation error e(ti), we expect the absolute bias in the log-likelihood to be more severe at smaller
values of σ. Equation (2.7) also indicates that more severe biases can be expected when N is larger—i.e. there are more obser-
vations. Additionally, at a fixed level of σ, we expect the bias in the log-likelihood to decrease as the global truncation error is
decreased. In electronic supplementary material, §S2, we additionally derive the distribution of the error in the likelihood, and
show that E½L� L0� . 0: the numerical approximation of the likelihood will, on average, underestimate the true likelihood.

3. Effects of ordinary differential equation solvers on inference
To study the interplay between ODE solvers and inference, we introduce the following differential equation problem which describes
an oscillatory system with damping and forcing:

m
d2x
dt2

þ c
dx
dt

þ kx ¼ FðtÞ:

The model has three unknown parameters: (m, c, k). In classical mechanics, these represent the mass, damping coefficient and spring
constant, respectively. F(t) represents the forcing function or stimulus, and in this paper takes a variety of forms throughout our
results. This damped and forced oscillator is described by a second-order differential equation; to apply ODE solvers straightfor-
wardly, we rewrite it as a first-order differential equation of two-state variables

d
dt

x
_x

� �
¼ _x

FðtÞ
m � c

m _x� k
m x

� �
, ð3:1Þ

where _x ¼ dx=dt.
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Figure 1. Comparison of log-likelihood surfaces calculated using fixed step and adaptive step solvers. Log-likelihood for the parameter k calculated from data
generated from the oscillator model equation (3.1), with all other parameters held at their true values. The log-likelihood was calculated from equation (2.5)
using an adaptive step RK5(4) solver with relative tolerance set to 10−8 (True), a Forward Euler solver with a fixed time step Δt = 0.01, and an adaptive
step RK5(4) solver with tolerance tuned such that at the true parameter values (vertical line) it introduces the same magnitude of error in the log-likelihood
as the fixed step Forward Euler solver (corresponding to a relative tolerance of 0.00944).

royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

21:20230369

4

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

16
 A

pr
il 

20
24

 

3.1. Fixed step and adaptive step ordinary differential equation solvers
Awide range of numerical algorithms have been developed to obtain approximate solutions to initial value problems (IVPs) of the
form given in equations (2.1) and (2.2). These algorithms typically work by computing an approximate solution on a grid of time
points (in general, distinct from the time points where the data are located) and then using an interpolation algorithm to obtain the
solution at intermediate time points.

Most simply, the grid of solver time points can be prespecified in advance (we refer to such methods as fixed time step solvers).
However, in general, it is inefficient to use the same time step throughout the entire time range on which the ODE is being solved,
particularly when solved repeatedly over a range of parameters. Solvers can employ large time steps in regions where the solution
and its gradients change gradually without causing much error in the solution; however, in regions where the derivative changes
rapidly, small time steps are required to maintain a low error. This motivated the development of ODE solvers that adjust the step
size throughout the time domain over which the ODE is solved. While fixed step solvers are still commonly used, adaptive step solvers
are standard in high-performance computing and are widely implemented in software libraries for ODE solving.

When using an adaptive step size solver, the user does not specify a step size, but rather a local error tolerance. The algorithm then
selects a time-varying sequence of step sizes such that the local error in the solution falls below the specified tolerance. The total
number of time steps used by the solver thus depends on the selected tolerance and the properties of the solution. Typically, an interp-
olation scheme is then used to obtain the solution at intermediate time values. Tolerances can be expressed either as an absolute value
or relative to the magnitude of the solution. In many implementations, both are available to the user: for example, the SciPy library
allows the user to specify both an absolute tolerance atol and a relative tolerance rtol, and chooses step sizes such that the magni-
tude of the local truncation error on the solution x does not exceed atolþ rtoljxj [12]. For the results presented in this paper, we fix
atol to a value of 10−9 and tune rtol to control the accuracy of the solver. Adaptive step sizes have been implemented for a wide
variety of ODE solver algorithms. Although the phenomena we analyse in this paper are liable to arise from a variety of adaptive
step size solvers, (including, for example, the CVODE multistep method [13, fig. 3]), we focus on Runge–Kutta methods of the
form RKp(q), which use the qth order method to estimate the error (and thus control the time step), while making the actual steps
using the pth order method [6]. Runge–Kutta methods are not described in detail here for brevity—they are widely used and details
can be found in many standard texts (for example, [5]). We rely on the SciPy adaptive time step Runge–Kutta implementation, which
employs a quartic interpolation polynomial for RK5(4) and a cubic Hermite interpolation polynomial for RK3(2) [12].

3.1.1. Typical log-likelihood surface shapes
We now consider the influence of the two numerical solution methods for parameter inference. Because fixed step solvers use the
same grid throughout parameter space, while adaptive step solvers might employ different grids at different parameter values,
these two classes of solvers differ in the characteristics of the error that they tend to introduce into the likelihood function.

We illustrate this by computing the likelihood surface for the k parameter in the oscillator problem, equation (3.1). In total, 75
evenly spaced data points were generated from and including t = 0 to t = 50 from the model with an accurate solver (the RK5(4)
solver with relative tolerance set to 10−8), using true parameter values k = 1, c = 0.2, m = 1, initial conditions of x(t = 0) = 0,
_xðt ¼ 0Þ ¼ 0, and

FðtÞ ¼ 1, t , 25,
0:9, t � 25:

�

Then IID Gaussian noise was added to the solution at each of the sampled locations with σ = 0.01. Holding all other parameters
fixed at their true values, the log-likelihood was calculated for a range of values of k, using three different ODE solvers. First, the
RK5(4) solver with relative tolerance set to 10−8 was used to compute the accurate (True) likelihood. Next, the Forward Euler solver
with a fixed time step of Δt = 0.01 was used. Finally, we used the RK5(4) solver, but with its relative tolerance tuned so the observed
magnitude in the error in the log-likelihood at the true parameter values was equal to that produced by the Forward Euler solver
(for this problem, this resulted in relative tolerance tuned to 0.00944). These results are shown in figure 1.
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Figure 2. Damped oscillator inference using Forward Euler. (a) Synthetic data for the damped driven oscillator. The curved line indicates the accurate solution to the
ODE with these parameters, while the points indicate the noisy data. (b) Solution for oscillator computed using a Forward Euler solver with four different choices for
the time step Δt. (c) Log-likelihood for the parameter k calculated from the noisy data, with all other parameters held at their true values. The log-likelihood was
calculated from equation (2.5) using a Forward Euler solver with four different choices for the time step Δt.
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At the true parameter value, both solvers result in a slight underestimation of the log-likelihood. Across the parameter range con-
sidered, the fixed time step solver results in a log-likelihood that is shifted relative to the true one, but retains the smooth, unimodal
shape.However, the adaptive step solver results in a log-likelihoodsurface that in addition to being shifted exhibits jagged, discontinuous
fluctuations. In the remainder of §3, we examine these two phenomena in more detail.
69
3.2. Fixed time step solvers
3.2.1. Forward Euler solver
One of the simplest numerical solvers for ordinary differential equations is the Forward Euler method with a uniform step size Δt.
This solver is easily implemented and thus has achieved wide usage despite its simplicity and typically mediocre performance.

Forward Euler has been used for inference in some recent high-profile epidemiological research where Δt was set to a value com-
parable to the time scale of the behaviour of the system (e.g. [14,15]). Whether these applications are representative of the use of
Forward Euler more generally is unclear, but our results in §4 indicate that such choices of Δt can alter both forward model solutions
and parameter inference results.
3.2.2. Inference for the damped, driven oscillator
using Forward Euler

We now exemplify the impact of using Forward Euler with insufficiently small time steps on inference by using synthetic noisy
data generated from the (accurate) solution of equation (3.1). In total, 25 evenly spaced data points were generated from and
including t = 0 to t = 5 from the model with an accurate solver (the RK5(4) solver with relative tolerance set to 10−8), using true
parameter values k = 1, c = 0.2, m = 1, an initial condition of x(t = 0) = 0, _xðt ¼ 0Þ ¼ 0 and F(t) = 1. Then, IID Gaussian noise was
added to the solution at each of the sampled locations with σ = 0.1. Holding all other parameters fixed at their true values, the
log-likelihood was calculated for a range of values of k, using the Forward Euler solver with various time steps.

Figure 2 shows the impact of using Forward Euler on the likelihood surface. The results show the typical effect of a fixed step
solver with insufficiently small time steps: the likelihood surface maintains a smooth shape, but it is shifted relative to its true
location. The longest time step considered in this study, Δt = 0.1, causes substantial inaccuracy in the likelihood even though
Δt = 0.1 is small compared with the time scale of the dynamics of the system and the system with F(t) = 1 contains no discontinu-
ities or other challenging features. Given that Forward Euler is a first-order method—as the step size is refined, the global
truncation error introduced by the method is approximately proportional to Δt—its poor performance is unsurprising.

As the step size is refined, the log-likelihood curves converge. This suggests a diagnostic technique that could be incorporated
into inference algorithms: once the optimal parameter values have been determined, the log-likelihood should be evaluated at
those parameter values with the step size on the solver slightly adjusted; if the solver is sufficiently accurate, the value of the
log-likelihood should not be a strong function of the step size.
3.3. Adaptive step size solvers
Adaptive step size solvers enable increased efficiency in obtaining accurate solutions to ODEs. However, when used in inference
problems, they can convert a smooth likelihood surface into a rough one, characterized by rapid (and entirely phantom) changes in
the likelihood which interfere with inference algorithms. These inaccuracies in the likelihood can be observed even at tolerances in
the solution error where further refinements do not visibly influence the solution. For example, in cardiac electrophysiology,
jagged parameter likelihoods have been observed with adaptive step size ODE solvers with tolerances as low 10−7 [16,17].
Next, we investigate the origin of the jagged likelihoods using synthetic data from the oscillator model described in equation (3.1).
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Figure 3. Damped oscillator inference using adaptive time step Runge–Kutta. (a) Synthetic data for the damped driven oscillator. The curved line indicates the
accurate solution to the ODE with these parameters, while the points indicate the noisy data. (b) Solution for oscillator computed using an RK5(4) solver with three
different choices for the relative tolerance (indicated by tol in the legend). (c) Log-likelihood for the parameter k calculated from the noisy data, with all other
parameters held at their true values. The log-likelihood was calculated from equation (2.5) using an RK5(4) solver with three different choices for the tolerance.
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3.3.1. Inference for the damped, driven oscillator using an adaptive step size solver
We first study the effects of adaptive time step solvers on inference using the model system that was introduced at the beginning of
§3 (equation (3.1)). Here, we set the input stimulus according to
30369
FðtÞ ¼ 1, t , tchange,
f1, t � tchange:

�
ð3:2Þ
Thus, f1 defines the strength of a pulse provided to the system at t = tchange.
Our subsequent analyses in this section employ various discontinuities in F(t) to control the difficulty of the ODE system, and

we show that adaptive step solvers can introduce substantial, jagged errors into the likelihood surface. However, it is not
only ODEs with discontinuous r.h.s. that are affected by similar phenomena. In electronic supplementary material, §S4, we
additionally study the interplay between a continuous (but rapidly changing) F(t) and an adaptive step size solver, and show
similar qualitative results.

First, we consider the problem where f1 =−1 and tchange = 2.5 for different choices of the RK5(4) solver tolerance. In total, 25
evenly spaced data points were generated from and including t = 0 to t = 5 from the model with an accurate solver (the RK5(4)
solver with relative tolerance set to 10−8), using true parameter values k = 1, c = 0.2, m = 1 and an initial condition of x(t = 0) = 0,
_xðt ¼ 0Þ ¼ 0. Then, IID Gaussian noise was added to the solution at each of the sampled locations with σ = 0.1. Holding all
other parameters fixed at their true values, the log-likelihood was calculated for a range of values of k, using the RK5(4) solver
with various tolerances. These results are shown in figure 3. At insufficient tolerances, the log-likelihood surface exhibits signifi-
cant erroneous jaggedness. Notably, visual changes between the forward simulations are minor even at tolerances that cause
drastic differences in the log-likelihood.

Next, we fix the adaptive solver tolerance and study how introducing more rapid changes in the system’s behaviour affects the
log-likelihood surface. In figure 4, we fix tchange = 25 and consider four different values of f1 and plot the likelihood surface for the
model parameter k calculated according to an RK5(4) solver with rtol ¼ 10�3. For each value of f1, 75 evenly spaced data points
were generated on the interval from and including t = 0 to t = 50, using parameter values k = 1, c = 0.2 and m = 1. IID Gaussian noise
was added to the solution at each of the sampled locations with σ = 0.01. The likelihood was then calculated over a range of values
of k, with all other parameters held at their correct values. For f1 = 1, the stimulus F(t) is constant over time, and the likelihood
surface appears smooth. However, as f1 is adjusted so the stimulus is a stronger pulse, the likelihood becomes jagged with
large deviations away from the true likelihood surface. (This is an example of a challenging r.h.s. that could be made more tractable
for inference using smoothing approximations, which we analyse in electronic supplementary material, §S3.) Overall, these results
indicate that the more rapid the changes in a system’s behaviour, generally the tighter solver tolerances are required to solve the
inverse problem.

A fundamental point to note is that these inaccuracies arise because different values of the parameters represent different forward
problems, and the solver selects a different sequence of step sizes for each. When the solution contains regions of rapid change, differ-
ences in the positions of the solver time steps, and, particularly, the inevitably discontinuous jumps in the total number of time steps
used by the solver, cause errors in the likelihood. This phenomenon is investigated more closely in figure 5. For this study, the oscil-
lator model equation (3.1) was again used. In total, 50 evenly spaced data points were generated on the time interval from and
including t = 0 to t = 10, with tchange = 5 and f1 =−5, using parameter values m = 1, c = 0.2 and k = 1. IID Gaussian noise was added
to the solution at each of the sampled locations with σ = 0.01. The likelihood for k was calculated as before and is plotted in
figure 5. In this case, the figure is restricted to a very narrow range of k values, and the total number of time points selected by
the adaptive solver for the calculation of the likelihood at each value of k is overlaid on the plot. Here, the large jumps in the like-
lihood correspond to the addition or removal of a solver time point. Smaller spikes and jaggedness where the total number of solver
time points is constant correspond to shifting of the solver time points.
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3.3.2. Effect of jaggedness on inference algorithms
The jagged spikes appearing in the likelihood surface as a result of insufficiently accurate adaptive step size solvers plague com-
putational inference algorithms. A common approach to Bayesian inference is to use the Metropolis MCMC algorithm, or variants
of it [11]. This algorithm generates a sequence of parameter values via a Markov chain whose stationary distribution is the pos-
terior distribution of the parameters. Given the most recent parameter values in the chain θold, the Metropolis algorithm proposes
new parameter values θprop according to a proposal distribution and then accepts θprop with a probability of

r ¼ min 1,
pðupropÞ
pðuoldÞ

pðy j upropÞ
pðy j uoldÞ

 !
,

where p(θprop) is the prior and p(y|θprop) is the likelihood. To illustrate the detrimental effects of jagged errors in the likelihood, we
consider a situation where θold and θprop have identical values under the prior and the accurately computed likelihood (this is a
plausible assumption when θold and θprop are nearby), but we assume that the log-likelihoods at these two parameter values com-
puted using the numerical approximation differ by some factor c driven by numerical error in the adaptive step size solver (i.e.
log pðy j upropÞ ¼ log pðy j uoldÞ � c, for c > 0). This assumption of a jump in computed likelihood values at nearby parameter
values is analogous to the spikes appearing in the log-likelihood in our results in figures 4 and 5.

Under these assumptions, log r ¼ �c or r ¼ expð�cÞ. For a value of c = 10 (smaller than many of the magnitudes of spikes
observed in our results), the probability of accepting the proposal is less than 1 in 20 000. Even a relatively small jump of magnitude
c = 3 will be traversed by the sampler with a probability of only about 5%. Although these computations are based on simplistic
assumptions, they suggest that even minor warping of the log-likelihood can severely restrict the ability of a Metropolis–Hastings
sampler (or similar inference algorithm) to traverse the parameter space efficiently.
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3.4. The impact of observation error magnitude on inference and sampling performance
In this section, we empirically study the effects of different levels of observation noise on inference. We performed Bayesian infer-
ence using MCMC for the oscillator problem with varying levels of noise in the data. We considered two values of σ (0.001 and 0.1)
to generate the data, fixed f1 =−1, and otherwise generated data exactly as described for figure 4. We set a uniform prior on [0.1,
1.5] for the three model parameters m, c and k, and a uniform prior on [0, 1] for the σ. Three MCMC chains were run, initialized at
random samples from the prior (with the same MCMC starting point being used for both choices of the true σ). In total, 1500 iter-
ations of MCMC were performed using the Haario–Bardenet adaptive covariance algorithm as implemented in PINTS to sample
from the posterior [18,19]. The MCMC chains for the m parameter are plotted in figure 6a,c using the RK5(4) solver with
rtol ¼ 10�3, while figure 6b,d shows the chains using the same solver but with more accurate tolerances of rtol ¼ 10�8.

At the lowest noise level considered (σ = 0.001), the three MCMC chains using the less accurate solver move towards the true
value of the parameter but fail to mix with each other. Instead, each chain remains stuck in a narrow region of parameter space
near the true parameter value, corresponding to the phantom local maxima in the likelihood surface observed in figure 4. Reducing
the solver tolerance to 10−8 was, however, sufficient to ensure chain mixing, indicating that the lack of convergence was purely an
artefact of using an inaccurate solver. At the highest level of noise considered here (σ = 0.1), the three MCMC chains mix well for
either tolerance choice;1 this can be explained by our bound given in equation (2.7): that larger σ values lead to gentler variation
in the log-likelihood surface and so easier exploration by inference algorithms.
4. Fixed step solvers applied to a susceptible–infected–recovered change point model of the spread of
COVID-19 in Germany

A widely used class of differential equation models in epidemiology are compartmental models. These models divide the
population into a number of compartments representing different diseased or non-diseased states and specify the rates at
which individuals move from one compartment to another [1]. A simple yet commonly used example is the susceptible–
infected–recovered (SIR) model [20]. This model keeps track of the number of susceptible individuals S(t) (those who can be
infected with the disease), infected individuals I(t) (those who are currently infectious with the disease) and recovered individuals
R(t) (those who have recovered from the disease and are assumed immune). Neglecting births and deaths, the model is expressed
by the following system of differential equations:

dS
dt

¼ �l
SI
N

, ð4:1Þ

dI
dt

¼ l
SI
N

� mI ð4:2Þ

and
dR
dt

¼ mI, ð4:3Þ
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where λ > 0 is the spreading rate of the disease, μ > 0 is the recovery rate and N > 0 is the total size of the population. The system
additionally requires the specification of initial conditions for each compartment (S(0), I(0), R(0)), where I(0) must exceed zero for
an infection to spread.

The qualitative behaviour of the SIR model can be determined by the basic reproduction number, R0, where

R0 ¼ l

m
:

Assuming that S(0)≈N and I(0) > 0, when R0 > 1, the number of infected individuals will grow, and the epidemic will eventually
infect the entire population (barring a change in λ or μ); for R0 < 1, the number of infected individuals will fall. Thus, fitting an SIR
model to infection data, and estimating the spreading rate λ and reproduction number R0, are important steps in understanding
and predicting the progression of an epidemic.

An extension to the standard SIR model has λ vary over time, allowing the model to capture changes in the spread of a disease
caused by behavioural changes or government policy. In the aftermath of the outbreak of COVID-19 in Europe in early 2020, an
SIR model allowing changes in λ through time was used in a high-profile paper which attempted to capture the impact of major
public health policy interventions on COVID-19 transmission in Germany [15]. The authors used the model equations (4.1)–(4.3),
discretized with a 1-day time step, equivalent to a Forward Euler solver with Δt = 1

St ¼ St�1 � lðtÞDt St�1It�1

N
, ð4:4Þ

It ¼ It�1 þ lðtÞDt St�1It�1

N
� mDtIt�1 ð4:5Þ

and Rt ¼ Rt�1 þ mDtIt�1: ð4:6Þ
The initial condition was given by an unknown parameter I0 = I(0). The system was closed with R(0) = 0 and S(0) =N− I0. The
spreading rate λ was assumed to be a continuous function of time and was allowed to shift at three time points, whose locations
were estimated from the data. Specifically, these three time points, ti, i∈ {1, 2, 3} denoted the times at which λ began to (linearly)
change to a new, constant value, and the time taken for these shifts was dictated by durations di. The λ profile then has the follow-
ing piecewise representation:

lðtÞ ¼

l0, t , t1,
l0 þ l1�l0

d1
ðt� t1Þ, t1 � t , t1 þ d1,

l1, t1 þ d1 � t , t2,
l1 þ l2�l1

d2
ðt� t2Þ, t2 � t , t2 þ d2,

l2, t2 þ d2 � t , t3,
l2, þ l3�l2

d3
ðt� t3Þ t3 � t , t3 þ d3,

l3, t3 þ d3 � t:

8>>>>>>>><
>>>>>>>>:

Additional features of the model included a reporting delay and a weekly modulation. The reporting delay was characterized by a
single parameter D indicating the number of days between the time at which new infections occur and the time at which they are
reported. The modulation accounts for the weekly periodicity evident in the data and is characterized by two parameters fw and
Fw. This significant periodicity probably arises from processes involved in the reporting of COVID-19 cases and deaths [21].
Specifically, cases Ct are modelled by

Ct ¼ ð1� f ðtÞÞInewt�D , ð4:7Þ
where

f ðtÞ ¼ ð1� fwÞ 1� sin
p

7
t� 1

2
Fw

� �����
����

� �
, ð4:8Þ

where Inewt ¼ St�1 � St. Dehning et al. [15] assumed a Student-t distribution with four degrees of freedom and multiplicative noise
for the likelihood, such that the likelihood for observed cases Ĉt was given by

pðĈtju, sÞ ¼ Student-tn¼4ðmean ¼ CtðuÞ, scale ¼ s
ffiffiffiffiffiffiffiffiffiffiffi
CtðuÞ

p
Þ,

where u ¼ ðl0, l1, l2, l3, t1, t2, t3, d1, d2, d3,m, D, I0, fw,Fw,sÞ is the full vector of parameters for the differential equation model,
and Ct(θ) is the deterministic solution which can be computed using a range of different time steps. The prior distributions for
the parameters are given in electronic supplementary material, table S1.

4.1. Effect of time step on the forward solution
We first study the effect of assuming Δt = 1 day on forward simulations of themodel.We set up the forward simulations using the same
settings that Dehning et al. [15] used to generate their fig. 2. The parameters of an SIR model without change points or weekly modu-
lation (i.e. a single value of λ, μ,D, I0 and σ) were inferred from an early period of the German daily reported COVID-19 cases, from 2 to
15March 2020. The posterior median values of these parameters (excepting λ) were then used to generate forward simulations accord-
ing to the full model without weekly modulation (equations (4.4)–(4.7)), with one change point, and pre-specified values of λ0 and λ1.

As in [15], the first set of simulations considered how different levels of social restrictions could influence the course of disease
transmission, as measured by cases. Three levels of social restrictions (assumed to be captured by different λ values) are
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considered, which each yield two sets of simulations: one corresponding to Forward Euler with Δt = 1 day (as in [15]) and another
with Δt = 0.1 days. We choose 0.1 days as the more accurate comparator method, as further refinement of the step size yields little
change in forward solutions or inference results but is increasingly costly to run. The results of this are shown in figure 7a. Our
second set of simulations, shown in figure 7b, considered only our ‘strong’ social distancing scenario and explored three different
times at which the change in λ might occur (e.g. if a public health intervention were implemented at different times). These simu-
lations illustrate how using a large time step generally leads to a substantial underestimation of case counts for a given choice of
λ(t), particularly during the (crucial) growth phase of the epidemic.
4.2. Effect of time step on the posterior distributions
We also studied the effect of the time step on parameter inference for the full model (equations (4.4)–(4.8)) using the German daily
cases data from 2March to 21 April 2020 as was done in [15]. Inference was performed using the PyMC3 No-U-Turn MCMC sampler
(NUTS) [11,22] using the model developed in [15], modified to allow the 0.1-day step size. To initialize the chains, automatic differ-
entiation variational inference [23] as implemented in PyMC3 [22] was performed to generate an approximate posterior (which,
however, does not capture correlations between the parameters). Four MCMC chains were then initialized by sampling from this
approximation of the posterior. The chains were run for 500 iterations of NUTS, with the first 100 discarded as burn-in, and conver-
gence assessed by requiring that R̂ , 1:05 [11]. These results are shown in figure 8.

Both models achieve a near identical visual fit to the data, using the median values of the recovered parameters. However, the
parameter estimates of the two models differed. We focus on the posterior distribution for the basic reproduction number R0, which is
calculated using the MCMC samples of the joint posterior for (λ, μ). The 1-day time step results in overestimation of R0 (by approx.
10% relative to the 0.1-day time step) during the early stages of the epidemic (i.e. before the first change point). This is because,
during the growth phase of the epidemic, the larger time step results in slower growth for a given λ value (cf. figure 7), meaning
a larger λ value is estimated to compensate. During the later stages of the epidemic, the values of R0 are more similar between
the two models. Additionally, the change point locations are not much affected by the choice of time step (though, this is expected
as the change points have fairly informative priors).

Our results indicate that while the discrete version of the SIR change point model using Δt = 1 appears visually to obtain a good
fit to German COVID-19 data, the growth parameters of the discrete model using this time step vary markedly from those recov-
ered using Δt = 0.1, and thus care should be taken in the deployment of such discrete models and the reporting of their results.
5. Numerical errors arising in rainfall run-off models of river streamflow data
In this section, we use real data from the French Broad River at Asheville, North Carolina to investigate the impact of adaptive
solvers in performing inference for rainfall run-off models used in hydrology [24,25].
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Rainfall run-off models divide the flow of water through a river basin into several spatially grouped components representing
different hydrological processes. The model we consider here is governed by a system of five ODEs:

dSi
dt

¼ PrecipðtÞ � InterceptEvapðtÞ � EffectPrecipðtÞ, ð5:1Þ

dSu
dt

¼ EffectPrecipðtÞ �UnsatEvapðtÞ � PercolationðtÞ � RunoffðtÞ, ð5:2Þ

dSs
dt

¼ PercolationðtÞ � SlowStreamðtÞ, ð5:3Þ

dSf
dt

¼ RunoffðtÞ � FastStreamðtÞ ð5:4Þ

and
dz
dt

¼ SlowStreamðtÞ þ FastStreamðtÞ, ð5:5Þ

Each term in this equation is defined in electronic supplementary material, table S2, and the seven unknown parameters of the
model and their prior distributions are defined in electronic supplementary material, table S3. The data consist of daily streamflow
measurements (dz/dt), and the authors assume an IID Gaussian likelihood with unknown standard deviation σ.

Previous work has shown that using large time steps with such hydrological models can bias inferences [2]. We show that using
an adaptive step size method (as suggested in [24]) can also cause inaccurate inference results, unless the error is tightly controlled.

Using an accurateODE solver (theCVODEmultistep solver from the SUNDIALS library [26]with rtol ¼ atol ¼ 10�7), we obtained
the posterior distributions for the seven parameters of themodel, usingUnited StatesGeological Survey (USGS) data for the streamflowat
Asheville, North Carolina (USGS station 03451500) over a 200-day period starting 1 January 1960. Sampling was performed using the
Dream multi-chain MCMC algorithm as implemented in PINTS [18,27], using six chains with each initialized by a sample from the
prior (electronic supplementary material, table S3). In total, 25 000 MCMC iterations were performed, and convergence of the chains
was assessed by requiring that R̂ , 1:05 [11]. In figure 9, we plot the likelihood surfaces of the parameters for slices through parameter
space near the estimated posterior medians. Likelihood surfaces are plotted for two adaptive step size solvers: the RK3(2) solver from
SciPy with rtol ¼ atol ¼ 10�3, and the CVODE solver as described above. For all parameters, the 10−3 tolerance solver causes
highly jagged likelihoods, of sufficient magnitude to interfere with inference via MCMC or maximum-likelihood estimation. This is in
accordance with our earlier results using the oscillator model in §3, as rapid changes in the r.h.s. cause spurious jaggedness in the
computed likelihood. The likelihoods calculated using the more accurate solver have similar broad-scale shapes but are smooth
enough for accurate inference to be performed.
6. Discussion
Inaccurate solution of ODEs through either fixed time step or adaptive solvers can lead to biased inferences which are generally exacer-
bated when there is low observation noise. For adaptive solvers, these biases can manifest through the presence of phantom
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jaggedness in the likelihood surface, which can wreak havoc for inference algorithms attempting to navigate the surface. They
might also lead researchers to falsely conclude that a model is unidentifiable, when, for example, the chains in an MCMC run fail
to mix. Researchers might then choose to modify the model in arbitrary ways when, in fact, all that was required to render inference
soluble was a reduction in solver tolerances. Tolerances that seem good enough for forward simulation are probably insufficient for
solving inverse problems. For example, a default relative tolerance of 10−3 was insufficient for both the synthetic data and real data
studied in §§3.3 and 5. When using an ODE solver library to perform inference, default settings may well not suffice and, ideally,
the solver tolerance should be set by inspection of the likelihood surface. In this paper, we focused our attention on two simple
solvers: Forward Euler with a uniform grid and adaptive step size RK5(4). In practice, neither of these solvers may be ideal for a par-
ticular problem. More powerful solvers, such as implicit solvers which are known to perform more accurately on stiff problems, or
solvers which have been augmented to better handle discontinuities (see electronic supplementary material, §S5), could help to
reduce the computational runtime required to achieve sufficient accuracy for forward simulation or inference. However,
regardless of the solver employed, practitioners should be aware that tuning their solver to achieve accurate forward simulations
may still be insufficiently accurate for inference. For example, jagged errors in an objective function for the best fit parameters have
been observed that arise when insufficient tolerances are supplied to the CVODE solver—a variable order multistep method
using backwards differentiation formulae for stiff problems, which is significantly more powerful than the Forward Euler and
RK5(4) solvers [13, fig. 3].

Unless there is a bifurcation in system behaviour at points in parameter space, likelihood surfaces should not have abrupt
discontinuities. So, the presence of such changesmaywell be an artefact of using an adaptiveODE solverwith insufficient tolerances.
MCMC and optimization algorithms could be augmented by monitoring for such jumps and warning the user should they occur.

ODEs involving discontinuous r.h.s. functions are known to be particularly challenging to solve accurately. Our results indicate that
r.h.s. functions involving rapid changes over time, such as those involving discontinuities, also curse computational inferencewhen adap-
tiveODE solvers are used.However, our results in electronic supplementarymaterial, §S5 also indicate that errors in the likelihood arising
from discontinuous r.h.s. functions can be ameliorated through the use of simple smoothing approximations—a potentially more com-
putationally efficient alternative to increasing tolerances. We argue that in many scientific systems such smoothing approximations are
additionallymore realistic descriptions of the phenomena beingmodelled.Although the appropriate degree of smoothing can be difficult
to determine in general, for certain systems, the level of smoothing can be tuned based on knowledge of the process being modelled.

Much of the work on error control for ODE solvers has focused merely on the accuracy of the forward problem. The accuracies of
widely used ODE solvers are typically tuned via their step sizes or local truncation error tolerances, but these are not the most relevant
quantities for inference—instead, it is the error in the log-likelihood that must be controlled. ODE solvers that control the error on the
log-likelihood directly would avoid much of the problems highlighted in this paper, and we suggest this as a fruitful research direction.
Data accessibility. The code to perform the computer experiments presented in this paper was written in Python 3.7 and is available in an open source
Python library from the Zenodo repository: https://zenodo.org/records/10578920 [28]. To run the COVID-19 simulations, we adapted the software
library developed by Dehning et al. [15]. The version of the code including our modifications is available from the Zenodo repository: https://
zenodo.org/records/10578938 [29].

Supplementary material is available online [30].
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Endnote
1We note that, for this level of noise, the centres of the sampling distributions are shifted slightly away from the true parameter value because the
noise limits our ability to estimate this parameter.
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