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1. Introduction

With demand, requirements, and technologies changing con-
stantly on a manufacturing shop floor [1], being able to select
the optimal manufacturing configuration (MFG) for each de-
mand period becomes essential to remain competitive in the
global economy. To this end, on-demand self-adaptive manu-
facturing system approaches – such as reconfigurable manufac-
turing system (RMS) approaches – provide the tools to dynam-
ically adapt to changing conditions. RMS approaches enable
high throughput, flexibility, and quick and efficient reaction to
changes, coping with the increasing industrial demand [2]. In
particular, the capability of selecting the optimal MFG based
on demand and costs is a critical research problem in RMS ap-
proaches.

Many researchers in the literature have addressed the selec-
tion of optimal manufacturing configurations. In [3], the au-
thors propose an approach that considers important system-
level evaluation criteria (e.g. cost and availability) and uses
stochastic analysis to ensure the smoothness of the reconfigura-
tion process. In [1], the authors go a step further by introducing
a novel approach that utilizes module interactions and machine
capability to measure the reconfigurability and operational ca-
pability of an reconfigurable machine tool, which can be used to
optimize machine assignments for single-part flow lines. In [4],
the authors present a two-phased method that addresses primary
system configuration design and necessary system reconfigura-
tions according to demand rate changes, leveraging the benefits
of reconfigurable machine tools. Furthermore, the authors in [5]
offer a simulation-based multi-objective optimization approach
for system reconfiguration of multi-part flow lines, which ad-
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Abstract

In manufacturing, different costs must be considered when selecting the optimal manufacturing configuration. Costs include manufacturing costs,
material costs, labor costs, and overhead costs. Optimal manufacturing configurations are those that minimize production criteria, such as costs,
production speed, and flexibility, while still meeting the required production levels and quality standards. To find the optimal manufacturing
configuration, manufacturers often use a combination of traditional techniques, e.g., mathematical modeling, simulation, and optimization, to
evaluate the tradeoffs between different cost factors and identify configurations that provide the best balance between cost and performance.
However, these techniques may require long development and simulation time, and/or may require expert knowledge. This paper presents a
method for selecting the optimal manufacturing configuration, focusing on cost optimization, using a reinforcement learning (RL) approach for
sequential decision-making. The proposed method involves developing a RL environment, requiring lower development and simulation times than
traditional techniques, that captures the incurred costs, recurring costs, production rates, and setup times of manufacturing configurations. The
problem is then solved using the Proximal Policy Optimization algorithm to identify the configuration that minimizes costs while still meeting
the required production levels and quality standards. The effectiveness of the proposed method is validated through a machining process planning
case study with multiple cost factors and production constraints. In particular, the machining process plan was developed for an industry-relevant
product prototype. The results show that the proposed method can find solutions that are robust to stochastic noise, providing valuable insights for
manufacturers looking to optimize manufacturing operations.
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dresses task assignments and space allocation, and maximizes
throughput while minimizing total space capacity.

While these approaches are effective, the lack of a crucial
element is identified: sequential decision-making and optimiza-
tion algorithms. Decision-making and optimization algorithms
consider future consequences of current decisions. The imme-
diate effects of a particular configuration can be considered
and future demand and resource needs can be anticipated. This
enables more efficient and effective decision-making, as con-
figurations that meet current demand, while preparing for fu-
ture demand, can be chosen. Additionally, sequential decision-
making allows for the incorporation of constraints and uncer-
tainty, further strengthening the robustness and effectiveness
of the decision-making process. In particular, reinforcement
learning (RL) algorithms prove useful for sequential decision-
making and optimization problems with changing and uncertain
environments [6].

In this paper, an optimal MFG selection approach based on
sequential decision-making and optimization algorithms is pro-
posed. The main contributions of this paper are two-fold:

• RL environment: A RL environment is proposed to rep-
resent real-life industrial manufacturing environments.
An open-source customizable implementation is pro-
vided as a basis for future research 1.
• RL-based methodology: Building on the previous con-

tribution, a sequential decision-making methodology for
optimal MFG selection problem is presented and solved
using the Proximal Policy Optimization (PPO)[7] RL al-
gorithm.

The remainder of this paper is structured as follows. Section
2 presents the RL-based methodology, comprised of problem
formulation and concepts of RL, as well as the RL environ-
ment definition. Section 3 presents the experiment conducted,
describing the implementation and validation of the methodol-
ogy. In addition, results and discussion are presented. Finally,
Section 4 provides conclusions and an outlook on future work.

2. Methodology

The problem formulation of optimal configuration selection
for demand satisfaction in manufacturing is presented in this
section. Thereafter, RL for sequential decision making and op-
timization is presented as approach. Finally, this section ends
with the description of the proposed manufacturing environ-
ment.

2.1. Problem formulation

The optimal manufacturing configuration selection for the
demand satisfaction problem must be first mathematically for-
mulated. To this end, the problem is formulated in this paper as
follows.

1 https://github.com/torayeff/mfgrl

• Given:
– Demand, D: Number of products required.
– Demand time, TD: Maximum time allowed to pro-

duce the demanded products.
– Set of manufacturing configurations, M: An

MFG is a group of resources that have the capa-
bility to produce the demanded product. The total
number of unique manufacturing configurations is
M = |M|. Each MFG has the following attributes:

* Incurring cost: Cost of purchasing the MFG.
* Recurring cost: Cost of running a MFG for 1

unit of time.
* Production rate: Number of products pro-

duced by the MFG per 1 unit of time.
* Setup time: Time required to set up the MFG.

– Space size, B: Maximum number of allowed man-
ufacturing configurations to purchase.

• Problem: Find the multiset of manufacturing configura-
tions that can meet the given demand in the given demand
time with minimum cost, where the cost is the sum of in-
curred and recurred costs.

2.2. Reinforcement learning

In the context of sequential decision making and optimiza-
tion, RL is a technique that allows an agent to learn how to make
optimal decisions. Agents are key elements in RL, perceiving
the environment, acting autonomously, and improving its per-
formance with reward-based learning. Optimal decisions are
made by interacting with an environment and receiving feed-
back in the form of rewards or penalties. The goal of RL is to
train the agent to maximize the cumulative reward over time
based on the feedback received from the environment, improv-
ing the decision-making process and adapting to changing con-
ditions [6]. RL approaches have been successfully applied to
various sequential decision-making and optimization problems
such as smart grids [8] and marketing [9].

An environment in RL comprises a set of all possible ac-
tions, known as action space. The environment also includes
a complete description of itself, with nothing hidden, known
as the state space. An agent observes certain parts of the state
space, known as the observation space, takes actions, and re-
ceives feedback as reward for each action it takes. The goal
of the agent is defined by learning principles that aim to maxi-
mize the expected sum of all future rewards. Moreover, changes
in the environment due to the actions of the agent are known
as environment dynamics. The environment-agent interaction
is depicted in Figure 1.

2.3. RL environment for manufacturing

In this sub-section, an RL environment for manufacturing is
defined for the problem formulated in Subsection 2.1. The en-
vironment is defined based on necessary RL elements, such as
state space, action space, environment dynamics, and learning
principles for agents:
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Fig. 1. Environment-Agent interaction in reinforcement learning. Adapted from [10].

State and action space. The state space of the environment
is an (2 + 6B + 4M)-dimensional vector, where B is the space
size and M is the set of manufacturing configurations defined in
Subsection 2.1. Specifically, the vector consists of the following
information:

• Remaining demand: Dr ∈ Z+, at initialization Dr = D.
• Remaining demand time: Tr ∈ Z+, at initialization Tr =

TD.
• Incurring costs of purchased manufacturing configura-

tions: I ∈ RB
>0.

• Recurring costs of purchased manufacturing configura-
tions: R ∈ RB

>0.
• Production rates of purchased manufacturing configura-

tions: P ∈ RB
>0.

• Setup times, i.e., the time required to set up the newly
purchased MFG: U ∈ RB

>0.
• Statuses of purchased manufacturing configurations, i.e.,

whether the configuration is producing or in the setup (or
maintenance) phase: S ∈ RB

≥0,≤1.
• Produced products, i.e., the number of products produced

by each of the purchased manufacturing configurations:
O ∈ RB

≥0.
• Market incurring costs, i.e., stochastically changing the

purchase prices of manufacturing configurations in the
market: I ∈ RM

>0.
• Market recurring costs, i.e., stochastically changing the

recurring costs of manufacturing configurations in the
market: R ∈ RM

>0.
• Market production rates, i.e., stochastically changing the

production rates of manufacturing configurations in the
market: P ∈ RM

>0.
• Market setup times, i.e., stochastically changing the setup

times of manufacturing configurations in the market:U ∈
RM
>0.

The action space in the environment is represented as an in-
teger between 0 and M inclusive, i.e., a ∈ [0,M] and is formally

defined as

Step(a) =


“buy configuration a”, if 0 ≤ a < M
“continue production”, otherwise

(1)

where Step(a) makes one episode step in the environment.

Environment dynamics. Selected actions by an agent affect the
dynamics of the environment as follows:

• Action “buy configuration a” adds a configuration a
into the production space. It also pauses the remain-
ing demand time, Tr, in the environment. Counter-
intuitively, stopping the remaining demand time resem-
bles a decision-making process in the real world where
purchasing decisions can be made while production is
still running.
• Action “continue production” decreases the remaining

demand time and updates the produced products.
• An agent can make purchase decisions until the space is

full. As soon as the space is full, an agent exceeds all its
action choices, and the environment advances indepen-
dently until the termination criteria are reached.
• The environment terminates when the condition “Dr ≤

0 OR Tr ≤ 0” is met.

Learning principles. Two main learning principles are de-
fined for agents:

• P1: Demand must be met at any cost.
• P2: Total cost must be minimized.

Learning principle P1 gives a high penalty if D is not met
within the TD. The penalty is defined as a function of the re-
maining demand and a K penalty coefficient as
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Fig. 2. Graphical user interface of the RL manufacturing environment.

J(Dr) =


−DrK, if Dr > 0
0, otherwise

(2)

where K is a penalty coefficient, K = Rmax + 1, and Rmax =B
i=1(max1≤ j≤M I j + TD max1≤ j≤M R j). The equation (2) is de-

rived from inequality DK > Rmax + (D − 1)K.
Learning principle P2 gives two negative rewards, i.e. re-

wards are multiplied by negative one. The “buy configuration
a” action rewards with incurring cost Ia of MFG a. The “con-
tinue production” action rewards the sum of recurring costs of
running manufacturing configurations


a Ra.

3. Experiment

This section presents the experiment conducted in this paper.
First, the implementation of the methodology is detailed, fol-
lowed by a description of a machining process-planning case
study with multiple cost factors and production constraints as
validation of the RL-based methodology. Finally, results ob-
tained from the validation and a discussion on the results are
presented.

3.1. Implementation

The proposed environment is implemented using the Gym-
nasium library by Farama Foundation2. This library provides
suitable templates for defining a custom environment compat-
ible with reinforcement learning algorithms. The main goal of

2 https://github.com/Farama-Foundation/Gymnasium

using the Gymnasium library to implement a manufacturing re-
inforcement learning environment is to provide better accessi-
bility for manufacturing researchers to experiment with state-
of-the-art reinforcement learning algorithms. The visual repre-
sentation of the proposed manufacturing reinforcement learning
environment is shown in Figure 2.

The sequential decision-making process for optimal MFG
selection for the demand satisfaction problem is solved us-
ing Proximal Policy Optimization, a reinforcement learning al-
gorithm [7]. Compared to other reinforcement learning algo-
rithms, PPO improves the performance of the agent by mak-
ing small adjustments to decision making policies rather than
making large changes that may cause instability or poor perfor-
mance. Therefore, the algorithm converges faster and is more
efficient and stable, simplifying the implementation and achiev-
ing good results.

The training and hyper-parameter tuning is implemented and
executed using the industry-grade reinforcement learning li-
brary RLlib[10]. One of the main benefits of using RLlib is
quick experimentation and comparison of different algorithms,
as well as possibilities of integration with existing systems.
RLib provides built-in features for logging and monitoring the
training process and for distributed training across multiple ma-
chines. In addition, pre-built implementations of popular rein-
forcement learning algorithms that can be used as-is or with mi-
nor modifications are also provided, thus reducing development
time.

3.2. Validation Scenario

Validation tests are performed to showcase the ability of
the RL-based methodology to identify configurations that min-
imize costs while meeting required production levels and qual-
ity standards. Machining process are extensively used in man-
ufacturing, providing high-precision parts with good surface
finishing [11]. However, industrial machining workshops may
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have changing demand and requirements, and technology may
change constantly. Consequently, a machining process planning
case study, involving turning, drilling and milling operations, is
used as validation of the approach. Figure 3 presents the desired
shape of the product. Three phases are required to achieve the
desired shape: (i) right-side turning operation, (ii) left-side turn-
ing operation, and (iii) center-side milling operation. The case
study has a demand D of 2000 products, a demand time TD of
100 hours, and a space size B of 10 machine configurations.

12

3

Fig. 3. Desired shape of the product.

The first phase requires a turning lathe capable of performing
drilling, boring, turning, facing, and slotting operations. First,
the center hole is drilled, bored and finished. Second, slotting
and rough and finish facing operations are performed, followed
by drilling of the nine front holes. At the end of the phase,
rough turning is performed from the border to the center of
the workpiece. The second phase is to be performed similarly
in the turning lathe. The phase starts with slotting and rough
and finish facing operations, followed by drilling of the other
nine front holes. Thereafter, rough turning, external finish pro-
filing and threading operations are executed. Finally, the third
phase requires a milling center capable of performing face and
slot milling, as well as drilling and threading. First, the cilin-
drical part is face milled and the six holes are drilled. Then,
the six holes are threaded and the last slot milling operation is
performed.

Given the characteristics of the desired shape, the minimum
requirements for D satisfaction would include a turning lathe
and a milling center, or a combination of both. Nevertheless,
only one machine configuration may not suffice to satisfy TD.
As a solution, combinations of more than one MFG may satisfy
TD. As such, as a simulated example, five assets are proposed in
the case study: (A0) a CNC lathe, (A1) a CNC milling center,
(A2) a multitask CNC lathe, (A3) a dual-spindle CNC turning
center, and (A4) a twin-spindle twin-turret turning center. Ca-
pabilities and normalized manufacturing data of the assets are
presented in Table 1.

Drawing from the assets, five machine configurations are
presented as being able to satisfy D. The machine configura-
tions are comprised by one or more assets and the routes they
follow are presented in Figure 4.

The data in Table 2 presents the normalized manufacturing
data of the machine configurations. The data is provided to the
RL environment for manufacturing, and optimization is per-

Table 1. Normalized manufacturing data of the assets.
Asset Turning

lathe
Milling
center

Incur.
cost

Recur.
Cost

Setup
time

A0 X 300 12 2
A1 X 700 8 3
A2 X X 2000 20 9
A3 X 1700 5 3
A4 X X 5000 65 10

Fig. 4. Machine configuration routes.

formed using the PPO algorithm. Even though the data in Table
2 is fixed, the RL environment is stochastic, i.e., the incurring
cost, recurring cost, production rate, and setup times change by
+/ − 10% at every simulation step, resembling real industrial
fluctuations. Moreover, the environment provides the possibil-
ity to define and experiment with different fluctuations.

Table 2. Normalized manufacturing data of the machine configurations. De-
mand D = 2000, demand time TD = 100, space size B = 10

Cfg. Incur. cost Recur. cost Prod. rate Setup time
MFG0 1000.0 20.0 1.0 5
MFG1 1300.0 32.0 1.5 7
MFG2 2000.0 20.0 2.0 9
MFG3 2400.0 13.0 0.75 6
MFG4 5000.0 65.0 3.0 10

Six experiments have been defined to validate the robust-
ness of the methodology to changing demands. Demand D and
demand time TD defined for each experiment are presented in
Table 3, as well as the results obtained. Development and sim-
ulations time were faster than traditional techniques. Training
(development) times lasted on average 10 min per experiment.
Simulation times lasted less than one second without visual ren-
dering, varying slightly based on the time horizon of the exper-
iments. On the one hand, experiments E1 and E3 have enough
TD for accomplishing D (D is at least 10 times TD). On the other
hand, experiments E2, E4, and E5 have few TD for accomplish-
ing D (D is at least 16 times TD). Experiment E6 represents a
scenario where TD is greater than D (D is almost one fourth of
TD). All experiments are capable of satisfying D, using the full
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space size B except E6 which uses only one, with remaining
time Tr and usually with excess production Dr. Additionally
for E1 to E5, the unit cost (Mean reward/D) has a decreasing
behavior as demand rises, due to economies of scale. E6 has
a particular cost behavior, as only one configuration is needed
and the agent does not need to purchase more than one config-
uration.

Table 3. Experiments performed to validate the RL-based methodology.
Exp. D TD Cost Dr Tr Purchased

MFGs
Cost per

part
E1 2000 150 46432 -4 44 9 23.17
E2 2000 80 93806 -25 3 10 46.32
E3 1000 100 28573 0 7 10 28.57
E4 1000 48 63545 -5 3 10 63.22
E5 400 24 55438 -7 1 10 136.21
E6 24 100 2589 -1 79 1 103.56

Given the stochastic nature of the proposed environment, the
decision-making procedure for E3, using RL, is shown in Fig-
ure 5. E3 is chosen as it shows purchasing decisions throughout
TD. As seen from the figure, the decisions to buy manufacturing
configurations are not done at once. The trained agent learns to
buy the necessary manufacturing configurations only when it
decides that demand will not be satisfied with current options
demonstrating that sequential decision-making algorithms are
necessary for robust optimal MFG selection problems.

Fig. 5. The sequential decision making process by trained agent for D = 1000
and TD = 100

4. Summary and conclusions

Given the uncertainties and changes in modern manufac-
turing environment, the RL methodology is designed to solve
demand satisfaction problems in manufacturing, building upon
the concepts of sequential decision making and optimization.
As a second contribution, the demand satisfaction problem in
manufacturing has been formulated and an RL environment for

selecting the optimal MFG in manufacturing has been defined
based on the problem formulation.

The RL-based methodology has been validated using a ma-
chining process planning case study, involving turning, drilling
and milling operations. The machines required to provide the
desired shape of the product of the case study have been used
to define five simulated assets, as well as the normalized manu-
facturing data required for the RL agent training. Drawing from
the assets, five machine configurations have been presented as
being capable of satisfying demand D. Thereafter, the RL agent
has been trained to solve the problem using six experiments.
From the preliminary results of the validation tests, it has been
proven that the methodology is able to obtain solutions that are
robust to stochastic noise. Future work will involve validating
the approach using real-world asset manufacturing data, as well
as considering future demand periods.
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