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Abstract: To enhance the positioning accuracy of standalone GNSS receivers in environments unable
to provide precise ephemeris and clock offset, such as undeveloped forest areas that lack network
communication and power supply, this study employed the Time Difference Carrier Phase (TDCP)
technology to improve the positioning accuracy of Standard Point Positioning (SPP), where the
Least-Squares (LS) and the extended Multi-Epoch Least Squares (MELS) method were applied in the
position domain filtering for a single GNSS receiver and compare its performance with the existing
observation domain filtering method. Firstly, the simulated data sets with various positioning
accuracies were used to verify the effectiveness and convergence of the LS filtering methods. The
results indicate that the LS filtering method produces a lower root mean square (RMS) error than the
original strategy. Secondly, this study uses two kinematic GNSS data sets to evaluate the performance
of the observation and position domain filtering, with an emphasis on the MELS method. The
numerical experiment results show that the position domain LS filtering method outperforms the
other two methods. The open environment experiments result shows that the positioning domain
filtering method achieved positioning accuracies of 0.202 m, 0.843 m, and 2.036 m in the E, N, and U
directions, respectively, with improvements of 68.0%, 21.6%, and 24.0%, compared to the original
algorithm which achieved positioning accuracies of 0.631 m, 1.076 m, and 2.680 m. It also achieved
improvements of 24.0%, 4.0%, and 18.3%, respectively, compared to the observation domain filtering
method with positioning accuracies of 0.353 m, 0.886 m, and 2.526 m. The forest scenes experiments
result shows that the positioning domain filtering method achieved positioning accuracies of 1.308 m,
1.375 m, and 2.133 m in the E, N, and U directions, respectively, with improvements of 42.4%, 36.2%,
and 27.6%, compared to original algorithm which achieved positioning accuracies of 1.863 m, 1.873 m,
and 2.722 m, and also achieved improvements of 27.0%, 19.4% and 10.6%, respectively, comparing to
observation domain filtering method with positioning accuracies of 1.661 m, 1.642 m and 2.359 m.
Moreover, the examination of the LS method results based on different epochs reveals that the filtering
accuracy increases as more epochs are incorporated into the position domain integration and the
enhancement value reaches a few millimeters.
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1. Introduction

Global Navigation Satellite System (GNSS) is a technology that uses satellite signals
to provide Navigation, Positioning, and Timing (PNT) services, comprising the Global
Position System (GPS), Global’naya Navigatsionnaya Sput-nikovaya Sistema (GLONASS),
BeiDou Navigation Satellite System (BDS), and Galileo satellite navigation system (Galileo).
GNSS has a wide range of applications in forestry, such as forest resource inventory, forest
fire emergency, wildlife protection, etc. However, the positioning accuracy of GNSS is
affected by various factors, such as the number and geometry of satellites, atmospheric
delay, multipath effect, occlusion, etc. These factors are more severe in forest environments,
leading to lower positioning accuracy of GNSS, which impedes the development of smart
forestry [1]. Smart forestry is a mode that uses information technology and data analysis to
achieve intelligent, refined, and efficient forest management. The core of smart forestry is
information service based on spatial location, and GNSS is the main tool to provide spatial
location information. Therefore, the positioning accuracy of GNSS directly influences the
service quality and level of smart forestry. For example, in forest resource inventory, the
positioning accuracy of GNSS determines the accuracy of plot location and relocation, which
affects the estimation and evaluation of forest resources [2]; in forest fire emergency, the
positioning accuracy of GNSS affects the location and analysis of fire scene, which affects the
efficiency and outcome of firefighting [3]; in wildlife protection, the positioning accuracy of
GNSS affects the tracking and monitoring of animals, which affects the protection strategies
and measures [4]. A study has analyzed the positioning accuracy of using GNSS technology
for kinematic positioning under different canopy closure levels, and the results show that
due to the low sensitivity of single-frequency GNSS receivers, their accuracy is not affected
much by forest conditions, while the accuracy of dual-frequency GNSS receivers is highly
dependent on satellite visibility [5]. In addition, the literature first applied the Precise Point
Positioning (PPP) Ambiguity Resolution (AR) technique to precise positioning in forest
areas and studied the effects of canopy closure, observation time, and system combination
on positioning accuracy [6].

The demand for high-precision positioning of smart forestry is driven by the business
needs of forestry resources, forestry production, and forestry ecology and is an important
technical support for the development of smart forestry. Also, high-precision position-
ing plays an important role in smart forestry, as it can not only improve the efficiency of
monitoring and managing forestry resources but also provide accurate data support for
forest management decision-making and promote the high-quality development of forestry.
However, GNSS PNT services face significant challenges, mainly due to the limitations of
the principles and functions of GNSS technology, resulting in the positioning solution of
Single Point Positioning (SPP) and Precise Point Positioning (PPP). The low precision of
SPP often leads to less accurate location data, thus reducing the usefulness of GNSS for
critical applications. Moreover, the adoption of PPP as an alternative, more precise, and ac-
curate positioning solution is hindered by the long convergence time, making it unsuitable
for real-time applications [7]. In recent decades, several studies have been conducted to
improve GNSS performance through a range of innovative methodologies. These method-
ologies focus on error mitigation of GNSS technology based on the following approaches:
Satellite-Based Augmentation Systems (SBAS) and Ground-Based Augmentation Systems
(GBAS) have emerged as effective strategies to correct GNSS errors. SBAS uses additional
ground infrastructure and control centers to correct signal distortions from satellites, thus
enhancing precision and reliability. On the other hand, GBAS improves positioning ac-
curacy near airports, supporting aviation applications. Map-Matching Algorithms [8]:
map-matching algorithms have gained popularity by integrating GNSS data with carto-
graphic information to improve positional accuracy, which is suitable for applications such
as vehicular navigation and autonomous driving, where precise location determination
is required in urban environments with signal obstructions and strong multipath effects.
Inertial Augmentation of GNSS [9]: the integration of Inertial Measurement Units (IMUs)
with GNSS data has been applied as a robust positioning solution, where IMUs can capture
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acceleration and orientation data, mitigating the GNSS signal disruptions and multipath
effects resulting in precise and high-rate positioning solution. PPP service [10]: PPP is
based on the principle of exploiting ancillary satellite data and information to enhance
GNSS accuracy. Although PPP solutions require long initialization periods, PPP achieves
high precision and robust performances, and it is widely adopted in high-accuracy appli-
cations such as geolocation, agriculture, geodesy, and geophysics. However, it should be
noted that all of these methodologies often require additional hardware components, such
as base stations, data streams, and IMUs, which generate extra requirements and needs
for the reliable and robust operation of the system, warranting careful consideration in
deployment scenarios. The prospects of GNSS technology and applications are even more
promising thanks to the advancements of multi-frequency high-rate GNSS receivers even
for consumer-grade GNSS receivers, developments of communication technologies such as
5G, and an increased focus on cybersecurity and resilience, all of which create favorable
conditions for precise and robust GNSS PNT performance.

Since most of the undeveloped forest areas lack network communication, this study
addresses the needs of forest resource development in these areas and strives to enhance the
positioning accuracy of GNSS without additional equipment to facilitate the development
of smart forestry. Generally, filtering methods in the field of GNSS technology can be classi-
fied into two main domains: observation domain filtering methods and position domain
filtering methods [11,12]. The observation domain filtering methods exploit the inherent
characteristics of GNSS measurements, focusing on the unambiguous nature of pseudo-
range measurements and the high precision achieved by carrier phase measurements.
A pioneering study in this field was conducted by Hatch, who introduced the concept of
a carrier-smoothing pseudorange strategy [13]. This innovative approach is based on the
fact that the theoretical change in pseudorange equals the corresponding carrier phase
value. Over the years, this strategy has been refined and optimized to account for various
factors, such as the effects of ionospheric variations, the challenges posed by multipath
interference, the optimal smoothing window sizes, and the correlation information between
current and previous observations [14–18]. Parameter estimation techniques have been
developed to reduce the noise in distance measurements by integrating pseudorange and
carrier phase. McGraw introduced the Generalized Divergence-Free Smoothing (GDFS)
framework, offering a systematic approach for generating values with minimal pseudor-
ange errors, facilitating the derivation of ionosphere-free measurements, and aiding in the
resolution of integer ambiguities [19]. Direct positioning approaches based on maximum
likelihood estimation have also been explored, with Closas et al. making notable contribu-
tions in this field [20,21]. However, this approach often requires substantial computational
complexity, which can pose challenges, especially in real-time applications. Vincent et al.
established the theoretical potential of integrating Doppler and pseudorange measurements
to yield asymptotically accurate positioning results [22]. Nonetheless, this algorithm has
mainly been tested in simulated environments, revealing the need for realistic, experimen-
tal validation. Qian et al. introduced a least-squares (LS) filtering method for integrating
pseudorange and carrier phase observations, with primary validation conducted using
simulated datasets, thereby warranting further empirical evaluation [23]. An enhanced
version of the LS filtering method has been proposed by Li et al., who extended it from
double-epochs to multi-epochs. Their comparative analysis, considering various smooth-
ing window sizes and benchmarked against Hatch’s approach, provides valuable insights
into the strengths and limitations of these techniques [24]. Moving to the position do-
main, a key challenge lies in establishing an accurate and suitable kinematic model to
characterize the kinematic behavior of mobile GNSS receivers. Conventional models, such
as the constant velocity (CV) and constant acceleration (CA) models, have been widely
adopted but may not be universally suitable, especially when the carrier motion exhibits
nonlinearity or varying sampling intervals [25]. In response to these limitations, alternative
models have emerged, such as the differential polynomial model, Singer model, semi-
Markov model, current statistical model, semi-Markov jump process model, and Markov
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acceleration model, which are better suited for capturing the kinematics of time-varying
systems [26–30]. However, it should be noted that these models often require the spectral
density matrix of navigation information, demanding constant updates as the carrier’s tra-
jectory evolves [31]. Predictive models may not perform well in applications with irregular
carrier movement, which highlights the importance of developing a state equation based on
velocity measurements such as Doppler or Time Difference Carrier Phase (TDCP). Although
LS filtering has proven effective in the observation domain, there is still a strong demand
for further evaluation of filtering methods in the position domain [23]. Such empirical
studies, carried out in various GNSS navigation scenarios, will greatly advance the ongoing
effort to improve GNSS positioning accuracy and reliability, addressing the real-world
challenges and variations in practical applications.

The filtering method of precision positioning technology currently used in smart
forestry mainly inherits traditional GNSS positioning domain technology, including two
main filtering methodologies: position domain filtering and observation domain filter-
ing [32–34]. These filtering methods are essential for GNSS positioning, as they enable
accurate and reliable location determination. Position domain filtering methods, such as
the Kalman filter, are praised for their ability to provide high-precision location estimates
with remarkable stability [35,36]. This makes them especially suitable for applications that
require the fusion of data from multiple sensors, as they can smoothly integrate different
data sources to produce a comprehensive position solution. However, the effectiveness
of position domain filtering methods depends on the careful definition of the system’s
dynamic model. This requires an accurate representation of the underlying physical pro-
cesses that govern the GNSS receiver’s movement [37]. Therefore, position domain filtering
methods may not be the best choice for applications with nonlinearities, as these methods
usually perform poorly when the system dynamics are not well-modeled [38,39]. On the
other hand, observation domain filtering methods, exemplified by the Least Squares (LS)
approach, are known for their computational simplicity and speed, making them ideal for
fast positioning scenarios [40]. They are particularly useful for applications where real-time
or near-real-time positioning is crucial, such as in vehicular navigation or pedestrian track-
ing [41]. However, the drawback of observation domain filtering methods is their inherent
sensitivity to signal quality and visibility constraints. These methods often have difficulty
maintaining their accuracy in environments with signal multipaths, obstructions, or ad-
verse atmospheric conditions [42]. The advantages of position domain filtering include not
only high precision and stability but also the ability to integrate diverse data sources effec-
tively [40]. This is particularly valuable in applications where redundancy and robustness
are essential. However, this comes at the expense of increased computational complexity,
as these methods involve the estimation of multiple parameters simultaneously. Moreover,
the need for an accurate dynamic model can be a limiting factor in dynamic or nonlinear
scenarios [43]. Conversely, observation domain filtering methods, with their computational
simplicity, are well-suited for applications with limited computational resources. They can
often provide satisfactory positioning accuracy in scenarios where signal quality is high
and visibility is clear [43,44]. Nonetheless, their sensitivity to signal quality issues and the
lack of consideration for dynamic models limit their usefulness in scenarios that require
high precision or encounter dynamic movement [40,45]. In summary, the selection of an
appropriate filtering method depends on a careful evaluation of the specific requirements
of the GNSS application, as well as the surrounding environmental conditions [45]. It is
not uncommon for practitioners to adopt a hybrid strategy that combines the strengths of
both position and observation domain filtering techniques to optimize performance across
different environmental contexts and application scenarios. Therefore, the key to successful
GNSS positioning lies in the careful choice and skillful configuration of the filtering method
that aligns most closely with the achievement of the required levels of precision, stability,
and computational efficiency, thereby ensuring accurate and reliable location determination
in diverse settings.
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Accurate positioning in absolute coordinates is a fundamental feature for the success
of GNSS technology applications, and advanced techniques such as TDCP technology
have been developed to achieve high-precision position increments and velocity [46].
Recognizing the inherent limitations and advantages of these two distinct techniques, this
study aims to improve the standalone GNSS receivers in and outside smart forestry by
using a cost-effective, straightforward, and easily implementable algorithm. Importantly,
this algorithm is designed to operate without relying on supplementary information or
complex data processing strategies. The study was based on simulation and real-world
experimental GNSS datasets to test the validity of the position domain filtering algorithm
in specific conditions and environments of GNSS data and evaluate how the algorithm
performs under challenging conditions and environments of GNSS measurements. The
subsequent sections of this paper are organized to comprehensively address the objectives
and methodology of this research. In Section 2, a detailed mathematical model is introduced,
which enables the acquisition of both absolute position information and its corresponding
increments for standalone GNSS receivers. This model forms the foundational framework
upon which subsequent analyses and filtering techniques are built. Section 3 focuses on
the application of the LS method, specifically tailored for GNSS data processing across
various epochs. The LS method, when employed in this context, enables the extraction of
precise information from GNSS data, with a focus on enhancing positioning accuracy and
reliability. In Section 4, the study conducts the empirical verification of the Multi-Epoch
Least Squares (MELS) method within the context of position domain filtering, which was
based on kinematic GNSS data collected at the athletic track of the CUMT playground and
NWAFU beech square. The experimental GNSS data were used to assess the performance
of observation and position domain filtering methodologies, both based on the MELS
integrating method.

2. The GNSS Positioning Observation Model

This section presents the fundamental principles and models that determine the
positioning and velocity equations of GNSS measurements. The GNSS receiver captures
and processes these signals to obtain the pseudorange and phase observations, which
are expressed in units of length. The GNSS observations of various satellites and signal
propagation, measured in length units, are usually expressed as follows [47]:

Pi
k,j = ρi

j + di
ion,k,j + di

trop,j + c · (ιj − τi) + εi
P,k,j (1)

Li
k,j = λk · φi

k,j = ρi
j − di

ion,k,j + di
trop,j + c · (ιj − τi) + λk · Ni

k,j + εi
L,k,j (2)

where, the superscripts i, subscripts k, and j respectively denote the satellite number, signal
frequency, and ground-based GNSS receiver. The terms P and L represent pseudorange
and carrier phase observations (m). The λ signifies the carrier phase wavelength corre-
sponding to the frequency (m). The term ρ represents the satellite-to-ground distance in
meters (m). The atmospheric delay components are denoted by dion and dtrop, representing
delays caused by the ionosphere and troposphere (m). The c represents the speed of light
in a vacuum (m/s). The τ and ι represent the clock offset of the satellite and receiver, re-
spectively (s). The N represents the ambiguity of the carrier phase (cycle), and ε represents
the residual error (m), including the instrument biases for pseudorange or carrier phase
observation and other unmodeled errors. Furthermore, it is important to note that several
other error sources, not explicitly mentioned in Equations (1) and (2), can be accounted
for using corresponding models. These may include phase center offset (PCO), phase
center variation (PCV), solid earth tides, ocean loading, phase wind-up correction, and
relativistic effects.

Expanding upon the foundational Equation (2) while omitting the superscripts and
subscripts, we can succinctly express the TDCP model in a simplified form, as previously
described [12,46]. This simplified representation allows for a clearer understanding of the
TDCP model’s essential components and mathematical structure.
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∆L = λ · ∆φ = ∆ρ − ∆dion + ∆dtrop + c · (∆ι − ∆τ) + λ · ∆N + ∆ε (3)

Here, the prefix, ∆, signifies the time difference of measurements between adjacent epochs.
The TDCP observations between adjacent epochs exhibit the ability to mitigate in-

strument bias and tropospheric delay due to their time stability. The variation of these
terms can be safely neglected by setting ∆dtrop = 0 within an acceptable range. Typically,
satellite navigation messages provide precise information regarding satellite clock offsets,
which can be effectively employed to correct clock drift terms with high precision. In cases
where cycle slips have been detected and rectified using techniques such as Geometry-Free
(GF) combination, TurboEdit, or other methods [48–50], there is no need to treat cycle slips
as parameters when estimating incremental information. Furthermore, the ionospheric
delay and its variations, denoted as dion and ∆dion, can be effectively compensated for
by employing an ionospheric-free (IF) combination for a dual-frequency GNSS receiver.
Therefore, the TDCP model between epochs t and t − 1 can be reformulated as follows:

∆L(t, t − 1) = ∆ρ(t, t − 1) + c · ∆ι(t, t − 1) + ∆εL

=
→
e (t)[

→
X(t)−→

x (t)]−→
e (t − 1)[

→
X(t − 1)−→

x (t − 1)] + c · ∆ι(t, t − 1) + ε∆L

= −→
e (t − 1)[

→
x (t)−→

x (t − 1)] +
→
e (t)[

→
X(t)−

→
X(t − 1)]

+[
→
e (t)−→

e (t − 1)][
→
X(t − 1)−→

x (t)] + c · ∆ι(t, t − 1) + ε∆L

(4)

where the
→
e is the unit direction vector, calculated by

(→
X −→

x
)

/
∥∥∥∥→X −→

x
∥∥∥∥, and

→
X and

→
x are the positions of the satellite and receiver, respectively. The

→
e (t)[

→
X(t)−

→
X(t − 1)]

and −→
e (t − 1)[

→
x (t) − →

x (t − 1)] are attributed to satellite and receiver motion, while

[
→
e (t)−→

e (t− 1)][
→
X(t− 1)−→

x (t)] is caused by the relative motion between the satellite and
receiver. The Equation (1) provides the GNSS receiver’s position through the positioning
strategy, with the orbit of the satellites supplied by navigation messages from satellites or
real-time data streams from servers. As a result, Equation (4) contains only four parameters,
highlighting the high degree of freedom of the TDCP model. Furthermore, this model
computes position increments based on high-precision carrier phase observations, where
the receiver continuously tracks more than four common satellites at adjacent epochs. In
terms of the stochastic model, this approach applies elevation and error propagation laws
to derive the variance-covariance matrix of raw observations. This technique helps reduce
the influence of observation noise on parameters when estimating the receiver’s velocity
and position [51].

3. The Mathematical Model for Integrating Positioning and the Increment

This section focuses on the position domain filtering approach, which is a method
of processing various types of GNSS measurements, such as Doppler, pseudorange, and
carrier phase observations. These measurements can provide both approximate position
estimates and high-precision velocity information. The position domain filtering approach
uses the LS method to combine two essential components: the absolute position obtained
from the standard positioning strategy and the corresponding increment derived from
TDCP technology. This methodological choice is based on the nuanced characteristics
of the available measurements. The reasons for choosing the position domain filtering
approach are as follows: (1) Measurement Accuracy: doppler observations can provide
instantaneous velocity data, but they are often less accurate than the precision achieved by
TDCP technology. TDCP measurements are ideal for providing highly accurate and refined
information about position increments. (2) Consistency: this approach is consistent with
the conventional GNSS positioning strategy, as it incorporates the TDCP-derived position
increments into the existing framework, ensuring a coherent and unified data processing
method. (3) Previous Research: the integration of measurements based on the observation
domain has been previously proposed and investigated in the literature by Qian et al. [23]
and Li et al. [24]. This research has provided the basis for the implementation and improve-
ment of such techniques in GNSS data processing. Moreover, this section offers a detailed
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explanation of the comprehensive methodology used for the seamless integration of both
the positional data and its corresponding incremental values. This complex integration
procedure is carefully performed using the established LS method, a mathematical frame-
work widely recognized and applied in the field of GNSS data processing. Through the
systematic combination of absolute positional estimates with the incremental data obtained
from TDCP technology, this method remarkably enhances the precision and reliability
of GNSS-based positioning. Essentially, this section serves as an in-depth exposition, ex-
ploring the underlying rationale, methodology, and techniques that support the position
domain filtering process. It convincingly demonstrates the method’s proficiency in utilizing
the inherent strengths of both conventional GNSS positioning strategies and advanced
TDCP technology, ultimately resulting in the production of exceptionally accurate and
consistent positioning outcomes.

In the context of a time-varying system, the underlying model operates under the
assumption that the position of the carrier at the current epoch is denoted as p(t), and the
position increment from epoch t − 1 to t is represented as ∆p(t, t − 1). Consequently, the
state equation for a mobile carrier can be expressed using observations from the previous
epoch, p(t − 1) and ∆p(t, t − 1), as follows:

y(t) = T · Y(t) + W(t) =
[

I 0 0
0 I I

] p(t)
p̂(t − 1)

∆p(t, t − 1)

+ W(t) (5)

where the y(t) represents the virtual observation value, I is the identity matrix, T =[
I 0 0
0 I I

]
is a transformation matrix, and Y(t) =

[
p(t) p̂(t − 1) ∆p(t, t − 1)

]T signifies

the raw measured navigation information, where p and p̂ indicate the carrier position from
SPP and enhanced by the position domain filtering algorithm, respectively. The ∆p is the
position increment from TDCP technology. The error vector of the carrier’s measurement
model, W(t), is calculated using the variance-covariance matrix of the position and velocity
estimation vectors from the previous epochs, as follows:

QW(t) = T · QY(t) · TT =

[
I 0 0
0 I I

] Qp(t) Q p̂(t−1)p(t) Q∆p(t,t−1)p(t)
Qp(t) p̂(t−1) Q p̂(t−1) Q∆p(t,t−1)p(t−1)

Qp(t)∆p(t,t−1) Qp(t−1)∆p(t,t−1) Q∆p(t,t−1)

[ I 0
0 I
0 I

]
(6)

where Q denotes the variance-covariance information, which is determined by the
respective subscript.

Furthermore, the virtual observation in the Equation (5) can be reformulated as follows
to facilitate the application of the LS method for obtaining the optimized state vector, as
demonstrated in previous work [23]:

y(t) = H · x(t) =
[

I
I

]
· p̂(t) (7)

where y(t) is referred to as the measurements in the LS problem; H =
[
I I

]T represents
the design matrix; x(t) denotes the estimated parameters.

Combining Equations (5)–(7), Equation (8) furnishes the optimal estimated value of
x(t) based on the cost function, which can be expressed as follows:

x(t) =
(

HT · Q−1
y(t) · H

)−1
·
(

HT · Q−1
y(t) · y(t)

)
=

(
HT · Q−1

y(t) · H
)−1

·
(

HT · Q−1
y(t) · T · Y(t)

) (8)

The error propagation theorem furnishes the variance-covariance matrices for x(t)
and y(t), as expressed in Equations (9) and (10) as follows:

Qx(t) =
(

HT · Q−1
y(t) · H

)−1
=

(
HT ·

(
T · QY(t) · TT

)−1
· H

)−1
(9)
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Qx(t)Y(t) =
(

HT · Q−1
y(t) · H

)−1
·
(

HT · Q−1
y(t) · T · QY(t)

)
=

(
HT ·

(
T · QY(t) · TT

)−1
· H

)−1
·
(

HT ·
(

T · QY(t) · TT
)−1

· T · QY(t)

) (10)

By combining Equations (5)–(10), it becomes possible to derive the theoretical conver-
gence accuracy of the LS method. This calculation considers both the positioning precision
derived from the standard positioning strategy and the accuracy of velocity measurements
acquired through TDCP technology. Building upon the previously described model, the
virtual observation for the MELS can be expressed as follows. For the sake of simplicity,
the subsequent deductions do not distinguish between LS based on two epochs or more.

y(t) = T · Y(t) + W(t) =

I 0 0 0 0
0 I I 0 0
0 0 0 I I




p(t)
p̂(t − 1)

∆p(t, t − 1)
p̂(t − 2)

∆p(t, t − 2)

 (11)

In correspondence with the Equation (6), the corresponding variance-covariance
matrix of y(t) is presented as follows:

QW(t) =

[ I 0 0 0 0
0 I I 0 0
0 0 0 I I

]
Qp(t) Q p̂(t−1)p(t) Q∆p(t,t−1)p(t) Q p̂(t−2)p(t) Q∆p(t,t−2)p(t)

Qp(t) p̂(t−1) Q p̂(t−1) Q∆p(t,t−1) p̂(t−1) Q p̂(t−2) p̂(t−1) Q∆p(t,t−2) p̂(t−1)
Qp(t)∆p(t,t−1) Q p̂(t−1)∆p(t,t−1) Q∆p(t,t−1) Q p̂(t−2)∆p(t,t−1) Q∆p(t,t−2)∆p(t,t−1)
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I 0 0
0 I 0
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0 0 I

 (12)

In the context of specific engineering applications, Equation (4) reveals that ∆p(t, t − 2)
and ∆p(t, t − 1) are cross-correlated since both of them are associated with L(t). To facilitate cal-
culations, a simplified model, ∆p(t, t − 1) = p(t)− p(t − 1) and ∆p(t, t − 2) = p(t)− p(t − 2),
is employed to determine the value of Q∆p(t,t−1),∆p(t,t−2), with the p assuming to be of
high precision.

Furthermore, the model can be extended to include four or more epochs for one-time
filtering, as shown in Equation (5) or (11). Due to space constraints, this article does not
provide a detailed derivation of LS methods involving multiple epochs. Expanding the
model to encompass multiple epochs represents an advanced and powerful approach to
GNSS data processing. By incorporating observations from multiple time instances, this
extended model enables the extraction of highly refined position and velocity information,
enhancing the overall accuracy and reliability of GNSS-based calculations.

4. Experimental Study and Analysis

This section presents a comprehensive evaluation of the position domain filtering
approach using both simulated and real GNSS datasets. The simulated GNSS data were
designed to mimic the trajectory of the real GNSS experiment and to test the applicability
and relevance of the findings for various high-precision GNSS receivers. The use of
both simulated and real GNSS data ensured the robustness and practicality of the position
domain filtering methodology. The data processing methodology and techniques are clearly
explained, with a focus on the position domain filtering approach, which is thoroughly
evaluated and validated based on the experimental GNSS dataset.

4.1. Simulation Dataset Test

This section describes a simulation experiment that assumed a Gaussian distribution
for the residuals of both the position and its increment, obtained from SPP and TDCP tech-
niques, and then the effectiveness of the position domain filtering algorithm in improving
positioning accuracy was tested and verified based on simulation data.
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4.1.1. Dataset Description

The simulation data are obtained by adding different levels of Gaussian noise to the
position and increment of the reference trajectory, which are derived from the real-measured
data using the GNSS positioning solution based on the double difference model and the
Inertial Explorer (IE) software (Version 8.70). In the process of collecting a real GNSS dataset
for this section, the electric motorcycle was equipped with a GNSS receiver as it traversed
the CUMT athletics track, positioned at Latitude 34◦13′08′′ and Longitude 117◦08′09′′. The
experiment was conducted on 5 October 2019 (Day of Year; DOY 278), where a CHC (Shang-
hai HuaCe Navigation Technology Ltd., Shanghai, China) X91 GNSS receiver recorded
continuously over approximately 1000 s, with a consistent sampling frequency of 1 Hz.
By utilizing this real-world dataset and consistent experimental conditions, this research
aimed to provide valuable insights into the relative efficacy and performance of observation
versus position domain filtering methods when applied to the MELS integrating approach.
Meanwhile, to obtain the reference value for the SPP solution, this study established a
GNSS reference station in the experimental area, using the same receiver as the rover device.
The reference station was observed for 40 minutes for convergence of PPP, covering the
entire observation period of the rover device. The trajectory of the rover under an open
environment and the base station is shown in Figure 1.
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Figure 1. The trajectory of the kinematic GNSS receiver’s carrier under an open environment.

The vehicle’s trajectory consisted of eight laps around the track, simulating a variety of
motion scenarios. The scenario involved both linear and curvilinear motion, with instances
of acceleration, deceleration, and uniform motion, as well as a stationary state as a special
case of uniform motion. Figure 2 shows the variations in positioning along the East (E),
North (N), and Up (U) directions, with the barycentric coordinates as the origin of the
coordinate system, which indicates that the vehicle started from a standstill position and
began to move at around 260 s, with a rapid acceleration phase. This was a deliberate
choice to test the GNSS applications that require tracking of stationary objects. The vehicle
then smoothly switched to circular motion, keeping a constant speed of about 4 m per
second. This circular motion posed challenges for the GNSS positioning systems due to the
centripetal acceleration. The vehicle also experienced alternating phases of acceleration
and deceleration throughout its trajectory, adding dynamism and variability to the motion
profile. This aimed to evaluate the GNSS performance under realistic conditions where
vehicles or objects change their velocity because of factors such as traffic or terrain. The
vehicle’s path was designed to complete a full cycle, returning to its initial starting point,
which allowed for the assessment of GNSS performance across multiple laps. The time
it took to reach the same point decreased in the last three cycles, indicating that the last
three circles were faster than the previous ones. It should be noted that the receiver
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carrier experienced a large variation in both elevation and horizontal directions when it
transitioned from static to dynamic. This was because the person was holding the center
rod in his hand, then abruptly mounted an electric bike and continued to hold the device
during data collection, which inevitably caused shaking and a significant change in the U
direction. When the data collection was nearly finished, the person dismounted the electric
bike, and the receiver elevation underwent another major change. Moreover, the scale of
the U direction was very small, so it could display the change in the elevation direction
more distinctly.
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Figure 2. The monitoring position of the vehicle under an open environment.

4.1.2. Experimental Analysis

The simulation experiment added different levels of Gaussian white noise to both the
position and its increment (position time difference) data to simulate the GNSS solutions
from SPP and TDCP, where the noise added to the increment had set with a standard
deviation (Std) of 0.01 m to ensure controlled variability and various noise levels (50 to
1000 times the increment noise) was set for position solution. The simulation experiment
simulated the GNSS solutions from SPP and TDCP by adding Gaussian white noise with
different levels (50 to 1000 times the increment noise) to the high-accuracy position and
its increment (position time difference) data, which had a standard deviation (Std) of
0.01 m for the increment noise. The experiment then integrated the simulated position
and its increment data using the LS position domain filtering algorithm with different
numbers of epochs to examine its performance with different temporal settings. Then,
the experiment converted this optimized trajectory to the local coordinate system and
analyzed the performance of the position domain from the LS method with multi-epochs
by evaluating the residual positioning errors in the E, N, and U directions for different noise
levels. This study used the QELS to represent various MELS for a focused and efficient
comparison because a previous study [24] revealed subtle differences among various MELS.

To validate the effectiveness of the LS integrated method within the position domain,
the results are presented in Figure 3, where the residual errors of both the original posi-
tioning strategy and the LS integrated method are compared. It is observed that the LS
integrated method exhibits a remarkable improvement in performance characterized by a
rapid convergence rate. The position accuracy achieved through the integration process
surpasses the original positioning strategy. This enhanced accuracy is observed even during
scenarios of unconverted states or when multiple epochs are required for convergence. The
LS integrated method consistently provides a relatively stable solution, demonstrating its
robustness in addressing positioning challenges.
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Figure 3. Comparison of residual errors between the original strategy (black line) and the LS
integrated method (red line).

To substantiate the efficiency of the LS integrated method, a thorough investigation
was conducted based on statistical analysis by computing the Std, mean value, and Root
Mean Square (RMS) of both the original positioning strategy and the LS integrated method.
The accuracy statistics in the E direction of this analysis are summarized in Figure 4, and
the N and U are not revealed for similar statistical results. These findings reveal the efficacy
of the LS integrated method in significantly enhancing positioning accuracy and stability
compared to traditional positioning strategies. The comparative analysis presented in
both Figures 3 and 4 reveal striking disparities between the Std and RMS values of the
LS integrated method and those of the original positioning strategy. These disparities
highlight the substantial performance improvement achieved through the application of
the LS integrated method. It is worth noting that while the Std and RMS values significantly
decrease with the LS integrated method, the mean value exhibits a noticeable increase.
This increase is primarily attributed to the convergence process, which results in reduced
residuals and an asymmetric distribution of positioning errors. The combined insights
from Figures 3 and 4 collectively indicate that the position domain integration method can
effectively reduce the noise level in position results by approximately 10% when compared
to the original positioning strategy. This reduction is theoretically achieved after several
epochs, signifying the method’s capability to rapidly achieve convergence over a short time.
Furthermore, the study reveals that the LS integrated method delivers more pronounced
improvements in positioning accuracy, particularly for receivers with lower precision. The
vertical comparison results highlight that the positioning accuracy of the LS integrated
method diminishes as the position noise introduced by the strategy increases. This reveals
the sensitivity of positioning accuracy, where different LS methods may yield superior
performance for receivers with varying levels of precision. Furthermore, it is observed
that the accuracy of horizontal (E and N direction) components is of a similar level to the
vertical (U direction) component, which can be attributed to the fact that the simulated
experiment introduces an equivalent level of noise to the X, Y, and Z coordinates, resulting
in the transformation of the error ellipsoid into a more symmetric spherical shape. In
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summary, the comprehensive analysis presented in both Figures 3 and 4 underscores the
effectiveness of the LS integrated method in significantly reducing positioning errors and
enhancing accuracy, particularly in scenarios involving receivers with varying precision
levels.
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Figure 4. Accuracy comparison at E direction of the original strategy and the LS integrated method.

This study presents the theoretical analysis and simulation results of the LS filtering
method for GNSS positioning. Figure 5 shows the theoretical precision curve, which
represents the filter accuracy as a function of the noise level of the position obtained by
the SPP technology. The curve indicates that the filter accuracy increases as the noise level
decreases, which is consistent with the intuition that the lower the noise, the higher the
precision. Moreover, the LS filtering algorithm achieves a better solution by increasing
the number of filtering epochs, which is the number of times that the filter updates the
position estimate based on the measurements. The filter result depicted in Figure 5 agrees
with the experimental results obtained from the simulation datasets, which demonstrate
that the filtering accuracy converges to a stable value with a decreasing convergence speed
as the filtering time increases. This implies that the LS filtering method is a convergent
filter, which means that it can reach a consistent and optimal solution after a finite number
of iterations. In addition, Figure 5 reveals that the LS filtering method provides high
convergence accuracy for the GNSS receivers with better performance and a corresponding
position result for the receivers with lower performance. However, the receivers with
lower performance can also attain the same performance as the receivers with higher
performance by extending the number of filtering epochs to a certain degree. This section
only validates the effectiveness of the LS filtering method by using a simulated dataset
and theoretical analysis while ignoring some error sources that may exist in practical
engineering applications, such as multipath, ionospheric delay, and atmospheric effects.
These error factors may affect the filter accuracy and the convergence rate of the LS filtering
method. Therefore, in the next section, we will test the LS filtering algorithm with the
real measured dataset collected from different scenarios and compare it with the existing
methods.
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Figure 5. The precision of the LS method for integrating position and its increment. 
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4.2. Real Measured GNSS Dataset Study under an Open Environment

In this section, the real measured GNSS dataset under a leaky environment was used
to test and verify the observation and position domain filtering method by LS integrating
methods based on different epochs.

4.2.1. GNSS Dataset Processing Model

Practical engineering applications involve various error sources that affect filter accu-
racy and positioning reliability. Environmental conditions, such as multipath, ionospheric
effects, and signal attenuation, can introduce non-Gaussian noise and biases into GNSS
measurements. GNSS receiver performance can also vary based on hardware quality,
antenna characteristics, chipset, firmware, signal processing, and error correction. These
factors require receiver-specific filtering methods and real-time or near-real-time processing.
Therefore, position domain filtering methods, especially LS-based ones, need rigorous test-
ing and validation using real GNSS data under diverse scenarios. To assess the robustness
and applicability of the LS methods in real-world scenarios, the GNSS data of the controlled
experiment, same with simulation data, were analyzed, focusing on a diverse array of
GNSS combinations: G (GPS), GC (GPS, BDS), GR (GPS, GLONASS), GE (GPS, Galileo),
GRE (GPS, GLONASS, Galileo), GRC (GPS, GLONASS, BDS), GCE (GPS, BDS, Galileo),
and GREC (GPS, GLONASS, Galileo, BDS). This approach ensures a thorough examination
of the LS methods’ performance across various GNSS systems, thereby reflecting real-world
GNSS operation scenarios. The settings for the double difference (DD) model and SPP
model for the GNSS dataset processing are presented in Table 1. The experimental testing
under a leaky environment is consistent with the data used in simulation scenarios, which
has been well documented in the previous statement.

4.2.2. Performance Comparison of Observation and Position Domain Filtering Method

The PPPH, developed by Bahadur [56], was modified and then developed to imple-
ment all of the LS integrating method in this paper. Within the observation domain, we set
the noise level for carrier phase observations at 3 mm, ensuring the high precision required
for the investigation. For pseudorange observations, we determined the noise levels based
on a statistical analysis that considered the time difference between pseudorange and carrier
phase observations. This tailored approach ensured that the noise levels were accurately
calibrated to the specific parameters of the experimental setup. Turning to the position
domain, as indicated in Figures 6–8, we defined the noise level for position increments at
0.01 m, maintaining a high degree of precision essential for analysis. As compared to the
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original algorithm and position domain, we set the position noise to be 50 to 1000 times the
increment noise, allowing for an evaluation of the filtering methods. In this study, we used
the double epoch LS (DELS) method instead of the LS method for the outcome from Li
et al. [24] which demonstrated minimal differences between DELS, triple epoch LS (TELS),
and quadra epoch LS (QELS) methods. It should be noted that the reference truth from the
GNSS fusion double difference model was set as the coordinate origin to establish local
coordinates, and then the coordinates of the positioning results obtained from the original
algorithm, observation and position domain filtering method were projected to compute
the E, N, and U direction errors.

Table 1. The precise positioning data processing strategy.

Category Processing Methods/Strategies

Data Processing Model Double Difference Model Standard Point Positioning
Model

GNSS System GPS/BDS-3/BDS-
2/GLONASS/GALILEO

GPS/BDS-3/BDS-
2/GLONASS/GALILEO

Observation type Ionosphere-free (IF) model Ionosphere-free (IF) model

Combination model LC/PC ionospheric
combination

LC/PC ionospheric
combination

Stochastic Model Elevation angle Elevation angle
Parameter estimation method Kalman filtering Least square

Orbit and clock offset Broadcast ephemeris Broadcast ephemeris
Coordinate frame ITRF14 ITRF14

Antenna parameters of receiver
and satellite

igs14.atx
(GPS parameters for the

uncalibrated frequencies)

igs14.atx
(GPS parameters for the

uncalibrated frequencies)
Data sampling interval 1 s 1 s

Cut-off satellite elevation angle 10◦ 10◦
Tropospheric delay Saastamoinen model [52] Saastamoinen model [52]
Relativistic effect Model [53] Model [53]

Antenna phase winding Model [54] Model [54]
Station displacement Solid tides and ocean tides [55] Solid tides and ocean tides [55]
Estimating parameter Baseline Vector Position and clock offset

0.615

0.696

0.929

0.302

0.592

0.665

0.165

0.392
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0.843

0.379

0.924

0.354
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0.44

0.185

0.107

0.214

0.375

0.238

0.444

0.191
0.163

0.251

0.133

-0.041

0.139

0.455

0.315

0.554

0.231
0.282

0.365
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Figure 6. The E direction statistics of various filtering methods under an open environment.
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Figure 7. The N direction statistics of various filtering methods under an open environment.
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Fig 8 Figure 8. The U direction statistics of various filtering methods under an open environment.

The positioning solutions obtained by the original SPP technology, observation domain,
and position domain filtering methods for various GNSS combinations are presented in
Figures 6–8, along with their Std, mean, and RMS values. These results show that different
GNSS combinations, with their respective accuracy solutions, can achieve high-precision
and reliable positioning performance. The average Std values for the original algorithm
in the E, N, and U directions were 0.535 m, 0.653 m, and 1.754 m, respectively. The
corresponding mean values were 0.317 m, 0.712 m, and 0.331 m, while the RMS values
were 0.631 m, 1.076 m, and 2.680 m. The statistical information suggests that the horizontal
directions (E and N) generally perform better than the vertical (U) direction, which can
be explained by the geometric distribution of GNSS satellites. Among the horizontal
directions, the E direction often performs better than the N direction due to the geographic
location of the GNSS receiver (latitude, longitude) and the related satellite constellation
geometry [57]. Overall, using a multi-GNSS combination tends to improve accuracy and
robustness compared to a single-GNSS approach, with accuracy mainly influenced by the
number of positioning satellites available. The GNSS precision is enhanced significantly
when integrating GLONASS and Galileo, indicating the crucial role of these two systems in
improving positioning accuracy. For the Std values, the smallest values in the E, N, and U
directions were obtained for the GRE, GE, and GRE system combinations, with values of
0.293 m, 0.437 m, and 1.092 m, respectively. On the other hand, the largest Std values in all
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three directions were related to the GC combination, with values of 0.843 m, 0.954 m, and
2.625 m for E, N, and U, respectively. For the mean values, the smallest values in the E, N,
and U directions were observed for the GCRE, GCE, and GRE combinations, with values
of 0.189 m, 0.006 m, and 0.898 m, respectively. On the contrary, the largest mean values
in all three directions were associated with the G system, with values of 0.696 m, 1.572 m,
and 2.641 m for E, N, and U, respectively. For the RMS values, the smallest values in the
E, N, and U directions were again obtained for the GRE, GCRE, and GRE combinations,
with values of 0.358 m, 0.675 m, and 1.414 m, respectively. In contrast, the largest RMS
values in the E, N, and U directions were G, G, and GC combinations, with values of 0.929
m, 1.738 m, and 3.546 m, respectively. It is important to note that the inclusion of BDS can
reduce positioning accuracy due to the multipath effect of GEO (Geosynchronous Earth
Orbit) satellites, which can be difficult to remove through parameter estimation. However,
the accuracy could be improved by modeling the multipath error of GEO satellites more
precisely. Moreover, the contribution of Galileo is expected to be even more significant in
positioning accuracy as the satellite constellation becomes fully operational. Nevertheless,
this study mainly focuses on comparing the accuracy of the DELS method based on position
and observations, and the performance of the original SPP algorithm is beyond the scope
of this research.

Focusing on the observation domain integrated DELS approach, the observation
domain integrated DELS approach shows average Std values of 0.245 m, 0.330 m, and 0.864
m in the E, N, and U directions, respectively, as well as corresponding mean values of 0.243
m, 0.614 m, and 0.724 m, and RMS values of 0.353 m, 0.886 m, and 2.526 m. On the other
hand, the position domain integrated DELS method produces average Std values of 0.159
m, 0.499 m, and 0.349 m in the E, N, and U directions, respectively, along with mean values
of 0.080 m, −0.123 m, and 0.684 m, and RMS values of 0.202 m, 0.843 m, and 2.036 m. These
three statistical parameters demonstrate the effectiveness of both integration methods in
enhancing the overall 3D accuracy in GNSS applications. Moreover, it is noted that while
the 3D accuracy is generally improved, some specific directional accuracies may have
slight decreases under certain conditions. For a more comprehensive assessment of the
performance of the position domain integrating method using DELS, it is contrasted with
the original algorithm and the observation domain integrating method based on DELS.

Focusing on the Std, mean, and RMS enhanced by position domain compared with
the original algorithm, observation domain based on DELS, the position domain method
improves the positioning precision consistently in all statistical parameters compared with
the original algorithm and the observation domain based on DELS. The position domain
method achieves remarkable advancements in positioning accuracy relative to the original
algorithm despite some occasional reductions in accuracy. Compared with the original
algorithm, the observation domain showed average percentage improvements in the Std
values for the E, N, and U directions of 54.2%, 49.4%, and 50.7%, respectively, while the
mean and RMS values decreased by about 23.1%, 13.8%, −17.9% and 44.0%, 17.7%, 5.8%,
respectively. Compared with the original algorithm, the positioning domain achieved
average percentage improvements in the Std values for the E, N, and U directions of 70.3%,
23.6%, and 80.1%, respectively, and in the mean and RMS values of 70.6%, 10.4%, 0.4%,
and 68.0%, 21.6%, 24.0%, and also showed further improvements over the observation
domain in the Std values of 16.1%, −25.9%, and 29.4%, respectively, and in the mean and
RMS values of 47.5%, −3.4%, 18.3% and 24.0%, 4.0%, 18.3%, respectively. These findings
support the enhanced positioning accuracy of the position domain integrating method
compared to both the original algorithm and the observation domain integrating method,
with RMS values emerging as the most effective indicator of positioning accuracy due to
their comprehensive reflection of changes in both mean and standard deviation.

4.2.3. Performance Comparison of MELS Based on the Position Domain Filtering Method

To conduct a thorough evaluation of position domain filtering methods employing the
LS approach with different epoch configurations, an analysis of the positioning performance
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was undertaken, focusing only on one satellite system, GPS-only positioning. This analysis
focused on assessing the Std, mean, and RMS values associated with three distinct epoch
configurations: DELS, TELS, and QELS. This evaluation included various epochs with
varying weight ratios between the position and the increment components. Figures 9–11
present the DELS, TELS, and QELS performance comparison of the LS-based position
domain filtering methods with various epoch strategies for GPS-only positioning.
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Figure 9. The DELS, TELS, and QELS performance comparison under an open environment at the 
E direction of the position domain filtering method based on various weight ratios. 
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Figure 10. The DELS, TELS, and QELS performance comparison under an open environment at the 
N direction of the position domain filtering method based on various weight ratios. 
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The position domain filtering methods based on the LS integration approach are com-
prehensively analyzed in Figures 9–11, with a focus on the effects of varying the number
of epochs and the weight ratio between the original algorithm’s position estimate and its
increment on the statistical characteristics, including Std, mean, and RMS values. The fig-
ures offer valuable insights into the optimization of these LS-based methods for enhancing
positioning accuracy within the framework of a single-system GNSS. The analysis of the
results indicates that the DELS method with the lowest weight ratio achieves the minimum
Std values in the E and N directions, with values of 0.165 m and 0.451 m, respectively. On
the contrary, for the U direction, the QELS method with a weight ratio obtains the minimum
Std value of 0.257 m. On the other hand, the maximum Std values in the E and N directions
are associated with the highest weight ratio in the QELS method, resulting in values of
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0.173 m and 0.511 m, respectively, while for the U direction, the DELS method with the
minimum weight ratio shows the maximum Std value, measured at 0.271 m. It is also
observed that the TELS integrated method outperforms DELS, with QELS showing a slight
improvement over TELS in all directions, usually on the order of several millimeters. This
suggests that the precision in position domain filtering methods increases proportionally
with the addition of more epochs. Interestingly, the strategy for enhancing horizontal
precision differs from that applied to elevation when expanding epochs for LS methods.
Moreover, the figure reveals a significant inverse relationship between Std and mean values.
The adjustment of the weight ratio between the original algorithm’s position and its incre-
ment strongly influences the positioning accuracy. In this context, all statistical parameters
(Std, mean, and RMS) exhibit a consistent reduction as the weight ratio is increased. This
implies that the accuracy of the original strategy decreases as the positioning accuracy in
all directions improves. The distribution of weights and the stochastic model become more
suitable as the weight ratio decreases. However, it is important to emphasize that a higher
weight ratio may reduce the impact on accuracy, indirectly indicating the high accuracy of
the TDCP calculation increment. Yet, it is also important to note that the accuracy gains
may level off or even decrease when the weight ratio is excessively increased. Therefore,
determining a suitable weight ratio for each epoch, informed by the standard positioning
strategy and TDCP, has the potential to produce optimal results in the position domain
filtering method. This nuanced approach to weight distribution within the stochastic model
is essential for improving and enhancing the accuracy of GNSS.
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4.3. Real Measured GNSS Dataset Study under Forest Scene

This section tested the observation and position domian method based on the real
measured GNSS dataset under a forest environment, which was collected at an artificially
planted forest at NWAFU, mainly planted with beech trees.

4.3.1. Dataset Description

This section analyzed the performance comparison between observation and position
domain filtering methods using the MELS integrating technique in a shadow environment.
The analysis used the trajectory data of a vehicle with a GNSS receiver that drove through
an artificial plantation at Northwest A&F University, located at Latitude 34◦15′45′′ and
Longitude 108◦03′34′′. The experiment was conducted on 19 March 2023 (DOY 078), where
a BDStar (Beijing BDStar Navigation Co., Ltd., Beijing, China) M68 GNSS receiver recorded
continuously over approximately 2100 s, with a consistent sampling frequency of 1 Hz.
This real-world dataset and consistent experimental conditions aimed to reveal the relative
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effectiveness and performance of observation versus position domain filtering methods
when applied to the MELS integrating technique in a forest scene. To get the reference
value for the SPP solution, this study set up a GNSS reference station on the roof of the
College of Forestry, NWAFU. The reference station was observed for 4 h, covering the
whole observation period of the rover, and Figure 12 shows the trajectory of the rover in
the forest scene and the base station.

The receiver started from the origin and moved to the southeast corner of the beech
square, then entered the forest and made 23 round trips before reaching the northwest
corner of the forest group. After that, it circled the forest and returned to a point near the
origin. The beech forest group is an artificial plantation with neatly arranged trees, pedes-
trian paths under the trees, and benches and tables along the paths for entertainment. The
motion trajectory in the figure shows many sharp points, which are caused by the following
reasons: (1) severe forest occlusion introduced gross errors in the GNSS observations, and
the data processing algorithm failed to fully eliminate these errors, resulting in inaccurate
data; (2) the data collector held the center pole, which was constantly shaking during the
data collection, causing sharp points in both elevation and horizontal directions; (3) the
data collector had to avoid obstacles such as benches during the data collection, resulting
in non-linear motion trajectories. Figure 13 shows the variations in positioning along E, N,
and U directions, with the barycentric coordinates as the origin of the coordinate system.
The data collection area is close to the poles, so the north direction has a jagged pattern,
while the E direction has a step-down pattern. As the receiver moves around the square,
the position changes in the north or south direction are minimal, and the elevation changes
are due to the same reasons as the sharp points above.
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Figure 14. The E direction statistics of various filtering methods under forest scene. 

Figure 13. The monitoring position of the vehicle under the forest scene.

4.3.2. Performance Comparison of Observation and Position Domain Filtering Method

The data processing settings in this part are similar to those in the open environment,
except that we set the cutoff elevation angle to 30 degrees. With the help of a large number
of satellites from various systems, especially the visible number of BDS satellites in China,
we can still obtain a large number of available satellites in this scenario. This study uses the
positioning results from the double-difference model as the reference truth. It evaluates the
positioning accuracy of the original algorithm, the observation-domain filtering method,
and the position-domain filtering method under different GNSS combinations. The results
are shown in Figures 14–16.
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Figure 13. The monitoring position of the vehicle under the forest scene. 
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of satellites from various systems, especially the visible number of BDS satellites in China, 
we can still obtain a large number of available satellites in this scenario. This study uses 
the positioning results from the double-difference model as the reference truth. It evalu-
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method, and the position-domain filtering method under different GNSS combinations. 
The results are shown in Figures 14–16. 
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Figure 14. The E direction statistics of various filtering methods under forest scene. Figure 14. The E direction statistics of various filtering methods under forest scene.

This section uses different combinations of GNSS and adopts the original SPP technol-
ogy, observation domain, and position domain filtering methods to obtain the positioning
solutions, and shows their STD, mean, and RMS in Figures 14–16, indicating the positioning
situation is similar to the conclusion drawn from the open scenario. These results show
that different GNSS combinations result in different accuracy solutions, which can achieve
high precision and reliable positioning performance, and the positioning accuracy in the
upward direction is lower than that in the east and north directions, which is similar to
the forest scenario. This is a common feature of GNSS positioning. The figure displays
the positioning accuracy values of each combination of the GNSS system and filtering
method in the east, north, and upward directions, as well as the percentage of positioning
accuracy improvement of each filtering method relative to the original SPP technology and
observation domain filtering method. The original algorithm has a positioning accuracy of
1.863 m, 1.873 m, and 2.722 m in the E, N, and U directions, respectively. The observation
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domain filtering method increases the accuracy by 12.2%, 14.1%, and 15.4%, resulting
in 1.661 m, 1.642 m, and 2.359 m, respectively. The position domain filtering method
further increases the accuracy by 27.0%, 19.4%, and 10.6%, resulting in 1.308 m, 1.375 m,
and 2.133 m, respectively. This method achieves an overall improvement of 42.4%, 36.2%,
and 27.6% compared to the original algorithm. The above results show that the filtering
methods can significantly improve the positioning performance, and the positioning per-
formance in the forest scenario is similar to that in the open scenario, which means that the
filtering methods can effectively reduce the influence of the forest environment, such as
signal attenuation, multipath, and interference. The experimental results of measured data
under the forest show that the position domain filtering method is also adaptable to the
occluded environment.
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Figure 16. The U direction statistics of various filtering methods under forest scene. 
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Figure 16. The U direction statistics of various filtering methods under forest scene.

4.3.3. Performance Comparison of MELS Based on the Position Domain Filtering Method

The performance of position domain filtering methods using the LS approach was
evaluated in the forest scenario with different epoch configurations and GCRE combina-
tions. The Std, mean, and RMS values for three epoch configurations (DELS, TELS, and
QELS) were assessed in this analysis. The evaluation also considered different epochs
with different weight ratios between the position and the increment components. The
performance comparison of the LS-based position domain filtering methods for GPS-only
positioning with different epoch strategies is shown in Figures 17–19.
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Figures 17–19 comprehensively analyze the position domain filtering method based on
the LS integration method using under-canopy semi-shaded data, focusing on the impact
of changing the number of epochs and the weight ratio between the position estimation
and its increment of the original algorithm on the statistical characteristics, including Std,
mean and RMS values, providing valuable insights for the optimization of these LS-based
methods. The result analysis shows that the adjustment of the weight ratio between the
position and its increment of the original algorithm strongly affects the positioning accuracy.
As the positioning accuracy in all directions improves, the accuracy of the original strategy
decreases, and as the weight ratio decreases, the weight distribution and random model
become more suitable, which is significantly different from the open environment. It may
be caused by the fact that the probability of gross errors in the observations increases
significantly due to the under-canopy shading environment. For TDCP technology, only
a small amount of satellite data is required, and no gross errors are guaranteed to achieve
the position increment solution; even under the canopy, we can still observe a large number
of satellites, and it is relatively easy to filter out the carrier data without gross errors in
this part of the data. For pseudorange observations, a large number of observations are
required to improve the positioning accuracy and reliability, and the difficulty of processing
all observation gross errors is relatively large. It is also observed that the TELS integrated
method is superior to the DELS, and the QELS is slightly improved over the TELS in all
directions. Similar differences are presented in the standard deviation, mean, and RMS, and
their order of magnitude is usually in the sub-centimeter. This indicates that the accuracy
of the position domain filtering method increases proportionally with the increase of more
epochs. However, it is important to emphasize that a higher weight ratio can reduce the
impact on accuracy, indirectly indicating the high accuracy of TDCP calculation increment,
and it is also important to note that when the weight ratio is excessively increased, the
accuracy gain may tend to be stable or even decrease. Therefore, according to the standard
positioning strategy and TDCP, it is possible to produce the best results in the position
domain filtering method by determining the appropriate weight ratio for each epoch. This
subtle treatment of the weight distribution in the random model is crucial for improving
and enhancing the accuracy of GNSS, which is similar to the results tested in the open
environment.
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Figure 17. The DELS, TELS, and QELS performance comparison under a forest scene at the E direc-
tion of the position domain filtering method based on various weight ratios. 
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Figure 19. The DELS, TELS, and QELS performance comparison under a forest scene at the U direc-
tion of the position domain filtering method based on various weight ratios. 

Figures 17–19 comprehensively analyze the position domain filtering method based 
on the LS integration method using under-canopy semi-shaded data, focusing on the im-
pact of changing the number of epochs and the weight ratio between the position estima-
tion and its increment of the original algorithm on the statistical characteristics, including 
Std, mean and RMS values, providing valuable insights for the optimization of these LS-
based methods. The result analysis shows that the adjustment of the weight ratio between 
the position and its increment of the original algorithm strongly affects the positioning 
accuracy. As the positioning accuracy in all directions improves, the accuracy of the orig-
inal strategy decreases, and as the weight ratio decreases, the weight distribution and ran-
dom model become more suitable, which is significantly different from the open environ-
ment. It may be caused by the fact that the probability of gross errors in the observations 
increases significantly due to the under-canopy shading environment. For TDCP technol-
ogy, only a small amount of satellite data is required, and no gross errors are guaranteed 
to achieve the position increment solution; even under the canopy, we can still observe a 
large number of satellites, and it is relatively easy to filter out the carrier data without 
gross errors in this part of the data. For pseudorange observations, a large number of ob-
servations are required to improve the positioning accuracy and reliability, and the diffi-
culty of processing all observation gross errors is relatively large. It is also observed that 
the TELS integrated method is superior to the DELS, and the QELS is slightly improved 
over the TELS in all directions. Similar differences are presented in the standard deviation, 
mean, and RMS, and their order of magnitude is usually in the sub-centimeter. This indi-
cates that the accuracy of the position domain filtering method increases proportionally 
with the increase of more epochs. However, it is important to emphasize that a higher 
weight ratio can reduce the impact on accuracy, indirectly indicating the high accuracy of 
TDCP calculation increment, and it is also important to note that when the weight ratio is 
excessively increased, the accuracy gain may tend to be stable or even decrease. Therefore, 
according to the standard positioning strategy and TDCP, it is possible to produce the best 
results in the position domain filtering method by determining the appropriate weight 
ratio for each epoch. This subtle treatment of the weight distribution in the random model 
is crucial for improving and enhancing the accuracy of GNSS, which is similar to the re-
sults tested in the open environment. 

5. Conclusion and Future Work 
In pursuit of heightened positioning accuracy and the broader utilization of GNSS, 

this study has undertaken a comprehensive validation of the efficacy of a position domain 

Figure 19. The DELS, TELS, and QELS performance comparison under a forest scene at the U
direction of the position domain filtering method based on various weight ratios.

5. Conclusion and Future Work

In pursuit of heightened positioning accuracy and the broader utilization of GNSS, this
study has undertaken a comprehensive validation of the efficacy of a position domain filter-
ing method based on the standard positioning strategy and TDCP technology, employing
the LS approach. The performance of this method has been rigorously compared with that
of the observation domain filtering method, which formulates a meticulous mathematical
and stochastic model rooted in error propagation principles during the acquisition of LS
solutions. To ascertain the effectiveness of the position domain filtering method, a rigorous
assessment was conducted, encompassing both simulated and real measured datasets.
The simulated data revealed that the position domain strategy consistently yields smaller
RMS values when juxtaposed with the original strategy. Furthermore, experimental results
from kinematic GNSS datasets recorded in open environment and forest scenes show
that the observation domain integrating method outperforms the original strategy, and
the position domain integrating method outperforms the observation domain integrating
method, manifesting as a significant performance improvement. The experimental results
in an open environment show that the original algorithm has positioning accuracies of
0.631 m, 1.076 m, and 2.680 m in the E, N, and U directions, respectively. The observation
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domain filtering method improves the accuracies by 44.0%, 17.7%, and 5.8%, compared
to the original algorithm, resulting in 0.353 m, 0.886 m, and 2.526 m, respectively. The
position domain filtering method further improves the accuracies by 68.0%, 21.6%, and
24.0%, compared to the original algorithm, resulting in 0.202 m, 0.843 m, and 2.036 m,
respectively, and achieving an overall improvement of 68.0%, 21.6%, and 24.0%, compared
to the original algorithm. Also, the experimental results under the forest show that the
positioning accuracies based on the original algorithm are 1.863 m, 1.873 m, and 2.722
m in the E, N, and U directions, respectively. The positioning accuracies based on the
observation domain filtering method are 1.661 m, 1.642 m, and 2.359 m in the E, N, and
U directions, respectively, which are 12.2%, 14.1%, and 15.4% higher than the original
algorithm accuracies, respectively. The accuracies based on the position domain filtering
method are 1.308 m, 1.375 m, and 2.133 m in the E, N, and U directions, respectively, which
are 42.4%, 36.2%, and 27.6% higher than the original algorithm accuracy, respectively, and
27.0%, 19.4% and 10.6% higher than the position domain positioning accuracies. These
compelling results unequivocally affirm that the observation domain filtering method
constitutes a significant advancement, substantially bolstering positioning accuracy and
extending the frontiers of GNSS applications.

Nevertheless, it is important to acknowledge that the position domain filtering meth-
ods used in this study have two inherent limitations. First, the model does not currently
account for the correlation between the position increments derived from the TDCP tech-
nique, even though both pieces of information are intrinsically related to the carrier phase
observations of the intermediate epoch. Second, the model assigns the same variance
information to the three directions of the positioning results generated by the standard
positioning strategy, ignoring their interrelationship. As part of the ongoing research work,
we are committed to improving the existing model to fully address these overlooked errors.
The goal is to develop a more robust and complex stochastic model that can not only correct
these limitations but also enhance the overall accuracy and reliability of the positioning
accuracy, as well as meet certain production applications. This ongoing work represents the
dedication to advancing the state-of-the-art global navigation satellite system positioning
technology and applying it to smart forestry while ensuring its continuous effectiveness in
practical engineering production applications.
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