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Animal performance is an outcome of genetic effects, environmental influences, 
and their interaction. Understanding the influences of the environment on 
performance is important to identify the right breeds for a given environment. 
Agroecological zonation is commonly used to classify environments and compare 
the performance of breeds before their wider introduction into a new environment. 
Environmental classes, also referred to as agroecologies, are traditionally defined 
based on agronomically important environmental predictors. We hypothesized 
that our own classification of agroecologies for livestock at a species level 
and incorporating the most important environmental predictors may improve 
genotype by environment interactions (GxE) estimations over conventional 
methodology. We  collected growth performance data on improved chicken 
breeds distributed to multiple environments in Ethiopia. We  applied species 
distribution models (SDMs) to identify the most relevant environmental predictors 
and to group chicken performance testing sites into agroecologies. We fitted linear 
mixed-effects models (LMM) to make model comparisons between conventional 
and SDM-defined agroecologies. Then we  used Generalized Additive Models 
(GAMs) to visualize the influences of SDM-identified environmental predictors on 
the live body weight of chickens at species level. The model fit in LMM for GxE 
prediction improved when agroecologies were defined based on SDM-identified 
environmental predictors. Partial dependence plots (PDPs) produced by GAMs 
showed complex relationships between environmental predictors and body 
weight. Our findings suggest that multi-environment performance evaluations 
of candidate breeds should be based on SDM-defined environmental classes or 
agroecologies. Moreover, our study shows that GAMs are well-suited to visualizing 
the influences of bioclimatic factors on livestock performance.
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Introduction

Scavenging family poultry significantly contributes to household 
nutrition and income in Sub-Saharan Africa. Current levels of 
productivity in these systems are too low to meet growing demands 
(Shapiro et al., 2015). Attempts at enhancing smallholder chicken 
productivity in tropical developing countries have mostly relied on the 
introduction of better performing breeds (Sonaiya and Swan, 2007; 
Chebo et al., 2022).

Some of the breeds introduced into smallholder systems of the 
tropics were developed for temperate production systems (i.e., 
assuming reasonable level of environmental uniformity in their 
management) and did not exhibit optimum performance across 
heterogenous environments. The lack of proper matching between the 
right genetics and the right environment is a major factor for low 
productivity of improved chicken breeds in the tropics (Lozano-
Jaramillo et al., 2019b; de Kinderen et al., 2020). Studies conducted in 
Ethiopia have shown that breeding objectives of chicken producers 
and levels of production performance of breeds in terms of total 
number of eggs and growth vary across agroecologies (Lozano 
Jaramillo et al., 2018; Tilahun et al., 2022) indicating the need for a 
more tailored genetic improvement and livestock technology 
scaling approach.

Current approaches of evaluating GxE for chicken breeds 
introduced into smallholder systems have significant drawbacks. 
Firstly, breed comparison studies are based on agroecologies defined 
on suitability of the environment for major crops (Lozano-Jaramillo 
et al., 2019b; de Kinderen et al., 2020). Agroecological zonation refers 
to the spatial classification of the geographic and environmental 
landscape into units, within each of them agricultural and ecological 
characteristics are similar (Hurni, 1998). Classifications of the 
environment into roughly similar agroecological units have been 
primarily used in agronomy and forestry to compare agroclimatic 
conditions and to manage land resource conditions considering soil, 
water, vegetation, and topography parameters (Hurni, 1998). 
Agronomically defined agroecologies are made for crops and do not 
adequately consider environmental predictors which may have 
profound association with livestock productivity and local adaptation 
(Dove, 1890; Hurni, 1998; MoA, 1998, 2000; Tadesse Mulugeta et al., 
2006; Dumont et  al., 2014). GxE estimates based on these 
agroecologies may not give accurate results for levels of GxE. A proper 
classification of mega-environments into agroecologies, considering 
ecological factors influencing productive and reproductive 
performance is essential to select productive breeds (genotypes). 
Stratification of environments into environmental classes 
(agroecologies) improves the homogeneity within and reduces 
genotype by environment interactions, leading to better evaluation of 
the performance of breeds (Desclaux et al., 2007; Dumont et al., 2013). 
There were some attempts to use agroecological zonation in animal 
production as an operational framework to improve productivity 
(Dumont et  al., 2014; Soussana et  al., 2015). However, proper 
methodologies for definition of species-specific livestock agroecologies 
for use in animal genetic improvement programs or for multi-
environment breed evaluations are not available. Only 5 percent of the 
indexed studies concerning agroecology deal with livestock (Soussana 
et al., 2015).

Secondly, current agroecological definitions consider an 
agroecology as a unit with little effort to identify the environmental 

predictors contributing the most to habitat suitability of a livestock 
species. Model fit and accuracy of GxE predictions for a species might 
be  improved if the most important environmental predictors 
influencing habitat suitability and phenotypic variation are considered 
in defining agroecological classes. The influence of certain climatic 
factors such as extremes of temperature and solar radiation on 
performance, physiology and behavior of chickens and other birds has 
been documented (Lara and Rostagno, 2013; Bettridge et al., 2018; 
Raynor et al., 2018; Gicheha, 2021).

Thirdly, the existing agroecological classes assume all livestock 
species have similar environmental requirements and hence breeds of 
any species can be compared for performance and adaptability based 
on the existing classes. However, livestock species vary in their 
environmental requirements (e.g., chicken vs. camels in extreme 
cases) and livestock-species-specific agroecologies may allow a more 
accurate comparison among breeds and lead to better GxE estimations 
within a species.

Fourthly, current approaches of studying GxE in smallholder 
livestock systems that consider the environment as a continuous 
gradient often assume a linear relationship between breed performance 
for a trait and an environmental class. To explain such relationships, 
they use reaction norm plots (e.g., the change of body weight of breeds 
1 and 2  in response to a range of values for an environmental 
parameter). Reaction norm plots are not suitable to display non-linear 
relationships between an environmental predictor and performance 
for a trait.

Analytical methods developed in ecology, geographic information 
system, and machine learning can be used to overcome limitations of 
conventional GxE predictions in breed performance comparisons in 
smallholder systems. Species distribution models (SDMs) also called 
environmental, ecological, niche, envelope, habitat modeling, range 
mapping or bioclimatic models are numerical tools that use computer 
algorithms to predict distribution of a species across geographic space 
and time using environmental data (Elith and Leathwick, 2009). The 
central concept in SDMs is the niche theory formulated by Soberón 
(2007). There are two types of niches (Hutchinson, 1957). The 
fundamental niche comprises all abiotic environmental conditions 
where a species can survive indefinitely and have a positive population 
growth. The realized niche is smaller and refers to those parts of the 
fundamental niche where the species can survive despite the presence 
of competitors or negative interactions. In recent years, the conceptual 
framework for SDMs has been extended by livestock scientists and 
used to identify environmental predictors associated with habitat 
suitability, productive performance (e.g., growth rate), population 
differentiation, and local adaptation in livestock populations (Vajana 
et  al., 2018; Vallejo-Trujillo et  al., 2018; Lozano-Jaramillo, 2019; 
Lozano-Jaramillo et al., 2019b; Gheyas et al., 2021; Kebede et al., 2021; 
Gebru et al., 2022; Trujillo et al., 2022) performed SDMs to calculate 
the percentage area suitable for improved chicken breeds across 
administrative (political) boundaries of Ethiopia. Spatial modeling 
improves genetic evaluation of livestock for smallholders (Selle et al., 
2020) and is applicable for definition of agroecologies in multi-
environment performance testing of candidate breeds.

SDMs consider a species as a homogenous unit and are 
constrained to meet some of their underlying assumptions when they 
are used alone in studying populations or breeds (Hampe, 2004; 
Wiens et al., 2009). But their shortcomings could be overcome if they 
are combined with other modeling approaches, such as phenotypic 
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distribution models (PDMs). PDMs refer to a family of machine 
learning based models that are fitted to capture the response of a 
quantitative trait as a function of environmental conditions (Michel 
et al., 2017; Smith et al., 2017; Lozano-Jaramillo et al., 2019a,b; Kebede 
et al., 2021). The most notable ones include boosted regression trees 
(Elith et al., 2008), generalized linear models (Nelder and Wedderburn, 
1972), and generalized additive models (GAMs) (Hastie and 
Tibshirani, 1990). The most contributing climatic predictors identified 
by SDMs can be used to redefine livestock-species-specific agroecology 
and to improve model fit in GxE predictions through linear mixed 
models (LMMs). LMMs combine different types of fixed, random, and 
smooth terms in a regression model to account for different types of 
effects. SDM-identified agroecologies can be  fitted to LMMs to 
compare the performance of different chicken breeds on productivity 
levels. LMMs such as best linear unbiased prediction (BLUP) and 
restricted maximum likelihood estimation (REML) have been 
extensively used by plant breeders to in multi-environment crop trials 
to recommend highly productive genotypes (Piepho, 1994; Piepho 
and Möhring, 2005; Van Eeuwijk et al., 2016). Equally important to 
defining environments into agroecologies, is the understanding of 
how animals of the same species would react phenotypically to 
variations in climatic factors. In this respect, Generalized Additive 
Models (GAMs) are well suited to detecting non-linear relationships, 
which is a common feature of many ecological datasets (Zuur et al., 
2007; Wood, 2017; Kebede et al., 2021). GAMs have been used in the 
past to study species distribution, abundance and density in wild 
animals in relation to climate change (Brown, 2011; Rezaei and 
Sengül, 2018). Phenotypes are expected to include non-linear 
responses to environmental predictors violating assumptions made by 
classical linear approaches (e.g., linear regression or ANOVA) (Zuur 
et  al., 2007; Bolker et  al., 2013; Oddi et  al., 2019). GAMs can 
accommodate this non-linear relationship between the response and 
continuous explanatory variables by making use of non-parametric 
smoothers (Crawley, 2012; Wiley and Wiley, 2019). PDMs such as 
generalized additive models (GAMs) can also be utilized to evaluate 
the response of quantitative traits to specific environmental predictors 
using partial dependence plots (PDPs). PDPs are the most popular 
approach in for visualizing the effects of the predictor variables on the 
predicted outcome during supervised machine learning applications 
(Friedman, 2001; Apley and Zhu, 2020).

The objectives of the present study are to (1) apply species 
distribution models (SDMs) to identify the most relevant 
environmental predictors contributing to habitat suitability of 
chickens in Ethiopia; (2) use SDM-identified environmental predictors 
to classify environments of the chicken performance testing sites into 
distinct agroecologies; (3) use SDM-defined agroecologies to improve 
model fit of LMM in breed by environment interaction estimations for 
live body weight; and (4) apply partial dependence plots of GAMs to 
evaluate the relationship between the most relevant environmental 
predictors and live body weight.

Materials and methods

Environmental data

We took different steps to ensure representativeness of 
environmental data in our sampling frame. This entailed designing a 

robust sampling strategy, and inclusion of sufficient number of species 
occurrence and background points.

Selection of species occurrence points

The choice of sample locations for environmental data analysis 
was made at species level (Gallus gallus) and did not consider the 
distribution of specific chicken breeds. Out of the country’s estimated 
49.4 million chickens (88% of the total) are indigenous (CSA, 2020) 
and kept by smallholder farmers, in extensive management conditions: 
they scavenge or semi-scavenge to fulfil their daily feed requirements 
and spend the night in simple night enclosures The environment 
influences the reproductive (egg productivity), productive 
performance (growth), and survival (prevalence of diseases and 
parasites) of the chickens in this system. The influences of climatic 
factors such as extremes of temperature and solar radiation on 
performance, physiology and behavior of chickens have been 
documented (Lara and Rostagno, 2013; Bettridge et  al., 2018; 
Gicheha, 2021).

The distribution of indigenous chickens was used to delineate the 
species range and establish the sampling frame for SDMs in the 
present study. Ethiopian indigenous chickens also called local, village, 
backyard or family chickens are widely adapted domesticated 
populations that are not subject to selective breeding programs in 
their natural environment. A hybrid sampling strategy that ensures 
the environmental (e.g., climatic) and geographic representativeness 
of sample locations for performance testing was implemented. This 
approach ensures inclusion of contrasting habitats where a species can 
be potentially kept and improves prediction in SDMs (Selmoni et al., 
2020). Five environmental gradients (elevational clines) within the 
species range were selected in different geographies of the country 
(Oromia, Amhara, Addis Ababa, Southern Nationalities and Peoples’ 
Region, and Tigray). In each gradient, the environment was clustered 
into three different elevational classes. These are lowland (500–
1,800 m.a.s.l); midaltitude/midland (1,800–2,400 m.a.s.l.); and highland 
(2400–3,500 m.a.s.l.). Areas where chicken cannot be  kept were 
removed from the sampling frame. These included water bodies, 
forests and bushlands, areas with elevation below 500 m.a.s.l., areas 
above 3,500 m.a.s.l., and areas with infrastructure (e.g., roads, 
buildings). Areas below 500 meters of elevation in Ethiopia are too hot 
(temperature exceeds 40°C and have high solar radiation) and are not 
used for chicken production. These areas represent pastoral areas 
around the borders of the country where farmers keep camels and 
ruminants. Areas above 3,500 meters are too cold (frosty) for livestock 
and humans and no agricultural activity is practiced.

Environmental data were extracted for a total of 1,548 locations 
along the five environmental gradients. Inclusion of records from 100 
locations is considered large enough in species distribution modeling 
(Wisz, Hijmans et al., 2008).Values for 34 environmental predictors 
which were expected to influence chicken productive performance 
were extracted from online databases [see Additional file 1 Table S1 in 
Supplementary material]. These included climatic (n = 24), soil (n = 8), 
and vegetation (n = 2) predictors. Values for climatic predictors 
(n = 24), related with temperature, precipitation, solar radiation, and 
water vapor pressure in different seasons were obtained from 
WorldClim database (http://www.worldclim.org/; version 2) at a 
spatial resolution of 30 s (~1Km2) (Fick and Hijmans, 2017) based on 
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the mean values of 30 years (1970–2000). Elevation data was obtained 
from DIVA-GIS1 (Hijmans et al., 2001; Farr et al., 2007) at a spatial 
resolution of 30 s (~1Km2). Vegetation data (cropland extent) was 
obtained from Global Food Security Analysis-Support Data (Xiong 
et al., 2017) at a spatial resolution of 30 meters. Soil data was obtained 
from ISRIC database (Hengl et al., 2015, 2017) based on observations 
and measurements of African SoilGrids system at 250-meter 
resolution, with standard numeric soil properties (organic carbon, 
bulk density, Cation Exchange Capacity (CEC), pH, and soil texture 
fractions at 15–30 cm depth). Different R software packages were used 
to manipulate geospatial data. Specifically, “dismo” (Hijmans et al., 
2017) was used to link R software with “Maxent” model, “sp” (Pebesma 
et al., 2012), and “maptools” (Bivand et al., 2021) were used to plot 
maps based on geographic coordinates, “raster” (Hijmans et al., 2015) 
was used to read data, “rgdal” (Bivand et al., 2021) was used to adjust 
map projections, and “rgeos” (Bivand et  al., 2017) was used for 
topological operations.

Maxent, which stands for maximum entropy modeling, is an 
algorithm or machine learning method developed for mapping 
species’ distribution. Maxent estimates the distribution (geographic 
range) of a species by finding the distribution which has maximum 
entropy (i.e., is closest to geographically uniform) subject to 
constraints derived from environmental conditions at recorded 
occurrence locations (Phillips et al., 2017). The constraints are rules 
that constrain the predicted distribution based on the values of 
environmental variables called features (Phillips et al., 2017).

Background points

The inclusion of occurrence records alone leads to bias in species 
distribution modeling. Considering the set of conditions at sample 
points from the entire environmental region available to be inhabited 
by the species improves the predictive performance of SDMs and 
habitat suitability mapping (Phillips et  al., 2009). For this reason, 
we included a bias file and sampled 10,000 background points which 
were drawn randomly from the entire country using kernel density 
function (Venables and Ripley, 2002).

Conventional agroecological classification

Agroecological zones are conventionally classified in Ethiopia into 
five. Chickens cannot live in two of the five agroecologies: dry-hot/
desert (<500 m.a.s.l.) and very-cold/afro-alpine (>3,500 m.a.s.l.). 
We  considered the other three conventional agroecologies in our 
model comparison. AEZI = lowlands (500–1,800 m.a.s.l.); 
AEZII = 1,800–2,400 m.s.a.l.; and AEZIII = 2,400–3,500 m.a.s.l. (Dove, 
1890; MoA, 1998). This classification mainly considers elevation, 
temperature, precipitation, and types of major grain crops grown (e.g., 
sorghum and oil seeds in the lowlands; maize, teff, and millet in 
midaltitude; and wheat and barley in the highlands). Chicken, small 
ruminants, and large ruminants are kept in all these three 
agroecologies (within 500–3,500 m.a.s.l.) (Hurni, 1998).

1 http://www.diva-gis.org/gdata

Phenotypic data

A total of 45 performance testing sites or smallholder chicken 
keeping villages from the five environmental gradients were chosen 
through cluster sampling. Each gradient represented three clusters or 
elevational classes (lowland, midaltitude, highland). The selection of 
performance testing sites within class, and households within a 
performance testing site, was carried out at random.

The target number of households was 20 for each performance 
testing site. Households without two years of experience in keeping 
any type of chicken (indigenous or improved) were excluded from the 
experiment. In total, 25 unsexed chicks of an improved breed, 
vaccinated against major diseases (Newcastle disease, Gumboro or 
infectious bursal disease, fowl pox, and Marek’s) and brooded to the 
end of 42 day-of-age were given to each household. The assignment of 
breeds into households within a performance testing site was 
completely at random. Performance data was collected on a total of 
21,562 female chickens distributed to 1,548 households across 45 
performance testing sites.

See Table 1 for a summary and [see Additional file 1 Table S2 in 
Supplementary material] for detailed information on each testing site.

Breeds

The five breeds (strains) tested in the present study were Improved 
Horro, Potchefstroom Koekoek, Kuroiler, Sasso, and SRIR (Sasso x 
Rhode Island Red). Improved Horro is the outcome of a selective 
breeding program on the local Horro chicken and was developed with 
the aim of improving age at first egg, egg production, body weight and 
survival (Dana et  al., 2010, 2011; Wondmeneh et  al., 2014). The 
Potchefstroom Koekoek is a composite of the White Leghorn, Black 
Australorp, and the Barred Plymouth Rock, developed during the 
1950s in the Republic of South Africa (Grobbelaar et al., 2010). The 
Koekoek is very popular among rural farmers in South Africa and 
neighboring countries for egg and meat production as well as their 
ability to hatch their own offspring in medium input production 
systems (Grobbelaar et al., 2010). The Kuroiler is a hybrid chicken 
widely believed to originate from crossing the Rhode Island Red, the 
White Leghorn, the Barred Plymouth Rock and two Indian indigenous 
chicken breeds with some introgression of broilers to obtain specific 

TABLE 1 Summary of sampling sites used for evaluation of growth 
performance of improved chicken breeds in Ethiopia.

Geographic 
region

Number of 
performance 
testing sites

Number of 
households 

receiving a flock 
of chicken (25 
unsexed chicks 

per breed)

Oromia 7 177

Amhara 14 453

Tigray 7 261

SNNPR 13 451

Addis Ababa 4 206

Total 45 1,548
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broiler characteristics (Isenberg, 2007; Ahuja et al., 2008). The Kuroiler 
was developed in India by a commercial firm and was introduced to 
the market in early 1990s. The Sasso is a dual-purpose commercial 
hybrid developed by a breeding company in Europe. The SRIR is a 
hybrid closely related with the Sasso, with some genetic introgression 
from another dual-purpose genotype.

Management of chicks and phenotypic 
data collection

Farmers participating in the chicken performance evaluation were 
closely monitored for their adherence to the research protocols. All of 
them received trainings on basic chicken husbandry practices. Trained 
enumerators regularly visited the households to ensure they had 
constructed night shelters for the birds and provided water, and up to 
30% of their daily feed requirement as a supplement in addition 
to scavenging.

Every bird was individually identified with a wing-tag and its body 
weight was measured every two weeks by the enumerators. The 
average live-body-weight-at-180-days-of-age (BW180) was 
interpolated by linear regression from available data points. In total, 
performance data was measured on 21,562 female chickens obtained 
from 1,548 households. Out of 25 unsexed brooded chicks of a breed 
received by a household, roughly 50% were females, and an average of 
8 female birds (66.6%) survived per household for phenotypic 
measurement and stayed till the end of the experiment.

Species distribution models

Species distribution models (SDMs) were used to select 
environmental predictors associated with habitat suitability in 
chickens and hence influencing their performance at species level in 
terms of live body weight. The identified predictors were then used to 
group chicken performance testing sites into agroecologies to produce 
habitat suitability maps. SDM-identified predictors and the redefined 
agroecologies are used as inputs for phenotypic distribution modeling 
with GAMs to predict live body weight.

Selection of environmental predictors

To constrain model complexity and increase the performance of 
species distribution models, the highest contributing set of 
uncorrelated environmental variables were identified using the R 
package “MaxentVariableSelection” (Jueterbock et  al., 2016). The 
package increases performance of Maxent habitat suitability models 
by identifying the most important set of uncorrelated environmental 
variables. First, an initial Maxent model was compiled with all the 
environmental predictors. Then the predictors with lower contribution 
to the model (contribution threshold <5) and those that were 
correlated (r > |0.6|) with the predictor of the highest contribution 
were removed. The remaining set of variables was then used to 
compile a new Maxent model. This process was repeated until left with 
a set of uncorrelated variables that all had a model contribution above 
the value set as contribution threshold.

Configuration of model parameters

Species-specific tuning of model parameters can improve the 
performance of Maxent model compared to the default settings (Elith 
et  al., 2011; Radosavljevic and Anderson, 2014). Tuning model 
settings refers to exploring different combinations of feature classes 
and regularization multipliers and selecting the best combination 
based on their impacts on model performance. Regularization refers 
to smoothing of the model to achieve a trade-off between model 
goodness-of-fit and complexity. The default regularization multiplier 
in Maxent is 1.0 which can be changed by the user. It is a common 
approach in model selection to penalize coefficients (the betas) to 
values that allow both accurate prediction and generality (Tibshirani, 
1996; Elith et al., 2011). Species’ responses to environmental covariates 
tends to be complex and usually requires fitting of nonlinear functions 
(Austin, 2002). In machine learning algorithms this is achieved by 
applying transformations of the original covariates into feature. 
Maxent currently has six feature classes: linear, product, quadratic, 
hinge, threshold and categorical (Elith et al., 2011).

The R package “ENMeval” was used to reduce the large set of 
feature types to the optimal subset to improve model fit and to identify 
the optimum regularization multiplier for model training (Muscarella 
et al., 2014; Radosavljevic and Anderson, 2014). We built models with 
regularization multiplier values ranging from 0.5 to 6.0 (increments 
of 0.5) and with six different feature combinations (H, LQH, HQP, 
HQC, LQHP, LQHPT; where L = linear, Q = quadratic, H = hinge, 
P = product and T = threshold); this resulted in 72 individual model 
runs. The parameter configuration with the lowest delta AICc value 
was chosen by ENMeval to run the final Maxent model.

Classifying the environments of chicken 
performance testing sites into 
agroecologies

Once the most important predictor contributing to habitat 
suitability were identified, the suitability score (I) was calculated 
between a pair of chicken performance testing sites. The I statistic 
was then used to cluster the sites into distinct agroecologies. The 
procedures we followed to calculate the I statistic was as follows: 
first, raster files of the highest contributing set of predictors were 
created and used with ENMTools to calculate similarity statistics (I) 
(Phillips and Dudík, 2008; Warren et  al., 2011). A raster is an 
imagery from satellite which consists of a matrix of cells (or pixels) 
organized into rows and columns (or a grid) where each cell contains 
a value representing information for an environmental variable 
(Hijmans et al., 2015). Then, at each grid cell, estimates of habitat 
suitability are calculated using Maxent-generated species distribution 
models so that they sum to 1 over the geographic space being 
measured. The “I” value is an estimate of the probability that the 
relative ranking of any two patches of habitat is the same for two 
models, irrespective of the quantitative difference in suitability 
estimates. The “I” similarity measure range from 0, when species 
predicted environmental suitability in two performance testing sites 
do not overlap at all (i.e., 0 for all i), to 1, when all grid cells in the 
two models are estimated to be  equally suitable for the species 
(Warren et al., 2011).
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Comparison between SDM and 
conventionally-defined agroecologies

The study was designed in a Randomized Complete Block. The 
chicken breeds (n = 5) were assigned as treatments (GEN) into each 
agroecology (ENV) either defined by SDMs or conventionally. 
Performance testing sites within each ENV were considered as 
environmental replicates (REP). SDM-defined agroecologies were 
classified based on the most relevant environmental predictors 
contributing to habitat suitability, while conventionally-defined 
agroecologies were based on elevational classes. The chicken 
performance testing sites included in our study fell into three 
conventional classes (lowlands, midaltitude, and highlands) and three 
SDM-defined classes (I, II, and III). Comparison between models 
based on agroecological classification was desired to know which 
approach yields better GxE estimations. We analyzed our productivity 
data with two mixed-effects models in LMM (REML/BLUP) (Bates 
et al., 2014; Olivoto et al., 2019). In model 1, we fitted SDM-defined 
agroecology (SDM_AE) and its replications as a fixed effects and 
included breed (GEN) and breed by environment interactions (GXE) 
as random effects. In model 2, we fitted conventional agroecology 
(CON_AE) and its replications as a fixed effects and included breed 
(GEN) and breed by environment interactions (GXE) as random effects.

LMM for model 1 was fitted for live body weight traits (W180) 
as follows:

 
yi j k i j ij jk i j k, , , , ,� � � � � � � �� � � �� � 

where yi j k, ,  is the response variable (i.e., average live body weight 
in grams at a household) observed in the k th block of the ith breed in 
the j th SDM-defined agroecology (SDM_AE), (i= 1, 2, 3, 4, 5; j  = 1, 
2, 3; k  = 1, 2,.., b); µ  is the grand mean; βi is the random effect of the 
ith breed; τ j  is the fixed main effect of the j th agroecology (SDM_
AE); ��� �ij  is the random interaction effect of the ith breed with the 
j th agroecology (SDM_AE); γ jk  is the fixed effect of the k th block 
(REP) within the j th agroecology (SDM_AE); and i j k, , , is the 
random normally distributed error. In model 2, the j th agroecology 
was defined conventionally (CON_AE),

Relationship between environmental 
predictors and body weight

Once we  compared SDM-defined agroecologies with 
conventionally-defined agroecologies on model fit, we  sought to 
investigate how each one of the most relevant environmental 
predictors influence body weight at species level without considering 
the effect of agroecological classes and taking out the effect of breed. 
We  applied generalized additive models (GAMs) to ascertain the 
effects of SDM-identified environmental predictors on performance 
of chickens. GAMs are similar to GLMs but differ by relaxing the 
linear assumption, potentially revealing non-linear relationships 
(Wiley and Wiley, 2019) which might be seen between environmental 
predictors and phenotypes. The effects of environmental covariates on 
body weight in GAM were viewed using partial dependence plots 
(PDPs). Visualization methods with GAMs are useful in 
environmental modeling to identify which variables have the strongest 
effect (Barton et al., 2020; Fasiolo et al., 2020). PDPs allow graphical 

exploratory evaluation of the variable effects by showing the mean 
change in response variable (body weight) as the variable interval 
changes over its distribution (mean centered since the variable interval 
must sum to zero in GAM), accompanied by the 95% confidence 
intervals. The estimated value of p (<0.001) will be used to determine 
the significance of the environmental predictor effect on phenotype 
(Supplementary R script).

The R package “mgcv” (Wood and Augustin, 2002) was used to fit 
GAMs (Hastie and Tibshirani, 1990). “mgcv” implements GAMs 
based on penalized regression splines with automatic smoothness 
estimation. The identity link is chosen when normal distribution is 
assumed (Hastie and Tibshirani, 1990). Meaning that the Gaussian 
distribution is parametrized by the mean and the variance parameters. 
The link function provides the relationship between the linear 
predictor and the mean of the distribution function.

The function “gam” was used to invoke a Gaussian smoothing 
spline process (bs = “gp”). REML was the method used for smoothing 
parameter estimation (Wahba, 1983; Silverman, 1985). The notation 
for the GAM smoothing in Gaussian distribution is as follows (Hastie 
et al., 2009)

 g E Y f X f Xk k� ��� �� � � � � �� � �� 1 1

Where the response variable Y  (i.e., BW180) relates to an additive 
function of the predictors via a link function g , X X Xk1 2, , ,…
represent the environmental predictor covariates identified by SDM, 
and the f sk ′  denote the smoothing term(s) of the SDM-selected 
non-parametric environmental predictor covariate(s) Xk .

Results

Environmental predictors contributing to 
habitat suitability

Out of 34 environmental predictors, a final set of six least 
correlated (|r| < 0.6) predictors related with habitat suitability of 
chickens were identified by MaxentVariableSelection (Figure 1). These 
included elevation, solar radiation in May, precipitation of the driest 
month (Bio14), water vapor pressure of May, precipitation of the 
coldest quarter (Bio19), and precipitation of the wettest month 
(Bio13). Each of the six selected predictors that had more than 3% 
contribution to habitat suitability of chickens were retained for 
subsequent analysis. Elevation made the highest contribution (48.5%), 
followed by solar radiation of May (16.7%) and precipitation of the 
wettest month (8.7%).

The six most contributing climatic predictors selected by 
MaxentVariableSelection along with the ENMeval identified model 
parameters were used to produce environmental maps of Ethiopia by 
Maxent (Figure 2). The maps show the environmental heterogeneity 
of the country in terms of precipitation, solar radiation, water vapor 
pressure and bioelevation (elevation), indicating that these predictors 
deserve consideration in the classification of agroecologies. ENVeval 
identified HQP (Hinge, Quadratic, Product) features with 
regularization-multiplier = 5 as the best parameter combination. This 
configuration yielded the lowest deltaAICc value 
[Additional file 1 Table S3 in Supplementary material]. The suitability 
maps show environmental heterogeneity of the country in terms of 
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precipitation, solar radiation, water vapor pressure and elevation, 
indicating that these predictors deserve consideration in the 
classification of mega-environments into agroecologies.

Agroecologies defined on SDM-identified 
environmental predictors

These six most important environmental predictors associated 
with habitat suitability of chickens were used to classify the 

performance testing sites into three distinct agroecologies based on 
niche overlap statistic (I) (Figure 3). Out of the 45 villages where the 
improved breeds were distributed into, 16 villages were assigned into 
agroecology-I, 10 were assigned into agroecology-II, and 19 were 
assigned into agroecology-III [see full list in Additional file 1 Table S4 
in Supplementary material].

For each of the three agroecologies, a habitat suitability map of 
chickens based on niche overlap was produced by SDMs for Ethiopia 
(Figure 4). Most of the suitable areas on the three maps are in the 
northern, central, southeastern, and southwestern parts of the country. 

FIGURE 1

Relative contribution of the six most important environmental predictors selected to habitat suitability.

FIGURE 2

Environmental maps of Ethiopia based on the six most important environmental predictors.
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TABLE 2 Mixed-effects models (REML/BLUP) comparisons of GxE for 
SDM and conventionally defined agroecologies using AIC1.

Model df logLik AIC
AIC 

set to 
zero

Pr(>Chisq)

1 1 −9,335 18,779 0 *

2 1 −9,616 19,348 569 *

1Akaike’s information criterion (AIC) and likelihood value AIC were set to zero as reference 
for the best model; AIC = 2× # parameters – 2 × log-likelihood; thus lower values indicate a 
better model.  
*Significant (p < 0.001) value. 
*Significant (p < 0.0001) value.

Areas far in the west, far in the south, north-eastern, north-western 
parts of the country were shown as the least suitable for chicken 
production. These are characterized by extreme temperatures and 
high solar radiation, and low availability of scavenging feed resources 
for chickens (Getahun, 1978; Bayou and Assefa, 1989; CSA, 2017; 
Mirkena et al., 2018; Gebrechorkos et al., 2019).

Model comparison for SDM and 
conventionally defined agroecologies

Table  2 shows model comparisons of GxE for SDM and 
conventionally defined agroecologies using AIC. The LMM with 
SDM-defined agroecologies as a fixed effect had a better fit of genetic 
effects (lowest AIC value).

Figure 5 shows line graph based on the least square means of 
live body weight (g) with standard deviations of female chickens. 

The five improved breeds were distributed into the three different 
SDM-defined agroecologies of Ethiopia. Kuroiler had the highest 
BW180 in SDM-defined agroecologies-I and -III, while Sasso had 
the highest BW180 in agroecology-II. SRIR had Koekoek had close 

FIGURE 3

Dendrogram of niche overlap statistic (I) for testing sites of introduced chicken breeds in Ethiopia. The vertical line indicates the cut-off point to group 
environments of performance testing sites into three SDM-defined agroecologies.

FIGURE 4

Suitability maps of SDM-defined agroecologies for chicken performance testing sites. Colors toward red spectrum in each of the three agroecologies  
(I, II, & III) show better habitat suitability to chickens.
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to average performance in all the three agroecologies between the 
top performing breeds and the locally improved Horro. Changes 
in rank or magnitude of BW180 in the reaction norm plot showed 
a clear genotype by environment interaction among breeds 
assigned to the three agroecologies. Overall, the breeds performed 
better in agroecology-I than in agroecology-II and III, suggesting 
that this agroecology is more suitable for chickens regardless 
of breed.

Relationship between environmental 
predictors and body weight

The effect of environmental covariates on live body weight of 
female improved chickens at 180-days-of-age (BW180) estimated by 
GAMs are shown by partial dependence plots (PDPs) (Figures 6A–F). 
The zero line indicates mean model estimates, while the y-axis is a 
relative scale where the effect of different values of the environmental 
predictor on the response variable (BW180) is shown. Negative values 
on the y-axis indicate that at the corresponding levels of the predictor 
(x-axis), the model estimate for BW180 is lower than the mean. 
Similarly, positive values on the y-axis indicate that at the 
corresponding level of the environmental predictor, the model 
estimate for BW180 is above the mean. The highest body weight is 
predicted for solar radiation between 22,500 and 25,000 (Kj/m2/day), 
elevation below 2,400 m.a.s.l., precipitation in the coldest quarter of 
about 600 mm/m2, and water vapor pressure below 1.3 kPa in May. 
Precipitation of less than 200 mm/m2 in the wettest month and 
precipitation of less than 5 mm/m2 in the driest month affected BW180 
negatively. The non-linear relationships between environmental 
predictors and the quantitative trait revealed by GAMs using PDMs, 
would not have been explained by the linear fixed-effects models.

Discussion

An important reason for the failure of improved chicken breed 
introductions in the past 70 years to improve smallholder productivity 
in Africa is the lack of proper matching between environment and 
genotype. Multi-environment performance evaluation of candidate 
breeds requires a proper definition of livestock production 
agroecologies to improve GxE estimations. Knowledge on GxE helps 
to select breeds adapted to, and productive under specific or wider 
environmental conditions (Lozano-Jaramillo et  al., 2019a,b; de 
Kinderen et al., 2020; Birhanu et al., 2021).

Existing agroecological zone definitions in Ethiopia (Dove, 1890; 
MoA, 1998; Tadesse Mulugeta et al., 2006; Deressa et al., 2010) are 
based on environmental predictors that are primarily of agronomic 
importance. Classifications primarily based on predictors such as 
cropping pattern and land use type are not sufficient to compare 
performance of livestock breeds and recommend the best performing 
ones for different environments.

The present study introduced an analytical framework for defining 
environments into agroecologies for species-specific investigation of 
genotype-by-environment interactions of livestock in smallholder 
systems. Agroecologies in the context of the present study are 
groupings of performance testing sites within which environmental 
conditions are relatively homogenous and chickens kept by the 
different households therein are expected to be similarly influenced.

We applied species distribution models (SDMs) to identify the 
environmental predictors contributing the most to habitat suitability 
of chickens in Ethiopia. These were elevation, solar radiation of May, 
precipitation of the wettest month, precipitation of the coldest quarter, 
water vapor pressure in May, and precipitation of the driest month.

The effects of elevation, solar radiation, and precipitation on 
performance of traits such as feed consumption, growth, meat and egg 

FIGURE 5

Reaction norm plots for female live body weight at different ages. Colors indicate each of the five chicken breeds with their live body weight (BW180). 
The three agroecologies are displayed for each of the plots along the x-axis (AEI  =  agroecology-I; AEII  =  agroecology-II; AEIII  =  agroecology-III).
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productivity and quality are well established (Howlider and Rose, 
1987; Marsden and Morris, 1987; Shane, 1988; Shlomo, 2000; Lin 
et al., 2006; Lara and Rostagno, 2013; Huang et al., 2017; Lozano-
Jaramillo et  al., 2019a). Precipitation of the coldest quarter is a 
quarterly index which approximates the total precipitation that 
prevails during the three month-periods of the year. Precipitation of 
the coldest quarter above 700 mm/m2 might be  related with less 
availability of scavenging feed resources and more prevalence of 
diseases and parasites, having adverse effects on mature body weight 
in indigenous chickens (Kebede et al., 2021).

Elevation made the highest contribution (48.5%), followed by 
solar radiation of May (16.7%) and precipitation of the wettest month 
(8.7%). It is not surprising that elevation contributed the most to 
habitat suitability. A tight relation is expected between elevation and 
climatic elements (e.g., precipitation, temperature, radiation) 
(Gamachu, 1988; Fazzini et al., 2015; Dinka, 2019) in Ethiopia. This is 
probably a reason for the significant effect of both SDM and 
conventionally defined agroecologies on body weight.

The most relevant environmental predictors were used to classify 
three SDM-defined agroecologies and produce habitat suitability 
maps. Areas shown as least suitable for chicken across the country are 
indeed least populated by the species. Areas around the boarders of 
Ethiopia (below 500 m.a.s.l.) have prohibitively high temperature, high 
solar radiation, and low precipitation; and they practice pastoral 
agriculture (Tilahun and Schmidt, 2012; CSA, 2017). Farmers in the 
northern, central, southeastern, and southwestern parts of the country 
have conducive climate for sedentary farming and chicken keeping 
(Getahun, 1978; Bayou and Assefa, 1989; CSA, 2017).

Once the most relevant environmental predictors are identified by 
SDMs and their agroecologies defined, multi-environment 
performance comparison of breeds for traits of interest can be done 
more accurately. The significance of spatial modeling in improving 
genetic evaluation, particularly of flocks/herds distributed in 
smallholder systems, is well recognized (Sæbø and Frigessi, 2004; 
Tiezzi et al., 2017; Selle et al., 2020). Apart from evaluation of breed 

effects, our approach of clustering performance testing sites into 
distinct agroecologies based on the most influential environmental 
predictors is applicable to improving model fit for genetic models 
analyzing individual records across space. Taking into account the 
environmental predictors influencing productivity leads to a better 
ranking of bulls and higher genetic gain in on-farm evaluations with 
possibilities to recommend best genotypes for specific environmental 
conditions in a precision-mating framework (Tiezzi et  al., 2017). 
Further work is needed to evaluate the applicability of species 
distribution models to address GxE and identifying the best performing 
individuals within breed using phenotypic and genomic data.

As an alternative to reaction norm plots, partial dependence plots 
(PDPs) based on the best GAMs model can be used to explain the 
relationship (linear, monotonic, or more complex) between 
phenotypic performance for a trait and SDM-identified environmental 
predictors in livestock.

Conclusion

To the best of our knowledge, this is the first attempt to classify 
livestock agroecologies based on environmental predictors identified 
by species distribution models (SDMs) and to compare performances 
of breeds across SDM-defined agroecologies. We have demonstrated 
that better defined agroecology, considering environmental predictors 
associated with habitat suitability for a species, improves the prediction 
of GxE in multi-environment livestock performance evaluations. 
LMMs such as best linear unbiased prediction (BLUP) and restricted 
maximum likelihood estimation (REML) can be used to compare 
genotypes on productivity levels and recommend the most performing 
ones to smallholder farmers (Van Eeuwijk et  al., 2016; Olivoto 
et al., 2019).

The use of phenotypic distribution models, such as GAMs, is 
recommended as a powerful method to visualize the relationships 
between performance of livestock at species level and environmental 

FIGURE 6

Generalized additive model partial dependence plots for live body weight in female chickens. Each plot shows a covariate and their partial dependence 
on BW180 in the context of the model. The y-axis shows the mean of observed change in live body weight and the x axis the covariate interval. The 
blue line represents the 95% confidence interval. Redline  =  mean of observed live body weight; blue line  =  standard error; s  =  smoothed variable; and 
()  =  effective degrees of freedom.
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factors. This is useful to predict performance in future scenarios and 
take mitigation measures by understanding the influences of 
environmental predictors associated with worsening climate change.

Future research can investigate improvements in prediction of 
GxE for other important traits such as egg productivity and yield 
stability (environmental resilience) for breeds introduced into 
smallholder production systems. The present dataset was not detailed 
enough to see the effects of additional linear and random terms. 
We anticipate accuracies of multi-environment breed performance 
comparisons by species and phenotypic distribution models might 
increase if the models incorporate additional sources of information 
(e.g., pedigree, epigenetic, and genomic information). Apart from 
their applications in multi-environment phenotypic performance 
comparisons of different breeds, distribution (spatial) models hold 
opportunities to improve genetic evaluations within breed by 
enhancing separation of genetic and environmental effects 
for smallholders.
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