
This is the authors’ version of a paper that has been published in the proceedings of the Eight International Symposium
on Wireless Personal Multimedia Communications, Aalborg, Denmark, 18-22 September 2005.

Fast System-Level Design of Wireless Applications

Yannick Le Moullec1, Søren Skovgaard Christensen1,2, Wen Chenpeng2,
Peter Koch1,2, Sébastien Bilavarn3

1Center for Embedded Systems (CISS), 2KOM department, Aalborg University
DK-9220 Aalborg Ø, Denmark

3Signal Processing Institute, EPFL
CH-1015 Lausanne, Switzerland

moullec@cs.aau.dk,

http://www.ciss.dk

Abstract—This article presents a new methodology to
speed-up the development cycle of wireless applications.
This methodology is composed of three steps 1) algorithm
design with Matlab, 2) algorithmic-level characterization
and parallelism exploration from the C language with
“Design Trotter” and 3) hardware synthesis from the
Handel-C language with “DK Design Suite”. Few
hardware design experience background is required in this
flow since the parallelism information provided by Design-
Trotter is extremely useful to develop the Handel-C
description of the application. The proposed methodology
has been used to explore the design space of a RAKE
algorithm and to synthesize it onto a FPGA. The
experimental results illustrate how designers can rapidly
converge from the specification phase to a high
performance solution.

Key words: Design Space Exploration, parallelism, metrics,
digital signal processing, SoC.

1. INTRODUCTION

Designing wireless DSP systems is more and more
challenging because i) their needs in terms of
computational power are ever increasing, and ii) the
time-to-market factor is more and more critical.
Therefore, designers need user-friendly, rapid and
efficient design methodologies that can help them to
rapidly explore and prototype their applications.
In this paper, a design methodology providing rapid
design space exploration and short time-to-prototype for
the design of DSP systems is
proposed. The foundation of the methodology is a
combination of academic and commercial tools,
each specialized in a specific aspect of the design flow
(fig.1): i) algorithm design with Matlab
(MathWorks), ii) algorithmic-level characterization and
parallelism exploration with “Design-Trotter,

 Fig.1 Our methodology for rapid development of
DSP applications

and iii) hardware synthesis with "DK Design Suite"
(Celoxica). Compared to a traditional design flow, an
explicit design space exploration step (algorithm
characterization and parallelism exploration, step 2 in
Fig.1) is added. This enables the generation of a system
with maximal performances via an optimal exploitation
of the parallelism.

The rest of the paper is organized as follows: section 2
describes the different steps of the design flow. Section
3 presents some experimental results illustrating how
designers can rapidly converge from the specification

Algorithm
 (C language)

Step 2 Design Space Exploration with Design Trotter

1. C to HCDFG conversion
2. Characterization (orientation and parallelism metrics)
3. Parallelism exploration

• Orientation metrics
• Parallelism metric
• Parallelism trade-off curves

Step1 Algorithm Design with Matlab

1. Simulations
2. Matlab to C (manual or automated)

Step 3 HW Implementation

1. C to Handel-C conversion
2. Handel-C to VHDL or EDIF with DK Suite Compiler
3. Backend steps

http://www.cs.aau.dk/~moullec/�

This is the authors’ version of a paper that has been published in the proceedings of the Eight International Symposium
on Wireless Personal Multimedia Communications, Aalborg, Denmark, 18-22 September 2005.

phase to the final synthesis of the system onto a FPGA.
Section 4 concludes the paper and presents some
directions for future work.

2. STEPS OF THE DESIGN FLOW

The proposed methodology is presented in Fig.1. The
following sub-sections describe the three steps of the
design flow.

2.1. Step 1: design of the algorithm

Step 1 deals with the design of the DSP algorithm. In
this step, new ideas (new algorithms, new features,
improvements, etc.) are explored. Those new ideas are
then typically verified by means of simulations. For this
purpose, Matlab from MathWorks is used. During this
step, the algorithm is specified, simulated and refined
until the desired performance factor values are obtained.
Typical performance factors are the SNR (Signal to
Noise Ratio), BER (Bit Error Rate), the required number
of bits, etc. Moreover those performance numbers can
be evaluated for several scenarios (single vs. multi-user,
multi-path channel, etc.). Once the theoretical
performances of the algorithm have been obtained, a
central step must be performed before to actually
implement the system into hardware. This design space
exploration step is used to characterize and explore the
algorithm parallelism, as described in sub-section 2.2.

2.2. Step 2: design space exploration

Our academic tool, Design-Trotter, is used in Step 2 to
characterize and explore the algorithm parallelism. The
input language of Design-Trotter is a large subset of the
C language. The conversion from Matlab to C can be
performed manually or automatically using tools such as
[1].

2.2.1. Sub-step 2.1: C to HCDFG

Sub-step 2.1 converts the C source code into a HCDFG,
namely a Hierarchical Control Data Flow Graph [2]. The
HCDFG model is the internal representation of Design-
Trotter and includes DFGs, multidimensional data
representation, control structures, hierarchy etc. More
details about the HCDFG model can be found in [2] and
[3].

2.2.2. Sub-step 2.2: characterization

In Sub-step 2.2 an abstracted characterization (without
any architectural assumptions) of the algorithm is
performed. It relies on the computation of three metrics:
a) COM (Control Orientation Metric) which expresses
the ratio of control oriented operations; b) MOM
(Memory Orientation Metric) which expresses the ratio
of memory oriented operations and c) Gamma which
expresses the potential parallelism of the algorithm.
These metrics guide the designer for implementation

decisions such as HW/SW pre-partitioning. For each
metric a general formula is given; the formulas for the
HCDFG constructs (CDFG, HCDFG, etc.) are detailed
in [3].

2.2.2.1 Control Orientation Metric (COM)
COM indicates the ratio of control operations (i.e., tests
that cannot be eliminated at compile time) in CDFGs
and HCDFGs. The general formula of COM is the ratio
between i) the number of non-deterministic test
operations and ii) the total number of operations
including processing operations, tests and accesses to
the global memory. COM values are bounded in the
interval [0;1]. The more COM gets close to 1, the more
a function is control dominated, involving complex
control structures that are not well suited for hardware
implementation. It also indicates that using very long
pipelined processors is not efficient for such functions.

2.2.2.2 Memory Orientation Metric (MOM)
MOM indicates the ratio of memory accesses in a graph.
The general formula for MOM is the ratio between i) the
number of global memory accesses and ii) the number of
global memory accesses plus the number of processing
operations. Its value is bounded in the interval [0;1].
High MOM values indicate that processing operations
are applied to “new” data (i.e., fresh input data, as
opposed to data computed previously that might reside
in a local memory). The more MOM gets close to 1, the
more the function is data-transfer oriented. If hard time
constraints have to be met, high performance memories
are required (large bandwidth, dual-port memory, etc.),
as well as an efficient use of memory hierarchy and data
locality.

2.2.2.3 Criticity metric
The criticity is defined by the metric Gamma such as the
ratio between i) the number of processing and memory
accesses operations and ii) the critical path. The critical
path of a DFG is defined as the longest chain of
sequential operations (expressed in cycle number). The
critical path for a function (i.e., for an H/CDFG) is
computed hierarchically by combining the critical path
of its sub-parts. Gamma indicates the average
parallelism available at a specific hierarchy level. A
function with a high Gamma value can benefit from an
architecture offering high parallelism capabilities. On
the other hand, a function with a low Gamma value has a
rather sequential execution. In that case the acceleration
of this function can be made via temporal parallelism
(e.g., long pipeline), depending on the value of the COM
metric. From a consumption point of view, a function
with a high parallelism offers the opportunity to reduce
the clock frequency by exploiting the spatial parallelism.

This is the authors’ version of a paper that has been published in the proceedings of the Eight International Symposium
on Wireless Personal Multimedia Communications, Aalborg, Denmark, 18-22 September 2005.

2.2.3. Sub-step 2.3: parallelism exploration

Sub-step 2.3 performs the exploration of the algorithm
parallelism. Its principle is to schedule the algorithm
onto a generic (virtual model) of the architecture (that
can reflect HW and/or SW devices) for many time
constraints (expressed in clock cycles at this level of
abstraction). The different time constraints express as
many possible solutions: for a given time constraint, a
certain quantity of operations has to be executed
simultaneously, which implies that a sufficient quantity
of operators has to be available on the architecture. The
solutions generated by Design-Totter are represented
with a convenient 2D graphical form using trade-off
curves. They represent the number of required operators
vs. the number of clock cycles. Thus, they provide
accurate estimations to evaluate the acceleration
potential of a HW implementation [4]. Before
scheduling, the designer can specify the types of
operators to use, possibly corresponding to a given
implementation device. This flexibility offers him the
possibility to create new architectures or to reflect
existing ones. The scheduling technique is very fast [5],
thus the designer can rapidly explore and prune a very
large design space. By referring to the metrics and
parallelism exploration results provided by step 2, the
designer rapidly evaluates the needs of the application
and can choose/build the most appropriate architecture.
Parallelism exploration results provide key information
on the location and the amount of parallelism that will
allow for an optimal implementation of the functions to
be mapped onto hardware.

2.3. Step 3: FPGA implementation

In the proposed methodology, the hardware
implementation is performed in Step 3. This step is
based on the DK-Suite tool that enables Handel-C to
FPGA synthesis.

2.3.1. Sub-step 3.1: C to Handel-C

The “C to FPGA” concept in DK-Suite requires a
Handel-C version of the algorithm; this involves that the
designer must manually express parallelism using the
"par" statement. Moreover, to enable resource sharing
the designer have to use functions to define the operators
(fine or coarse grain) that can be shared. This is where
the parallelism trade-off curves generated by Design-
Trotter are used: by referring to the schedule details
provided by those curves, the designer can easily find
out i) where parallelism opportunities are located, ii)
which resources should be shared and iii) reflect those
options in the Handel-C code by means of "par"
statements and functions respectively. This step is not
yet automated; however it is easily performed by using
the GUI of Design-Trotter: the designer only needs to
click on the solution from the trade-off curve that he

wants to implement; this opens a new window showing
the schedule details, for all the hierarchy levels of the
algorithm.

2.3.2. Sub-step 3.2: Handel-C to VHDL or EDIF

Dk-Suite features two design trajectories: from the
Handel-C source code it is possible to obtain either a
VHDL code or an EDIF netlist. Choosing the VHDL
path enables further modifications and optimizations, for
example in the generated Finite State Machine. Both
approaches are simple and straightforward, requiring a
few configuration parameters only. Generic and target-
dependant optimizations are available to further improve
the design efficiency. The synthesis technology behind
DK-suite is described in [6].

2.3.3. Sub-step 3.3: Back-end steps

Once the VHDL or EDIF file has been generated
with DK-Suite, the FPGA implementation is performed.
If the VHDL option has been chosen, HDL synthesis
plus place and route have to be performed. If the EDIF
option has been chosen, only place and route is needed.

3. EXPERIMENTAL RESULTS

We have applied the proposed methodology to explore
and implement a RAKE algorithm [7]. This algorithm
processes vector inner product operations on complex
numbers. First of all, the algorithm has been designed
and simulated with Matlab. Fig.2 shows 5 simulated
BER curves: floating point and 6,8,10,12 bits fixed
points representations. The 12 bits curve is almost
overlapping the floating-point curve, offering enough
performance for this study case. Since floating-point
implementations are extremely expensive in terms of
hardware, it has been decided to implement the RAKE
algorithm with a 12 bits, fixed point, representation.

Fig. 2 RAKE receiver BER simulation with Design-

Trotter

This is the authors’ version of a paper that has been published in the proceedings of the Eight International Symposium
on Wireless Personal Multimedia Communications, Aalborg, Denmark, 18-22 September 2005.

Subsequently the C code has been created, using the
Matlab code as a reference. The algorithm has been
characterized and its parallelism explored with Design-
Trotter. A screenshot of the GUI of Design-Trotter at
work is shown in fig.3. Table 1 and table 2 summarize
the results generated by Design-Trotter.

Table 1: Rake characterization with Design-Trotter

Level MOM COM Gamma
Main 0.746 0.001 3.417
Outer
loop

0.746 0.013 3.417

Inner
loop

0.750 0.025 3.303

Table 1 shows the characterization results. Firstly, the
metrics indicate that the algorithm is relatively memory
oriented (MOM values are larger than 2/3). This is
mainly due to the fact that the algorithm accesses a large
number of input-data. Secondly, the COM metric values
indicate that there are almost no non-deterministic
control operations; this is explained by the fact that the
loop indices are not data-dependent. Finally, Gamma
values indicate that most of the parallelism is
concentrated in the inner loop (since Gamma values do
not increase significantly for the outer loop and the main
function).
Table 2 shows 7 Pareto-like solutions, generated by the
exploration feature of Design-Trotter. Each solution
describes a possible implementation of the algorithm,
where the fastest ones are the most expensive in terms of
resources. In this experiment we have chosen to
implement the solution executing in 12499 cycles (4
ALUs, 3 Mults, 4 simultaneous memory accesses) onto a
Xilinx FPGA.

 Table 2: Rake parallelism exploration with Design-Trotter

Nb cycles Nb ALUs Nb
Multiplier
s

NB
memory
accesses

10211 5 5 5
11795 5 4 5
12499 4 3 4
13203 3 2 4
15315 3 2 3
16723 2 2 3
25611 1 1 1

Subsequently to the characterization and the design
space exploration with Design-Totter, the C to Handel-C
conversion has been performed. The development of the
Handel-C version has been guided by the results

provided by Design-Trotter. Those results show where
the parallelism is available in the algorithm and are used
to choose where to use the 'par' statement and functions
in the Handel-C code. Those two features are used to
indicate which operations and functions should execute
simultaneously and those that should share resources,
respectively. Once the Handel-C code has been created
we have generated the corresponding VHDL code with
DK-Suite. Subsequently, this VHDL code has been
synthesized with Xilinx ISE for a Xilinx XC2S200
FPGA. The HDL synthesis results are given in table 3.
Finally, the low-level synthesis and place and route steps
have been performed, with the same tool. The low-level
implementation results are given in table 4.

Table 3: RAKE algorithm HDL synthesis results generated
with Xilinx ISE

Macro-statistics
adders/subtractor 4

multipliers 3

Table 4: RAKE algorithm low-level synthesis results
generated with Xilinx ISE for a Spartan-II xc2s200 FPGA

Logic
Utilization

Used Available Utilization

Number of
Slices

225 2352 9%

Number of
Slice Flip

Flops

192 4704 4%

Number of 4
input LUTs

309 4704 6%

Number of
bounded

IOBs

80 288 27%

Number of
GCLKs

1 4 25%

4. CONCLUSIONS AND FUTURE WORK

This paper has described a fast, user-friendly
methodology to speed-up the complete development
cycle of DSP applications. This methodology is
composed of three steps: i) algorithm design with
Matlab, ii) algorithmic-level characterization and
parallelism exploration with Design-Trotter, and iii)

This is the authors’ version of a paper that has been published in the proceedings of the Eight International Symposium
on Wireless Personal Multimedia Communications, Aalborg, Denmark, 18-22 September 2005.

FPGA implementation with DK Design Suite. The three
successive steps of the flow enable DSP system
designers to rapidly converge from the specification
phase to the final synthesis of the system onto a FPGA.
Firstly the algorithm is designed and simulated with
Matlab. Then, as opposed to traditional design-flows, a
central step provides an efficient exploration of the
algorithm properties. This design space exploration step,
performed with our tool Design-Trotter, consists in the
algorithm characterization and the exploration of its
parallelism. This indicates the designer what are the
processing and data-transfer orientations of the
algorithm and shows him where the its potential
parallelism is available by means of parallelism vs. cycle
budget trade-off curves and schedule details.
Subsequently, the parallelism information provided by
Design-Trotter is used to guide the development of the
Handel-C description of the algorithm, and the Handel-C
to FPGA synthesis is performed.

Our experiments with the RAKE algorithm have
illustrated how designers can easily design, explore and
synthesized DSP algorithms. Future works will
investigate the use of other HLS tools in order to
compare the differences in terms of performance;
another point is to verify the level of optimization
potential still left to the designer in the backend steps.
Furthermore, the automation of the parallelism
specification in the Handel-C code to enable parallel
execution and resource sharing remains an open research
issue that should be investigated.

REFERENCES

[1] MATLAB to C-Code Synthesis. Catalytic-Inc.
http://www.catalytic-inc.com/synthesis.html.

[2] Y. le Moullec, J-Ph. Diguet, N. Ben Amor, T.
Gourdeaux and J-L. Philippe. Algorithmic Level
Specification and Characterization of Embedded
Multimedia Applications with Design-Trotter. To
appear in Journal of VLSI Signal Processing
(Springer), 2005.

[3] Y. le Moullec, N. ben Amor, J-Ph. Diguet, J-L.
Philippe, and M. Abid. Multi-granularity Metrics
for the Era of Strongly Personalized SoCs. In
Design Automation and Test in Europe Conference
(DATE03), Munich, Germany, March 2003.

[4] S. Bilavarn, G. Gogniat, J-L. Philippe and L.
Bossuet, Fast Prototyping of Reconfigurable
Architectures from a C Program, IEEE International
Symposium on Circuits and Systems, Bangkok,
Thailand, May 2003.

[5] Y. le Moullec, P. Koch, J-Ph. Diguet, and J-L.
Philippe. Design-Trotter: Building and Selecting
Architectures for Embedded Multimedia
Applications. In International Symposium on
Consumer Electronics (ISCE03), Sydney, Australia,
December 2003.

[6] Dk design suite datasheet. www.celoxica.com.
[7] Søren S. Christensen and Tarik Vaizovic. Analysis

and Implementation of Linear Receivers for DS-
CDMA Signals. Master’s thesis, Aalborg
University, Denmark, 2002.

Fig. 3 Characterization and parallelism exploration with Design-Trotter

