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Abstract In his 1985 paper, Sullivan sketched a proof of his structural stability theorem for differentiable
group actions satisfying certain expansion-hyperbolicity axioms. In this paper, we relax Sullivan’s axioms
and introduce a notion of meandering hyperbolicity for group actions on geodesic metric spaces. This
generalization is substantial enough to encompass actions of certain nonhyperbolic groups, such as actions
of uniform lattices in semisimple Lie groups on flag manifolds. At the same time, our notion is sufficiently
robust, and we prove that meandering-hyperbolic actions are still structurally stable. We also prove some
basic results on meandering-hyperbolic actions and give other examples of such actions.
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1. Introduction

In [35], Sullivan stated his structural stability theorem for group actions satisfying certain

expansion-hyperbolicity axioms in the C1-setting. Its main application was to the stability
for convex-cocompact Kleinian groups, but this particular result of Sullivan appears to

have been relatively unknown (see Remark 4.7) presumably due to the lack of a detailed

proof.
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Structural stability of meandering-hyperbolic group actions 3

The goal of this paper is twofold. First, we generalize Sullivan’s result in two directions
and provide a detailed proof along the way. We work with locally bi-Lipschitz group

actions on geodesic metric spaces. We then weaken Sullivan’s axioms to what we call

meandering hyperbolicity. This condition still implies the structural stability in the sense
of Sullivan even though the groups need not be word-hyperbolic. Second, we establish

some basic properties of meandering-hyperbolic actions and explore various examples of

such actions, most unexpected among which are actions of uniform lattices in semisimple

Lie groups on flag manifolds. As for word-hyperbolic groups, other interesting examples
include Anosov actions on flag manifolds as well as actions with invariant subsets

nonhomeomorphic to Gromov boundaries.

We now explain Sullivan’s structural stability theorem in more detail and exhibit the
key idea of our generalization.

Theorem [35, §9. Theorem II]. Consider a group action Γ→Diff1(M) on a Riemannian

manifold M with a compact invariant subset Λ⊂M . If the action satisfies the expansion-

hyperbolicity axioms, then it is structurally stable in the sense of C1-dynamics.

Here, the expansion axiom means that for all x∈Λ there exists g ∈Γ such that ‖g′(x)‖>
1 with respect to the Riemannian metric. We generalize this condition accordingly for

locally bi-Lipschitz actions on geodesic metric spaces (Definition 3.4). For each point
x ∈ Λ, the expansion condition enables us to choose a sequence (called a code) α in a

finite generating set of Γ, along with the corresponding ray cα : N0 → Γ in (the Cayley

graph of) the group Γ (Definitions 3.10 and 3.12).

Sullivan’s hyperbolicity axiom, which we refer to as S-hyperbolicity (with the letter
S standing for Sullivan), is an additional requirement to the expansion axiom, stating

that any two rays associated to a point x ∈ Λ are within Hausdorff distance N from

each other for some uniform constant N > 0 (Definition 3.25), which is a form of the
fellow-traveling condition. Under this condition, Sullivan’s theorem asserts that the action

ρ : Γ → Diff1(M) is structurally stable in the sense of C1-dynamics, that is, for every

action ρ′ sufficiently C1-close to ρ, there exists a ρ′-invariant compact subset Λ′ ⊂M and
an equivariant homeomorphism φ : Λ→Λ′. The S-hyperbolicity condition plays a critical

role in defining the image φ(x) unambiguously, regardless of the choice made for codes α.

The key point in our generalization is the simple observation that such a fellow-traveling

property of rays in the S-hyperbolicity condition is too strong a requirement and that a
much more relaxed equivalence relation between rays would still suffice for the existence

of the map φ (Section 4.4). Namely, given two rays for a point in Λ, we require that they

are Hausdorff-close only on infinite subsets of each. Furthermore, we allow interpolation
of such a relation by other rays. The equivalence relation generated in this way is the

main feature of our generalization of S-hyperbolicity, which we call the meandering

hyperbolicity condition (Definition 3.26). See Remark 3.24(b) for our reasoning behind
the nomenclature.

With this relaxed definition, we generalize Sullivan’s structural stability theorem as

follows. Let LHomeo(M) denote the group of locally bi-Lipschitz homeomorphisms of M.
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Theorem 1.1 (Theorem 4.4(1)). Consider an action Γ → LHomeo(M) of a finitely

generated group Γ on a proper geodesic metric space M with a compact invariant subset

Λ ⊂M , no point of which is isolated in M. If the action is meandering-hyperbolic, then
it is structurally stable in the sense of Lipschitz dynamics.

See Theorem 4.4 for the full statement. We say that an action ρ : Γ → LHomeo(M)

is structurally stable in the sense of Lipschitz dynamics if, for every action ρ′ : Γ →
LHomeo(M) sufficiently close to ρ with respect to the compact-open Lipschitz topology
(see Section 4.1), there exists a ρ′-invariant subset Λ′ ⊂ M along with a topological

conjugacy φ : Λ→ Λ′.
This generalization of Sullivan’s theorem is general enough to encompass actions of

certain nonhyperbolic groups as we exhibit below. Its proof will take the entire Section 4.

We mostly follow Sullivan’s idea of proof, filling in the details he sometimes left out,

except in Section 4.4, where the meandering hyperbolicity condition comes in and plays

a crucial role, and in Sections 4.9 and 4.10, which are not covered in his paper.
We investigate various examples of expanding and meandering-hyperbolic actions. Most

significantly, in Section 5, we establish the following result regarding uniform lattices of

semisimple Lie groups:

Theorem 1.2 (Theorem 5.1 and Corollary 5.2). Suppose that G is a semisimple Lie
group, P <G is a parabolic subgroup and Γ<G is a uniform lattice. Then

(1) the Γ-action on the flag manifold G/P is (uniformly) meandering-hyperbolic;

(2) consequently, the action is structurally stable in the sense of Lipschitz dynamics.

While stability of the action is consistent with various other rigidity properties of

uniform lattices, the hyperbolic nature of the actions of higher rank uniform lattices
on flag manifolds is a new phenomenon: Higher rank uniform lattices are traditionally

regarded as having no hyperbolic features. The main tools in proving Theorem 1.2(1)

are Morse quasi-geodesics in higher rank symmetric spaces and asymptotic properties
of regular sequences in G, established in earlier papers by Kapovich, Leeb and Porti

[23, 26, 27].

We hope that other interesting nonhyperbolic group actions satisfy meandering

hyperbolicity as well. For example:

Conjecture 1.3. Let Γ be a group of automorphisms of a CAT(0) cube complex X,
acting on X properly discontinuously and cocompactly. Then the action of Γ on the Roller

boundary ∂RX of X is meandering-hyperbolic for a suitable metric on ∂RX.

Even for word-hyperbolic groups Γ, meandering-hyperbolic actions Γ → LHomeo(M)

provide interesting results and examples. In this setting, we find a relation between the
Γ-invariant set Λ and the Gromov boundary ∂∞Γ of Γ as follows.

Theorem 1.4 (Definition 6.1 and Theorem 6.8). Let Γ be a nonelementary word-

hyperbolic group. If Γ→ LHomeo(M) is a meandering-hyperbolic action with a compact

invariant subset Λ, then there exists an equivariant continuous surjective postal map
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π : Λ→ ∂∞Γ to the Gromov boundary of Γ; the map π restricts to a quasi-open map on
each minimal nonempty closed Γ-invariant subset Λμ ⊂ Λ.

Here, a map between topological spaces is said to be nowhere constant (resp. quasi-

open) if the image of every nonempty open subset is not a singleton (resp. has nonempty

interior).

We then explore examples of meandering-hyperbolic actions of word-hyperbolic groups
where the postal maps π above are increasingly more complicated. Simple examples are

convex-cocompact Kleinian groups and, more generally, Anosov subgroups (see Section

2.4), for which the invariant subsets Λ are equivariantly homeomorphic to the Gromov
boundary ∂∞Γ (via the postal map π). In contrast, there are examples where the postal

map π can be a covering map (Examples 7.3 and 7.4), can be open but fail to be a local

homeomorphism (Example 7.5) and can even fail to be an open map (Example 7.6).
Conversely to Theorem 1.4, we also prove:

Theorem 1.5 (Theorem 6.2). Let Γ be a nonelementary word-hyperbolic group. Suppose
that Γ→ LHomeo(M) is an action expanding at Λ, for which there exists an equivariant

continuous nowhere constant map f : Λ→ ∂∞Γ. Then the Γ-action is S-hyperbolic (and

thus, meandering-hyperbolic) at Λ and the map f equals the postal map π (of the previous
theorem).

We note that in the case of real-analytic expanding Γ-actions on the circle, a sharper

result is proven by Deroin in [14]. Without assuming hyperbolicity of Γ (he only assumes

finite generation and local discreteness of the action), Deroin proves that the action comes

from a lift of a Fuchsian group action under a finite covering map S1 → S1. Compare
Example 7.3.

Building upon the work in [26] and Theorem 1.5, we give a (yet another) new

characterization of Anosov subgroups in terms of expanding actions. See Theorem 6.12.
This characterization shows, among other things, that the action of any Anosov group on

its flag-limit set in the partial flag manifold is S-hyperbolic. Thus, thanks to Theorem 1.1,

we obtain the stability of Anosov groups in a broader context than those in [19, Theorem
5.13] and [24, Theorems 1.11 and 7.36]. Based on this, we also obtain an alternative proof

for the openness of the Anosov property in the representation variety (Corollary 6.14).

We remark that Bochi, Potrie and Sambarino [3] gave a purely dynamical proof of the

structural stability of Anosov representations, which shares many similarities with the
concepts in the present paper. For example, one may compare the expansion subsets with

the notion of multicones in [3, Section 5]. The existence of codings appears in [3, Lemma

3.20] and the expansion property in [3, Lemma 3.21]. (We thank the referee for pointing
out these similarities to us.) On the other hand, in the setting of S-hyperbolic actions,

such as Anosov actions, all the ideas in the proof of Theorem 1.1 go back to Sullivan’s

original paper [35].
After the initial version of this paper was completed, Mann and Manning posted an

interesting preprint [29] related to the main theme of our paper: They prove topological

stability of word-hyperbolic group actions on their boundaries under the assumption that
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the latter are topological spheres. Unlike our work, they only assume C0 rather than

Lipschitz perturbation.

2. Notation and preliminaries

The identity element of an abstract group will be denoted by e. We will use the following

notation for the sets of nonnegative integers and natural numbers:

N0 = {0,1,2, . . .} and N= {1,2,3, . . .}.

We will follow the Bourbaki convention that neighborhoods of a point a (resp. a subset
A) in a topological space X need not be open but are only required to contain an open

subset which, in turn, contains a (resp. A). In particular, a topological space X is locally

compact if and only if every point in X admits a neighborhood basis consisting of compact
subsets of X.

A topological space is called perfect if it has no isolated points and has cardinality ≥ 2.

A map between topological spaces is nowhere constant if the image of every open subset
is not a singleton. A map is said to be open if it sends open sets to open sets. A map

f :X → Y is open at a point x ∈X if it sends every neighborhood of x to a neighborhood

of f(x). We let Of denote the subset of X consisting of points where f is open. Thus, a

map f is open if and only if Of =X.
A map f :X → Y is said to be quasi-open (or quasi-interior) if, for every subset A⊂X

with nonempty interior, the image f(A) has nonempty interior in Y. If f : X → Y is a

continuous map between locally compact metrizable spaces then it is quasi-open if and
only if the subset Of ⊂ X is comeagre (that is, its complement is a countable union

of nowhere dense subsets). For instance, the map R→ R,x �→ x2, is quasi-open but not

open. A more interesting example of a (nonopen) quasi-open map is a Cantor function
f :C→ [0,1], which is a continuous surjective monotonic function from a Cantor set C ⊂R.

It has the property that x1 < x2 implies f(x1)< f(x2) unless x1,x2 are boundary points

of a component of R−C. Thus, C−Of is the countable subset consisting of boundary

points of components of R−C.
Let (X,d) be a metric space. Given x ∈ X and r > 0, the open (resp. closed) r -ball

centered at x is denoted by Br(x) (resp. Br(x)). Given a subset Λ ⊂X, its open (resp.

closed) r -neighborhood is denoted by Nr(Λ) (resp. Nr(Λ)). A Lebesgue number of an
open cover U of Λ is defined to be a number δ > 0 such that, for every x ∈ Λ, the δ-ball

Bδ(x) is contained in some member of U ; we denote

δU = sup{δ | δ is a Lebesgue number of U}.

For a subset U ⊂X and r > 0, we define

Ur = {x ∈ U |Br(x)⊂ U} ⊂ U. (2.1)
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A sequence of subsets Wk ⊂X is said to be exponentially shrinking if the diameters of
these subsets converge to zero exponentially fast, that is, there exist constants A,C > 0

such that

diam(Wk)≤Ae−Ck

for all k.
If X is a Riemannian manifold and Φ is a diffeomorphism of X, the expansion factor

of Φ at x ∈X is defined as

E(Φ,x) = inf
0 �=v∈TxX

‖DxΦ(v)‖
‖v‖ . (2.2)

We now present some dynamical and geometric preliminaries to be used later. For more
details, we refer the readers to [7] and [15].

2.1. Topological dynamics

A continuous action Γ×Z → Z of a topological group on a topological space is minimal

if Z contains no proper closed Γ-invariant subsets or, equivalently, if every Γ-orbit is
dense in Z. A point z ∈ Z is a wandering point for an action Γ×Z → Z if there exists a

neighborhood U of z such that gU ∩U = ∅ for all but finitely many g ∈ Γ. If the space

Z is metrizable, then a point z ∈ Z is not a wandering point if and only if there exist
a sequence (gk) of distinct elements in Γ and a sequence (zk) in Z converging to z such

that gkzk → z. For further discussion of dynamical relations between points under group

actions, see [22, §4.3].
A continuous action Γ×Z→Z of a discrete group Γ on a compact metrizable topological

space Z is a convergence action if the product action of Γ on Z3 restricts to a properly

discontinuous action on

T (Z) = {(z1,z2,z3) ∈ Z3 | card{z1,z2,z3}= 3}.

Equivalently, a continuous action of a discrete group is a convergence action if every
sequence (gk) contains a subsequence (gkj

) which is constant or converges to a point

z+ ∈ Z uniformly on compacts in Z −{z−} for some z− ∈ Z; see [6, Proposition 7.1].

In this situation, the inverse sequence (g−1
kj

) converges to z− uniformly on compacts in
Z −{z+}. The set of such limit points z+ is the limit set Λ of the action of Γ; this is

a closed Γ-invariant subset of Z. Observe that a convergence action need not be faithful

but it necessarily has finite kernel, provided that T (Z) �= ∅. A convergence action on Z is
called uniform if it is cocompact on T (Z).

Remark 2.3. Since proper discontinuity of an action is preserved under taking

subgroups, if the action of Γ on Z is a convergence action, then its restriction to any

subgroup Γ0 < Γ is still a convergence action.

Item (1) of the following theorem can be found in [36, Theorem 2S]; for item (2) see

[37, Theorem 1A] for instance.
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Theorem 2.4. Suppose Γ×Z → Z is a convergence action with limit set Λ such that
card(Λ)≥ 3. Then

(1) Λ is perfect and the action is minimal on Λ.

(2) If the action is uniform and Z is perfect, then Z = Λ.

2.2. Coarse geometry

A metric space (X,d) is proper if the closed ball Br(x) is compact for every x ∈X and

every r > 0. Note that proper metric spaces are complete. A metric space (X,d) is called
a geodesic space if every pair of points x,y ∈X can be joined by a geodesic segment xy,

that is, an isometric embedding of an interval into X joining x to y.

Definition 2.5 (Quasi-geodesic). Let I be an interval of R (or its intersection with

Z) and (X,d) a metric space. A map c : I → X is called an (A,C)-quasi-geodesic with

constants A≥ 1 and C ≥ 0 if for all t,t′ ∈ I,

1

A
|t− t′|−C ≤ d(c(t),c(t′))≤A|t− t′|+C.

Definition 2.6 (Hyperbolic space). Let δ ≥ 0. A geodesic space X is said to be

δ-hyperbolic if, for any geodesic triangle in X, each side of the triangle is contained in the
closed δ-neighborhood of the union of the other two sides. A geodesic space is said to be

hyperbolic if it is δ-hyperbolic for some δ ≥ 0.

Let X be a proper δ-hyperbolic space. Two geodesic rays R≥0 → X are said to be

asymptotic if the Hausdorff distance between their images is finite. Being asymptotic

is an equivalence relation on the set of geodesic rays. The set of equivalence classes of

geodesic rays in X is called the visual boundary of X and denoted by ∂∞X. In view of
the Morse lemma for hyperbolic spaces (see [7, Theorem III.H.1.7] or [15, Lemma 11.105]

for example), one can also define ∂∞X as the set of equivalence classes of quasi-geodesic

rays R≥0 → X. We will use the notation xξ for a geodesic ray in X emanating from x
and representing the point ξ ∈ ∂∞X.

Fix r > 2δ and let c0 :R≥0 →X be a geodesic ray representing ξ ∈ ∂∞X with c0(0)= x. A

topology on ∂∞X is given by setting the basis of neighborhoods of ξ to be the collection
{Vk(ξ)}k∈N, where Vk(ξ) is the set of equivalence classes of geodesic rays c such that

c(0) = x and d(c(k),c0(k))< r. This topology extends to the visual compactification of X

X :=X ∪∂∞X,

which is a compact metrizable space. We refer to [7, III.H.3.6] for details.

Let x,y,z ∈X. The Gromov product of y and z with respect to x is defined by

(y ·z)x :=
1

2
(d(x,y)+d(x,z)−d(y,z)).

The Gromov product is extended to X ∪∂∞X by

(y ·z)x := supliminf
k,j→∞

(yk ·zj)x,

https://doi.org/10.1017/S1474748022000597 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000597


Structural stability of meandering-hyperbolic group actions 9

where the supremum is taken over all sequences (yk) and (zj) in X such that limyk = y

and limzj = z.

Definition 2.7 (Visual metric). Let X be a hyperbolic space with base point x ∈ X.

A metric da on ∂∞X is called a visual metric with parameter a> 1 if there exist constants

k1,k2 > 0 such that

k1a
−(ξ·ξ′)x ≤ da(ξ,ξ

′)≤ k2a
−(ξ·ξ′)x

for all ξ,ξ′ ∈ ∂∞X.

For every a > 1 sufficiently close to 1, a proper hyperbolic space admits a visual metric

da which induces the same topology as the topology on ∂∞X described above. We refer
to [7, Chapter III.H.3] for more details on constructing visual metrics.

In the rest of the section, we discuss hyperbolic groups and their relation to convergence

actions.

Definition 2.8 (Hyperbolic group). A finitely generated group Γ is word-hyperbolic

(or simply hyperbolic) if its Cayley graph with respect to a finite generating set of Γ
is a hyperbolic metric space. A hyperbolic group is called elementary if it contains a

cyclic subgroup of finite index and nonelementary otherwise.

The Gromov boundary ∂∞Γ of a hyperbolic group Γ is defined as the visual boundary

of a Cayley graph X of Γ. The closure of Γ⊂X in the visual compactification X equals

Γ∪∂∞Γ and is denoted Γ; it is the visual compactification of Γ.

Every hyperbolic group Γ acts on its visual compactification Γ by homeomorphisms.
This action is a convergence action; see [36, Theorem 3.A] and [17]. If a sequence (ck)

in Γ represents a quasi-geodesic ray within bounded distance from a geodesic ray gξ

(g ∈ Γ, ξ ∈ ∂∞Γ), then this sequence, regarded as a sequence of maps Γ→ Γ, converges
to ξ uniformly on compacts in Γ−{ξ′} for some ξ′ ∈ ∂∞Γ. We will use the following

refinement of this property later in the proof of Theorem 6.2:

Lemma 2.9. Let Γ be a word-hyperbolic group. Suppose that c : N0 → Γ, k �→ ck, is an

(A,C)-quasi-geodesic ray in Γ such that

• the word length of c0 is ≤ 1, and
• there exists a subsequence (ckj

) converging to a point ξ ∈ ∂∞Γ pointwise on a subset
S ⊂ ∂∞Γ with card(S)≥ 2.

Then the image c(N0) is D-Hausdorff close to a geodesic eξ in the Cayley graph X of Γ,

where D depends only on (A,C) and the hyperbolicity constant of X.

Proof. Since the word length of c0 is ≤ 1, the extended Morse lemma for hyperbolic

groups in [15, Lemma 11.105] states that there is a geodesic ray eμ (μ ∈ ∂∞Γ) starting at

the identity e ∈ Γ such that the Hausdorff distance between the image c(N0) and the ray
eμ in X is bounded above by a uniform constant D > 0 depending only on (A,C) and X.

By the above property, the sequence (ck) converges to μ uniformly on compacts in

Γ−{μ′} for some μ′ ∈ ∂∞Γ. On the other hand, since card(S)≥ 2, there is a point ν ∈ S
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distinct from μ′ such that the subsequence (ckj
) converges to ξ on {ν} ⊂ ∂∞Γ. Therefore,

we must have μ= ξ and eμ= eξ.

Furthermore, the action of Γ on ∂∞Γ is a uniform convergence action. In particular, if

Γ is nonelementary, then this action has finite kernel (the unique maximal finite normal
subgroup of Γ), is minimal and ∂∞Γ is a perfect topological space; compare Theorem 2.4.

We refer to [15, Lemma 11.130] for more details.

Conversely, Bowditch [6] gave a topological characterization of hyperbolic groups and

their Gromov boundaries as uniform convergence actions Γ×Z → Z of discrete groups
on perfect metrizable topological spaces:

Theorem 2.10 (Bowditch). Suppose that Z is a compact perfect metrizable space of

cardinality ≥ 2 and Γ×Z → Z is a continuous action of a discrete group, which is
a uniform convergence action. Then Γ is a nonelementary hyperbolic group and Z is

equivariantly homeomorphic to the Gromov boundary ∂∞Γ.

2.3. Symmetric spaces

We collect several definitions regarding the geometry of symmetric spaces that are

necessary for our presentation in Sections 5, 6 and 7. For more details, readers may
refer to [1], [16] or [26, Section 2.]

Throughout Sections 2.3 and 2.4, let G be a semisimple Lie group and X the associated

symmetric space.
The visual boundary ∂∞X of X has a topological spherical building structure, the Tits

building associated to X. Let amod denote the model apartment of this building and W

the Weyl group acting isometrically on amod. We will fix a chamber σmod ⊂ amod and

call it the spherical model Weyl chamber ; it is a fundamental domain for the W -action
on amod. Let w0 ∈W denote the unique element sending σmod to the opposite chamber

−σmod. Then the opposition involution ι of the model chamber σmod is defined as ι=−w0.

We denote by Δ := Δmod the model Weyl chamber corresponding to σmod, a funda-
mental domain for the W -action on the model (maximal) flat Fmod of X. We will use the

notation dΔ for the G-invariant Δ-valued distance function on X.

Consider the induced action of G on ∂∞X. Every orbit intersects every chamber exactly
once, so there is a natural identification ∂∞X/G ∼= σmod. The projection θ : ∂∞X →
∂∞X/G is called the type map. Let τmod be a face of σmod. We will assume, in what follows,

that the simplex τmod is ι-invariant. The τmod-flag manifold Flag(τmod) is the space of

simplices of type τmod in ∂∞X. It has a structure of a compact smooth manifold and can
be identified with the quotient space G/Pτ , where Pτ < G is the stabilizer subgroup of

a simplex τ ⊂ ∂∞X of type θ(τ) = τmod. Two simplices τ1 and τ2 in ∂∞X are said to

be antipodal if they are opposite in an apartment containing both of them; their types
are related by θ(τ2) = ιθ(τ1). A subset E of Flag(τmod) is said to be antipodal if any two

distinct elements of E are antipodal. A map into Flag(τmod) is antipodal if it is injective

and has an antipodal image. We shall always assume that Flag(τmod) is equipped with
an auxiliary Riemannian metric.

Let τ ⊂ ∂∞X be a simplex of type τmod. The star st(τ) ⊂ ∂∞X is the union of all

chambers containing τ . We denote by ∂ st(τ) the union of all simplices in st(τ) which do
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not contain τ , and define ost(τ) := st(τ)−∂ st(τ). We denote by Wτmod
the W -stabilizer of

τmod. A subset Θ⊂ σmod is Wτmod
-convex if its symmetrization Wτmod

Θ⊂ amod is convex;

for such a subset Θ, we define stΘ(τ) := st(τ)∩θ−1(Θ).
For x ∈ X and S ⊂ ∂∞X, the Weyl cone V (x,S) ⊂ X is defined to be the union of

rays xξ (ξ ∈ S). For a flat f ⊂ X the parallel set, P (f) is the union of all flats f ′ such
that ∂∞f ′ = ∂∞f . For a pair of antipodal simplices τ1,τ2 ⊂ ∂∞X, we define P (τ1,τ2) to
be the parallel set of the unique minimal flat whose ideal boundary contains {τ1,τ2};
equivalently, it is the union of all geodesics in X which are forward/backward asymptotic

to points in τ1 and τ2.

Definition 2.11 (Finsler geodesic). A τmod-Finsler geodesic is a continuous path c :

I → X contained in a parallel set P (τ1,τ2) for τ1,τ2 ∈ Flag(τmod) such that c(t2) ∈
V (c(t1),st(τ2)) for all subintervals [t1,t2] ⊂ I. It is uniformly τmod-regular if c(t2) ∈
V (c(t1),stΘ(τ2)) for some Wτmod

-convex compact subset Θ⊂ intτmod
(σmod).

Let xy be a τmod-regular oriented geodesic segment in X and xξ the geodesic ray
extending xy. We denote τ(xy) the unique simplex τ ∈ Flag(τmod) such that ξ ∈ ost(τ).

Let Θ ⊂ intτmod
(σmod). Then xy is Θ-regular if θ(ξ) ∈ Θ. If x1x2 is Θ-regular, we define

its Θ-diamond by

�Θ(x1,x2) = V (x1,stΘ(τ(x1x2)))∩V (x2,stΘ(τ(x2x1))).

Definition 2.12 (Morse quasi-geodesic). A (discrete) quasi-geodesic q : I ∩Z → X is

(Θ,R)-Morse if for every subinterval [t1,t2]⊂ I the subpath q|[t1,t2]∩Z is contained in the

R-neighborhood of the diamond �Θ(x1,x2) such that d(xi,q(ti))≤R for i= 1,2.

It is shown in [26, Theorem 5.53] that (Θ,R)-Morse quasi-geodesic rays (resp. lines) are

uniformly Hausdorff close to a uniformly τmod-regular Finsler geodesic rays (resp. lines).

2.4. Anosov subgroups

We recall the definitions of Anosov and nonuniformly Anosov subgroups given by

Kapovich, Leeb and Porti in [26, Definitions 5.43 and 5.62]. Many other equivalent

characterizations of the Anosov subgroups are established in [26, Theorem 5.47], and
their equivalence with the original definitions given by Labourie [28] and Guichard and

Wienhard [19] is proven in [26, Section 5.11].

Definition 2.13. Let τmod ⊂ σmod be an ι-invariant face. A subgroup Γ of a semisimple
Lie group G is τmod-boundary embedded if

(a) it is a hyperbolic group;

(b) there is an antipodal Γ-equivariant continuous map (called a boundary embedding)

ψ : ∂∞Γ→ Flag(τmod).

A τmod-boundary embedded subgroup Γ < G with a boundary embedding ψ is τmod-

Anosov if
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(c) for every ξ ∈ ∂∞Γ and for every geodesic ray r : N0 → Γ starting at e ∈ Γ and

asymptotic to ξ, the expansion factor (see equation (2.2)) satisfies

E(r(k)−1,ψ(ξ))≥AeCk

for k ∈ N0 with constants A,C > 0 independent of the point ξ and the ray r.

A τmod-boundary embedded subgroup Γ < G with a boundary embedding ψ is nonuni-
formly τmod-Anosov if

(d) for every ξ ∈ ∂∞Γ and for every geodesic ray r : N0 → Γ starting at e ∈ Γ and
asymptotic to ξ, the expansion factor satisfies

sup
k∈N0

E(r(k)−1,ψ(ξ)) = +∞.

A τmod-boundary embedded subgroup Γ < G is said to be nonelementary if it is a

nonelementary hyperbolic group.

Remark 2.14.

(a) In fact, for τmod-boundary embedded subgroups, the conditions (c) and (d) are
equivalent; see [26, Theorem 5.47]. For the purpose of this paper, the definition of

nonuniformly τmod-Anosov subgroups will suffice.

(b) A τmod-Anosov subgroup Γ<G may have other boundary embeddings ϕ : ∂∞Γ→
Flag(τmod) besides the map ψ which appears in the definition; see [24, Example

6.20]. However, the boundary embedding ψ as in the conditions (c) and (d) is

unique; its image is the τmod-limit set of Γ in Flag(τmod),

ψ(∂∞Γ) = ΛΓ(τmod)⊂ Flag(τmod).

We thus will refer to the map ψ as the asymptotic embedding for Γ<G.

3. Expansion and meandering hyperbolicity

Throughout Sections 3 and 4, we let (M,d) be a proper geodesic metric space and suppose

that a discrete group Γ acts continuously onM with a nonempty invariant compact subset
Λ⊂M , no point of which is isolated in M.

Remark 3.1. Note that we do not assume faithfulness of the action of Γ on Λ and even

on M.

In this situation, one considers two conditions on ρ called the expansion and meandering

hyperbolicity conditions, respectively. The meandering hyperbolicity condition will require

the expansion condition.
In the present section, we define the expansion condition, and draw the key Lemma 3.14

as well as its various consequences (Sections 3.1 and 3.3). We then define the meandering

hyperbolicity condition (Section 3.4).

https://doi.org/10.1017/S1474748022000597 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000597


Structural stability of meandering-hyperbolic group actions 13

3.1. The expansion condition

In order to define the expansion condition we need a little preparation.

Let f be a homeomorphism of M. Given λ > 1 and U ⊂M , we say f is (λ,U)-expanding

(or λ-expanding on U ) if

d(f(x),f(y))≥ λ ·d(x,y)

for all x,y ∈ U . In this case, we also say U is a (λ,f)-expanding subset. Note that f is

(λ,U)-expanding if and only if f−1 is (λ−1,f(U))-contracting, that is,

d(f−1(x),f−1(y))≤ 1

λ
·d(x,y)

for all x,y ∈ f(U).

Given δ > 0, a (λ,U)-expanding homeomorphism f is said to be (λ,U ;δ)-expanding if

Bλη(f(x))⊂ f(Bη(x)) whenever Bη(x)⊂ U and η ≤ δ.

Clearly, if f is (λ,U ;δ)-expanding, then it is also (λ,U ;δ′)-expanding for every δ′ ≤ δ.

Lemma 3.2. If M is a geodesic metric space, then every (λ,U)-expanding homeomor-
phism is also (λ,U ;δ)-expanding for every δ.

Proof. Suppose to the contrary that there exists a point

y ∈Bλη(f(x))\f(Bη(x)).

Let c be a geodesic path in M connecting f(x) and y ; the length of this geodesic is less

than λη. Since f(Bη(x)) is open in M, the path c crosses the boundary of f(Bη(x)) at a

point z. Because f is λ-expanding on the set U containing Bη(x) and f−1(z) ∈ ∂Bη(x),

we have

d(f(x),y)≥ d(f(x),z)≥ λd(x,f−1(z)) = λη.

This contradicts the assumption that y ∈Bλη(f(x)), that is, d(f(x),y)< λη.

The implication in the lemma does not hold for general metric spaces. As a simple

example, consider a compact metric space M of diameter D, which is not a singleton,

but contains an isolated point x. Consider f = IdM and take a neighborhood U of x and
η > 0 such that {x}=Bη(x)⊂ U = {x}. Then f is (λ,U)-expanding for any λ > 1. Thus,

taking λ such that λη ≥D, we see that

M =Bλη(f(x))� f(Bη(x)) =Bη(x) = {x}.

However, we note the following fact:

Lemma 3.3. Suppose that f is (λ,U)-expanding, where U is a bounded open subset of

M. Then for every δ > 0 there exists δ′ = δ′U > 0 such that f is (λ,U ′;δ′)-expanding with
U ′ := intU δ ⊂ U .

Proof. Since f(U δ) is compact, we have ε := d(f(U δ),M − f(U)) > 0. Now, we let

δ′ := λ−1 ·min{δ,ε}. If η ≤ δ′ and Bη(x) ⊂ U ′, in particular, f(x) ∈ f(U δ), then we have
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Bλη(f(x))⊂Bε(f(x))⊂ f(U) and hence f−1[Bλη(f(x))]⊂Bη(x) since f
−1 is (1/λ,f(U))-

contracting. Therefore, we conclude that Bλη(f(x))⊂ f(Bη(x)).

We are now ready to define the expansion condition. Let LHomeo(M) denote the group
of locally bi-Lipschitz homeomorphisms of M, that is, homeomorphisms of M whose

restrictions to compact subsets are bi-Lipschitz.

Definition 3.4 (Expansion). Let ρ : Γ → LHomeo(M) be an action with a nonempty

compact invariant subset Λ, no point of which is isolated in M. The action ρ is said to be

expanding at Λ if there exist

• a finite index set I,
• a cover U = {Ui ⊂M | i ∈ I} of Λ by open (and possibly empty) subsets Ui,
• a map s : I → Γ, i �→ si,
• and positive real numbers L≥ λ > 1 and δ ≤ δU

such that, for every i ∈ I, the map ρ(s−1
i ) is

(i) L-Lipschitz on Nδ(Λ), and

(ii) (λ,Uα;δ)-expanding,

and that the image Σ := {si | i ∈ I} ⊂ Γ of the map s is a symmetric generating set of

the group Γ.

In this case, the datum D := (I,U,Σ,δ,L,λ) (or, occasionally, any subset thereof) will

be referred to as an expansion datum of ρ.

If ρ : Γ → LHomeo(M) is an expanding action, let | · |Σ (resp. dΣ) denote the word
length (resp. the word metric) on the group Γ with respect to the generating set Σ from

Definition 3.4. Then the L-Lipschitz property (i) implies that

the map ρ(g) is Lk−Lipschitz on Nδ/Lk−1(Λ) (3.5)

for every g ∈ Γ with |g|Σ = k ∈ N.

Remark 3.6. A few more remarks are in order.

(a) Expanding actions appear naturally in the context of Anosov actions on flag

manifolds [26, Definition 3.1] and hyperbolic group actions on their Gromov
boundaries equipped with visual metrics [10]. See Section 6 for further discussion.

(b) The symmetry of the generating set Σ means that s ∈ Σ if and only if s−1 ∈ Σ.

This implies that ρ(si) is L-bi-Lipschitz on Nδ/L(Λ) for all i ∈ I.
(c) Suppose that M is a Riemannian manifold and the action ρ is by C1-

diffeomorphisms. Then, ρ is expanding provided that for every x ∈ Λ there exists

g ∈ Γ such that E(ρ(g),x) > 1 (see equation (2.2)). Indeed, by compactness of Λ,

there exists a finite cover U = {Ui | i ∈ I} of Λ and a collection Σ of group elements
si ∈ Γ such that each ρ(s−1

i ) is (λ,Ui;δU )-expanding. By adding, if necessary, extra

generators to Σ with empty expanding subsets, we obtain the required symmetric

generating set of Γ.

https://doi.org/10.1017/S1474748022000597 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000597


Structural stability of meandering-hyperbolic group actions 15

(d) If Ui = ∅ for some i ∈ I then the condition (ii) is vacuous for this i. Otherwise, it

implies that the inverse ρ(si) is (λ
−1,ρ(s−1

i )[Ui])-contracting.

(e) The condition (ii) can be relaxed to the mere (λ,Ui)-expanding condition. Namely,
we may first modify the cover U = {Ui | i ∈ I} so that Ui are all bounded. Then, in

view of Lemma 3.3, we can modify it further to U ′ = {U ′
i | i∈ I}, where U ′

i := intU δ
i

as in the lemma. For each i ∈ I, we also let δ′Ui
denote the number δ′U given by the

lemma, and set

δ′ := min{δU ′,δ′Ui
| i ∈ I}.

After such modification U ′ is still an open cover of Λ and the maps ρ(s−1
i ) are

(λ,U ′
i ;δ

′)-expanding.

(f) The map s : I →Σ ⊂ Γ is not necessarily injective: The ρ-image of an element of Γ

can have several expansion subsets. See Examples 3.9, 7.3 and 7.4.

(g) Clearly, the properties (i) and (ii) also hold on the closures N δ(Λ) and Ui,
respectively.

It is possible that an action ρ : Γ→ LHomeo(M) is expanding with different expansion

data. In such a case, we define a relation on the expansion data as follows.

Definition 3.7. Let ρ : Γ→LHomeo(M) be expanding at Λ. LetD0 =(I0,U0,Σ0,δ0,L0,λ0)

and D1 = (I1,U1,Σ1,δ1,L1,λ1) be its expansion data, where Uk = {Uk,i | i ∈ Ik} and

Σk = {sk,i | i ∈ Ik} for k = 0,1. We write U0 ≺ U1 (resp. Σ0 ≺ Σ1) if I0 ⊂ I1 and
U0,i ⊂ U1,i (resp. s0,i = s1,i) for every i ∈ I0. Furthermore, we write D0 ≺D1 and say D1

is a refinement of D0 if

I0 ⊂ I1, U0 ≺ U1, Σ0 ≺Σ1, δ0 > δ1, L0 ≤ L1, λ0 ≥ λ1.

Note the strict inequality δ0 > δ1, which will be pertinent to Section 4.6.

Definition 3.8. For any expansion datum D, we can define a refinement by replacing δ

with a strictly smaller positive number and leaving other objects intact. We say such a

refinement is trivial.

3.2. Toy examples of expanding actions

The most basic example of an expanding action is a cyclic hyperbolic group of Möbius

transformations acting on the unit circle S1. Namely, we consider the Poincaré (conformal)
disk model of H2 in C = R2 and endow M = S1 = ∂∞H2 with the induced Euclidean

metric. Let γ ∈ Isom(H2) be a hyperbolic element and Γ = 〈γ〉 ∼= Z. The limit set of the

group Γ is Λ = {γ−,γ+}, with γ+ the attracting and γ− the repelling fixed points of γ
in M. Expanding subsets Uα,Uβ for γ,γ−1 are sufficiently small arcs containing γ−,γ+,
respectively.

Explicit expanding subsets can be found by considering the isometric circles Iγ and
Iγ−1 of γ and γ−1, respectively. See Figure 1(Left). (For the definition of isometric circles

(or spheres) and their relation to Ford and Dirichlet fundamental domains, we refer to

[31, IV.G].) The arc of Iγ in H2 is a complete geodesic which is the perpendicular bisector
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Figure 1. Expanding arcs for γ and γ−1 are colored gray in both examples. (Left) A hyperbolic

transformation γ of H2. (Right) A covering of degree 3.

of the points o and γ−1(o), where o denotes the Euclidean center of the Poincaré disk.

Then we obtain a (λ,γ)-expanding subset Uα (with λ > 1) by cutting down slightly the
open arc of S1 = ∂∞H2 inside Iγ . See also the discussion in the beginning of Section 7.2.

Example 3.9 (k -fold nontrivial covering). A more interesting example is obtained by

taking a degree k > 1 covering p : S1 → S1 of the preceding example. See Figure 1(Right)

for the case of k= 3. The preimage of Λ= {γ−,γ+} consists of 2k points, and we can lift γ
to a diffeomorphism γ̃ : S1 → S1 fixing all these points. Let ρ̃ : Γ = 〈γ〉 ∼= Z→Diff(S1) be

the homomorphism sending the generator γ of Γ to γ̃. The preimages p−1(Uα), p
−1(Uβ)

break into connected components

Ũαi
, Ũβi

(i= 1, . . . ,k),

and the mappings γ̃ and γ̃−1 act as expanding maps on each of these components.

Therefore, we set

I = {α1, . . . ,αk,β1, . . . ,βk}

and define the map s : I →Σ,

αi �→ sαi
= γ, βi �→ sβi

= γ−1

from this index set to the generating set Σ = {γ,γ−1} of Γ. Then Ũαi
, Ũβi

will be

expanding subsets for the actions ρ̃(sαi
), ρ̃(sβi

) on S1. (Note that the entire preimage
p−1(Uα) (resp. p

−1(Uβ)) is not an expanding subset for the action ρ̃(sαi
) (resp. ρ̃(sβi

)).)

The same construction works for surface group actions; see Example 7.3.

A trivial example where Ui = ∅ for an index i ∈ I is the action of a cyclic group
Γ = 〈γ〉 ∼= Z generated by a loxodromic transformation γ(z) = mz, |m| > 1, on M = C

(with the standard Euclidean metric) and Λ = {0}. Any open subset of M containing 0

is an expanding subset for γ, while the expanding subset for γ−1 is empty.
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3.3. Expansion enables encoding

Given an expanding action ρ : Γ→ LHomeo(M) with an invariant subset Λ the expansion

condition (Definition 3.4) enables us to encode points of Λ by sequences in the finite

index set I. Roughly speaking, for each x ∈ Λ, we keep zooming in toward x using the

‘microscope’, namely, the expanding maps ρ(s−1
α(k)). This is the heuristic Sullivan himself

used in his talk according to F. Bonahon. (We thank Bonahon for telling us his personal

anecdote.)

Definition 3.10 (Codes). Suppose an action ρ : Γ→LHomeo(M) is expanding at Λ with

a datum D= (I,U,Σ,δ,L,λ). Let x∈Λ and fix a real number η such that 0< η≤ δ. Given

a sequence α : N0 →I, k �→ α(k), define a sequence p : N0 → Λ, k �→ pk inductively by

p0 = x,

pk+1 = ρ(s−1
α(k))(pk).

The sequence α (or the pair (α,p) of sequences) is called a (D,η)-code for x if

Bη(pk)⊂ Uα(k)

for every k ∈ N. (When D is understood, we simply say an η-code in order to emphasize

the use of η-balls). A (D,η)-code α for x is said to be special if α(0) satisfies Bη(x)⊂Uα(0).
We denote by Codex(D,η) the set of all (D,η)-codes for x ∈ Λ.

Every η-ball centered at a point on Λ is contained in some member of U since η≤ δ≤ δU .
This enables us to construct codes. A code gives rise to a family of η-balls centered at
points in Λ each of which is a λ-expanding domain for the action on M of some element

of Γ.

Remark 3.11.

(a) That we do not require α(0) to satisfy Bη(x)⊂ Uα(0) in general is Sullivan’s trick,
which will be useful to prove equivariance of the conjugacy φ in Section 4.5.

(b) The requirement Bη(pk) ⊂ Uα(k) implies Uα(k) �= ∅ for k ∈ N. Thus, only for the

initial value α(0) of codes α can we possibly have Uα(0) = ∅.
(c) Since δ ≤ δU , we have Codex(D,η) �= ∅ for all x ∈Λ and 0< η ≤ δ, and special codes

always exist for any point. Moreover, if η′ ≤ η≤ δ, then Codex(D,η)⊂Codex(D,η′).
Indeed, if (α,p) is an η-code for x, then Bη′(pk)⊂Bη(pk)⊂Uα(k) for all k ∈N, which

implies that (α,p) is an η′-code for x as well.

(d) If D0 and D1 are expansion data of ρ and D0 ≺ D1, then for any η ≤ δ1 ≤ δ0, a
(D0,η)-code α : N0 → I0 ⊂ I1 for x may be regarded as a (D1,η)-code. Slightly

abusing the notation, we write this relation as Codex(D0,η)⊂ Codex(D1,η).

Definition 3.12 (Rays). Let ρ : Γ → LHomeo(M) be expanding at Λ with the datum

D. Given a (D,η)-code α for x ∈ Λ, the (D,η)-ray (or simply η-ray) associated to α is a

sequence cα : N0 → Γ defined by

cαk = sα(0)sα(1) · · ·sα(k).
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We set Rayx(D,η) := {cα | α ∈ Codex(D,η)} and interpret c as a map

c : Codex(D,η)→ Rayx(D,η), α �→ cα.

Remark 3.13.

(a) The initial point cα0 = sα(0) of c
α is an element of Σ.

(b) From the definition of codes, it is easy to check that ρ(cαk )(pk+1) = p0 = x for every
k ∈ N0.

(c) Every ray cα defines an edge-path in the Cayley graph (Γ,dΣ) of Γ (with respect

to the generating set Σ). Note that each word s−1
α(0)c

α
k = sα(1) · · ·sα(k)(k > 1) is

reduced, since an appearance of s−1s for s ∈ Σ would imply that the composite

map ρ(s−1)ρ(s), which is the identity, is λ2-expanding on some nonempty open

subset of M.

(d) If (Σ0,δ0) = D0 ≺ D1 = (Σ1,δ1) are expansion data of ρ and η ≤ δ1 ≤ δ0, then we

have Rayx(D0,η)⊂ Rayx(D1,η) as in Remark 3.11(d).

Now, we will see that, for every x ∈Λ, each η-code for x gives rise to a nested sequence

of neighborhoods of x whose diameters tend to 0 exponentially fast.

Lemma 3.14. Let ρ : Γ → LHomeo(M) be expanding at Λ with a datum D =

(I,U,Σ,δ,L,λ), and let 0< η ≤ δ. If (α,p) is a (D,η)-code for x ∈ Λ, then the sequence of

neighborhoods of x

x ∈ ρ(cαk )[Bη(pk+1)] (k ∈ N0)

is nested and exponentially shrinking. More precisely, we have

(i) ρ(cαk )[Bη(pk+1)]⊂ ρ(cαk−1)[Bη(pk)] for k ∈ N, and

(ii) ρ(cαk )[Bη(pk+1)]⊂BLη/λk(x) for all k ∈ N0.

Consequently, we have the equality

{x}=
∞⋂
k=0

ρ(cαk )[Bη(pk+1)].

The map ρ(cαk )
−1 is λk/L-expanding on the neighborhood ρ(cαk )[Bη(pk+1)] of x for all

k ∈ N0, and the map

ρ(cαk )
−1ρ(cαj ) = ρ(s−1

α(k)s
−1
α(k−1) · · ·s

−1
α(j+1))

is λk−j-expanding on ρ(cαj )
−1

[
ρ(cαk )[Bη(pk+1)]

]
for all 0≤ j < k.

Proof. Suppose (α,p) is an η-code for x ∈Λ, and let k ∈N. Since Bη(pk)⊂ Uα(k) and the

homeomorphism ρ(s−1
α(k)) is (λ,Uα(k);δ)-expanding with ρ(s−1

α(k))(pk) = pk+1, we have by

definition

Bλη(pk+1)⊂ ρ(s−1
α(k))[Bη(pk)]⊂ ρ(s−1

α(k))[Uα(k)]. (3.15)
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Figure 2. Actions of ρ(s−1
α(k)

) and ρ(sα(k)) for k ∈ N.

On the other hand, the inverse map ρ(sα(k)) is (λ−1,ρ(s−1
α(k))[Uα(k)])-contracting as we

saw in Remark 3.6(d). Since Bη(pk+1)⊂ ρ(s−1
α(k))[Uα(k)], we obtain

ρ(sα(k))[Bη(pk+1)]⊂Bη/λ(pk)⊂Bη(pk). (3.16)

See Figure 2. By a similar reasoning, we inductively obtain

ρ(sα(k−1)sα(k))[Bη(pk+1)]⊂Bη/λ2(pk−1),

...

ρ(sα(1) · · ·sα(k−1)sα(k))[Bη(pk+1)]⊂Bη/λk(p1).

Lastly, the map ρ(sα(0)) is L-Lipschitz on Bη/λk(p1)⊂Nδ(Λ) by Definition 3.4(i). Thus,

we see that

ρ(sα(0) · · ·sα(k−1)sα(k))[Bη(pk+1)]⊂BLη/λk(p0). (3.17)

Since ρ(cαk )(pk+1) = p0 = x, the inclusion (3.17) can be written as

x ∈ ρ(cαk )[Bη(pk+1)]⊂BLη/λk(x)

for all k ∈ N0. Moreover, from equation (3.16) we have

ρ(cαk )[Bη(pk+1)] = ρ(sα(0) · · ·sα(k−1)sα(k))[Bη(pk+1)]

⊂ ρ(sα(0) · · ·sα(k−1))[Bη(pk)]

= ρ(cαk−1)[Bη(pk)]

(3.18)

for all k ∈ N. From these follows the rest of the lemma.

A number of corollaries will follow.
We say an action ρ : Γ → Homeo(M) with an invariant subset Λ has an expansivity

constant c > 0 if for every distinct pair of points x,y ∈ Λ there exists an element g ∈ Γ

such that d(ρ(g)(x),ρ(g)(y))≥ c. Compare [11, Proposition 2.2.4].
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Corollary 3.19. If an action ρ : Γ→ LHomeo(M) is expanding at Λ with a datum D =

(δ), then δ is an expansivity constant of this action.

Proof. Let x,y ∈ Λ be distinct, and consider a δ-code (α,p) for x. By Lemma 3.14, the

sequence of neighborhoods of x

ρ(cαk )[Bδ(pk+1)] (k ∈ N0)

is nested and exponentially shrinking. Thus, there exists an n ∈ N0 such that

y /∈ ρ(cαn)[Bδ(pn+1)], that is, ρ(c
α
n)

−1(y) /∈Bδ(pn+1) =Bδ(ρ(c
α
n)

−1(x)).

Therefore, d(ρ(cαn)
−1(x),ρ(cαn)

−1(y))≥ δ as desired.

The following corollary will be crucial for Definition 6.1, which in turn plays an essential

role when we discuss actions of hyperbolic groups in Section 6. The corollary is also the
reason why we need the assumption that no point of Λ is isolated in M.

Corollary 3.20. Let ρ : Γ→LHomeo(M) be expanding at Λ with a datum D= (Σ,δ,L,λ).
Let η ∈ (0,δ] and α be an η-code for x ∈ Λ. Then the ray cα ∈ Rayx(D,η) is a ( logLlogλ ,0)-

quasi-geodesic ray in (Γ,dΣ).

Proof. Let (α,p) be an η-code for x ∈ Λ. Since no point of Λ is isolated in M, for each

k ∈ N0 we can choose a point yk such that

x �= yk ∈ ρ(cαk )[Bη(pk+1)]∩Nδ/Lk(Λ).

Let k,j ∈ N0 be such that 0 ≤ j < k, and set rkj := (cαk )
−1cαj . By (the last statement

of) Lemma 3.14, the map ρ(rkj) is λk−j-expanding on ρ(cαj )
−1

[
ρ(cαk )[Bη(pk+1)]

]
⊃

{ρ(cαj )−1(yk),ρ(c
α
j )

−1(x)}, hence

d(ρ(rkj)(ykj),ρ(rkj)(xj))≥ λk−jd(ykj,xj),

where we set ykj := ρ(cαj )
−1(yk) and xj := ρ(cαj )

−1(x). On the other hand, we have

L|rkj |Σd(ykj,xj)≥ d(ρ(rkj)(ykj),ρ(rkj)(xj))

from equation (3.5), since xj ∈Λ while ykj ∈Nδ/Lk−j−1(Λ) and |rkj |Σ ≤ k−j. From these
two inequalities, we obtain

dΣ(c
α
k ,c

α
j ) = |rkj |Σ ≥ logλ

logL
· (k− j).

Therefore, the η-ray cα is a ( logLlogλ ,0)-quasi-geodesic ray.

Another consequence of the encoding concerns the dynamics of the action of Γ on

Λ. The action of Γ on Λ need not be minimal in general even if Γ is a nonelementary

hyperbolic group (see Example 7.4). Nevertheless, the action of Γ on Λ has no wandering
points :

Theorem 3.21. Let ρ : Γ→ LHomeo(M) be expanding at Λ with a datum D = (δ). For

x ∈ Λ and η ∈ (0,δ], consider a ray cα ∈ Rayx(D,η) associated to an η-code (α,p) for x.

Then

https://doi.org/10.1017/S1474748022000597 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000597


Structural stability of meandering-hyperbolic group actions 21

(1) there exist a subsequence (gj) of (c
α
k ) and a point y ∈ Λ such that (ρ(gj)) converges

to x uniformly on Bη/2(y);

(2) there exists an infinite sequence (hj) in Γ such that

lim
j→∞

ρ(hj)(x) = x.

Proof. (1) By the compactness of Λ, the sequence p= (pk) contains a subsequence (pkj+1)

converging to some point y ∈ Λ. The point y is then covered by infinitely many balls

Bη/2(pkj+1), j ∈ N. By Lemma 3.14, the corresponding elements gj := cαkj
∈ Γ will send

Bη/2(y)⊂Bη(pkj+1) to a subset ρ(gj)[Bη/2(y)] of diameter at most Lη/λkj containing x.

From this, we conclude that the sequence (ρ(gj)) converges to x uniformly on Bη/2(y).
(2) On the other hand, since, in particular, pk1+1 ∈Bη/2(y), we obtain

lim
j→∞

ρ(cαkj
)(pk1+1) = x.

Since ρ(cαk1
)−1(x) = pk1+1, it follows that for hj := cαkj

(cαk1
)−1 we have

lim
j→∞

ρ(hj)(x) = x.

Remark 3.22. The idea of Markov coding of limit points of actions of finitely generated
groups Γ by sequences in Γ is rather standard in symbolic dynamics and goes back to

Nielsen, Hedlund and Morse; we refer the reader to the paper by Series [33] for references

and historical discussion. In the setting of hyperbolic groups this was introduced in
Gromov’s paper [18, §.8] and discussed in more detail in the book by Coornaert and

Papadopoulos [11]. Section 8.5.Y of Gromov’s paper discusses a relation to Sullivan’s

stability theorem.

3.4. The meandering hyperbolicity condition

We continue the discussion from the previous section. In order to define the meandering

hyperbolicity condition, we need to introduce an equivalence relation ∼N
(D,η) on the set

Rayx(D,η) of rays in Γ associated to (D,η)-codes for x ∈ Λ; recall Definitions 3.10 and

3.12.

Definition 3.23 ((D,η;N)-equivalence). Suppose ρ : Γ → LHomeo(M) is expanding at

Λ with a datum D = (Σ,δ), and let 0< η ≤ δ.

(a) For each integer N ≥ 0, we define the relation ≈N
(D,η) on Rayx(D,η) by declaring

that cα ≈N
(D,η) c

β if there exist infinite subsets P,Q⊂ N0 such that the subsets

cα(P ) = {cαk | k ∈ P} and cβ(Q) = {cβj | j ∈Q}

of (Γ,dΣ) are within Hausdorff distance N from each other. The (D,η;N)-

equivalence, denoted ∼N
(D,η), is the equivalence relation on the set Rayx(D,η)

generated by the relation ≈N
(D,η). In other words, we write cα ∼N

(D,η) c
β and say

https://doi.org/10.1017/S1474748022000597 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748022000597


22 M. Kapovich et al.

cα and cβ are (D,η;N)-equivalent if there is a finite chain of ‘interpolating’ rays
cα = cγ1,cγ2, . . . ,cγn = cβ in Rayx(D,η) such that

cγ1 ≈N
(D,η) c

γ2 ≈N
(D,η) · · · ≈N

(D,η) c
γn .

(b) The (D,η)-rays cα and cβ are said to (D,η;N)-fellow-travel if their images cα(N0)

and cβ(N0) are within Hausdorff distance N from each other.

Remark 3.24.

(a) Observe that (D,η;N)-fellow-traveling rays are (D,η;N)-equivalent.

(b) The notion of (D,η;N)-equivalence is much more complex than that of (D,η;N)-

fellow-traveling for a reason: While fellow-traveling is a natural condition in

the context of hyperbolic groups where quasi-geodesics with common end points

uniformly fellow-travel, our notion of equivalence is defined this way in order to
incorporate nonhyperbolic groups, such as higher rank uniform lattices, into the

theory of hyperbolic group actions. In all examples that we have, two rays are

(D,η;N)-equivalent if and only if they admit an interpolation by at most one extra
ray. However, in general, we see no reason for interpolation via one ray to define

an equivalence relation on coding rays. A picture describing the behavior of an

interpolating ray can be found in Figure 4 in Section 5.4: The red interpolating ray
‘meanders’ between the two black rays. This explains the terminology meandering

hyperbolicity.

(c) If (Σ0,δ0)=D0 ≺D=(Σ,δ) and η≤ δ < δ0, then we have the inclusion Rayx(D0,η)⊂
Rayx(D,η) as in Remark 3.13(d) and can talk about the (D,η;N)-equivalence of
(D0,η)-rays.

We are now ready to define the meandering hyperbolicity condition. First, we recall the

notion of S-hyperbolicity which Sullivan defined in [35].

Definition 3.25 (S-hyperbolicity). Let ρ : Γ→ LHomeo(M) be expanding at Λ with a

datum D = (I,U,Σ,δ,L,λ).

(a) The action ρ is said to be S-hyperbolic (at Λ) if there exists an integer N ≥ 1 such

that, for every x ∈ Λ, all rays in Rayx(D,δ) are (D,δ;N)-fellow-traveling.

(b) The action ρ is said to be uniformly S-hyperbolic (at Λ) if there is an integer N ≥ 1
such that, for every η ∈ (0,δ] and every x ∈ Λ, all rays in Rayx(D,η) are (D,η;N)-

fellow-traveling.

We shall refer to the pair (D;N) as a (uniform) S-hyperbolicity datum of ρ.

By weakening the (D,η;N)-fellow-traveling condition in the definition of S-hyperbolicity
to the (D,η;N)-equivalence, as well as considering a refined expansion datum (Definition

3.7), we define the notion of meandering hyperbolicity as follows.

Definition 3.26 (Meandering hyperbolicity). Let ρ : Γ→ LHomeo(M) be expanding at

Λ with the expansion datum D0 = (I0,U0,Σ0,δ0,L0,λ0).
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(a) The action ρ is said to be meandering-hyperbolic (at Λ) if there exist a refinement

D = (I,U,Σ,δ,L,λ) � D0 and an integer N ≥ 1 such that, for every x ∈ Λ, all rays

in Rayx(D0,δ0) are (D,δ;N)-equivalent (as rays in Rayx(D,δ)).

(b) The action ρ is said to be uniformly meandering-hyperbolic (at Λ) if there are

a refinement D = (I,U,Σ,δ,L,λ) � D0 and an integer N ≥ 1 such that, for every

η ∈ (0,δ] and every x ∈ Λ, all rays in Rayx(D0,η) are (D,η;N)-equivalent (as rays
in Rayx(D,η)).

We shall refer to the triple (D0 ≺ D;N) as a (uniform) meandering hyperbolicity datum

of ρ.

Remark 3.27.

(a) Obviously, uniform meandering hyperbolicity implies meandering hyperbolicity.

(b) If an action is S-hyperbolic with a datum (D0;N), then, for any trivial refinement D
of D0 (see Definition 3.8), it is meandering-hyperbolic with the datum (D0 ≺D;N)

since (D0,η;N)-fellow-traveling rays are (D,η;N)-equivalent.

(c) A prime example of a meandering-hyperbolic action which is not S-hyperbolic is

given by uniform lattices in higher rank semisimple Lie groups (see Section 5).
All other examples of meandering-hyperbolic actions we present in this paper are

actually S-hyperbolic (see Sections 3.2, 6 and 7).

(d) We exhibit expanding actions which fail to be meandering-hyperbolic
in Section 7.1.

4. The structural stability theorem

In Section 4.1, we present the statement of our structural stability theorem for

meandering-hyperbolic actions. Then we devote the rest of the section to its proof.

4.1. Statement of the theorem: Meandering hyperbolicity implies stability

Suppose ρ : Γ→ LHomeo(M) is expanding at Λ. Following Sullivan’s remark (at the very

end of his paper [35]), we would like to talk about small perturbations of ρ which are

still expanding. For this, we only need information on a neighborhood of the compact

subset Λ.
We equip LHomeo(M) with what we call the compact-open Lipschitz topology. Given

a compact subset K ⊂ M , a positive number ε > 0 and f ∈ LHomeo(M), let U(f ;K,ε)

denote the set of all g ∈ LHomeo(M) that are ε-close to f on K with respect to the metric
dLip,K defined by

dLip,K(f,g) := sup
x∈K

d(f(x),g(x))+ sup
x,y∈K
x �=y

∣∣∣∣d(f(x),f(y))d(x,y)
− d(g(x),g(y))

d(x,y)

∣∣∣∣< ε. (4.1)

We define the compact-open Lipschitz topology on LHomeo(M) as the topology generated

by the collection of all such U(f ;K,ε). This topology enables us to control the image as

well as the Lipschitz constant on a neighborhood of the compact subset Λ.
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Remark 4.2. As we mentioned in the introduction, Sullivan [35, §9] actually considers

the case when M is a Riemannian manifold with the Riemannian distance function d and

the actions are by C1-diffeomorphisms. In this case, the compact-open Lipschitz topology
on Diff1(M) is weaker than the compact-open C1-topology.

Suppose ρ : Γ→ LHomeo(M) is expanding at Λ with a datum D = (I,Σ) (Definition

3.4). Given a compact subset K ⊂M and ε > 0, we say that a homomorphism ρ′ : Γ→
LHomeo(M) is a (K,ε)-perturbation of ρ if ρ′(si) is ε-close to ρ(si) on K for all i ∈ I.
The set of all (K,ε)-perturbations of ρ will be denoted by

U(ρ;K,ε). (4.3)

Accordingly, we topologize Hom(Γ,LHomeo(M)) via the topology of ‘algebraic conver-

gence’ by identifying it, via the map ρ �→ (ρ(si))i∈I , with a subset of [LHomeo(M)]I

equipped with the subspace topology. Then the subset U(ρ;K,ε) of Hom(Γ,LHomeo(M))

is an open neighborhood of ρ. Note that, when the ambient space M itself is compact,

we can set K =M and simply talk about ε-perturbations.

Now, we are able to state our structural stability theorem for meandering-hyperbolic
actions.

Theorem 4.4. If an action ρ : Γ→ LHomeo(M) is meandering-hyperbolic at a compact

invariant subset Λ⊂M with a datum (D0 ≺D;N), then the following hold.

(1) The action ρ is structurally stable in the sense of Lipschitz dynamics. In other

words, there exist a compact set K ⊃Λ and a constant ε= ε(D,N)> 0 such that for

every

ρ′ ∈ U(ρ;K,ε)

there exist a ρ′-invariant compact subset Λ′ ⊂ M and an equivariant homeomor-
phism

φ : Λ→ Λ′,

that is, ρ′(g)◦φ= φ◦ρ(g) on Λ for all g ∈ Γ.

(2) The map U(ρ;K,ε)→ C0(Λ,M), ρ′ �→ φ is continuous at ρ.

(3) Every action ρ′ ∈ U(ρ;K,ε) is expanding at Λ′.

If an action ρ : Γ → LHomeo(M) is uniformly meandering-hyperbolic, then, in addition

to the preceding statements, the following is true as well.

(4) Every action ρ′ ∈ U(ρ;K,ε) is again uniformly meandering-hyperbolic.
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As an immediate consequence of Theorem 4.4(1), we have:

Corollary 4.5. A meandering-hyperbolic action ρ : Γ → LHomeo(M) at a compact

invariant subset Λ ⊂ M is algebraically stable in the following sense: For every ρ′ ∈
U(ρ;K,ε), the kernel of the ρ′-action on Λ′ equals the kernel of the ρ-action on Λ.

We note, however, that faithfulness of the ρ-action on M does not imply faithfulness of

nearby actions: See Example 7.7.
In view of Remarks 3.6(c), 3.27(b) and 4.2, we obtain Sullivan’s structural stability

theorem [35, Theorem II] in the C1-setting as a corollary of Theorem 4.4(1):

Corollary 4.6. Consider a group action Γ → Diff1(M) on a Riemannian manifold M

with a compact invariant subset Λ⊂M . If the action is S-hyperbolic, then it is structurally
stable in the sense of C1-dynamics.

Remark 4.7. Sullivan’s structural stability theorem stated above is not to be confused

with the main theorem of [35], which is widely known in the theory of Kleinian groups. In
order to guide the reader, we summarize the contents of Sullivan’s paper [35] as follows.

Let Γ< PSL(2,C) be a finitely generated, nonsolvable, nonrigid, nonrelatively-compact

and torsion-free group of conformal transformations of the Riemann sphere P 1(C).
Sullivan showed that the following are equivalent:

(1) the subgroup Γ< PSL(2,C) is convex-cocompact;

(2) the Γ-action on the limit set Λ⊂P 1(C) satisfies the expansion-hyperbolicity axioms;

(3) this action is structurally stable in the sense of C1-dynamics;

(4) the subgroup Γ< PSL(2,C) is algebraically stable.

Here, Γ< PSL(2,C) is said to be algebraically stable if all representations Γ→ PSL(2,C)

sufficiently close to the identity embedding are injective.

The implication (4 ⇒ 1) is the main result (Theorem A) of the paper [35], in the proof

of which his quasi-conformal stability theorem (Theorem C) is obtained. The implication
(1 ⇒ 2) is his Theorem I, (2 ⇒ 3) is a special case of Theorem II, and (3 ⇒ 4) is

immediate. For groups with torsion, the implication (4 ⇒ 1) is false (see Example 7.12)

but the other implications (1 ⇒ 2 ⇒ 3 ⇒ 4) still hold.

4.2. Specifying small perturbations ρ′

We now proceed to prove Theorem 4.4. The assertion (1) will be proved in Sections

4.2–4.7, and the assertions (2)-(4) in Sections 4.8–4.10, respectively.

Let ρ : Γ → LHomeo(M) be a meandering-hyperbolic action (Definition 3.26) at a
compact invariant subset Λ⊂M with a datum (D0 ≺D;N), where

(I0,U0,Σ0,δ0,L0,λ0) =D0 ≺D = (I,U,Σ,δ,L,λ),

that is, I0 ⊂ I, U0 ≺ U, Σ0 ≺Σ, δ0 > δ, L0 ≤ L, λ0 ≥ λ.

Recall, in particular, that ρ is expanding with respect to the refined datum D.
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For convenience, we summarize all the important constants for the proof as follows:

K :=N δ(Λ), κ := min

{
δ

(N +1)LN
, 1

}
,

ε :=
λ−1

2
κ, L′ := L+ ε, λ′ := λ− ε, L≥ λ > 1

The compact set K ⊃Λ and the constant ε= ε(D,N)> 0 specify the open set U(ρ;K,ε)
of all (K,ε)-perturbations ρ′ of ρ. Note that K is compact since (M,d) is assumed to be

proper. Since δ ≤ δU is a Lebesgue number of U , it follows that U is a cover of Nδ(Λ).

Now, we suppose

ρ′ ∈ U(ρ;K,ε).

Then, by the definitions (4.1) and (4.3), we have that for all s ∈Σ,

dLip,K(ρ(s),ρ′(s))< ε. (4.8)

We first observe that for each i ∈ I,

ρ′(s−1
i ) is λ′−expanding on Ui∩K. (4.9)

Indeed, since ρ(s−1
i ) is λ-expanding on Ui, we see from equation (4.8) that for all distinct

x,y ∈ Ui∩K,

d(ρ′(s−1
i )(x),ρ′(s−1

i )(y))

d(x,y)
>

d(ρ(s−1
i )(x),ρ(s−1

i )(y))

d(x,y)
− ε≥ λ− ε= λ′.

Moreover, we also note that

ρ′(si) is L
′−Lipschitz on Nδ(Λ) (4.10)

for every i ∈ I. To see this, recall that the maps ρ(si) are L-Lipschitz on Nδ(Λ) by

Definition 3.4(i), thus by equation (4.8) again

d(ρ′(si)(x),ρ
′(si)(y))

d(x,y)
<

d(ρ(si)(x),ρ(si)(y))

d(x,y)
+ ε≤ L+ ε= L′

for all distinct x,y ∈Nδ(Λ)⊂K. Note that L′ = L+ ε≥ λ+ ε > λ− ε= λ′.
For later use, we prove the following lemma.

Lemma 4.11. For every w ∈ Γ such that |w|Σ = n≤N , we have

d(ρ(w)(y),ρ′(w)(y))< nLn−1ε

for all y ∈Nκ(Λ).

Proof. We prove this by induction on n≤N . If |w|Σ = 1, the claim is true by equation

(4.8) since Nκ(Λ) ⊂ Nδ(Λ). Suppose w = st with s ∈ Σ, |t|Σ = n− 1 and |w|Σ = n.

Since ρ(t) is Ln−1-Lipschitz on Nδ/Ln−2(Λ)⊃Nκ(Λ) by equation (3.5), we have ρ(t)(y) ∈
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NLn−1κ(Λ) ⊂ Nδ(Λ). By the induction hypothesis d(ρ(t)(y),ρ′(t)(y)) < (n− 1)Ln−2ε, we

then have ρ′(t)(y) ∈Nδ(Λ) as well, since ε= λ−1
2 κ < Lκ and thus

Ln−1κ+(n−1)Ln−2ε < Ln−1κ+(n−1)Ln−2Lκ= nLn−1κ < δ.

As ρ(s) is L-Lipschitz on Nδ(Λ), we obtain

d
(
ρ(s)[ρ(t)(y)],ρ(s)[ρ′(t)(y)]

)
< L · (n−1)Ln−2ε.

Furthermore, we have from equation (4.8)

d
(
ρ(s)[ρ′(t)(y)],ρ′(s)[ρ′(t)(y)]

)
< ε

since ρ′(t)(y) ∈Nδ(Λ). Thus,

d(ρ(w)(y),ρ′(w)(y))≤ d
(
ρ(s)[ρ(t)(y)],ρ(s)[ρ′(t)(y)]

)
+d

(
ρ(s)[ρ′(t)(y)],ρ′(s)[ρ′(t)(y)]

)
< (n−1)Ln−1ε+ ε

< (n−1)Ln−1ε+Ln−1ε= nLn−1ε,

and the claim is proved.

4.3. Definition of φ

We first construct a map φ : Λ→M .

Let x ∈ Λ. In order to define φ(x), choose a (D0,δ0)-code (α,p) for x as in Section 3.3.
Since δ < δ0, we may regard α as a (D,δ)-code as in Remark 3.11(c)(d). Then, as we

know from Lemma 3.14, the point x has an exponentially shrinking nested sequence of

neighborhoods ρ(cαk )[Bδ(pk+1)] (k ∈ N0) such that

{x}=
∞⋂
k=0

ρ(cαk )[Bδ(pk+1)].

Now, consider a perturbation ρ′ ∈ U(ρ;K,ε) of ρ as specified in Section 4.2. We
claim that the sequence of perturbed subsets ρ′(cαk )[Bδ(pk)] (k ∈ N0) is also nested and

exponentially shrinking. Since M is complete, the intersection of this collection of subsets

is a singleton in M and we can define φα(x) by the formula

{φα(x)}=
∞⋂
k=0

ρ′(cαk )[Bδ(pk+1)].

The claim will be proved in the following lemma, where, in fact, we shall find the values
of η≤ δ for which the sequence ρ′(cαk )[Bη(pk)] is nested and exponentially shrinking. This

lemma will later be used often, for example, when we show that φ is well-defined (Section

4.4) and is continuous (Section 4.6).

Lemma 4.12. Let ρ : Γ→LHomeo(M) be a meandering-hyperbolic action with the datum

(D0 ≺D;N). Consider a number 0< t≤ κ=min{ δ
(N+1)LN ,1} (so that λ−1

2 t≤ ε), and let

ρ′ ∈ U(ρ;K, λ−1
2 t)⊂ U(ρ;K,ε).
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If (α,p) is a (D,δ)-code for x ∈ Λ, then for every η ∈ [t,δ] the sequence of subsets

ρ′(cαk )[Bη(pk+1)] (k ∈ N0)

is nested and exponentially shrinking. Consequently, we have

{φα(x)}=
∞⋂
k=0

ρ′(cαk )[Bη(pk+1)] =

∞⋂
k=0

ρ′(cαk )[Bδ(pk+1)]

and thus, for every k ∈ N0,

ρ′(cαk )
−1(φα(x)) ∈Bη(pk+1).

If the δ-code (α,p) is special, then

d(x,φα(x))< t.

Proof. Since t≤ η, we see from the assumption ρ′ ∈ U(ρ;K, λ−1
2 t) that

sup
x∈K

d(ρ(s−1
i )(x),ρ′(s−1

i )(x))≤ dLip,K(ρ(s−1
i ),ρ′(s−1

i ))<
λ−1

2
t≤ 1

2
(λη−η) (4.13)

for all i ∈ I. Since η ≤ δ, we have by Definition 3.4(ii) the inclusion (3.15) for ρ

Bη(pk+1)⊂Bλη(pk+1)⊂ ρ(s−1
α(k))[Bη(pk)]⊂ ρ(s−1

α(k))[Uα(k)] (4.14)

for all k ∈ N, while Bη(pk)⊂Bδ(pk)⊂ Uα(k)∩K as α is a δ-code.

In particular, we see from equation (4.14) that the boundary of ρ(s−1
α(k))[Bη(pk)] lies

outside Bλη(pk+1), and from equation (4.13) that the boundary of ρ′(s−1
α(k))[Bη(pk)] lies

outside the ball centered at pk+1 of radius λη− 1
2 (λη− η) = 1

2η(λ+1) > η. Moreover,

ρ′(s−1
α(k))(pk) lies in the ball centered at pk+1 of radius 1

2η(λ − 1), which implies

ρ′(s−1
α(k))[Bη(pk)]∩B 1

2η(λ+1)(pk+1) �= ∅. Note that every open ball is path-connected in a

geodesic metric spaceM. Thus, we deduce that ρ′(s−1
α(k))[Bη(pk)] is a connected component

of M \ ∂ρ′(s−1
α(k))[Bη(pk)] and hence B 1

2η(λ+1)(pk+1) ⊂ ρ′(s−1
α(k))[Bη(pk)]. Therefore, we

conclude that

Bη(pk+1)⊂B 1
2η(λ+1)(pk+1)⊂ ρ′(s−1

α(k))[Bη(pk)]⊂ ρ′(s−1
α(k))[Uα(k)∩K]. (4.15)

Thus,

ρ′(sα(k))[Bη(pk+1)]⊂Bη(pk) (4.16)

for all k ∈ N, and we check as in equation (3.18) the nesting property

ρ′(cαk )[Bη(pk+1)]⊂ ρ′(cαk−1)[Bη(pk)]

for all k ∈ N.

Furthermore, the diameter of ρ′(cαk )[Bη(pk+1)] = ρ′(sα(0)sα(1) · · ·sα(k))[Bη(pk+1)] is at

most 2η(L+ ε)/(λ′)k, because we have equation (4.15) and each ρ′(sα(j))(1 ≤ j ≤ k) is

(1/λ′)-contracting on ρ′(s−1
α(j))[Uα(j) ∩K] by equation (4.9), and the last map ρ′(sα(0))

is (L+ ε)-Lipschitz on Bη(p1) ⊂ Nδ(Λ) by equation (4.10). Hence, the exponentially

shrinking property also holds.
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If the δ-code (α,p) is special, then the inclusion equation (4.15) as well as equation

(4.16) hold for k = 0. Thus,

φα(x) ∈ ρ′(cα0 )[Bη(p1)] = ρ′(sα(0))[Bη(p1)]⊂Bη(x)

for all η ∈ [t,δ]. It follows that d(x,φα(x))< t.

4.4. φ is well-defined

To show that φ is well defined, we need to show that φα(x) = φβ(x) for any two (D0,δ0)-

codes (α,p) and (β,q). Since ρ is meandering-hyperbolic with the datum (D0 ≺ D;N),
the corresponding (D0,δ0)-rays cα and cβ are (D,δ;N)-equivalent, that is, cα ∼N

(D,δ) c
β

in Rayx(D,δ). By definition, the equivalence relation ∼N
(D,δ) is generated by the relation

≈N
(D,δ) (see Definition 3.23(a)). Thus, it suffices to show the equality φα(x) = φβ(x) when

cα and cβ are (D,δ)-rays and satisfy cα ≈N
(D,δ) c

β , that is, there exist infinite subsets

P,Q⊂ N0 such that the subsets cα(P ) and cβ(Q) are within Hausdorff distance N from

each other in (Γ,dΣ).

Suppose to the contrary that⋂
k∈P

ρ′(cαk )[Bδ(pk+1)] = {φα(x)} �= {φβ(x)}=
⋂
j∈Q

ρ′(cβj )[Bδ(qj+1)].

Since the open sets ρ′(cβj )[Bδ(qj+1)] shrink to φβ(x), there exists an integer n ∈ Q such

that φα(x) /∈ ρ′(cβn)[Bδ(qn+1)], that is,

ρ′(cβn)
−1(φα(x)) /∈Bδ(qn+1). (4.17)

Since the Hausdorff distance between {cαk}k∈P and {cβj }j∈Q is at most N, there is an

integer m ∈ P such that dΣ(c
β
n,c

α
m)≤N . Set

r = (cβn)
−1cαm

so that |r|Σ ≤N . Note from Remark 3.13(b) that ρ(r) maps pm+1 to qn+1:

ρ(r)(pm+1) = ρ(r)[ρ(cαm)−1(x)] = ρ(cβn)
−1(x) = qn+1.

See Figure 3.

In view of Lemma 4.12 (with t = η = κ = min{ δ
(N+1)LN ,1}), we may assume that we

used κ-balls in the definition of φα(x) so that

ρ′(cαm)−1(φα(x)) ∈Bκ(pm+1).

Now, if we show that ρ′(r) maps Bκ(pm+1) into Bδ(qn+1) and hence

ρ′(cβn)
−1(φα(x)) = ρ′(r)[ρ′(cαm)−1(φα(x))]

∈ ρ′(r)[Bκ(pm+1)]⊂Bδ(qn+1),

then we are done since we are in contradiction with equation (4.17).
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Figure 3. The points φα(x) and φβ(x).

To show ρ′(r)[Bκ(pm+1)]⊂Bδ(qn+1), let l= |r|Σ ≤N . If y ∈Bκ(pm+1)⊂Nκ(Λ), then

d(ρ′(r)(y),qn+1) = d(ρ′(r)(y),ρ(r)(pm+1))

≤ d(ρ′(r)(y),ρ(r)(y))+d(ρ(r)(y),ρ(r)(pm+1))

< kLl−1ε+Llκ

< NLN−1Lκ+LNκ≤ δ,

where the second inequality holds by Lemma 4.11 and since ρ(r) is Ll-Lipschitz on
Nδ/Ll−1(Λ)⊃Bκ(pm+1) by equation (3.5), and the third inequality holds since ε= λ−1

2 κ<

Lκ.

This completes the proof of the equality φα(x) = φβ(x).

From now on, we may write φ(x) for x ∈ Λ without ambiguity. An immediate

consequence of this is that we are henceforth free to choose a special δ-code for x.
Without loss of generality, we may assume that N ≥ 4. Then from Lemma 4.12 (with

t= κ=min{ δ
(N+1)LN ,1}), we conclude that

d(x,φ(x))< κ≤ δ

(N +1)LN
<

δ

5
(4.18)

for all x ∈ Λ.
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4.5. φ is equivariant

To show the equivariance of φ, it suffices to check it on the generating set Σ of Γ.

Given x ∈ Λ and s ∈ Σ, set y = ρ(s−1)(x). Let (β,q) be a special δ-code for y so that

Bδ(y) ⊂ Uβ(0) (see Definition 3.10). Then we consider a δ-code (α,p) for x defined by

sα(0) = s and

α(k) = β(k−1),

pk = qk−1

for k ∈ N: Indeed, we verify the requirement that

Bδ(pk) =Bδ(qk−1)⊂ Uβ(k−1) = Uα(k)

for k ∈N. The associated rays {cαk}k∈N0
and {cβk}k∈N0

(see Definition 3.12) are related by

cαk = sα(0)(sα(1) · · ·sα(k)) = s(sβ(0) · · ·sβ(k−1)) = scβk−1

for k ∈ N. Therefore, we have

{φ[ρ(s)(y)]}= {φ(x)}=
∞⋂
k=0

ρ′(cαk )[Bδ(pk+1)]

=

∞⋂
k=1

ρ′(cαk )[Bδ(pk+1)]

=

∞⋂
k=1

ρ′(s)ρ′(cβk−1)[Bδ(qk)]

= ρ′(s)

[ ∞⋂
k=0

ρ′(cβk)[Bδ(qk+1)]

]
= ρ′(s){φ(y)},

which implies the equivariance of φ.

4.6. φ is continuous

Let ζ > 0 be given. In order to show that φ is continuous at x∈Λ, assign a (D,δ)-code (α,p)
for x which comes from a (D,δ0)-code for x. (Recall δ0 > δ and Remark 3.11(c). Also note

that Lemma 4.12 applies to the (D,δ)-code (α,p) with η = δ). Choose an integer j ∈ N0

such that 2δ0(L+ ε)/(λ′)j < ζ, where the constants λ′ and ε are from Section 4.2. Since
ρ(cαj )

−1 maps x to pj+1 and is continuous, there exists ζ ′ > 0 such that ρ(cαj )
−1[Bζ′(x)]⊂

Bδ0−δ(pj+1). Below we will show that, if y ∈Λ satisfies d(x,y)< ζ ′, then d(φ(x),φ(y))< ζ

thereby proving that φ is continuous at x.

Let y ∈ Λ be such that d(x,y)< ζ ′. Then ρ(cαj )
−1(y) ∈Bδ0−δ(pj+1), hence

y ∈ ρ(cαj )[Bδ0−δ(pj+1)]⊂ ρ(cαj−1)[Bδ1−δ(pj)]⊂ ·· · ⊂ ρ(cα0 )[Bδ0−δ(p1)]

by Lemma 3.14(i). In other words, for 0≤ k ≤ j, we have

ρ(cαk )
−1(y) ∈Bδ0−δ(pk+1),

hence Bδ(ρ(c
α
k )

−1(y))⊂Bδ0(pk+1)⊂ Uα(k+1).
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This means that there is a δ-code (β,q) for y ∈ Λ with a property that

β(k) = α(k) for 0≤ k ≤ j.

In particular, cβj = cαj and hence qj+1 = ρ(cβj )
−1(y) = ρ(cαj )

−1(y) ∈ Bδ0−δ(pj+1).

Consequently, we have Bδ(qj+1)⊂Bδ0(pj+1) and

{φ(y)}=
∞⋂
k=0

ρ′(cβk)[Bδ(qk+1)]

⊂ ρ′(cβj )[Bδ(qj+1)]

= ρ′(cαj )[Bδ(qj+1)]

⊂ ρ′(cαj )[Bδ0(pj+1)].

By (the proof of) Lemma 4.12, the diameter of the last set ρ′(cαj )[Bδ0(pj+1)] is at most
2δ0(L+ ε)/(λ′)j < ζ. Since φ(x) ∈ ρ′(cαj )[Bδ0(pj+1)] as well, we showed

d(φ(x),φ(y))≤ 2δ0(L+ ε)/(λ′)j < ζ

as desired.

4.7. φ is injective

Suppose, to the contrary, that φ(x) = φ(y) but x �= y. Since φ is equivariant, we then have

φ[ρ(g)(x)] = φ[ρ(g)(y)] for any g ∈ Γ, hence, by equation (4.18),

d(ρ(g)(x),ρ(g)(y))< d(ρ(g)(x),φ[ρ(g)(x)])+d(φ[ρ(g)(y)],ρ(g)(y))< δ/5+ δ/5 = 2δ/5

for all g ∈ Γ. But this contradicts Corollary 3.19 since ρ has an expansivity constant 2δ/5.
Therefore, φ is injective.

So far, we have proved the claim that φ is an equivariant homeomorphism. This

completes the proof of Theorem 4.4(1).

4.8. φ depends continuously on ρ′

We show that the map

Hom(Γ,LHomeo(M))⊃ U(ρ;K,ε)→ C0(Λ,(M,d))

ρ′ �→ φ

is continuous at ρ, where we equip Hom(Γ,LHomeo(M)) with the topology of ‘algebraic
convergence’ as in Section 4.1 and C0(Λ,(M,d)) with the uniform topology. This will

imply that, if ρ′ is close to ρ, then φ is close to the identity map and, as for Λ and

Λ′ = φ(Λ), that the map ρ′ �→ dHaus(Λ,Λ
′) is continuous at ρ, where dHaus stands for the

Hausdorff distance.

To prove the claim, suppose a sufficiently small constant t > 0 is given. Of course, we

may assume t≤min{ δ
(N+1)LN ,1}. Then we have to find a neighborhood U(ρ;K ′,ε′) of ρ
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such that sup{d(x,φ(x)) | x ∈ Λ}< t for every ρ′ ∈ U(ρ;K ′,ε′). So, we let

K ′ =K and ε′ =
λ−1

2
t.

Suppose ρ′ ∈ U(ρ;K ′,ε′). Let x ∈ Λ, and choose a special δ-code (α,p) for x. Then by
Lemma 4.12, we have d(x,φ(x)) = d(x,φα(x)) < t. Since x ∈ Λ is arbitrary, the proof is

complete.

4.9. ρ′ is expanding

We now show how, given an expansion datum D of the action ρ, to get a new expansion

datum D′ = (I ′,U ′,Σ′,δ′,L′,λ′) of the action ρ′.
First, take the same data I and Σ of D that is, set I ′ = I and Σ′ =Σ, and set L′ =L+ε

and λ′ = λ− ε from equations (4.10) and (4.9). Then every ρ′(s−1
i ) is λ′-expanding on

Ui∩Nδ(Λ) and L′-Lipschitz on Nδ(Λ). For a positive number r < 4δ/5, if we set

U ′ = {U ′
i := int(Ui∩Nδ(Λ))

r = intUr
i ∩Nδ−r(Λ) | i ∈ I}

(recall equation (2.1) for the definition of Ur), then by Remark 3.6(e) there is a constant

δ′ = δ′(r)> 0 such that every ρ′(s−1
i ) is (λ′,U ′

α;δ
′)-expanding. Note that δ′ can be chosen

as small as we want, and thus we may assume that δ′ < 4δ/5. Let x ∈ Λ. Then, since
d(x,φ(x))< δ/5 by equation (4.18) and 0< r < 4δ/5, it follows that

Br(φ(x))⊂Br+δ/5(x)⊂Bδ(x)⊂ Ui∩Nδ(Λ)

for some i ∈ I, and hence φ(x) ∈ U ′
i . This implies that U ′ covers Λ′ and Nδ′(Λ

′)⊂Nδ(Λ).

Thus, every ρ′(s−1
i ) is L′-Lipschitz on Nδ′(Λ

′). If we choose δ′ so that δ′ is smaller than
a Lebesgue number of the open covering U ′ of Λ′, the properties (i) and (ii) of Definition

3.4 are verified for ρ′ with the datum D′ = (I ′,U ′,Σ′,δ′,L′,λ′). Therefore, ρ′ is expanding.

4.10. ρ′ is again uniformly meandering-hyperbolic

Assume that the action ρ : Γ → LHomeo(M) is uniformly meandering-hyperbolic with

a datum (D0 ≺ D;N) (Definition 3.26). Then, for every η ∈ (0,δ] and every x ∈ Λ, all
rays in Rayx(D0,η) are (D,η;N)-equivalent. In order to show that every ρ′ ∈ U(ρ;K,ε)

is uniformly meandering-hyperbolic, we first let D′ be the expansion data of ρ′ obtained
from D via the way described in Section 4.9 by taking r = δ/5 so that, in particular,

U ′ = {U ′
i := int(Ui∩Nδ(Λ))

δ/5 = intU
δ/5
i ∩N4δ/5(Λ) | i ∈ I}.

Then, we will define an expansion data D′
0 ≺ D′ of ρ′ and show that (D′

0 ≺ D′;N) is a

uniform meandering hyperbolicity datum of ρ′.
Since D0 ≺D, one can easily derive an expansion datum D′

0 = (I ′
0,U ′

0,Σ
′
0,δ

′
0,L

′
0,λ

′
0) of

ρ′ from D0 as follows. Set I ′
0 = I0, Σ′

0 =Σ0, L
′
0 = L′ and λ′

0 = λ′. Let U0 = {U0,i | i ∈ I0}.
From U0 ≺ U , it immediately follows that ρ′(s−1

i ) is λ′-expanding on U0,i ∩Nδ(Λ) and

L′-Lipschitz on Nδ(Λ) for all i ∈ I0. If we set

U ′
0 = {U ′

0,i := int(U0,i∩Nδ(Λ))
3δ/5 = intU

3δ/5
0,i ∩N2δ/5(Λ) | i ∈ I0},
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then Remark 3.6(e) implies that there is δ′0 > 0 such that ρ′(s−1
i ) is (λ′,U ′

0,i;δ
′
0)-expanding

for all i ∈ I0. For any x ∈ Λ, since d(x,φ(x))< δ/5, we have

B3δ/5(φ(x))⊂B4δ/5(x)⊂Bδ(x)⊂ U0,i∩Nδ(Λ)

for some i ∈ I0. We may choose δ′0 and δ′ so that δ′ < δ′0 < 2δ/5. Then D′
0 is another

expansion datum of ρ′ such that D′
0 ≺D′.

In order to check that (D′
0 ≺ D′;N) is a uniform meandering hyperbolicity datum of

ρ′, let 0 < η ≤ δ′ < 2δ/5 and x ∈ Λ. We need to show that all rays in Rayx(D′
0,η) are

(D′,η;N)-equivalent.

Let x ∈ Λ and (α,p′) be a (D′
0,η)-code for φ(x). Recall Definition 3.10. Since (α,p′) is

an (D′
0,η)-code for φ(x) ∈ Λ′, we have

p′0 = φ(x),

p′k+1 = ρ′(s−1
α(k))(p

′
k),

Bη(p
′
k)⊂ U ′

0,α(k)

for all k ∈ N0. By the definition of U ′
0,i := intU

3δ/5
0,i ∩ N2δ/5(Λ), it follows that

Bη+3δ/5(p
′
k) ⊂ U0,α(k) for all k ∈ N0. Let pk = φ−1(p′k) for k ∈ N0 and p : N0 → Λ be

the sequence corresponding to {pk}k∈N0
. We first check

(φ−1 ◦p′)(0) = φ−1(φ(x)) = x

and then, for k ∈ N, check

pk+1 = (φ−1 ◦p′)(k+1) = φ−1[ρ′(s−1
α(k))(p

′
k)] = ρ(s−1

α(k))[(φ
−1 ◦p′)(k)] = ρ(s−1

α(k))(pk),

where the second equality is due to the equivariance of φ. Since d(pk,p
′
k)< δ/5, we have

that for all k ∈ N0,

Bη+2δ/5(pk)⊂Bη+3δ/5(p
′
k)⊂ U0,α(k),

which implies that (α,p) is a (D0,η+2δ/5)-code for x ∈ Λ.

By the uniform meandering hyperbolicity of ρ, there is a finite chain of interpolating

rays cα = cγ1,cγ2, . . . ,cγn = cβ in Rayx(D,η+2δ/5) such that

cγ1 ≈N
(D,η+2δ/5) c

γ2 ≈N
(D,η+2δ/5) · · · ≈N

(D,η+2δ/5) c
γn .

Claim. Rayx(D,η+2δ/5)⊂ Rayφ(x)(D′,η).

If the claim holds, we have cγ1 ≈N
(D′,η) c

γ2 ≈N
(D′,η) · · · ≈N

(D′,η) c
γn and, therefore, we

conclude that ρ′ is uniformly meandering-hyperbolic with a datum (D′
0 ≺D′;N).

Now, it only remains to prove the claim. Let (γ,q) be a (D,η+2δ/5)-code for x ∈ Λ.

Then for all k ∈ N0,

Bη+δ/5(φ(qk))⊂Bη+2δ/5(qk)⊂ Uγ(k)∩N4δ/5(Λ),

which implies that Bη(φ(qk))⊂ U ′
γ(k) and thus (γ,q′) is a (D′,η)-code for φ(x) as desired,

where q′ is the sequence defined by q′k = φ(qk) for k ∈ N0. The claim is proved.
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5. Uniform lattices in semisimple Lie groups are structurally stable

In this section, we shall prove the following theorem that, for every uniform lattice Γ
in a semisimple Lie group G, the Γ-action on each flag manifold G/P is meandering-

hyperbolic.

Theorem 5.1. Let Γ<G be a uniform lattice in a semisimple Lie group G (with finitely

many connected components and finite center). Then, for each face τmod ⊂ σmod, the

Γ-action on the flag manifold Flag(τmod) is uniformly meandering-hyperbolic.

From the structural stability theorem (Theorem 4.4), we then conclude:

Corollary 5.2. The actions on flag manifolds of uniform lattices in semisimple Lie

groups are structurally stable in the sense of Lipschitz dynamics.

5.1. Sketch of proof

Let X be the symmetric space associated with the semisimple Lie group G. Our proof will

use definitions and results regarding asymptotic geometry of X established in a series of
papers of Kapovich, Leeb and Porti [23, 26, 27], to which we refer the reader for details;

surveys of these notions and results can be found in [25, 22].

The key notion used in the proof is the one of Morse quasi-geodesics in X, which was
first introduced in [24] in order to give one of many alternative interpretations of Anosov

subgroups. While uniform lattices in higher rank Lie groups are clearly non-Anosov, some

key geometric results developed for the purpose of analyzing Anosov subgroups are still
very useful when dealing with higher rank lattices, as we will see below.

In the remainder of the section, we prove Theorem 5.1 in the following steps:

(§5.2) we find an expansion datum D for the action;

(§5.3) we show that coding rays are Morse quasi-geodesics, and

(§5.4) that asymptotic Morse quasi-geodesics can be interpolated;

(§5.5) for each η ∈ (0,δ], we find a refinement Dη of the expansion datum D;

(§5.6) we verify the uniform meandering hyperbolicity by using Proposition 5.3

below.

Proposition 5.3. Let ρ : Γ → LHomeo(M) be expanding at Λ with a datum D =

(I,U,Σ,δ,L,λ). Suppose that, for each η ∈ (0,δ], there exist a positive constant rη < η,

an integer Nη > 0 and an expansion datum Dη = (Iη,Uη,Ση,rη,Lη,λη)�D such that, for
every x ∈ Λ, all rays in Rayx(D,η) are (Dη,rη;Nη)-equivalent as rays in Rayx(Dη,rη).

Then ρ is uniformly meandering-hyperbolic.

Proof. To define a uniform meandering hyperbolicity datum of ρ, we set δ0 = rδ/2+δ/2<

δ, U0 = {intU δ/2
i | i ∈ I} (recall equation (2.1)) and D0 = (I,U0,Σ,δ0,L,λ). Obviously, D0

is an expansion datum of ρ since U0 ≺ U and δ0 < δ. We take D0 as the initial expansion

datum of ρ and claim that (D0 ≺Dδ/2;Nδ/2) is a uniform meandering hyperbolicity datum

of ρ.
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For η ∈ (0,rδ/2), let α and β be (D0,η)-codes for x ∈ Λ. Then, by the definition of U0,

it can be easily seen that α and β are (D,η+ δ/2)-codes for x and hence (D,δ/2)-codes

for x. In other words, all (D0,η)-codes are regarded as (D,δ/2)-codes for any η ∈ (0,rδ/2).
By the hypothesis, there is a finite chain of interpolating rays cα = cγ1,cγ2, . . . ,cγn = cβ in

Rayx(Dδ/2,rδ/2) such that

cγ1 ≈Nδ/2

(Dδ/2,rδ/2)
cγ2 ≈Nδ/2

(Dδ/2,rδ/2)
· · · ≈Nδ/2

(Dδ/2,rδ/2)
cγn .

Since η < rδ/2, all the (Dδ/2,rδ/2)-codes γi are (Dδ/2,η)-codes. Hence, all rays in

Rayx(D0,η) are (Dδ/2,η;Nδ/2)-equivalent. Furthermore, one can easily check that D0 ≺
Dδ/2. Therefore, we conclude that (D0 ≺ Dδ/2;Nδ/2) is a uniform meandering hyperbol-
icity datum of ρ.

5.2. Expansion

In order to obtain an expansion data for the Γ-action on the flag manifold Flag(τmod),
we proceed as in Remark 3.6(c). Roughly speaking, we will construct a finite open cover

of Flag(τmod) whose elements are expanding subsets for some elements of Γ.

First, fix a number λ > 1 and a base point x ∈ X. Let D > 0 be the diameter of a
compact fundamental domain for the Γ-action on X. Then the orbit Γx⊂X is D-dense

in X, that is, BD(y)∩Γx �= ∅ for any y ∈X. In view of [26, Theorem 2.41], the D-density of

Γx implies that for each τ ∈Flag(τmod), there is an element gτ ∈Γ such that E(g−1
τ ,τ)>λ.

Define an open subset Uτ ⊂ Flag(τmod) by

Uτ = {τ ′ ∈ Flag(τmod) | E(g−1
τ ,τ ′)> λ}

so that τ ∈Uτ and g−1
τ is (λ,Uτ )-expanding. Then we have an open cover {Uτ}τ∈Flag(τmod)

of Flag(τmod). Since Flag(τmod) is compact, there is a finite subcover {Uτ1, . . . ,Uτk}. For
simplicity, let us abbreviate Uτi and gτi to Ui and gi, respectively, for i= 1, . . . ,k.

By adding extra generators to {g1, . . . ,gk} with empty expanding subsets, we obtain

a symmetric generating set Σ of Γ. Let I be the index set for Σ and U the collection
of all (λ,g−1

i )-expanding subsets Ui, where gi ∈ Σ. Since Flag(τmod) is compact, Σ is

finite and the Γ-action is by C1-diffeomorphisms, there exist a constant L > 1 such that

every gi ∈Σ is L-Lipschitz on Flag(τmod). Let δ < δU be a Lebesgue number of U . Then
D = (I,U,Σ,δ,L,λ) is an expansion datum of the Γ-action on Flag(τmod).

5.3. Coding rays are uniform Morse quasi-geodesics

In the proof of the next lemma, we will be using the notions of τmod-regular (and uniformly

regular) sequences and τmod-convergence property for such sequences; the reader will find
a detailed treatment of these notions in [26, Section 4].

Lemma 5.4. Let η ∈ (0,δ] and α be a (D,η)-code for τ ∈ Flag(τmod) and cα :N0 → Γ<G

be the ray associated to α. Then the sequence cαx in X is a (Θ,R)-Morse quasi-geodesic

with end point τ for some data (Θ,R) depending only on the pair (D,η).
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Proof. Recall from Corollary 3.20 that the ray cα is a uniform quasi-geodesic in Γ which
is quasi-isometric to X. Thus, in order to prove the Morse property, it suffices to establish

the uniform τmod-regularity of the sequence cα; see [27, Theorem 1.3].

First of all, there exists a closed ball B ⊂ Flag(τmod) such that cα restricted to B
subconverges uniformly to τ . Moreover, the limit set of a subsequence of (cα)−1(τ) lies

in B by Theorem 3.21. Since B is Zariski dense in Flag(τmod), the sequence cα is τmod-

regular; see the proof of [23, Theorem 9.6].

Now, we show that the sequence cα is uniformly τmod-regular. We first verify that the
sequence cα conically converges to τ . Since it suffices to prove this for all subsequences in

cα, we will freely pass to such subsequences. Note that the inverse sequence (cα)−1 is also

ιτmod-regular and, hence, flag-subconverges to a simplex τ− ∈ Flag(ιτmod). Furthermore,
the sequence cα subconverges to τ uniformly on compacts in the open Schubert cell

C(τ−) ⊂ Flag(τmod) of τ− and, whenever B′ is a closed ball in Flag(τmod) which is not

contained in C(τ−), the sequence cα cannot subconverge to τ uniformly on B′. Thus,
the ball B, and hence its center ν (which is the limit of a subsequence in (cα)−1(τ)), is

contained in C(τ−). Since ν ∈C(τ−), according to [26, Proposition 5.31], the convergence

cα → τ is conical.

Lastly, by [26, Theorem 2.41], the uniform exponential expansion of the sequence (cα)−1

at τ (guaranteed by Lemma 3.14) implies (uniform) Θ-regularity of the sequence cα, where

Θ is a certain fixed Wτmod
-convex compact subset of the open star ost(τmod) of τmod in

σmod.

5.4. Morse interpolation

As in Definition 3.23, given two maps p,q : R+ →X and an integer N ≥ 0, we define the
relation p ≈N q by the condition that there exist unbounded monotonic sequences (Pk)

and (Qj) in R+ such that the subsets {p(Pk) | k ∈ N0} and {q(Qj) | j ∈ N0} in X are

within Hausdorff distance N from each other.

Lemma 5.5. Let p and q be (Θ,R)-Morse quasi-geodesic rays in X with p(∞) = q(∞) = τ .

Let Θ′ ⊂ ost(τmod) be a Wτmod
-convex compact subset such that Θ ⊂ int(Θ′). Given a

constant l > 0, there is a (Θ′,R)-Morse quasi-geodesic ray r with end point r(∞) = τ in

X such that

(i) r(tn) ∈ p(R+) if n is odd and r(tn) ∈ q(R+) if n is even, and hence p≈0 r ≈0 q,

(ii) the restriction of r to each interval [tn,tn+1] is a Θ′-regular geodesic,

(iii) dX(r(tn),r(tn+1))≥ l for all integers n≥ 0.

Moreover, if p(0) = q(0) = x ∈X, then r can be chosen such that r(0) = x.

Proof. According to [26, Lemma 5.52], both p and q are contained in the R-neighborhood

of a cone V = V (x,st(τ)). We define the points r(tn) inductively as follows (see Figure

4). Set t0 = 0 and r(0) = q(0). Suppose that n is odd and r(tn) ∈ p(R+) is defined. Since
the Morse quasi-geodesic ray q is Θ-regular, the limit (as t→∞) of directions of oriented

segments

r(tn)q(t)
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Figure 4. Interpolating ray.

belongs to stΘ(τ). Therefore, for a sufficiently large sn > 0, the directions of both geodesic

segments r(tn)q(sn) and r̄(tn)q̄(sn) are in the interior of stΘ′(τ) and dX(r(tn),q(sn))> l,
where r̄(t) and q̄(t) are the nearest projections of r(t) and q(t) onto V, respectively.

Then we set tn+1 = tn + dX(r(tn),q(sn)) and r(tn+1) = q(tn+1). When n is even and

r(tn) ∈ q(R+), the point r(tn+1) is defined in the same way.

Since the cone V is convex in X, the piecewise geodesic ray r̄ : [0,∞)→ V with vertices
(r̄(tn))n∈N0

is a geodesic ray whose restriction to each interval [tn,tn+1] is Θ
′-regular and

longitudinal. By the nestedness property of Θ′-cones (see [26, Section 2.12]), the entire

ray r̄ is a Θ′-Finsler geodesic ray in V. Then the piecewise geodesic ray r with vertices
(r(tn))n∈N0

is R-Hausdorff close to the Θ′-Finsler geodesic ray r̄. Therefore, the ray r is a

(Θ′,R)-Morse quasi-geodesic ray. From the above construction, the ray r clearly satisfies

r(∞) = τ as well as (i), (ii) and (iii) of the lemma.

5.5. Refined expansion data

Now, we find a refinement Dη of the expansion datum D for each η ∈ (0,δ].

Let α and β be (D,η)-codes for τ ∈ Flag(τmod). By Lemma 5.4, the associated rays
cα and cβ project in X to (Θ,R)-Morse quasi-geodesic rays with end point τ , where the

datum (Θ,R) depends only on D and η. Hence, cα(n)x and cβ(n)x are contained in the R-

neighborhood of V (x,stΘ(τ)) for any integer n≥ 0. We fix compact Wτmod
-convex subsets

Θ′,Θ′′ ⊂ ost(τmod) in σmod such that

Θ⊂ int(Θ′)⊂Θ′ ⊂ int(Θ′′)⊂Θ′′.

We first choose a constant l such that

l >max{l1,l2,l3}+4(D+R), (5.6)

where the constants l1, l2 and l3 are defined as follows. First, choose a constant l1 =
l1(Θ

′,Θ′′,D,R)> 0 so that, if dΔ(x,y) ∈ V (0,Wτmod
Θ′)∩Δ and dX(x,y)> l1, then

dΔ(x
′,y′) ∈ V (0,Wτmod

Θ′′)∩Δ
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for any x′ ∈ BD+R(x) and any y′ ∈ BD+R(y). This is possible due to the following

inequality

‖dΔ(x,y)−dΔ(x
′,y′)‖ ≤ dX(x,x′)+dX(y,y′)≤ 2(D+R).

For the second constant l2 > 0, we recall [26, Theorem 2.41] again that there are

constants C,A > 0 depending only on x,R,D and the chosen Riemannian metric on

Flag(τmod) such that if dX(gx,V (x,st(τ)))≤ 2(D+R), then

C−1 ·dX(gx,∂V (x,st(τ)))−A≤ logE(g−1,τ)≤ C ·dX(gx,∂V (x,st(τ)))+A, (5.7)

where ∂V (x,st(τ))) is the boundary of V (x,st(τ))) in X. (Recall from equation (2.2)

that E(g−1,τ) is the expansion factor of g−1 at τ ∈ Flag(τmod)). Given λ > 1, the

inequality (5.7) makes it possible to choose a constant l2 = l2(x,R,D,λ) > 0 such that
if dX(gx,∂V (x,st(τ)))≥ l2 and dX(gx,V (x,st(τ)))≤ 2(D+R), then E(g−1,τ)≥ 2λ.

Finally, we choose a constant l3 > 0 as follows: If y ∈ V (x,stΘ′′(τ)), the distance of

y from ∂V (x,st(τ)) grows linearly with the distance of x and y. Its linear growth rate
only depends on Θ′′, and hence there is a constant l3 = l3(Θ

′′,l2) > 0 such that, if y ∈
V (x,stΘ′′(τ)) and dX(x,y)> l3, then dX(y,∂V (x,st(τ)))> l2+2(D+R) for any x,y ∈X

and any τ ∈ Flag(τmod).
Now, we are ready to add new generators to Σ. Let Σ0 be the set of all elements g ∈ Γ

such that

dΔ(x,gx) ∈ V (0,Wτmod
Θ′′)∩Δ and l−2D < dX(x,gx)< 2l+2D. (5.8)

Since Γ acts properly discontinuously on X, Σ0 is finite. To each g ∈Σ0, we associate its
expansion domain

Uλ
g = {τ ∈ Flag(τmod) | E(g−1,τ)> λ}.

Add all elements g ∈Σ0 together with λ-expanding domains Uλ
g to Σ and U , respectively.

Furthermore, if necessary, add the inverses of Σ0 together with their (possibly empty)
λ-expanding domains. Then we obtain a symmetric generating finite set Ση and the

collection Uη of all (λ,g)-expanding subsets for g ∈Ση. The index set Iη for Ση, and the

Lipschitz constant Lη ≥ L are determined in the obvious way. Lastly, by setting

δη := min

⎧⎪⎨⎪⎩ 99

100
η, min

g∈Σ0

U2λ
g �=∅

dX(U2λ
g ,∂Uλ

g )

⎫⎪⎬⎪⎭< η ≤ δ, (5.9)

we obtain a refined expansion datum

Dη = (Iη,Uη,Ση,δη,Lη,λ)� (I,U,Σ,δ,L,λ) =D

for the Γ-action on Flag(τmod). Note that by the definition of δη, if τ ∈ U2λ
g for some

g ∈Σ0, then Bδη (τ)⊂ Uλ
g .

5.6. Uniform meandering hyperbolicity

Lastly, we are left with checking the uniform meandering hyperbolicity condition.
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Fix τ ∈ Flag(τmod). Let α and β be (D,η)-codes for τ . In view of Proposition 5.3, it

suffices to show that the associated rays cα and cβ are (Dη,δη;N)-equivalent for some

integer N ≥ 1. But we claim, as a matter of fact, that there exists a (Dη,δη)-code γ for τ
such that

cα ≈0
(Dη,δη)

cγ ≈0
(Dη,δη)

cβ . (5.10)

That is to say, the rays cα and cβ are (Dη,δη;0)-equivalent, and hence (Dη,δη;1)-

equivalent.
Let us prove the claim. By Lemma 5.4, the sequences cαx and cβx are (Θ,R)-Morse

quasi-geodesic rays in Γx with end point τ for a uniform datum (Θ,R) depending only on

(D,η). Then both cαx and cβx are contained in the R-neighborhood of a cone V (x,st(τ)).

We fix compact Wτmod
-convex subsets Θ′,Θ′′ ⊂ ost(τmod)⊂ σmod such that Θ⊂ int(Θ′)⊂

Θ′ ⊂ int(Θ′′). Applying Lemma 5.5 with the chosen constant l > 0 in equation (5.6), there

is a (Θ′,R)-Morse quasi-geodesic r in Γx with r(0) = x and r(∞) = τ and an unbounded

increasing sequence tn ∈R+ such that the properties (i), (ii) and (iii) of the lemma hold.
According to the proof of Lemma 5.5, we may assume that r(tn) ∈ cα(N0)x if n is odd

and r(tn) ∈ cβ(N0)x if n is even, and the piecewise geodesic ray with vertices (r̄(tn))n∈N0

is a Θ′-Finsler geodesic ray in V (x,st(τ)).
The properties (ii) and (iii) of Lemma 5.5 imply that tn+1− tn > l for every n ∈ N0.

For each n ∈ N0, set

kn =

⌊
tn+1− tn

l

⌋
−1.

Let (uk)k∈N0
be an increasing sequence consisting of {tn+jl | n ∈N0, j = 0, . . . ,kn}. Then

it is easy to see that (tk) is a subsequence of (uk) and for every k ∈ N0,

l ≤ uk+1−uk < 2l, that is, l ≤ dX(r(uk+1),r(uk))< 2l. (5.11)

For a sufficiently large l, we may assume that the piecewise geodesic ray with vertices

(r̄(uk))k∈N0
is a Θ′′-Finsler geodesic ray. This is possible since r is a (Θ′,R)-Morse quasi-

geodesic. For the proof, we refer the reader to [26, Theorem 5.53].

Due to the D-density of Γx in X, for each r(uk) there exists an element gk ∈ Γ such

that gkx ∈ BD(r(uk)). Here, we require that if r(uk) ∈ cα(N0)x (resp. r(uk) ∈ cβ(N0)x),

then gk ∈ cα(N0) (resp. gk ∈ cβ(N0)) and g0 = e. This gives us that gk ∈ cα(N0) if uk = tn
for an odd number n and gk ∈ cβ(N0) if uk = tn for an even number n. Thus, {gk | k ∈N0}
has infinitely many elements of both cα(N0) and cβ(N0).

We will show that there is a (Dη,δη)-code γ for τ such that cγ(k) = gk+1 for k ∈ N0.
Then (5.10) will immediately follow.

Lemma 5.12. Let hk = g−1
k gk+1 for k ∈N0. Then hk ∈Ση and E(h−1

k ,h−1
k−1 · · ·h

−1
0 τ)> 2λ

for every k ∈ N0.

Proof. To show that hk = g−1
k gk+1 ∈ Ση, we need to verify (5.8). From the facts that

gkx ∈BD(r(uk)), r̄(uk) ∈BR(r(uk)) and (5.11), it easily follows that

l−2D ≤ dX(gkx,gk+1x) = dX(x,hkx)< 2l+2D. (5.13)
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Moreover, since the geodesic r(uk)r(uk+1) is a Θ′-regular geodesic of length at least l > l1
and gkx ∈BD(r(uk))⊂BD+R(r(uk)) for all k ∈ N0, the definition of l1 gives

dΔ(x,hkx) = dΔ(gkx,gk+1x) ∈ V (0,Wτmod
Θ′′)∩Δ.

Thus, every hk is an element of Ση.

Now,we will prove the second statement E(h−1
k ,h−1

k−1 · · ·h
−1
0 τ)> 2λ. An easy computa-

tion gives that h−1
k−1 · · ·h

−1
0 = g−1

k g0 = g−1
k , and hence

E(h−1
k ,h−1

k−1 · · ·h
−1
0 τ) = E((g−1

k gk+1)
−1,g−1

k τ).

One can estimate the expansion factor E((g−1
k gk+1)

−1,g−1
k τ) through the distances from

g−1
k gk+1x to the Weyl cone V (x,st(g−1

k τ)) and its boundary ∂V (x,st(g−1
k τ)) as follows.

The conditions of gkx ∈BD(r(uk)) and r̄(uk) ∈BR(r(uk)) yields

dX(gkx,r̄(uk))≤ dX(gkx,r(uk))+dX(r(uk),r̄(uk)))≤D+R. (5.14)

The fact that the piecewise geodesic ray with vertices r̄(uk) is a Θ′′-Finsler geodesic ray

in V (x,st(τ)) implies r̄(uk+1) ∈ V (r̄(uk),stΘ′′(τ))⊂ V (r̄(uk),st(τ)). Thus,

dX(gk+1x,V (gkx,st(τ)))≤ dX(gk+1x,r̄(uk+1))+dX(r̄(uk+1),V (gkx,st(τ)))

≤ dX(gk+1x,r̄(uk+1))+dH(V (r̄(uk),st(τ)),V (gkx,st(τ)))

≤ dX(gk+1x,r̄(uk+1))+dX(gkx,r̄(uk))

≤ 2(D+R),

where dH denotes Hausdorff distance between subsets of X. The third inequality above

follows from the fact that the Hausdorff distance between V (y,st(τ)) and V (y′,st(τ)) is
bounded above by dX(y,y′).
Next, we estimate the distance between g−1

k gk+1x and ∂V (x,st(g−1
k τ)). From the

inequalities (5.13) and (5.14),

dX(r̄(uk),r̄(uk+1))≥ dX(gkx,gk+1x)−2(D+R)≥ l−2(2D+R)> l3.

Since r̄(uk+1) ∈ V (r̄(uk),stΘ′′(τ)), it follows from the definition of l3 that

dX(r̄(uk+1),∂V (r̄(uk),st(τ)))≥ l2+2(D+R).

Let pk be the point on ∂V (gkx,st(τ)), where dX(gk+1x,∂V (gkx,st(τ))) is realized. If we

denote by cξy : [0,∞)→X the geodesic ray starting at y toward ξ ∈ ∂∞X, then pk is written

as pk = cξkgkx(zk) for some ξk ∈ ∂st(τ) and zk > 0. Since the geodesic ray cξkr̄(uk)
is contained

in V (r̄(uk),∂st(τ)) = ∂V (r̄(uk),st(τ)) and dX(cξkgkx(z),c
ξk
r̄(uk)

(z))≤ dX(gkx,r̄(uk))≤D+R

for all z > 0,

l2+2(D+R)≤ dX(r̄(uk+1),∂V (r̄(uk),st(τ)))

≤ dX(r̄(uk+1),c
ξk
r̄(uk)

(zk))

≤ dX(r̄(uk+1),gk+1x)+dX(gk+1x,c
ξk
gkx

(zk))+dX(cξkgkx(zk),c
ξk
r̄(uk)

(zk))

≤ 2(D+R)+dX(gk+1x,∂V (gkx,st(τ))),
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which is equivalent to dX(g−1
k gk+1x,∂V (x,st(g−1

k τ))) = dX(gk+1x,∂V (gkx,st(τ))) > l2.

Recalling that dX(g−1
k gk+1x,V (x,st(g−1

k τ))) = dX(gk+1x,V (gkx,st(τ))) < 2(D+R), the
definition of l2 leads us to conclude that E((g−1

k gk+1)
−1,g−1

k τ)> 2λ for all integers k ≥ 0.

This completes the proof of the lemma.

Now, we are ready to finish the proof of Theorem 5.1. By Lemma 5.12, we

can define a sequence γ : N0 → Iη so that for every k ∈ N, sγ(k) = hk ∈ Ση and

E(s−1
γ(k),s

−1
γ(k−1) · · ·s

−1
γ(0)τ) = E(h−1

k ,h−1
k−1 · · ·h

−1
0 τ) > 2λ, that is, s−1

γ(k−1) · · ·s
−1
γ(0)τ ∈ U2λ

sγ(k)
.

By equation (5.9), it holds that

Bδη (s
−1
γ(k−1) · · ·s

−1
γ(0)τ)⊂ Uλ

sγ(k)

for every k ∈ N0, and therefore γ is a (Dη,δη)-code for τ . Furthermore,

cγ(k) = sγ(0)sγ(1) · · ·sγ(k) = h0h1 · · ·hk = gk+1

for any integer k ≥ 0. Since {cγ(k) = gk+1 | k ∈ N0} has infinitely many elements of both
cα(N0) and cβ(N0), we finally conclude that cα ≈0

(Dη,δη)
cγ ≈0

(Dη,δη)
cβ and thus complete

the proof.

6. Actions of word-hyperbolic groups

In this section, we first prove that expansion implies uniform S-hyperbolicity for certain

nice actions of hyperbolic groups (Theorem 6.2), and then explore to which extent

S-hyperbolic actions of hyperbolic groups arise from their actions on Gromov boundaries.

6.1. Expansion implies S-hyperbolicity

In view of Corollary 3.20, any two (D,δ;N)-equivalent rays in a hyperbolic group are

(D,δ;N ′)-fellow-traveling for some N ′ ≥ 1, since two quasi-geodesics in a hyperbolic space
X which are Hausdorff-close on unbounded subsets define the same point in ∂∞X. Thus,

the meandering hyperbolicity condition enables us to define the following map when Γ is

a hyperbolic group:

Definition 6.1 (Postal map). Let Γ be a hyperbolic group and ρ : Γ → LHomeo(M)
meandering-hyperbolic at Λ with a datum (D0 ≺D;N). Then we define the postal map

π : Λ→ ∂∞Γ, x �→ π(x)

of ρ as follows: The value π(x) of x ∈ Λ is the equivalence class in ∂∞Γ (in the sense of

Section 2.2) of a ray cα ∈ Rayx(D0,δ0). The equivalence class is well defined since any

two (D0,δ0)-rays for x ∈ Λ are (D,δ;N ′)-fellow-traveling as mentioned above.

The map π is clearly equivariant. In Theorem 6.8, we will prove that π is a continuous

surjective map. We note that, as we show later in Corollary 6.11, meandering-hyperbolic
actions of a nonelementary hyperbolic group are in fact (uniformly) S-hyperbolic.

Theorem 6.2. Let Γ be a nonelementary hyperbolic group. Suppose that an action ρ :

Γ→ LHomeo(M) is expanding at Λ and there exists an equivariant continuous nowhere
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constant map f : Λ → ∂∞Γ. Then ρ is uniformly S-hyperbolic (and thus meandering-

hyperbolic) at Λ and f is the postal map of ρ.

Proof. Let D = (Σ,δ) be the expansion datum of ρ (see Definition 3.4). Recall that dΣ
denotes the word metric on Γ with respect to Σ.

We claim that if x∈Λ and η ∈ (0,δ] then, for every η-code α for x, the η-ray cα ∈RayηD(x)
is a uniform quasi-geodesic ray in (Γ,dΣ) asymptotic to f(x). To see this, we first note
that by Corollary 3.20 the ray cα is indeed an (A,C)-quasi-geodesic ray with A and C

independent of x and η.

By Theorem 3.21(1), there is a subsequence (gj) of (c
α
k ) such that (ρ(gj)) converges to

x on some ball Bη/2(q) ⊂ Λ. Since f is nowhere constant, the image S := f(Bη/2(q)) ⊂
∂∞Γ is not a singleton. By the equivariance of f, the subsequence (gj) converges to

ξ := f(x) pointwise on S. Moreover, the initial point cα0 = sα(0) ∈ Σ is a generator of Γ.

Therefore, Lemma 2.9 applies to the ray cα and we conclude that the image cα(N0) is
D-Hausdorff close to a geodesic ray eξ in (Γ,dΣ), where the constant D depends only on

the hyperbolicity constant of (Γ,dΣ) and the quasi-isometry constants (A,C).

Now, suppose that cα,cβ ∈ RayηD(x) are rays associated to η-codes α,β for x ∈ Λ,
respectively. Then the images of cα,cβ are within Hausdorff distance D from a geodesic

ray eξ; hence, these images are 2D-Hausdorff close. Therefore, the rays 2D-fellow-travel

each other. Since x∈Λ is arbitrary, we conclude that the action is uniformly S-hyperbolic
with data (D;Nη) = (δ;2D); recall Definitions 3.23 and 3.25.

Corollary 6.3. Let Γ be a nonelementary hyperbolic group. Suppose that the action of Γ

on its Gromov boundary ∂∞Γ is expanding with respect to a metric d∞ compatible with

the topology. Then this action is uniformly S-hyperbolic.

Proof. We set M = Λ= ∂∞Γ and f = id : ∂∞Γ→ ∂∞Γ in the preceding theorem.

Let Γ be a nonelementary hyperbolic group and da a visual metric on ∂∞Γ (Definition
2.7). Coornaert [10, Proposition 3.1, Lemma 6.2] showed that the Γ-action on (∂∞Γ,da)

is expanding. Thus, we have:

Corollary 6.4. Let Γ be a nonelementary hyperbolic group with the Gromov boundary
∂∞Γ equipped with a visual metric da. Then the action of Γ on (∂∞Γ,da) is uniformly

S-hyperbolic.

6.2. Meandering-hyperbolic actions of word-hyperbolic groups

It is natural to ask to what extent the converse of Corollary 6.4 is true:

Question 6.5. Does every meandering-hyperbolic action Γ → LHomeo(M) at Λ come

from the action of a hyperbolic group on its Gromov boundary?

Assume first that card(Λ)≥ 3 and the action of Γ on Λ in Question 6.5 is a convergence
action (see Section 2.1 for definition). Then, in view of the expansion condition, it is also

a uniform convergence action; see [26, Lemma 3.13] or [22, Theorem 8.8] for a different

argument. If we assume, in addition, that Λ is perfect (or that Λ is the limit set of
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the action of Γ on Λ; see Theorem 2.4), then Γ is hyperbolic and Λ is equivariantly

homeomorphic to the Gromov boundary ∂∞Γ (Theorem 2.10). To summarize:

Proposition 6.6. Suppose an expanding action Γ→ LHomeo(M) at Λ is a convergence

action with limit set Λ satisfying card(Λ)≥ 3. Then Γ is hyperbolic and Λ is equivariantly

homeomorphic to ∂∞Γ.

Note that we do not even need to assume faithfulness of the action of Γ on Λ since, by

the convergence action assumption, such an action necessarily has finite kernel.

As another application of the formalism of convergence group actions we obtain:

Proposition 6.7. Suppose that Γ is hyperbolic, d∞ is a compatible metric on the Gromov

boundary ∂∞Γ, and the Γ-action on (∂∞Γ,d∞) is expanding. Define the subset Σ0 ⊂ Σ

of the finite generating set Σ, consisting of elements sα with nonempty expansion subsets
Uα ⊂ Λ. Then Σ0 generates a finite index subgroup Γ0 < Γ.

Proof. The action of Γ0 on ∂∞Γ is still expanding and convergence; see Remark 2.3.

Therefore, as noted above, the action of Γ0 on T (∂∞Γ) is also cocompact. Since the action
of Γ on T (∂∞Γ) is properly discontinuous, it follows that Γ0 has finite index in Γ.

Next, assuming hyperbolicity of Γ in Question 6.5, we can relate Λ and ∂∞Γ. Recall
the relevant definitions from the beginning of Section 2.

Theorem 6.8. Let Γ be a nonelementary hyperbolic group. If Γ → LHomeo(M) is a

meandering-hyperbolic action at Λ, then the following hold.

(1) The postal map π : Λ→ ∂∞Γ is an equivariant continuous surjective map.

(2) For each minimal nonempty closed Γ-invariant subset Λμ ⊂ Λ, the restriction πμ :

Λμ → ∂∞Γ of π to Λμ is a surjective quasi-open map.

(3) Every Λμ as above is perfect.

Proof. (1) We already noted the map π is equivariant. Continuity of π : Λ→ ∂∞Γ can be
seen as in Section 4.6. Namely, if x,y ∈ Λ are close, there exist δ-codes α and β for x and

y, respectively, such that α(k) = β(k) for all 0≤ k ≤ n, where n ∈ N is sufficiently large.

Then

cαk = sα(0)sα(1) · · ·sα(k) = sβ(0)sβ(1) · · ·sβ(k) = cβk

for all 0≤ k ≤ n. This means π(y) ∈ Vn(π(x)) for a sufficiently large n (see Section 2.2),

hence π(x) and π(y) are close.
Since Λ is compact, the image π(Λ) is closed and Γ-invariant. By the minimality of the

action of Γ on ∂∞Γ, we have π(Λ) = ∂∞Γ.

(2) Surjectivity of πμ follows from the minimality of the action of Γ on ∂∞Γ as in part
(1). We now prove that each πμ is quasi-open. Since Λμ is compact, it is locally compact;

hence, it suffices to prove that for every compact subset K ⊂ Λμ with nonempty interior,

the image π(K)⊂ ∂∞Γ also has nonempty interior.
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In view of the minimality of the Γ-action on Λμ and compactness of Λμ, there exists a
finite subset {g1, . . . ,gn} ⊂ Γ such that

ρ(g1)(intK)∪·· ·∪ρ(gn)(intK) = Λμ.

By the equivariance of π and surjectivity of πμ : Λμ → ∂∞Γ, we also have

g1(π(K))∪·· ·∪gn(π(K)) = ∂∞Γ.

Since a finite collection (even a countable collection) of nowhere dense subsets cannot

cover ∂∞Γ, it follows that π(K) has nonempty interior.
(3) Suppose that Λμ has an isolated point z. Since the action of Γ on Λμ is minimal, the

compact subset Λμ ⊂ Λ consists entirely of isolated points, that is, is finite. Therefore,

π(Λμ)⊂ ∂∞Γ is a finite nonempty Γ-invariant subset. This contradicts the minimality of
the action of Γ on ∂∞Γ.

Remark 6.9. For some minimal S-hyperbolic actions of hyperbolic groups Γ →
LHomeo(Λ), the map π is not open; see Example 7.6.

Corollary 6.10. Let Γ be a nonelementary hyperbolic group. If Γ → LHomeo(M) is a
meandering-hyperbolic action at Λ, then:

(1) Γ acts on Λ with finite kernel K.

(2) If (gi) is a sequence in Γ converging to the identity on Λ, then the projection of this

sequence to Γ/K is eventually equal to e ∈ Γ/K.

Proof. Both statements are immediate consequences of Theorem 6.8(1) and the

convergence property for the action of a Γ on ∂∞Γ; see Section 2.2.

As another immediate corollary of the theorem and Theorem 6.2, we obtain:

Corollary 6.11. Let Γ be a nonelementary hyperbolic group. Then every meandering-
hyperbolic action of Γ is in fact uniformly S-hyperbolic.

These are positive results regarding Question 6.5. In Sections 5 and 7; however, we

present several examples which show that in general the question has negative answer.

6.3. S-hyperbolicity and stability for Anosov subgroups

Our goal in this section is to characterize Anosov subgroups in terms of the expansion

condition on suitable subsets of partial flag manifolds (Theorem 6.12) and show that the
corresponding actions are S-hyperbolic. As an application, we give an alternative proof

of the stability of Anosov subgroups (Corollary 6.14).

For the sake of simplicity, we shall restrict our attention to the case of nonelementary
hyperbolic groups and make use of Corollary 3.20 and Theorems 6.2 and 6.8. Then Lemma

6.13 below says that the condition (d) in Definition 2.13 is also equivalent to the expansion

condition (Definition 3.4) at the image of the boundary embedding. Consequently, we
obtain the following characterization of Anosov subgroups:

Theorem 6.12. For a nonelementary hyperbolic subgroup Γ < G, the following are

equivalent.
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(1) Γ is nonuniformly τmod-Anosov with asymptotic embedding ψ : ∂∞Γ→ ΛΓ(τmod).

(2) Γ is τmod-boundary embedded with a boundary embedding ϕ : ∂∞Γ→Flag(τmod) and

the Γ-action on Flag(τmod) is expanding at ϕ(∂∞Γ).

(3) There exists a closed Γ-invariant antipodal subset Λ ⊂ Flag(τmod) such that the

action Γ→ LHomeo(Flag(τmod)) is S-hyperbolic at Λ with injective postal map π :

Λ→ ∂∞Γ.

Moreover, the maps ψ and ϕ in (1) and (2) coincide, and the map π in (3) equals ψ−1.

Proof. (2 ⇒ 3) Let Λ = ϕ(∂∞Γ) ⊂ Flag(τmod). It is a closed Γ-invariant antipodal

subset such that the action Γ→ LHomeo(Flag(τmod);Λ) is expanding and the equivariant

homeomorphism ϕ−1 : Λ → ∂∞Γ is nowhere constant. By Theorem 6.2, this action is
S-hyperbolic with postal map ϕ−1.

(3 ⇒ 2) By Theorem 6.8(1), the postal map π is equivariant, continuous and surjective.

Since π is assumed to be injective and Λ is compact, π is in fact a homeomorphism. Since
Λ is antipodal, the inverse π−1 : ∂∞Γ→ Λ ⊂ Flag(τmod) is a boundary embedding. The

Γ-action on Λ is S-hyperbolic, in particular, expanding.

(1 ⇔ 2) This equivalence reduces to the lemma below.

Lemma 6.13. Suppose Γ < G is τmod-boundary embedded with a boundary embedding
ϕ : ∂∞Γ→ Flag(τmod).

(1) If Γ is nonuniformly τmod-Anosov with the asymptotic embedding ϕ, then the Γ-

action on Flag(τmod) is expanding at ϕ(∂∞Γ).

(2) If Γ is nonelementary and the Γ-action on Flag(τmod) is expanding at ϕ(∂∞Γ), then

it is nonuniformly τmod-Anosov and ϕ is the asymptotic embedding for Γ.

Proof. (1) This is a special case of [26, Equivalence Theorem 1.1]: Every τmod-Anosov

subgroup Γ < G is expanding at ϕ(∂∞Γ). To see this directly, rather, note from the
condition (d) in Definition 2.13 that for each ξ ∈ ∂∞Γ there is an element g ∈ Γ such that

E(g,ψ(ξ)) > 1. Then Remark 3.6(c) implies the Γ-action on Flag(τmod) is expanding at

ϕ(∂∞Γ).
(2) Suppose the Γ-action on Flag(τmod) is expanding at ϕ(∂∞Γ) with dataD=(δ). Since

∂∞Γ is perfect, Corollary 3.20 applies. Thus, for any η ∈ (0,δ], the rays cα associated to

η-codes α for ϕ(ξ) ∈ ϕ(∂∞Γ) are uniform quasi-geodesic rays in Γ.

Let ξ ∈ ∂∞Γ, and let r : N0 → Γ be a geodesic ray starting at e ∈ Γ and asymptotic to
ξ. If α is an η-code for ϕ(ξ), then, as in the proof of Lemma 2.9, the Hausdorff distance

between {r(k)}k∈N0
and {cαj }j∈N0

is bounded above by a uniform constant C > 0. This

means that, for each k ∈ N0, there exist nk ∈ N0 and an element gk ∈ Γ with |gk|Σ ≤ C
such that r(k) = cαnk

gk. Then we have

E(r(k)−1,ϕ(ξ)) = E(g−1
k (cαnk

)−1,ϕ(ξ))≥A · E((cαnk
)−1,ϕ(ξ)),
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where A = inf{E(g,ϕ(ζ)) | ζ ∈ ∂∞Γ, g ∈ Γ and |g|Σ ≤ C}. Since E((cαj )−1,ϕ(ξ)) tends to

infinity as j tends to infinity (by the last statement of Lemma 3.14), it follows that

sup
k∈N

E(r(k)−1,ϕ(ξ)) = +∞.

Therefore, the Γ-action satisfies the condition (d) of Definition 2.13.

A corollary of this theorem is the stability of Anosov subgroups; see, for example, [19,

Theorem 1.2] and [24, Theorem 1.10]. Let us denote by

Homτ (Γ,G)

the space of faithful representations Γ→G with (nonuniformly) τmod-Anosov images.

Corollary 6.14. Suppose that Γ is a nonelementary hyperbolic group. Then

(1) Homτ (Γ,G) is open in Hom(Γ,G).

(2) For any sequence of representations ρi ∈Homτ (Γ,G) converging to ρ ∈Homτ (Γ,G),

the asymptotic embeddings ψi : ∂∞Γ → Λρi(Γ)(τmod) converge uniformly to the
asymptotic embedding ψ : ∂∞Γ→ Λρ(Γ)(τmod).

Proof. We start with an embedding ρ ∈Homτ (Γ,G); let Λ := Λρ(Γ)(τmod) and

ψ : ∂∞Γ→ Λ⊂ Flag(τmod)

denote the asymptotic embedding of ρ. By Theorem 6.12, the Γ-action on Λ is S-
hyperbolic. By Theorem 4.4, there exists a small neighborhood U ′ of ρ in Hom(Γ,G)

such that, for each ρ′ ∈ U ′, there exists a ρ′-invariant compact Λ′ ⊂ Flag(τmod) at which

the ρ′-action is expanding and there is an equivariant homeomorphism φ : Λ→ Λ′.
By Corollary 4.5, for every ρ′ ∈ U ′, the kernel of the action of Γ′ = ρ′(Γ) on Λ′ equals

the kernel of the action of Γ on Λ. Since Γ is assumed to be nonelementary, it acts on Λ

with finite kernel Φ (Corollary 6.10). Therefore, the kernel of ρ′ is contained in the finite

subgroup Φ< Γ. As explained in [24, proof of Corollary 7.34], rigidity of finite subgroups
of Lie groups implies that U ′ contains a smaller neighborhood U of ρ such that every

ρ′ ∈ U is injective on Φ. Therefore, every ρ′ ∈ U is faithful.

Since Λ′ depends continuously on ρ′ (see Section 4.8), the antipodality of Λ leads to
the antipodality of Λ′. (In order to guarantee this, one may further reduce the size of

U if necessary.) Thus, φ ◦ψ : ∂∞Γ → Λ′ is a boundary embedding of Γ′. From Lemma

6.13(2), we conclude that Γ′ <G is again (nonuniformly) τmod-Anosov and the boundary
embedding φ◦ψ of Γ′ is uniformly close to ψ.

6.4. Historical remarks on stability

The history of stability for convex-cocompact (and, more generally, geometrically finite)

Kleinian groups goes back to the pioneering work of Marden [30] (in the case of subgroups

of PSL(2,C)). It appears that the first proof of stability of geometrically finite subgroups
of Isom(Hn) (the isometry group of the hyperbolic n-space) was given by Bowditch in [5],

although many arguments are already contained in [8]. Bowditch in his paper also credits

this result to P. Tukia. A generalization of the Sullivan’s stability theorem for subgroups
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of Isom(Hn), proving the existence of a quasi-conformal conjugation on the entire sphere

at infinity, was given by Izeki [20].

After Sullivan’s paper [35], a proof of stability for convex-cocompact subgroups of rank
one semisimple Lie groups was given by Corlette [12]. Corlette’s proof also goes through

in the setting of C1-stability as it was observed by Yue [38]. Unlike the proofs of Sullivan

and Bowditch, however, Corlette’s proof is based on an application of Anosov flows; the
same tool is used in the subsequent proofs of stability of Anosov subgroups of higher rank

semisimple Lie groups.

The notion of Anosov subgroups was introduced by Labourie [28] as a natural analogue
of convex-cocompact groups, and the theory was further developed by Guichard and

Wienhard [19] to include all word-hyperbolic groups. Subsequently, Kapovich, Leeb

and Porti [26] provided new characterizations of Anosov subgroups investigating their

properties from many different perspectives. In particular, they gave an alternative proof
of stability of Anosov subgroups in [24] using coarse-geometric ideas. Recently, Bochi,

Potrie and Sambarino [3] provided a purely dynamical proof of the structural stability of

Anosov representations.
On the other hand, a notion of convex-cocompactness for discrete subgroups of

PGL(n,R) was studied by Danciger, Guéritaud and Kassel in [13, Definition 1.11]. While

every Anosov subgroup is word-hyperbolic, convex-cocompact subgroups of PGL(n,R) in
their definition are not necessarily word-hyperbolic. Nevertheless, stability in the sense

of linear deformations was established for such groups in [13, Theorem 1.17(D)].

7. Other examples

We present a number of examples and nonexamples of S-hyperbolic actions.

7.1. Expanding but not S-hyperbolic actions

In general, even for hyperbolic groups, the expansion condition alone does not imply the

S-hyperbolicity condition.

Example 7.1 (Action with infinite kernel). Suppose that Γ′ and Γ are nonelementary

hyperbolic groups and φ : Γ′ → Γ is an epimorphism with infinite kernel. We equip the
Gromov boundary Λ = ∂∞Γ with a visual metric. Then the action ρ : Γ→ LHomeo(Λ) is

expanding (compare Corollary 6.4). Thus, the associated Γ′-action ρ◦φ : Γ′ →LHomeo(Λ)

is expanding as well. But this action cannot be S-hyperbolic: see Corollary 6.10.

Example 7.2 (Nondiscrete action). Suppose that Γ is a nonelementary hyperbolic group
and ρ : Γ → G = Isom(Hn) is a representation with dense image. Then the associated

action ρ : Γ → LHomeo(Λ) on the visual boundary Λ = ∂∞Hn is expanding due to the

density of ρ(Γ) in G. But the action ρ : Γ→ LHomeo(Λ) cannot be S-hyperbolic. Indeed,
by the density of ρ(Γ) in G, there is a sequence of distinct elements gi ∈ Γ such that ρ(gi)

converges to the identity element of G. If ρ were S-hyperbolic, then Corollary 6.10 would

give a contradiction that the set {gi} is finite.
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More generally, the same argument works for representations ρ : Γ→G of nonelementary
hyperbolic groups to a semisimple Lie group G with dense images ρ(Γ). The associated

actions ρ of Γ on the partial flag manifolds G/P are expanding but not S-hyperbolic.

7.2. S-hyperbolic actions of hyperbolic groups

In addition to the toy examples in Section 3.2, we now give more interesting examples

of S-hyperbolic actions of hyperbolic groups. As we proceed, the associated postal maps
π : Λ→ ∂∞Γ will be increasingly more complicated.

Recall that a discrete subgroup Γ < Isom(Hn) is convex-cocompact if its limit set Λ =

ΛΓ ⊂ Sn−1 = ∂∞Hn is not a singleton and Γ acts cocompactly on the closed convex
hull of Λ in Hn. We refer to [4] for details on convex-cocompact and, more generally,

geometrically finite isometry groups of hyperbolic spaces.

Every convex-cocompact (discrete) subgroup Γ of isometries of Hn (and, more generally,

a rank one symmetric space) is S-hyperbolic. More precisely, for Λ = ΛΓ, the action
Γ → LHomeo(Sn−1) is S-hyperbolic. This can be either proven directly using a Ford

fundamental domain (as in [35, Theorem I] by considering the conformal ball model

of Hn inside Rn) or regarded as a special case of S-hyperbolicity of Anosov subgroups
(Theorem 6.12).

Unlike the convex-cocompact or Anosov examples, the invariant compact set Λ is not

equivariantly homeomorphic to the Gromov boundary in the examples below.

Example 7.3 (k -fold nontrivial covering). Let Sg be a closed oriented hyperbolic surface

of genus g≥ 2; it is isometric to the quotient H2/Γ, where Γ∼= π1(Sg) is a discrete subgroup
of PSL(2,R). Take any k ≥ 2 dividing 2g− 2. Since the Euler number of the unit circle

bundle of Sg is 2−2g, the same as the Euler number of the action of Γ on S1 = ∂∞H2,

it follows that the action of Γ lifts to a smooth action

ρ̃ : Γ→Diff1(S1)

with respect to the degree k covering p : Λ=S1 →S1. We pull back the Riemannian metric

from the range to the domain Λ via the map p. Since Γ<PSL(2,R) is convex-cocompact,

its action on ∂∞H2 is S-hyperbolic. Let {Uα | i ∈ I} be a collection of expanding subsets
(arcs) in S1 = ∂∞H2 corresponding to a generating set Σ = {si | i∈I} of Γ. As in Example

3.9, we lift these arcs to connected components

{Ũji ⊂ p−1(Uj) | j ∈ I, i= 1, . . . ,k}.

These will be expanding subsets for the generators sji = sj (j ∈ I, i= 1, . . . ,k) of Γ. The

action ρ̃ will be minimal and S-hyperbolic (because the original action of Γ is).
Thus, we obtain an example of a minimal S-hyperbolic action of a hyperbolic group on

a set Λ which is not equivariantly homeomorphic to ∂∞Γ.

Similar examples of S-hyperbolic actions on S1 can be obtained by starting with a

general convex-cocompact Fuchsian subgroup Γ0 <PSL(2,R) and lifting it to an action of
a finite central extension Γ of Γ0 on S1 via a finite covering S1 →S1. We refer to the paper

[14] of Deroin for details as well as the related classification of expanding real-analytic

group actions on the circle.
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Below is a variation of the above construction.

Example 7.4 (Trivial covering). Let Γ0 be a nonelementary hyperbolic group with the
Gromov boundary Λ0 = ∂∞Γ0 equipped with a visual metric. Let Λ = Λ0 ×{0,1} and

Γ0 → LHomeo(Λ) be the product action where Γ0 acts trivially on {0,1}. This action is

S-hyperbolic but, obviously, nonminimal.
We extend this action of Γ0 to an action of Γ = Γ0×Z2, where the generator of Z2 acts

by the map

(ξ,i) �→ (ξ,1− i) (for ξ ∈ Λ0 and i= 0,1)

with an empty expansion subset. The action Γ→ LHomeo(Λ) is easily seen to be faithful,

S-hyperbolic and minimal. It is clear, however, that Λ is not equivariantly homeomorphic
to ∂∞Γ∼= ∂∞Γ0.

In the preceding examples, we had an equivariant finite covering map π : Λ → ∂∞Γ.

In the next example, the postal map π : Λ → ∂∞Γ is a finite-to-one open map but not

a local homeomorphism; one can regard the map π as a generalized branched covering
(in the sense that it is an open finite-to-one map which is a covering map away from a

codimension 2 subset).

Example 7.5 (Generalized branched covering). Let Γ < PSL(2,R) be a Schottky

subgroup, that is, a convex-cocompact nonelementary free subgroup. Its limit set ΛΓ ⊂ S1

is homeomorphic to the Cantor set; it is also equivariantly homeomorphic to the Gromov

boundary ∂∞Γ.

We regard Γ as a subgroup of PSL(2,C) via the standard embedding PSL(2,R) →
PSL(2,C). The domain of discontinuity of the action of Γ on S2 is ΩΓ = S2 −ΛΓ; the

quotient surface S = ΩΓ/Γ is compact and its genus equals to the rank r of Γ. We let

χ : π1(S)→ F be a homomorphism to a finite group F which is nontrivial on the image
of π1(ΩΓ) in π1(S). For concreteness, we take the following homomorphism χ : π1(S)→
F = Z2. We let {a1,b1, . . . ,ar,br} denote a generating set of π1(S) such that a1, . . . ,ar
lie in the kernel of the natural homomorphism φ : π1(S)→ Γ, while φ sends b1, . . . ,br to

(free) generators of Γ. Then take χ such that χ(a1) = 1 ∈ Z2, while χ sends the rest of
the generators to 0 ∈ Z2. This homomorphism to F, therefore, lifts to an epimorphism

χ̃ : π1(ΩΓ)→F with Γ-invariant kernel K <π1(ΩΓ). Hence, there exists a nontrivial 2-fold

covering

p : Ω̃→ ΩΓ

associated to K and the action of the group Γ on ΩΓ lifts to an action of Γ on Ω̃.

One verifies that p is a proper map which induces a surjective but not injective map
p∞ : End(Ω̃)→ End(ΩΓ) between the spaces of ends of the surfaces Ω̃ and ΩΓ. Since p is

a 2-fold covering map, the induced map p∞ is at most 2-to-1 (that is, the fibers of p∞
have cardinality ≤ 2).
We let ds2 denote the restriction of the standard Riemannian metric on S2 to the

domain ΩΓ and let d̃s2 denote the pullback of ds2 to Ω̃. The Riemannian metric

ds2 is, of course, incomplete; the Cauchy completion of the associated Riemannian
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distance function dΩΓ
on ΩΓ is naturally homeomorphic to S2 (which is also the end-

compactification of ΩΓ), as a sequence in ΩΓ is Cauchy with respect to the metric dΩΓ
if

and only if it converges in S2. (Here, we are using the assumption that ΛΓ is contained

in the circle S1.)

We therefore let (M,d) denote the Cauchy completion of the Riemannian distance

function of (Ω̃,d̃s2). One verifies that M is compact and is naturally homeomorphic to

the end-compactification of Ω̃. In particular, the covering map p : Ω̃→ ΩΓ extends to a
continuous open finite-to-one map

p :M → S2

sending Λ := M − Ω̃ to ΛΓ. The map p : M → S2 is locally one-to-one on Ω̃ but fails

to be a local homeomorphism at Λ. Since every element of Γ acts as a Lipschitz map

to (Ω̃,d̃s2), the action of Γ on (Ω̃,d̃s2) extends to an action of Γ on M so that every
element of Γ is a Lipschitz map and Λ is a Γ-invariant compact subset of M. The map

p : M → S2 is equivariant with respect to the actions of Γ on M and on S2. Similarly

to our covering maps examples, the action Γ → LHomeo(M) is S-hyperbolic at Λ. The
postal map π : Λ→ ΛΓ = ∂∞Γ equals the restriction of p to Λ and, hence, is not a local

homeomorphism.

In the next example, the postal map π : Λ→ ∂∞Γ is not even an open map.

Example 7.6 (Denjoy blowup). We let Γ be the fundamental group of a closed hyperbolic

surface M2. Let c⊂M2 be a simple closed geodesic representing the conjugacy class [γ]

in Γ. The Gromov boundary of Γ is the circle S1. We perform a blowup of S1 at the set
Φ ⊂ S1 of fixed points of the elements in the conjugacy class [γ], replacing every fixed

point by a pair of points. See Figure 5. The resulting topological space Λ is homeomorphic

to the Cantor set; the quotient map

q : Λ→ S1

is 1-to-1 over S1−Φ and is 2-to-1 over Φ. The map q is quasi-open (with Oq =Λ−q−1(Φ))

but not open. (This map is an analogue of the Cantor function f : C → [0,1] mentioned
in the beginning of Section 2.) The action of Γ on S1 lifts to a continuous action of Γ

on Λ with every g ∈ [γ] fixing all the points of the preimage of the fixed-point set of g in

S1. In particular, the action of Γ on Λ is minimal. One can metrize Λ so that the action

Γ → LHomeo(Λ) is S-hyperbolic with the postal map π : Λ → ∂∞Γ being equal to the
quotient map q : Λ→ S1.

More generally, one can define a Denjoy blowup for actions of fundamental groups

of higher-dimensional compact hyperbolic manifolds. Let Mn = Hn/Γ be a compact
hyperbolic n-manifold containing a compact totally geodesic hypersurface C. Let A⊂Hn

denote the preimage of C in Hn. The visual boundary of each component Ai of A is an

(n−2)-dimensional sphere Si ⊂ Sn−1 = ∂∞Hn. The blowup Λ of Sn−1 is then performed
by replacing each sphere Si with two copies of this sphere. The result is a compact

topological space Λ equipped with a quotient map q : Λ→ Sn−1 such that q is 1-to-1 over

every point not in S =∪iSi and is 2-to-1 over every point in S. Each connected component
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Figure 5. Denjoy blowup.

of Λ is either a singleton or is homeomorphic to the (n−2)-dimensional Sierpinsky carpet.

The action of Γ on Sn−1 lifts to a continuous action of Γ on Λ which is S-hyperbolic for

a suitable choice of a metric on Λ.

7.3. S-hyperbolic actions of nonhyperbolic groups

Here, we consider nonhyperbolic groups and examples of their S-hyperbolic actions.
The following example shows that faithfulness of an S-hyperbolic action on M does not

imply faithfulness of perturbed actions.

Example 7.7 (Nondiscrete representation). Suppose that M is the standard compact-
ification of the hyperbolic space H4, P = H2 ⊂ H4 is a hyperbolic plane, and Λ = S1 ⊂
S3 = ∂∞H4 is the ideal boundary of P. We let

Γ = Γ1×Γ2,

where Γ1 is a hyperbolic surface group and Γ2
∼= Z. We consider a faithful isometric

action ρ of Γ on H4, where Γ1 preserves P and acts on it properly discontinuously and

cocompactly, while Γ2 acts as a group of elliptic isometries fixing P pointwise. This

action admits a conformal extension to M. Since the subgroup Γ1 < Isom(H4) is convex-
cocompact, it is expanding at its limit set, which is equal to Λ. We take Σ =Σ1×{e}∪
{e}×{r,r−1} as a symmetric generating set of Γ, where Σ1 is a finite generating set of Γ1

(given by its expanding action) and r is a single generator of Γ2. The expansion subsets
Ur, Ur−1 of r, r−1 (as in the definition of an expanding action) are defined to be the

empty set. The action ρ on M is uniformly S-hyperbolic: The expansion property is clear;

for uniform S-hyperbolicity, we observe that all the rays in Rayx(D,δ) for the action of Γ
have the form

(scαk )k∈N

where s ∈Σ and cα is a δ-ray in Γ1×{e} associated to a special code α for x ∈ Λ.
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The image ρ(r) is an infinite order elliptic rotation. Therefore, we can approximate

ρ by isometric actions ρk of Γ on H4 such that ρk|Γ1
= ρ|Γ1

, while ρk(r) is an elliptic

transformation of order i fixing P pointwise. In particular, the representations ρk are not
faithful.

In the next two examples, a nonhyperbolic Γ acts faithfully and S-hyperbolically on Λ.

Example 7.8 (Actions of product groups). For k= 1,2, we consider S-hyperbolic actions
ρk : Γk → LHomeo(Λk). Let (Ik,Uk,Σk) be the respective expansion datum. Since Λk’s

are nonempty, the groups Γk are infinite. Consider the group

Γ = Γ1×Γ2.

This group is nonhyperbolic since its Cayley graph contains a quasi-flat (the product of

complete geodesics in the Cayley graphs of Γ1 and Γ2). Let I = I1∪I2, and we equip Γ
with a symmetric generating set

Σ =Σ1×{e}�{e}×Σ2.

Define the space Λ = Λ1�Λ2. The group Γ acts on Λ as follows:

(γ1,γ2)(x) = γk(x) if x ∈ Λk,

where (γ1,γ2) ∈ Γ1×Γ2. If the actions of Γi on Λi are both faithful so is the action of Γ

on Λ. As a cover U of Λ, we take the union U1 ∪U2 of respective covers. We leave it to
the reader to verify that the action of Γ on Λ is S-hyperbolic.

This example can be modified to a minimal action. Namely, take identical actions

ρ1 = ρ2 of the same group Γ1 = Γ2 and then extend the action of Γ = Γ1×Γ1 on Λ to a
minimal action of Γ�Z2 as in Example 7.4. Here, the generator of Z2 swaps the direct

factors of Γ.

Example 7.9 (Zn acting on Pn(R)). There is an S-hyperbolic action of Zn onM =Pn(R)
by projective transformations.

Let {Ei | i = 0,1, . . . ,n} be the standard basis of Rn+1. Let Zn < GL(n+1,R) be the

free abelian group of rank n generated by biproximal diagonal matrices Gj (1 ≤ j ≤
n) for which E0 (resp. Ej) is the eigenvector of the biggest (resp. smallest) modulus
eigenvalue. Denote by ei ∈ Pn(R) and gj ∈ PGL(n+1,R) the projectivizations of Ei and

Gj , respectively. Let Λ = {ei | i= 0,1, . . . ,n} ⊂ Pn(R) =M and Σ = {gj,g−1
j | 1≤ j ≤ n}.

We claim that the action Zn → LHomeo(M) is S-hyperbolic.
Let Ugj ⊂M denote an expanding subset of gj and similarly Ug−1

j
for g−1

j . We assume

that Ug−1
j

= ∅ for j = 2,3, . . . ,n but that Ug−1
1

as well as Ugj (1 ≤ j ≤ n) are nonempty.

Then U = {Ugj,Ug−1
j

| 1 ≤ j ≤ n} covers Λ since e0 ∈ Ug−1
1

and ej ∈ Ugj for 1 ≤ j ≤ n.

Thus, the action is expanding.
A ray associated to ej ∈Λ is of the form

(
g(g−1

j )k
)
k∈N0

with g ∈Σ and a ray associated

to e0 ∈ Λ is of the form
(
g(g1)

k
)
k∈N0

with g ∈Σ. In any case, each point in Λ has only a

finite number of rays associated to it. Hence, the S-hyperbolicity follows.
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7.4. Embedding into Lie group actions on homogeneous manifolds

Examples 7.3, 7.4 and 7.8 can be embedded in smooth Lie group actions on homogeneous

manifolds.

For instance, consider the action of GL(3,R) on the space of oriented lines in R3,

which we identify with the 2-sphere S2 equipped with its standard metric. We have
the equivariant 2-fold covering p : S2 → P 2(R) with the covering group generated by the

antipodal map −I ∈GL(3,R). Let H2 ⊂P 2(R) be the Klein model of the hyperbolic plane

invariant under a subgroup PSO(2,1)< PSL(3,R). Then p−1(H2) consists of two disjoint
copies of the hyperbolic plane bounded by two circles Λ1 and Λ2. Taking a discrete convex-

cocompact subgroup Γ1 < SO(2,1)< SL(3,R), Γ = Γ1×〈−I〉 ∼= Γ1×Z2 and Λ = Λ1∪Λ2,

we obtain an S-hyperbolic action

Γ→ LHomeo(S2),

which restricts on Λ to Example 7.4. (When the group Γ1 is free, such an action is
studied in detail by Choi and Goldman [9]; see also [34] for a greater generalization of

the Choi–Goldman construction.)

Below is a more general version of the preceding construction. Recall that the
set Homτ (Γ,G) of τmod-Anosov representations Γ → G forms an open subset of the

representation variety Hom(Γ,G) (see Corollary 6.14). Let Γ = π1(Sg) (g ≥ 2) and

G = PSL(n,R) (n ≥ 3). We will consider two types of simplices τmod for the Lie group

G :

• σmod; the corresponding flag manifold Flag(σmod) consists of full flags in Rn.
• τmod of the type ‘pointed hyperplanes’; the corresponding flag manifold Flag(τmod)

consists of pairs V1 ⊂ Vn−1 ⊂ Rn of lines contained in hyperplanes in Rn.

In both cases, we have a natural fibration q : Flag(τmod) → P (Rn) sending each flag to
the line in the flag.

Example 7.10 (Hitchin and Barbot representations). The Hitchin representations

are σmod-Anosov representations belonging to a connected component HomHit(Γ,G) of

Homσ(Γ,G) containing a representation

Γ ↪→ PSL(2,R) ↪→ PSL(n,R),

where the first map is a Fuchsian representation of Γ and the second an irreducible
embedding of PSL(2,R).

We may also consider the standard reducible embedding ι : SL(2,R) ↪→ SL(n,R) given

by A �→ (A 0
0 I ). Let ϕ : Γ ↪→ PSL(2,R) be a Fuchsian representation and ϕ̃ : Γ ↪→ SL(2,R)

one of the 2g lifts of ϕ. Let p : SL(n,R)→ PSL(n,R) denote the covering map, which is

of degree 2 if and only if n is even. Representations of the form

p◦ ι◦ ϕ̃ : Γ ↪→ SL(2,R) ↪→ SL(n,R)→ PSL(n,R)

are τmod-Anosov, where τmod has the type of pointed hyperplanes. Let HomBar(Γ,G) be

the union of connected components of Homτ (Γ,G) containing such representations. We

say representations in HomBar(Γ,G) are of Barbot type; see [2] for the case n= 3.
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Let ρ : Γ→ PSL(n,R) be a Hitchin representation. It is known [28] that the projection

q ◦ψ : ∂∞Γ→ Flag(σmod) → Pn−1(R) of the asymptotic embedding ψ is a hyperconvex

curve. This curve is homotopically trivial if and only if n is odd. On the other hand, if ρ
is of Barbot type, the curve q◦ψ : ∂∞Γ→Flag(τmod)→ Pn−1(R) is always homotopically

nontrivial.

We now lift to the space of oriented full flags (resp. oriented line-hyperplane flags).
Accordingly, we lift the action of Γ on the sphere Sn−1. The preimage Λ of (q ◦ψ)(∂∞Γ)

in Sn−1 is either a Jordan curve or a disjoint union of two Jordan curves, with the 2-fold

equivariant covering map

Λ→ (q ◦ψ)(∂∞Γ)∼= P 1(R)∼= S1.

The result is an S-hyperbolic action ρ̃ : Γ → Diff(Sn), where ρ̃(Γ) is contained in the
image of the group SL(n,R) in Diff(Sn). The restrictions of the Γ-actions to Λ are as in

Example 7.3 (with k = 2) and Example 7.4.

Example 7.11 (Embedded product examples). We embed Example 7.8 in the action of

SL(4,R) on P 3(R). Consider G1×G2 = SL(2,R)×SL(2,R)<G= SL(4,R). The action of

G1×G2 on R4 is reducible, preserving a direct sum decomposition

R4 = V1⊕V2,

where V1 and V2 are two-dimensional subspaces and Gi acts trivially on V3−k for k = 1,2.

Let τ be an involution of R4 swapping V1 and V2. For i = 1,2, take Γk < Gk to be an

infinite (possibly elementary) convex-cocompact subgroup with the limit set Λk ⊂ P (Vk).
Then the subgroup Γ = Γ1×Γ2 < G acts on P 3(R) preserving the union Λ = Λ1 �Λ2 ⊂
P (V1)�P (V2). We equip P 3(R) with its standard Riemannian metric. The action

Γ→ LHomeo(P 3(R))

is S-hyperbolic and restricts on Λ to Example 7.8. As in Example 7.8, taking Γ1 =Γ2 and

an index two extension Γ of Γ1×Γ2 we can extend this action to an S-hyperbolic action
minimal on Λ using the involution τ .

7.5. Algebraically stable but not convex-cocompact

We provide an example to the claim made in Remark 4.7 that for groups with torsion

the implication (4 ⇒ 1) in Sullivan’s paper [35] is false.

Example 7.12 (Quasi-conformally stable nonconvex-cocompact subgroups of PSL(2,C)).

We recall also that a von Dyck group D(p,q,r) is given by the presentation

〈a,b,c | ap = bq = cr = 1, abc= 1〉.

Such groups are called hyperbolic (resp. parabolic, elliptic) if the number

χ= χ(p,q,r) =
1

p
+

1

q
+

1

r

is < 1 (resp. = 1, > 1). Depending on the type D(p,q,r) can be embedded (uniquely up to

conjugation) as a discrete cocompact subgroup of isometries of hyperbolic plane (if χ< 1),
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a discrete cocompact subgroup of the group Aff(C) of complex affine transformations of

C (if χ= 1), or is finite and embeds in the group of isometries of the 2-sphere (if χ > 1).

Let Γk (k=1,2) be two discrete elementary subgroups of Aff(C)<PSL(2,C) isomorphic
to parabolic von Dyck groups

D(pk,qk,rk) (k = 1,2).

These groups consist of elliptic and parabolic elements and are virtually free abelian
of rank 2; hence, they cannot be contained in a convex-cocompact group. Subgroups of

PSL(2,C) isomorphic to von Dyck groups are (locally) rigid. One can choose embeddings

of the groups Γ1 and Γ2 into PSL(2,C) such that they generate a free product

Γ = Γ1 �Γ2 < PSL(2,C),

which is geometrically finite and every parabolic element of Γ is conjugate into one of

the free factors. (The group Γ is obtained via the Klein combination of Γ1 and Γ2, see

[21, §4.18] for example). The discontinuity domain Ω of Γ in P 1(C) is connected and the
quotient orbifold O = Ω/Γ is a sphere with six cone points of the orders pi, qi and ri
(i= 1,2).

Being geometrically finite, the group Γ is relatively stable (relative its parabolic
elements): let

Hompar(Γ,PSL(2,C))

denote the relative representation variety, which is the subvariety in the representation
variety defined by the condition that images of parabolic elements of Γ are again parabolic.

Let ιΓ : Γ→PSL(2,C) denote the identity embedding. Then there is a small neighborhood

U of ιΓ in Hompar(Γ,PSL(2,C)) which consists entirely of faithful geometrically finite

representations which are, moreover, given by quasi-conformal conjugations of Γ. Since
the subgroups Γ1 and Γ2 are rigid, there is a neighborhood V of ιΓ such that

V ∩Hompar(Γ,PSL(2,C)) = V ∩Hom(Γ,PSL(2,C)).

It follows that the action of Γ on its limit set is structurally stable in PSL(2,C), in
particular, algebraically stable. However, Γ is not convex-cocompact. Lastly, the group Γ

is not rigid, the (complex) dimension of the character variety

X(Γ,PSL(2,C))//PSL(2,C)

near [ιΓ] equals the (complex) dimension of the Teichmüller space of O, which is 3.

On the other hand, one can show that if Γ< PSL(2,C) is a finitely generated discrete

subgroup which is not a lattice and contains no parabolic von Dyck subgroups, then

algebraic stability of Γ implies quasi-convexity of Γ. We refer the reader to the paper by

Matsuzaki [32] for the precise description of structurally stable finitely generated Kleinian
subgroups of PSL(2,C).
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