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Aim: Proof-of-concept study, highlighting the clinical diagnostic ability of FT-IR compared with MALDI-
TOF MS, combined with WGS. Materials & methods: 104 pathogenic isolates of Neisseria meningitidis,
Streptococcus pneumoniae, Streptococcus pyogenes and Staphylococcus aureus were analyzed. Results:
Overall prediction accuracy was 99.6% in FT-IR and 95.8% in MALDI-TOF-MS. Analysis of N. meningitidis
serogroups was superior in FT-IR compared with MALDI-TOF-MS. Phylogenetic relationship of S. pyogenes
was similar by FT-IR and WGS, but not S. aureus or S. pneumoniae. Clinical severity was associated with the
zinc ABC transporter and DNA repair genes in S. pneumoniae and cell wall proteins (biofilm formation,
antibiotic and complement permeability) in S. aureus via WGS. Conclusion: FT-IR warrants further clinical
evaluation as a promising diagnostic tool.

Plain language summary: We tested a technique (FT-IR) to identify four different, common bacteria from
104 children with serious infections and compared it to lab methods for diagnosis. FT-IR was more accurate.
We tested if it could identify subtypes of bacteria, which is important in outbreaks. It was able to subtype
two species, but not the two other species. However, it is a much faster and cheaper technique than the
gold standard. It may be useful in certain outbreaks. We also investigated the trends between genes and
the length of hospital stay. This can support further laboratory research. As a fast, low-cost test, FT-IR
warrants further testing before it is applied to clinical labs.
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Despite advances in modern medicine, invasive bacterial infections remain a cause of significant morbidity and
mortality [1–3]. Traditional techniques, such as phenotypic and serological tests on cultured organisms, are still
predominantly used in clinical settings for microbiological identification. Culturing methods, which is considered
the gold standard diagnostic technique has low sensitivity [4,5], is time consuming (usually between 24 and 72 h
depending on the growth rate of the micro-organism), and laborious. This introduces delay in clinical decision-
making, and limits the ability to feedback information on pathogen identification and resistance profiles. Molecular
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biology approaches such as polymerase chain reactions (PCR) of 16S ribosomal DNA or pathogen-specific PCR
are much more rapid than traditional culture, but are less widely available, more expensive, and require specialised
instruments while cannot provide full antibiotic susceptibility profiles [6].

Bacterial subtyping allows the determination of clonal and phylogenetic relatedness of bacterial strains. Subtyping
is necessary for outbreak investigations and targeting control measures in real time but its implementation to clinical
environments is limited due to the following factors [7,8]. Current methods are expensive, time consuming and
technically demanding, with whole-genome sequencing (WGS) being the gold standard; allowing for the detection
of virulence factors, antimicrobial resistance genes, and single nucleotide polymorphism (SNP) or extrachromosomal
element analysis [9,10]. A rapid, user-friendly and low-cost typing method that allows real time typing or complements
WGS would reduce turnaround times in clinical practice.

Molecular fingerprinting approaches through spectroscopy-based techniques are a growing area of interest [11,12].
Fourier transform infrared (FT-IR) spectroscopy, a vibrational spectroscopic technique, is a low cost, rapid (<60 s
per sample) and high-throughput fingerprinting technique which is widely used within life sciences including food
safety [13–17], environmental [18–20] and biotechnology [21–24] industries. Consumables are relatively low cost and
reusable. The spectrum from the specimen is obtained by the absorption of infrared light by various molecular bonds
resulting in different vibrational modes, which reflects the overall (bio-) chemical composition of a sample, while
multivariate analysis approaches are employed to discriminate between the samples, and identify the molecular
species contributing to such discrimination [25]. Nonetheless, this technique does have some limitations, most
notably strong water absorbance, which can be superseded by drying the sample, or subtracting the water signal.
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a widely used
tool in bacterial identification [26,27]. Through detecting the mass-to-charge ratio (m/z) of the various abundant
proteins and peptides in a whole cell sample and providing spectra, this is compared with an existing reference
database of organisms’ under the same conditions to type the isolate [28,29]. MALDI-TOF MS has also been shown
to detect antibiotic resistance promptly in certain bacterial species [30,31]. However, while MALDI-TOF MS is
generally favored toward the detection of peptides and proteins, FT-IR analyses is considered a more wholistic
approach providing insight into the metabolic fingerprint of the organism, and allowing for the detection of a wider
range of biochemical diversity within the cells [32].

In this study, we compared FT-IR and MALDI-TOF MS spectral fingerprints, combined with multivariate
statistical analysis and WGS approaches for the accurate classification of four species across 104 clinical isolates
causing invasive disease in children in critical care. We also compared these data with clinical metadata outcomes.
This is a proof of concept study to apply FT-IR diagnostics to clinical pathogenic samples, predominantly Gram
positives, rather than ecological Gram negatives or lab strains.

Materials & methods
Sample collection
The isolates were obtained from children admitted to Alder Hey Children’s Hospital, as part of a larger multi-
center study of children with life-threatening bacterial infections, details of which have been published elsewhere [3].
Written informed consent was gained during the study period to use microbiology samples for future research (REC
reference: 11/LO/1982). Age, weight, length of stay, need for ventilation and PICU admission were available in all
patients. Clinical data (observation recordings and blood results) were available in 28 patients, those admitted to
PICU, and were used to calculate the pediatric Index of Mortality 2 (PIM2) and pediatric Risk of Mortality (PRISM)
severity scores according to published literature [33,34]. A total of 104 bacterial samples from community-acquired
pathogenic isolates of blood culture (69), joint aspirate (15) cerebrospinal fluid (9), pleural (3) and purulent samples
collected from an aseptically-obtained surgical specimen (11), were isolated and identified using analytical profile
identification (API) techniques (bioMérieux). Individual colonies were isolated and frozen on Protect Multipurpose
beads (Thermo Fisher Scientific Inc. UK) at -80 ◦C.

Bacterial growth conditions
All chemicals and reagents were purchased from Sigma Aldrich (Sigma Aldrich, UK) unless otherwise stated.
All microorganisms in this study were sub-cultured three-times on blood agar medium, to ensure purity and
phenotypic stability, before being used for inoculum preparation. Neisseria meninigitidis, Streptococcus pneumoniae,
and Streptococcus pyogenes (group A Streptococcus) were inoculated onto a defibrinated horse blood (Fisher Scientific
UK LTD) agar plate and incubated at 37 ◦C in 5% CO2 conditions for 24 h. Staphylococcus aureus was inoculated
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onto horse blood agar plates and incubated at 37 ◦C for 24 h. Three biological replicates of all individual isolates
were cultured.

FT-IR analysis
Biomass from the overnight grown samples was harvested and centrifuged at 4000 × g for 10 min at 4 ◦C using
a Sigma 1–16PK microcentrifuge. The supernatant was discarded and the biomass washed twice using sterile
physiological saline solution (0.9% NaCl) to remove any residual compounds from the medium, as previously
reported [22,35]. All washed samples were resuspended in saline solution and normalized according to their OD at
600 nm [19].

Samples were spotted as 20 μl aliquots onto FT-IR silicon 96-well plates and heated to dryness at 55 ◦C for
∼30 min. Due to the large number of samples (n = 318; 104 bacteria grown in triplicate – biological replicates –
plus QCs (see below)) analyzed in this study, the bacterial suspensions were spotted onto six separate FT-IR silicon
plates and analyzed on three different days. An S. aureus sample with the highest biomass yield was selected and
spotted on the last column of every FT-IR plate (Supplementary Figure 1, yellow spots) to be used as a quality
control (QC) sample, to account for any day-to-day instrumental variation and alignment of all the data combined.
All FT-IR spectral data were collected in absorbance mode in the Mid-IR range (4000–600 cm-1) on a Bruker
Equinox 55 infrared spectrometer (Bruker Optics Ltd, Coventry, UK), as 64 co-adds with 4 cm-1 resolution, in
triplicate (machine replicates) from separate regions of each of the sample spots [36]. FT-IR spectral data were scaled
by applying the extended multiplicative signal correction (EMSC) algorithm [37,38], followed by replacement of the
CO2 peaks with a trend (2400–2275 cm-1) [24].

MALDI-TOF-MS analysis
Aliquots (40 μl) of the normalized bacterial cell pellets were re-suspended in 180 μl of 0.1% trifluoroacetic acid
(TFA). Sinapinic acid (10 mg) was dissolved in 500 μl of 2% TFA and 500 μl of acetonitrile, this was followed by
mixing an equal volume 10 μl of matrix and bacterial strains. This mixture was then vortexed for 3 s, then 2 μl was
spotted onto a stainless steel MALDI plate and then allowed to be air dried for 60 min at room temperature. The
bacterial strains were analyzed using an AXIMA-Confidence MALDI-TOF-MS (Shimadzu Biotech, Manchester,
UK), equipped with a nitrogen-pulsed UV laser at a wavelength of 337 nm. The laser was set at 135 mV laser power
with 80 acquired profiles and each profile containing 20 shots, linear TOF mode and positive ionization mode was
used. The mass-to-charge (m/z) ranged between 1000 and 14,000. The spectra were collected using a circular raster
pattern. The MALDI-TOF-MS device was calibrated using a protein mixture purchased from (Sigma-Aldrich).
Three biological replicates were analyzed for each strain and three analytical replicates were performed for each
strain.

whole-genome sequencing analysis
Genomic DNA for S. aureus was purified using the Puregene DNA purification kit (Qiagen, Crawley, UK) according
to the manufacturer’s instruction. Genomic DNA for S. pneumoniae and S. pyogenes were extracted according to
Promega Wizard Genomic DNA Purification kit (Promega UK) with the following modifications; mucoid S.
pneumoniae were washed twice, then all streptococci were resuspended in 100 μl TE buffer (Invitrogen; Thermo
Fisher Scientific) and incubated with 50 μl of 3000 U/ml mutanolysin (Sigma Aldrich) in TE buffer and 150 μl
of 20 mg/ml lysozyme (Sigma Aldrich) in TE buffer at 37 ◦C for 60 min.

After DNA extraction, samples were cleaned up using AMPure beads (1.8×). A total of 50 ng of DNA per
sample was used to start library preparation, following the NEBNext FS DNA Library Prep Kit protocol with Inputs
<100 ng, in half volume reactions (fragmentation time 12 min, 1:10 adaptor dilution, seven PCR cycles). Size
distribution of the final libraries was assessed using the fragment analyzer and equimolar pooling was performed.
After quantification by qPCR, sequencing was performed on one lane of a NovaSeq S1 flow cell (2 × 150 bp read
configuration).

Genotypic data for N. meningitidis were exported from the Meningitis Research Foundation Meningococcus
Genome Library which contains draft genomes for all English, Welsh and Northern Irish invasive disease isolates
received by the Public Health England Meningococcal Reference Unit (PHE MRU) since July 2010 [39]. Quality and
adapter-filtered reads for each sample were assembled using SPAdes version 3.15.3 [40] for S. aureus, S. pneumoniae
and S. pyogenes. Assemblies were filtered to only include those that (1) have an expected size of +/-30% of the
expected genome size (2) 90%+ genome completeness and lower than 10% duplication levels, according to BUSCO
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v 4.1.4 [41] and (3) fewer than 10% of reads are assigned to taxa other than expected genus, using MetaPhlAn
version 2.9.21 [42]. Multi-locus Sequence Typing profiles and allele sequences were obtained from pubmlst.org
and allele sequences were aligned to assemblies using Bowtie2 version 2.3.5.1 [43]. The allele that aligned best for
each locus was selected and the sequence type was determined by comparing detected alleles against the database
profiles. Genes were predicted using PROKKA version 1.14.6 [44]. Predicted genes were used to reconstruct the pan-
and core genome across samples, using Panaroo version 1.2.3 [45]. Phylogenetic estimation was carried out using
the core genome sequences generated by Panaroo as input for IQ-TREE version 2.0.3 [46], with 1000 bootstrap
replicates using the GTR model. Antimicrobial resistance genes were identified by interrogating genome assemblies
with RGI version 5.1.0 [47]. Prokka-predicted genes were translated to protein sequences and used as queries for
BLAST searches (version 2.9) [48] against the Virulence Factor Database (VFDB) [49], and BLAST score ratios
(BSRs) were calculated for each hit by dividing the hit score by the maximum possible score. SNPs and small
indels were detected using Snippy version 4.6.0, with reads being aligned against the NGAS638 (S. pyo), Hu17
(S. pne) or NCTC8325 (S. aur) reference genome. Unitigs, which are non-overlapping unique sequences, were
utilized as units of genomic variation in association analyses. By leveraging the unitig-counter tool [50], unitigs were
gathered across the genome assemblies. This method captures both the presence or absence of unique genomic
regions (including parts of the accessory genome) and distinct SNP variations within each sample set. Subsequently,
associations between genomic variations and metadata were identified with Pyseer v1.3.10 [51], using linear mixed
models (lmm). This enabled a view of how both gene content and SNP variations related to metadata. To control
for population structure, a similarity matrix was derived from a midpoint-rooted core gene phylogeny and provided
to Pyseer. The thresholding method provided by the count patterns.py script from Pyseer, was used to determine
an appropriate significance threshold based on the data, to correct for multiple testing. Significant variants were
annotated with gene information using the Pyseer accessory script, annotate hits pyseer. Based on annotated gene
names, genes with exact matching names were identified among samples and extracted from the pan-genome.
Nucleotide and translated multiple alignments were carried out on these using Clustal Omega, including the unitig
sequence [52]. Variants at the unitig locus were derived from the alignments using a custom Python script.

Statistical analysis
All collected data were analyzed using MATLAB version 2016 (The Mathworks Inc., Natwick, USA). All pre-
processed FT-IR spectral data were subjected to principal component analysis (PCA) [53], to reduce the dimen-
sionality of the data, followed by discriminant function analysis (PC-DFA), which uses a priori knowledge of the
experimental class structure to reduce within-class variance while increasing between-class variance. The class struc-
ture here were defined based on each isolate as a separate class and not the bacterial species as a whole, comprising
of 104 classes in total, and thus the results are considered semi-supervised. Finally, partial least squares-discriminant
analysis (PLS-DA) [54] coupled with bootstrapping validation [55] was employed to generate a classification model
using the FT-IR spectral data.

For the available metadata in 28 subjects, the variables with >30% missing values were also removed and the
remaining missing values were imputed using K-NN imputation algorithm. O2-PLS model was built to find
correlation between FT-IR data and the corresponding meta data. Through joint loadings, the variables in the
metadata which are most likely to be correlated with FT-IR data were selected and PLS-R models were built to
assess the statistical significance in the correlation between the two types of data. The PLS-R models were validated
by using double cross-validation coupled with 1000 permutation test.

Results
Overview of diagnostic techniques
All pathogenic isolates from four species were included in this study (n = 104). Notably, 69 isolates were obtained
from blood cultures including six central line associated bacterial infections, 15 from joint aspirations, nine from
cerebrospinal fluid, four were surgical wounds and seven from other sites. The results of all 104 samples, illustrating
the information collected from the two different analytical techniques applied in this study are displayed in
Supplementary Figure 2. The FT-IR spectra (Supplementary Figure 2A) display typical vibrational features found
in most bacterial samples, hence are qualitatively very similar but there are subtle quantitative differences. Hence,
multivariate statistical approaches are important to interrogate these differences to allow for the differentiation of
the bacterial species. PCA scores plot of all the FT-IR spectral data (Supplementary Figure 3A) displayed three
separate clusters for the QCs, according to the day the analysis was carried out. Therefore, the QC spectral data was
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Figure 1. PC-DFA scores plot of all the combined FT-IR spectral data. PC-DFA scores plot of all the FT-IR spectral data
combined, using the first five PCs accounting for 91.1% of the TEV (A). DF1 and DF2 loadings plot of the FT-IR data,
displaying the most significant vibrational bands contributing to the clustering pattern above (B).

used to align the whole dataset and remove any contributing instrumental variation, that may have been present over
the 3-day period that these data were collected. The PCA scores plot of the aligned data (Supplementary Figure 3B)
clearly demonstrated the successful alignment of the data and removal of instrumental variation. Although according
to the PCA scores plot of the aligned data (Supplementary Figure 3B), S. aureus samples are separated from all other
samples according to PC1 axis with a total explained variance (TEV) of 40.5%, all other isolates are inseparable and
are clustered together. To discriminate between these isolates further PCA was followed by discriminant function
analysis (PC-DFA) using the a priori knowledge of the experimental class structure. However, as each of the isolates
were assigned to an independent class (104 classes in total), it can be said that PC DFA was carried out in a
semi-supervised manner, and that the resulting clustering in PC-DFA represents the natural variation among these
bacteria.

The PC-DFA scores plot of all FT-IR spectral data (Figure 1A), displayed clear separation of S. aureus isolates
from all other species according to DF1 axis, while N. meningitidis clustered on the opposite side of the DF1 axis,
and the S. pneumoniae and group A Streptococcus isolates clustered closer together in the middle of the plot. It is also
worth noting that the QC samples which are of S. aureus origin, despite being assigned an independent class, have
also clustered with all other S. aureus isolates on the negative side of DF1 axis (Figure 1B), which is as expected.
According to the PC-DFA loadings plots (Figure 1B), the main vibrational bands contributing to the separation of
the isolates are assigned to fatty acids at 2961 and 2924 cm-1 (CH3 and CH2 asymmetric stretching, respectively),
esters at 1740 cm-1 (C=O, stretching), amide I at 1655 cm-1 (C=O), amide II at 1545 cm-1 (combination of C-N
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Table 1. The prediction accuracy of the bacterial species using FT-IR spectral data.
Parameter N. meningitidis S. aureus S. pneumoniae S. pyogenes

N. meningitidis 98.6% 0.0% 0.0% 1.4%

S. aureus 0.0% 100.0% 0.0% 0.0%

S. pneumoniae 1.5% 0.0% 98.3% 0.2%

S. pyogenes 0.0% 0.0% 0.1% 99.7%

FT-IR overall 99.6%

Table 2. The prediction accuracy of the bacterial species using MALDI-TOF-MS spectral data.
Parameter N. meningitidis S. aureus S. pneumoniae S. pyogenes

N. meningitidis 99.5% 0.1% 0.1% 0.3%

S. aureus 0.6% 97.1% 1.8% 0.5%

S. pneumoniae 1.6% 4.0% 84.4% 10.0%

S. pyogenes 0.6% 2.9% 0.9% 95.6%

MALDI-TOF MS overall 95.8%

stretching and N-H bending), and other vibrational bands in the fingerprint region [21]. The PC-DFA scores plot
of the MALDI-TOF-MS data collected from all the samples (Figure 2), displayed very similar clustering pattern,
where S. aureus and N. meningitidis were completely separated according to DF1 axis, and the S. pneumoniae and
group A Streptococcus isolates were clustered in the middle of the plot. The QC samples in this case, were also
clustering with other S. aureus isolates, which is in agreement with the FT-IR findings.

In order to generate classification models, so as to identify these bacteria from their spectral fingerprints PLS-DA
was used and 1000 test sets generated by bootstrapping were generated and the overall results of these models are
presented in Tables 1 & 2 for FT-IR and MALDI-TOF-MS data respectively. High accuracies (>95% overall) in
predictions were obtained on both data sets while FT-IR data appeared to have slightly better discriminant power
compared with that of MALDI-TOF-MS.

Differentiation according to serotypes & strains
Differentiation according to serotypes and strains was performed and compared with diagnostic techniques.
Comparing PHE MRU sequencing data for Neisseria samples, PC DFA scores plot of both FT-IR and MALDI-
TOF-MS spectral data (Figure 3) displayed clear separation of a non-meningitidis species (yellow star) from all
other Neisseria isolates. However, the PC-DFA scores plot of the FT-IR spectral data (Figure 3A), also displayed the
separation of N. meningitidis serotype W135 from all other Neisseria isolates according to DF2 axis and clustering of

10.2217/fmb-2024-0043 Future Microbiol. (Epub ahead of print)



Bacterial discrimination by Fourier transform infrared spectroscopy, MALDI-mass spectrometry & whole-genome se-
quencing

Research Article

0.15

0.1

0.05

0

–0.05

–0.1

–0.15 –0.1 –0.05 0
DF1

D
F

2

0.10.05 0.15 0.2 0.25 0.3

Group B

Group B

Group B

Neisseria spp not meningitidis

Group B

Group B

Group B

Group B

Group B

Group B

Group NG Type NT

Group B

Group B

Group B

Group B

Group B

Group B

Group B

W135 type 2a

Group B

250

200

300

150

50

100

0

–100

–50

–150

–200
–350 –300 –250 –200 –150

DF1

D
F

2

–50–100 0 50 100 150

A

B

Figure 3. PC-DFA scores plot of the Neisseria spp. only. Using the FT-IR (A) and MALDI-TOF-MS (B) spectral data.

N. meningitidis group NG type NT. To investigate this potential for subtyping further, WGS was undertaken in the
remaining three species. Phylogenetic relatedness derived from the core genome of each species was compared with
the dendrograms created based on FT-IR spectra. Group A Streptococcus dendrograms were very similar between
FT-IR and WGS (Supplementary Figure 4C). Although S. pneumoniae showed similar clustering of isolates with
both methods, branching within these dendrograms were not congruent (Supplementary Figure 4B) and S. aureus
showed no correlation between WGS and FT-IR phylogenies (Supplementary Figure 4A). FT-IR clustered N.
meningitidis and group A Streptococcus in a similar manner to WGS.

Antimicrobial resistance & virulence factors
From the patient samples, there were 25 AMR genes identified for S. aureus; four Group A Streptococcus; seven
S. pneumoniae. There were 78 virulence factors genes (VFs) identified for S. aureus; 39 Group A Streptococcus;
30 S. pneumoniae. Heatmaps were generated for each species for AMRs (Supplementary Figure 5) and VFs
(Supplementary Figure 6) alongside clinical outcomes.

Gene variant association analysis
Association analyses were carried out to identify links between sequence variants (unitigs) and corresponding
metadata. For S. aureus, 48 variants were found to be significantly associated with length of hospital stay, after
controlling for multiple comparisons. Details on those described here are presented in Supplementary Table 1.
Among these variants, some genes encoded known VFs (FnbA/B) or cell wall proteins (Ebh, SraP) while others
were not characterized or found in intergenic regions. A significant unitig that conferred non-synonymous SNPs
(G445E, G446D, T447A, T448S relative to the unitig) among strains in mutL, a mismatch repair gene, was
associated with increased length of stay. SraP is a surface-exposed serine-rich repeat glycoprotein that is required
for the pathogenesis of human infective endocarditis via its ligand-binding region adhering to human platelets [56].
A total of 12 strains lacking one of the significant unitigs associated with SraP contain a L1524S amino acid
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substitution, relative to those that contain it. Gene ebh encodes a cell wall protein that affects flucloxacillin and
complement mediated killing and several non-synonymous substitutions and frameshift variants were associated
with reduced duration of hospitalization [57]. FnbA and FnbB are cell wall proteins that are implicated in S. aureus
biofilm formation and unitigs conferring non-synonymous variants in these genes were associated with increased
length of stay [58].

For S. pneumoniae, 120 variants were found to be significantly associated with the need for non-invasive ventilation
or PICU length of stay, and details on those described here are presented in Supplementary Table 2. In contrast
with the S. aureus variants, these were typically more conservative, conferring fewer amino acid substitutions across
strains. Among these variants, some genes are reported to be involved in DNA repair mechanisms such as dnaE2
(DNA polymerase), uvrC (excision repair), recG (dsDNA translocase) and dnaJ (heat shock protein 70). SNPs in
dnaE2 and uvrC were associated with lower non-invasive ventilation days and a variant in recG was associated with
length of non-invasive ventilation days (Figure 4A & B). While none of the uvrC variants were predicted to impact
on protein coding, non-synonymous variants were identified in dnaE2 and recG. Additionally, adcA encodes a
zinc ABC transporter substrate-binding lipoprotein and truncation of this product is linked to hyperencapsulation
and resistance to complement killing [59]. Variants in these gene (coding sequence A9454G and A962G) were
significantly associated with ventilation days and PICU length of stay. Absence of adcC, another part of the zinc
transporter, was also associated with significantly higher non invasive ventilation days. (Figure 4C–E). Unlike S.
aureus, the S. pneumoniae core gene phylogeny does not suggest that samples containing significant unitigs are
closely related.

No significant associations were identified for S. pyogenes.

Severity analysis
PLS-R modeling on age, sex, weight and length of stay in hospital, which was available for all samples, did not show
significant correlation with FT-IR data. Laboratory data were available in 28 patients, those admitted to PICU,
and PIM2 and PRISM severity scores were derived. These isolates with severity metadata were correlated with the
corresponding FT-IR data using O2-PLS model and joint loading plots. The significant variables were selected
from the joint loading plot (Supplementary Figure 7) which included PRISM total score, partial pressure of oxygen
(PaO2), plasma potassium and lactate levels. Furthermore, age and weight had poor correlation with FT-IR data.
PLS-R models were created to assess the statistical significance in the correlation between the two types of data
for the four selected significant variables (Figure 5). This was validated using double cross-validation coupled with
1000 permutation tests. All variables studied showed statistically significant correlation with FT-IR but PRISM
scores showed the strongest correlation with FT-IR data (Figure 5C), especially up to PRISM score values of 10, also
demonstrated by Q 2Y, which indicates the predictability of the model of 0.40. Notably the two severity scores used,
PIM2 and PRISM had poor correlation, with a Spearman ranked correlation co-efficient 0.17. Similarly, PRISM
scores correlated well with the FT-IR data, however PIM2 scores did not. We explored if this was confounded by
the species of bacteria but both severity scores showed similar trends of patients with S. aureus having high scores,
conversely S. pneumoniae having low scores (Supplementary Figure 8). This suggests that the observed correlation
between FT-IR and PRISM scores is unlikely to be related to bacterial species. High (>7) and low (≤7) PRISM
scores, according to bioinformatics cut off, were overlaid on PC-DFA plots of FT-IR spectrum and bacterial species
(Supplementary Figure 9). This demonstrates clear species separation alongside trends in severity scores, such that
invasive S. aureus had predominantly high PRISM scores.

Discussion
This proof of concept analysis of invasive, clinical, pathogenic bacterial strains shows distinct clustering of the
investigated isolates down to species level using both MALDI-TOF-MS and FT-IR techniques. This study employed
a novel approach that combines the use of FT-IR with both MALDI-TOF as a diagnostic tool in benchmarking,
and in the comparison with WGS, which serves as the gold standard, as the ground truth of species and subtypes,
but not clinically applicable due to high cost and longer turn around times and complex analysis.

FT-IR requires minimal sample processing and spectra can be obtained within minutes and semi-supervised
techniques allow rapid throughput analysis of the spectra [60–63]. In comparison with MALDI-TOF-MS, which
requires some sample processing and reagent costs (e.g., mixing with a UV absorbing matrix), FT-IR had higher
overall accuracy in microbiological identification of 99.6% versus MALDI-TOF-MS accuracy of 95.8%. Although
both techniques have been available over the last 25 years, MALDI-TOF-MS is now used in many hospital
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Figure 4. Boxplots of S. aureus (A) and S. pneumoniae (B–E) showing the presence or absence of significant variants
(unitigs) with clinical outcomes on y axis and p-values. S. aureus plots for ebh, fnaB/A and sraP were identical to
figure (A) for mutL with length of stay on y-axis. S. pneumoniae plots (B) dnaE2 (DNA polymerase) with non invasive
ventilation days (C) recG (dsDNA translocase) (D) adcC (zinc transporter); and adcA (zinc transporter) (E) with PICU
stay. Details on variant specifics are present in Supplementary Tables 1 & 2.

microbiology laboratories whereas FT-IR has not been as extensively investigated in clinical care [26,27,29]. Wenning
et al. compared MALDI-TOF MS and FT-IR spectroscopy to differentiate and to identify 93 species of food related
bacteria. They found that MALDI-TOF had better species identification, which we did not find in our study, but
that FT-IR had higher sensitivity to allow typing of E. coli, unlike MALDI-TOF MS [13]. Work by Dinkelacker
and colleagues also found that FT-IR performed better than MALDI-TOF MS in phylogenetic identification of
Klebsiella species compared with whole-genome sequencing but is considerably faster and more affordable which
may allow real time rather than retrospective surveillance [64]. Such findings have been the driving force behind the
development of specialized instrumentation, such as the IR Biotyper by Bruker with particular focus on industrial
and medical applications. Semi-supervised analysis methods can be included within the FT-IR analyzer to provide
results without specialized external analysis. Our study suggests that FT-IR has potential for species identification
of bacterial pathogens in clinical laboratories.
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The potential of FT-IR spectroscopy to differentiate below the species level has been found in environmental
studies including L. monocytogenes, E. coli, S. enterica and Y. entercolitica [65–68]. The FT-IR spectra of Neisseria
and Group A Streptococcus in this study, showed high resolution into subgroups that corresponded with WGS
phylogenetic analysis. This may provide more rapid and low-cost alternatives to WGS in group A Streptococcus
outbreaks [69]. However, this is not the case for S. pneumoniae and S. aureus, potentially due to these species having
less conserved core-genomes and FT-IR spectra being based on the ‘fingerprint’ from the whole organism including
capsule. However, this is concordant with the existing literature regarding variable typing potential of FT-IR based
on bacterial species, especially S. aureus [70–72].

Despite the relatively small sample size in the association analysis, there was evidence of a broad phylogenetic
tree of disparate ancestry, rather than clonal strains in the pathogenic isolates of S. aureus, Group A Streptococcus
and S. pneumoniae causing serious bacterial infections and multiple AMR and VF genes were identified. Notably
fibronectin-binding proteins involved in S. aureus biofilm formation (FnbB/A) and cell wall proteins that allow
binding to platelet (SraP) or inhibit antibiotic and complement directed killing (Ebh) that had previously been
elucidated in vitro were associated with non invasive ventilation days, as potential mechanisms in vivo [56–58]. While
these unitigs were identified as significant and of potential interest, the predominant findings were observed in two
closely related strains. Even though the analysis was adjusted for population structure, the specific observations
combined with the limited sample size warrants caution during interpretation, nonetheless these isolates were
identified from different patients, at different times, with different co-morbidities; hence despite different host
factors and immune response, these isolates caused extensive morbidity. Conversely genes in S. pneumoniae involved
in DNA repair (uvrC, dnaE2, recG, dnaJ) were significantly associated with clinical severity rather than cell wall
proteins, as expected with an encapsulated pathogen. Several genes involved in the zinc ABC transporter in S.
pneumoniae, were associated with increasing disease severity and length of stay, which has been previously described
in vitro through a hyperencapsulated phenotype [59].

Furthermore, this study is the first, to the authors’ knowledge to compare microbiology metabolomic fingerprint
data with clinical parameter metadata, which shows particular promise with PRISM severity scores. Interestingly,
this is not fully accounted for by age, weight or bacterial species. Nonetheless, a limitation of the study is that the
severity metadata were only available from those admitted to PICU (28 of 104 individuals) so caution should be
taken when interpreting these data.

This study’s specific strengths include a large number of clinically prevalent, Gram positive pathogenic isolates
showing high reproducibility with FT-IR classification. All the clinical isolates were etiological agents of life-
threatening infection, and therefore rapid identification by novel methods could potentially lead to earlier diagnosis
and treatment, especially if combined with single cell analysis approaches such as Optical-PhotoThermal Infrared
Spectroscopy (O-PTIR) on direct patient samples [73,74]. Limitations of the study are that only a limited range
of pathogens, in terms of species, were studied and required purification cultures before analysis. Caution should
exercised with association analysis of the pathogen sequencing and clinical outcome, due to relatively small sample
size per species but may assist future basic research in S. pneumoniae and S. aureus. Future work could investigate
FT-IR profiles in a wider population of pathogenic bacterial species to obtain a library of spectra as has been trialled
in MALDI-TOF [30]. Further work is required to ascertain if antibiotic sensitivity and resistance profiles can be
elucidated by FT-IR spectra which would allow more rapid, appropriate treatment and if this can be performed
directly on patient samples using single cell techniques. Additionally, the utility of FT-IR analysis in outbreak
source identification in nosocomial spread of infection in real time could be investigated [18,75] for specific species
and allow targeting of WGS in other species. There is also scope to investigate the role of FT-IR spectroscopy in
predicting clinical severity.

Conclusion
In conclusion, FT-IR is a promising, rapid and affordable spectral technique with high reproducibility that allows
identification of species of clinical, pathogenic bacteria and distinction of subtypes of certain species. This proof-
of-concept study will allow further evaluation of a wider range of pathogenic bacteria with varying antimicrobial
resistance, identification of sample contaminants and application to direct patient samples using FT-IR.
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Summary points

• FT-IR spectroscopy is a low cost, rapid vibrational technique that does not degrade the sample and provides a
‘molecular fingerprint’. This has been studied in other areas of life sciences, for example, environmental
contamination, but not in pathogenic clinical isolates.

• A total of 104 clinical pathogens from serious bacterial infections in children from 4 species were studied. This is a
proof-of-concept design to evaluate FT-IR diagnostic accuracy, clinical severity and ability to subtype pathogenic
bacteria.

• FT-IR spectroscopy diagnostic accuracy was 99.6% compared with the currently used clinical technique of
MALDI-TOF MS (95.8%) on purified isolates. Further research is required to assess this directly on patient samples.

• FT-IR analysis clustered N. meningitidis and group A Streptococcus in a similar manner to gold standard
whole-genome sequencing. However, it produced significantly different phylogenetic relationships to WGS for S.
pneumoniae or S. aureus subtypes. This is consistent with other laboratory strain studies and suggests FT-IR has
limited application in outbreak settings, but may be beneficial in certain bacterial species as it is much more rapid
than WGS.

• S. aureus WGS variants were significantly associated with longer length of hospital stay, after controlling for
multiple comparisons, including known virulence factors (FnbA/B) and cell wall proteins (Ebh, SraP).

• Comparing S. pneumoniae WGS data with clinical metadata, genes involved in DNA repair mechanisms were
found to be significantly associated with the need for non-invasive ventilation. Loss of a zinc ABC transporter
lipoprotein was associated with a greater PICU length of stay and has been described a hyperencapsulated
phenotype. In contrast with the S. aureus variants, these were typically more conservative.

• PLS-R modeling of FT-IR spectra with clinical demographics (e.g., age, length of stay) did not show significant
correlation. However pediatric risk of mortality (PRISM) severity scores correlated with FT-IR spectra for those
admitted to pediatric intensive care.

• FT-IR is a promising technique for clinical microbiology application and warrants further study in a wider range of
pathogenic species, with antimicrobial resistance and direct patient specimens before it is routinely applied to
clinical workflows.
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