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Abstract 31 

Background Novel biomarkers to identify infectious patients transmitting Mycobacterium 32 

tuberculosis are urgently needed to control the global tuberculosis (TB) pandemic. We hypothesized 33 

that proteins released into the plasma in active pulmonary TB are clinically useful biomarkers to 34 

distinguish TB cases from healthy individuals and patients with other respiratory infections. Methods 35 

We applied a highly sensitive non-depletion tandem mass spectrometry discovery approach to 36 

investigate plasma protein expression in pulmonary TB cases compared to healthy controls in South 37 

African and Peruvian cohorts. Bioinformatic analysis using linear modelling and network correlation 38 

analyses identified 118 differentially expressed proteins, significant through three complementary 39 

analytical pipelines. Candidate biomarkers were subsequently analysed in two validation cohorts of 40 

differing ethnicity using antibody-based proximity extension assays. Results TB-specific host 41 

biomarkers were confirmed.  A six-protein diagnostic panel, comprising FETUB, FCGR3B, LRG1, SELL, 42 

CD14 and ADA2, differentiated patients with pulmonary TB from healthy controls and patients with 43 

other respiratory infections with high sensitivity and specificity in both cohorts. Conclusion This 44 

biomarker panel exceeds the World Health Organisation Target Product Profile specificity criteria for 45 

a triage test for TB. The new biomarkers have potential for further development as near-patient TB 46 

screening assays, thereby helping to close the case-detection gap that fuels the global pandemic. 47 

 48 

199 words 49 

  50 
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Introduction 53 

Tuberculosis (TB) remains a disease of global significance, causing 1.6 million deaths and 10.6 million  54 

cases of active disease in worldwide each year (1).  Unfortunately, global control efforts have 55 

recently faltered due to the COVID-19 pandemic (2). The World Health Organization (WHO) has 56 

identified a global case detection gap of 4 million patients between the estimated incident cases and 57 

confirmed diagnoses, with undiagnosed cases predominantly occurring in high TB burden countries. 58 

Diagnostic delays in low and middle-income settings are often many months (3), and associate with 59 

increased risk of cavitary disease and sputum smear positivity, reflecting high infectiousness (4). 60 

Most TB cases result from recently transmitted Mycobacterium tuberculosis (Mtb) infection, and 61 

therefore the missed diagnoses increase Mtb transmission, TB disease and mortality and fuel the 62 

ongoing pandemic (5).  63 

TB control strategies are limited by the currently available diagnostics, which demonstrably are not 64 

meeting the needs for global control, requiring specific infrastructure and skilled operators, and do 65 

not meet the requirements of the WHO Target Product Profile (TPP) (6). Diagnostic biomarkers 66 

capable of identifying people with infectious TB in high burden settings, ideally at the point of care 67 

and not requiring sputum expectoration, are urgently needed.  A new screening test would not only 68 

benefit individuals by enabling prompt and effective treatment but would also be a fundamental 69 

tool for potential TB elimination, which remains a key goal for the WHO (7).  70 

Proteins are excellent candidates for diagnostic biomarkers, being stable and utilisable for near-71 

patient diagnostic tests. Several studies have explored potential host plasma protein biomarkers of 72 

TB (8-16), and although numerous candidate proteins have been detected, biomarkers or 73 

combinatorial biomarker signatures have not yet been found that can reliably differentiate TB from 74 

other respiratory diseases, or predict progression (17). Most discovery mass spectrometry-based 75 

proteomic studies to date have depleted highly abundant protein components from plasma (10-12). 76 

This reduction in plasma protein complexity simplifies the analysis but will also concurrently deplete 77 
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proteins of biological interest (18-20). Candidate host proteins identified to date as biomarkers of TB 78 

disease are frequently highly sensitive but poorly specific (13-15) .  79 

We hypothesised that analysis of plasma from individuals with pulmonary TB and healthy controls 80 

using a non-depletion untargeted proteomics method previously optimised to provide a uniquely 81 

high proteome coverage would identify novel markers that achieve both high sensitivity and 82 

specificity for TB disease. Here, we report the most detailed plasma proteome of TB to date and 83 

perform validation of upregulated proteins by a complementary antibody capture technique in two 84 

separate clinical cohorts, including patients with other respiratory infections.  We demonstrate the 85 

diagnostic potential of an optimised panel incorporating the newly identified biomarkers alongside 86 

established analytes that has potential to be developed into a near-patient screening test.  87 

  88 
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Results 89 

Discovery proteomic analysis of non-depleted plasma 90 

The overall study design is presented in Figure 1. Plasma samples were analysed from 11 untreated 91 

male patients with active pulmonary TB and 10 male healthy control samples, from South African 92 

and Peruvian cohorts, using a protocol that involved no depletion steps (21). Each plasma sample 93 

was initially separated into four segments by size exclusion chromatography, and each segment was 94 

processed individually. Analyses of plasma segments were performed in twelve iTRAQ (isobaric tags 95 

for relative and absolute quantification) 8-plex experimental sets in a block randomised design 96 

comprising three experimental sets. Each iTRAQ experiment contained a bridging master-pool 97 

plasma sample run in every experiment. Healthy controls were matched to TB samples by age, 98 

ethnicity, and smoking status within each iTRAQ set (Supplemental Tables 1 & 2). Protein 99 

abundances from the plasma segments and multi-consensus reports were combined and adjusted 100 

for experimental batch effects (Supplemental Figure 1 and 2). Protein abundances from one TB 101 

sample failed normalisation leading to exclusion from downstream analysis. An additional TB sample 102 

clustered with controls. On review of the clinical data, the patient had minimal chest X-ray 103 

infiltration and a normal CRP, and so did not fulfil study inclusion criteria, and was also excluded 104 

from downstream analysis. Protein abundances from the remaining combined plasma segment 105 

proteomes between experimental sets and the combined multi-consensus proteomes were analysed 106 

by complementary bioinformatic approaches to identify candidate diagnostic protein biomarkers 107 

(Figure 2). In total, 4,696 protein identifications were made across all iTRAQ experiments, at 5% FDR 108 

(false discovery rate). This comprised 2,332 unique host-derived proteins and 22 Mtb-derived 109 

proteins (Supplemental Table 3). Of these, 594 host proteins had a quantification result for every 110 

sample analysed and therefore comprised the complete quantified proteome. Whilst Mtb proteins 111 

were identified across all plasma segments, they were identified in both control and disease samples 112 

with low confidence and were not analysed further after review of individual mass spectra.  113 



7 
 

Plasma proteomes cluster by clinical condition and geographical cohort 114 

Initial exploratory data analysis of the complete quantified proteome by unsupervised hierarchical 115 

clustering demonstrated clear separation of the clinical groups (Figure 3A). Furthermore, the South 116 

African (label A_) and Peruvian cohorts (label P_) separated within clinical groups. This distinction 117 

was most marked within the healthy control plasma samples, with complete segregation depending 118 

on geographical location, whereas greater admixture occurred within the TB samples. Similarly, 119 

principal component analysis (PCA) confirmed clear separation between clinical groups, manifest by 120 

PC1 and comprising 24% of the variation within the dataset (Figure 3B).  Again, sample clustering by 121 

geographical cohort within clinical groups occurred, manifest through PC2, which contained 16% of 122 

the variation within the dataset (Figure 3B).  123 

Complementary bioinformatic analysis identifies 118 differentially expressed proteins in 124 

pulmonary TB 125 

High confidence protein identifications, extracted at 1% FDR, were taken forward for differential 126 

expression analysis. Protein abundances from individual iTRAQ 8-plex experiments were combined 127 

following adjustment for experimental batch (22).  FDR-corrected linear modelling (23) identified 128 

195 differentially expressed proteins from analysis of each plasma segment (Supplemental Table 4). 129 

A similar limma approach analysing the complete multi-consensus proteome yielded 148 130 

differentially expressed proteins (Supplemental Table 5). In parallel, examining the dataset by 131 

network correlation methodology, WGCNA (24), demonstrated hierarchical clustering by clinical 132 

group, but not experimental set, and by cohort in the healthy controls (Figure 4A).  Dendrogram 133 

analysis identified a large module of 195 proteins that correlated very closely with disease status 134 

(correlation score 0.94, p value 2e-09) (Figure 4B, Supplemental Table 6). Protein module significance 135 

scores within the turquoise module closely correlated to protein significance for pulmonary TB 136 

(Figure 4C, p =6e-134).  137 
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Combined analysis of all three bioinformatic analysis approaches identified one hundred and 138 

eighteen proteins that were significant through all statistical approaches (Figure 5A and 139 

Supplemental Table 7).  Consequently, this group was taken forward as robust candidate diagnostic 140 

protein biomarkers. Analysis of protein fold change by limma and correlation score by WGCNA 141 

demonstrates 56 proteins were significantly upregulated and 62 were significantly downregulated 142 

(Figure 5B).  143 

Differentially expressed proteins reflect physiological changes in pulmonary TB 144 

Chord plot analysis was performed to demonstrate key proteins, their magnitude and directionality 145 

of fold change relative to key biological processes from gene ontology analysis (Figure 6, 146 

Supplemental Table 8).  The predominant pathways were consistent with the known biology of Mtb 147 

infection, such as inflammatory response, response to bacterium and regulated exocytosis.  148 

However, the most represented process was proteolysis, and proteins regulating extracellular matrix 149 

organisation were also frequent.  The final processes were negative regulation of cellular metabolic 150 

process, lipid metabolic process and platelet degranulation.  Key proteins relating to proteolysis 151 

included MMP2, TIMP2, FETUB, SERPINA3, SERPINA4, SERPINA5, SERPIND1 and SERPINA10. MMP2 152 

and TIMP2 are also key proteins relating to extracellular matrix organisation, along with the collagen 153 

subunit COL15A1, vWF and ADAMTS13. Proteins relating to exocytosis included SELL, CLEC3B and 154 

LTA4H. CRP, LBP, S100A8 and S100A9, expectedly linked to the acute inflammatory response. LRG1 155 

and CD14 were key proteins in the response to bacterium.  Network plot analysis further confirmed 156 

the importance of proteolysis, inflammation and exocytosis-related terms and their relationship to 157 

the differentially expressed proteins (Figure 7). Gene ontology analysis of all differentially expressed 158 

proteins by cellular compartment showed that proteins were associated with six main locations: 159 

endoplasmic reticulum lumen, the extracellular matrix, lipoprotein particles, insulin-like growth 160 

factor ternary complexes, secretory vesicles, and platelet granules (Supplemental Table 9). Analysis 161 

of enriched molecular function terms indicates significant peptidase and endopeptidase activity, 162 

supporting a key role for proteolysis in pulmonary TB (Supplemental Table 10).   163 
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Gene ontology analysis of upregulated proteins by cellular component revealed significant 164 

enrichment for blood microparticles and fibrinogen complexes (Supplemental Figure 3A) with terms 165 

denoting binding to lipid mediators of inflammation and lipopeptides being the dominant molecular 166 

functions (Supplemental Figure 3B). Analysis by biological process showed significant enrichment for 167 

the acute phase response and acute inflammatory response (Supplemental Figure 3C & 4). The 168 

complement and coagulation pathway was the only enriched KEGG pathway by this analysis 169 

approach. (Supplemental Figures 3D & 4).  Gene ontology analysis of downregulated proteins was 170 

strikingly dominated by lipid-related terms across all analyses (Supplemental Figures 5 & 6).  171 

Proteins forming the matrisome, a group of approximately 1000 genes encoding structural and 172 

regulatory proteins of the extracellular matrix (25), were over-represented within significantly 173 

differentiated proteins.  Forty-five of the 118 (38%) divergently regulated  proteins were from the 174 

matrisome, compared to the matrisome representing 5% of the human proteome (26) reflective of 175 

increased ECM turnover in TB (27) (Supplemental Figure 7).  176 

Proximity Extension Analysis validates differential protein expression in the plasma of individuals 177 

with pulmonary TB in an independent patient cohort 178 

We performed analysis by an antibody-capture based protein-identification approach in an entirely 179 

different cohort, studying serum to validate the potential of the mass spectrometry identified 180 

plasma biomarkers for a new diagnostic panel (Figure 8A).  Circulating levels of 55 of the 118 (47%) 181 

differentially expressed proteins were tested in an independent patient cohort of mixed ethnicity 182 

and gender using antibody-based proximity extension assay (Olink™ Explore), using cardiometabolic 183 

and inflammatory panels, which gave the largest overlap with the 118 differentially expressed 184 

proteins. PEA plates take a maximum of 88 samples, and so to maintain power, 3 groups were 185 

analysed: HC, TB and ORI. Serum samples were selected from the UK-based MIMIC cohort 186 

(Supplemental Table 11) and included individuals with pulmonary TB (TB, n=32), healthy controls 187 

(HC, n=30) without risk factors for TB infection in whom latent TB infection had been ruled-out by a 188 
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negative interferon-gamma release assay (IGRA) and patients with symptoms suggestive of TB but 189 

with microbiologically confirmed other respiratory infections (ORI, n=26, Supplemental Table 12).  190 

Thirty proteins (30/55, 55%) had confirmed differential expression between healthy controls and 191 

pulmonary TB, of which 25 were upregulated and 5 downregulated (Supplemental Table 13). 192 

Fourteen proteins (14/55, 25%) showed differential expression between pulmonary TB and ORI. Four 193 

proteins, FCGR3B, FETUB, GGH and SERPIND1 were present at significantly higher levels in the 194 

plasma of pulmonary TB patients than both healthy controls and ORI cases, thereby exhibiting a high 195 

degree of specificity for TB (Figure 8B). Significantly reduced circulating levels of RBP4 were 196 

demonstrated using LuminexTM methodology, confirming the findings observed by mass 197 

spectrometry (Supplemental Figure 8).  198 

A five protein panel differentiates pulmonary TB from healthy controls 199 

Diagnostic performance of individual markers was evaluated using receiver operating characteristic 200 

(ROC) curves. ADA2 and CD14 were the best performing individual markers distinguishing TB from 201 

HC with an Area under the Curve (AUC) of 0.904 and 0.885 respectively (Figure 9A). Biomarker 202 

combinations were then evaluated using CombiROC analysis, to identify panels with a minimum 203 

diagnostic sensitivity of 90% and specificity of 70%, thereby meeting WHO Target Product Profile 204 

characteristics of a triage test for TB. ROC curves were generated following binary logistic regression 205 

of biomarker combinations to classify TB from HC samples. A five-protein panel comprising ADA2, 206 

CD14, LRG1, TNFSF13B and vWF gave an AUC of 0.943 (95% CI: 0.889 – 1.000, Figure 9A). Analysis of 207 

each analyte individually showed that they were highly significant compared to healthy controls, but 208 

were also significantly increased in ORI cases, suggesting they are not TB-specific and are best suited 209 

for a rule-out test (Figure 9B).  This panel accurately classified patients in 88.7% of cases with a 210 

sensitivity of 84.4% (95% CI: 67.3 – 94.3) and specificity of 93.3% (95% CI: 75.8 – 98.8, Figure 9C) at a 211 

probability cut off ≥ 0.5. 212 

A six protein panel differentiates pulmonary TB from other respiratory infections 213 
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CombiROC analysis of the 14 significantly differentially expressed proteins between TB and ORI was 214 

performed to identify the best performing panel (Figure 10A).  The combination above the defined 215 

threshold comprised FCGR3B, FETUB, GSN, IGFBP3, SELL and CLEC3B (Figure 10B). This combination 216 

had an AUC of 0.906 (95% CI: 0.8333 – 0.908), correctly classifying 79.3% of cases with a sensitivity 217 

of 81.3% (95% CI: 63.0 – 92.1) and a specificity of 76.9% (95% CI: 56.0 – 90.2, Figure 10C) at a 218 

probability cut off ≥ 0.5.  Analysis of individual analytes demonstrated that they were significantly 219 

different between TB and ORI (Figure 10D), but only FCGR3B and FETUB were also significantly 220 

different from healthy controls (Figure 8B). 221 

Integration of top performing analytes into a single panel provides differentiation of TB from both 222 

healthy controls and patients with ORI 223 

A universal biomarker panel capable of differentiating individuals with TB from both healthy 224 

individuals and individuals with ORI would be more widely applicable to different population testing 225 

scenarios. Therefore, biomarker panel combinations were explored using proteins from each of the 226 

differentiating panels to identify the best performing universal biomarker panel for both group 227 

comparisons. A six-protein marker combination of FCGR3B, FETUB, LRG1, ADA2, CD14 and SELL 228 

performed very well for both group comparisons; TB vs. HC with an AUC of 0.972 (95% CI: 0.937 – 229 

1.000), sensitivity 90.6% (95% CI: 73.8 – 97.5) specificity 90.0% (95% CI: 72.3 – 97.4, Figure 11A) and 230 

TB vs. ORI with an AUC of 0.930 (95% CI: 0.867 – 0.993), sensitivity 90.6% (95% CI: 66.5 – 96.7), 231 

specificity 80.8% (95% CI: 68.2 – 94.5, Figure 11B) at probability cut offs of ≥ 0.5. Performance of this 232 

final six protein panel was also evaluated by gender, as the discovery set had been exclusively male.  233 

This analysis confirmed the diagnostic performance of markers in male patients, and notably 234 

exceeded this in female patients (Supplemental Figure 9).  235 

The six protein panel discriminates TB from healthy controls and patients with ORI in a second 236 

independent patient cohort  237 
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Antibody-based proximity extension assay was then used to test the diagnostic performance of the 238 

final six protein combination in a further independent cohort of plasma samples collected in South 239 

Africa ((28), Supplemental Table 14). Samples were selected from HIV-negative individuals with 240 

microbiologically confirmed pulmonary TB (TB, n=29), healthy controls (HC, n=30) and individuals 241 

presenting with symptoms of pulmonary TB but were negative for Mtb on subsequent 242 

microbiological testing (ORI, n= 19) as outlined in Supplemental Table 13. Alternative diagnoses were 243 

not microbiologically confirmed in the ORI group due to the resource-limited healthcare setting, but 244 

symptoms were consistent with TB. Significantly elevated circulating levels of all six proteins in the 245 

panel were confirmed (Figure 12A, Supplemental Table 15). Analysis of the diagnostic performance 246 

of the six protein combined panel demonstrated diagnostic specificity for differentiation of TB from 247 

both healthy controls (AUC 0.883 (95% CI: 0.796 – 0.968), sensitivity 75.0 (95% CI: 54.8 – 88.6) and 248 

specificity 83.3 (64.5 – 93.7, Figure 12B&D) and ORI (AUC 0.876 (95% CI: 0.765- 0.987), sensitivity 249 

92.9 (95% CI: 75.0 – 98.8), specificity 78.9 (95% CI: 53.9 – 93.0, Figure 12C&E) at probability cut offs 250 

of ≥ 0.5. Diagnostic performance of the final six protein panel was also tested in both patient cohorts 251 

against a combined group of both healthy controls and other respiratory infections, which confirmed 252 

preserved specificity of performance (Supplemental Figure 10).  253 

  254 
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Discussion 255 

TB remains a global catastrophe, and a fundamental issue in controlling the pandemic is the 256 

limitations of the diagnostic process, resulting in an estimated 4.2 million missed cases in 2022 (3). 257 

This diagnostic gap leads to ongoing transmission, morbidity and mortality, and long-term strain on 258 

healthcare systems (6, 29).  A novel diagnostic assay with high levels of accuracy would be 259 

transformative, permitting population screening to find the missing millions and thereby break the 260 

cycle of transmission (30).  Indeed, mass screening is being increasingly advocated as a central pillar 261 

to control the TB pandemic (3, 7, 31-34).  However, this requires new tools that are fit for purpose 262 

utilising non-sputum based approaches, but the incomplete understanding of potential plasma 263 

biomarkers has considerably limited progress (3). 264 

 265 

Here, we utilised a non-depletion quantitative proteomics approach to generate what we believe is 266 

the most detailed description of the plasma proteome of TB to date. Complementary bioinformatic 267 

analysis using linear modelling and correlation network analysis identified 118 differentially 268 

expressed proteins compared to healthy controls. A large subset of biomarkers were successfully 269 

validated in a separate clinical cohort by an antibody capture approach, demonstrating analytes can 270 

progress to different platforms and overcome this hurdle that may limit translation of proteomics-271 

discovered biomarkers. Four TB-specific biomarkers, FETUB, FCGR3B, GGH and SERPIND1, were 272 

raised in TB patients compared to both healthy controls and sick controls with ORI.  Combinatorial 273 

analysis using a CombiROC approach identified a six-protein biomarker panel that could distinguish 274 

active pulmonary TB from healthy controls and patients with ORI achieving the Target Product 275 

Profile of the WHO (6). Further validation in a second independent cohort demonstrated statistically 276 

significant elevation of all six proteins in the plasma of TB patients and confirmation of high 277 

diagnostic performance of the combination panel, distinguishing active pulmonary TB from healthy 278 

controls and other respiratory infections. Our discovery proteomic protocol did not involve depletion 279 
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steps, in contrast to many previous mass spectrometry-based plasma proteomic studies in TB (10-12, 280 

35, 36). Plasma depletion can co-remove proteins of potential biological interest by non-covalent 281 

interactions (18-20). We employed complementary bioinformatic methodologies to identify 282 

candidate biomarkers, with limma employing Bayesian statistics (23), whilst WGCNA circumvented 283 

limitations of multiple comparisons by using unsupervised analysis methods to generate modules of 284 

co-expressed proteins that correlate with clinical traits (24). The 118 proteins identified by all three 285 

complementary approaches were considered the strongest biomarker candidates.  286 

 287 

We identified numerous previously described biomarkers of TB such as C-reactive protein (CRP), 288 

lipopolysaccharide-binding protein (LBP), serum amyloid A1 (SAA1), alpha-1-acid glycoprotein 1 289 

(ORM1) and retinol-binding protein 4 (RBP4) alongside S100A8 and S100A9, the protein components 290 

of calprotectin. In addition, we identified several biomarkers that we believe have not previously 291 

been described, such as lymphocyte cytosolic protein 1 (LCP1), gamma-glutamyl hydrolase (GGH), 292 

marginal zone B- and B1-cell-specific protein (MZB1) and fetuin-B (FETUB), including proteins not 293 

known to be secreted into the extracellular compartment, such as transcription termination factor 1 294 

(TTF1). LCP1 is a leukocyte specific actin-binding protein that is required for podosome formation 295 

and function in macrophages (37). LCP1 has been identified in the phagosomes of BCG-infected 296 

macrophages (38). GGH is a protease typically located in lysosomes, and serum GGH has been 297 

proposed to be a marker of oxidative stress (39).  MZB1 aids peripheral B cell function and promotes 298 

secretions of IgM antibodies (40, 41). TTF1 is a multi-functional protein that usually localises to the 299 

nucleolus (42) and regulates transcription of surfactant protein B (SFTPB) in type 2 alveolar cells (43, 300 

44). SFTPB is also upregulated in our dataset.  301 

 302 

Lung matrix destruction and cavitation is a hallmark of pulmonary TB, which leads to morbidity, 303 

mortality, and increased disease transmission (45, 46).  Our findings further highlight matrix 304 
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turnover as a central process in TB. Gene ontology analysis of differentially expressed proteins 305 

showed that the extracellular matrix was the most significantly enriched cellular compartment; the 306 

most significantly enriched molecular functions were endopeptidase and peptidase inhibitor and 307 

regulator activity; and the highest proportion of significantly enriched biological processes related to 308 

proteolysis.  The SERPINs are a large family of serine protease inhibitors (47) and eight SERPINs were 309 

differentially regulated, with elevated SERPIND1 levels shown to have the highest specificity for TB. 310 

Fetuin-B (FETUB), a cysteine protease inhibitor, emerged as a key biomarker for pulmonary TB, but 311 

little is known about its pathological role.  FETUB was part of a 9-protein prognostic risk score in lung 312 

adenocarcinoma (48) and plasma levels correlate with worsening lung function in COPD (49), 313 

suggesting plasma FETUB levels may relate to destructive lung pathology.  314 

 315 

Pulmonary TB is characterised by excessive inflammation (50), and we identified numerous 316 

inflammation-related proteins such as CRP, S100A8 and S100A9. ADA2, CD14 and LRG1, part of the 317 

final six-marker panel, have all been implicated in inflammatory responses. ADA2 induces the 318 

differentiation of monocytes to macrophages and stimulates macrophage and helper T cell 319 

proliferation (51); CD14 serves as a receptor for Mtb cell wall lipoarabinomannan (52, 53); while 320 

LRG1 is a marker for neutrophilic granulocyte differentiation, which we have previously shown to be 321 

elevated in the serum of patients with pulmonary TB (21). FCGR3A and FCGR3B, low affinity 322 

immunoglobulin receptors, were also upregulated. These only differ by one amino acid, with 323 

FCGR3A expressed on NK cells and FCGR3B in monocytes and macrophages (54). FCGR3B 324 

upregulation was relatively specific for TB, not being upregulated in ORI.  Complement components 325 

were also upregulated, including C2, C4B, C8B, CFB, C9 and CFHR5, demonstrating broad modulation 326 

of this inflammatory pathway in TB disease (55).  327 

 328 
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Amongst the significantly downregulated proteins, lipid-metabolism featured strongly, enriched for 329 

the lipoprotein cellular compartment, lipid-binding and lipid inflammatory-mediator binding 330 

molecular functions. Lipid metabolism and systemic inflammation are inextricably intertwined (56), 331 

with eicosanoid-mediated inflammatory imbalance implicated in human TB (57). Leukotriene A4 332 

hydrolase (LTA4H) is elevated in TB and has been implicated in the spatial organisation of lipid 333 

signalling within TB lung granulomas by a proteomics approach (58), and regulates susceptibility to 334 

infection (59). Additionally, previous hypothesis-directed approaches have shown lower levels of 335 

cholesterol, HDL-C and LDL-C levels in pulmonary TB patients compared to controls (60).  336 

 337 

Differences in TB pathogenesis between ethnic groups has been recognised for over a century (61, 338 

62), and ethnicity has been shown to be a powerful determinant of clinical TB phenotype, 339 

independent of Mtb strain lineage (63). We analysed plasma samples from two geographical origins, 340 

South Africa and Peru, and identified differences in the plasma proteome by region both in healthy 341 

controls and in TB patients. Such geographical differences need consideration in developing new 342 

diagnostic tests (64). Reassuringly our top candidate biomarkers were validated in an independent 343 

cohort of mixed ethnicity and gender, and the six protein biomarker panel in a further independent 344 

clinical cohort of mixed gender.  345 

 346 

Previous studies have explored circulating biomarkers of TB disease utilising diverse approaches.  347 

Luminex-based analysis of HIV-negative individuals from sub-Saharan African countries for pre-348 

specified analytes has identified a two-protein panel and a nine-protein panel, both including CRP, 349 

that distinguish TB from other respiratory diseases, with comparatively high sensitivity, but lower 350 

specificity (14, 15).  A Simoa ultrasensitive immunoassay comprising four host proteins and an 351 

antibody against TB antigen Ag85B was also able to discriminate between patients with TB and those 352 

with other respiratory diseases, but had lower performance characteristics than our biomarker 353 
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panel, and, importantly, requires a specific reader (65) . In another study, analysis by aptamer-based 354 

SOMAscan assays identified a six-protein panel comprising SYWC (cytoplasmic tryptophan-tRNA 355 

ligase), kallistatin, C9, gelsolin, testican-2 and aldolase C (16), which could distinguish TB from non-356 

TB samples with a similar sensitivity and specificity to our panel, though  limited data were available 357 

regarding the patients that made up the non-TB group. Our unbiased discovery approach using 358 

geographically diverse populations demonstrates a robust method for the identification of protein 359 

biomarkers with higher specificity for differentiating TB disease in carefully phenotyped comparator 360 

groups of healthy controls and other respiratory infections. Evidently, the performance of our 361 

proposed biomarkers will require validation in additional cohorts, including patients with 362 

extrapulmonary TB and individuals with HIV co-infection, which present additional diagnostic 363 

challenges (66).  An assay will be needed that meets the WHO ASSURED criteria for a point-of-care 364 

test for use in resource-limited settings, being affordable, sensitive, specific, user-friendly, rapid, 365 

equipment-free and deliverable to those in need (67). Recent developments in integrated 366 

microfluidic systems may allow the translation of diagnostic panels onto an immuno-assay-based 367 

lab-on-a-chip system, that would have potential for near-patient use (6). 368 

 369 

In summary, our integrated proteomics approach has identified TB-specific circulating biomarkers of 370 

disease amongst a group of 118 divergently regulated proteins identified through a rigorous 371 

bioinformatic pipeline. A six-protein biomarker panel can discriminate individuals with active 372 

pulmonary TB from healthy individuals and from those with other bacterial or viral pulmonary 373 

infections, with potential for onward development into a point-of-care test suitable for mass 374 

population screening. The diagnostic potential of these new protein biomarkers and panels require 375 

further validation in key clinical groups, such as HIV co-infected individuals and in cohorts with high 376 

co-prevalence of common comorbidities such as diabetes and chronic obstructive pulmonary 377 

disease. Additionally, although our study focussed on separating infection from TB, in future 378 

comparison with sarcoidosis, autoimmune pneumonias or chronic fungal pneumonias in specific 379 
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settings where these are prevalent will also be warranted. Whilst future validation in different 380 

cohorts and development of a near-patient assay represent significant future hurdles, we propose 381 

that these findings provide critical knowledge to develop an initial screening assay that can be used 382 

to triage patients to pathways involving more expensive confirmatory testing for TB (7, 68).  Such 383 

active case finding will help to close the case-detection gap that is fuelling the ongoing TB pandemic.   384 
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Methods 385 

Study participants 386 

Participants in the discovery experiment were recruited in two separate cohorts. The South African 387 

cohort were recruited at Ubuntu TB/HIV clinic in Cape Town from June 2012 to February 2014 and 388 

were of Black African ethnicity (28). Written informed consent was provided. The diagnosis of active 389 

TB was based on sputum smear or culture positivity, GeneXpert results where available and chest 390 

radiograph findings. For healthy controls sputum samples were smear and culture negative for acid-391 

fast bacilli. The Peruvian cohort was recruited at clinics in Lima, Peru during 2015. The diagnosis of 392 

TB was based on TB symptoms, sputum smear and culture positivity, and chest radiograph findings. 393 

Healthy control individuals were QuantiFERON negative, excluding coincidental LTBI. Plasma samples 394 

from male HIV-negative participants were randomly selected for the discovery experiment from 395 

either cohort if they were between the ages of 18 and 50 years old and had a BMI between 16 and 396 

26 and there was sufficient sample for analysis. Exclusion criteria included anaemia (Hb ≤ 8 g/dL), 397 

significant renal impairment (creatinine ≥ 150µm/L), significant hepatic disease (ALT ≥ 80 IU/L), 398 

known malignancy or diabetes mellitus. Patients with active TB had not yet commenced treatment 399 

at the time of plasma sampling.  400 

Participants in validation cohort 1 were from the UK-based MIMIC cohort of mixed ethnicity. 401 

Patients were recruited between June 2014 and February 2017. All participants in the MIMIC study 402 

were UK resident at the time of sample collection and were HIV-negative. Healthy control individuals 403 

were asymptomatic, without a history of previous TB disease, TB contact or travel to a high TB 404 

prevalence area, and no evidence of LTBI in interferon-gamma release assay (IGRA) testing. Active 405 

pulmonary TB cases were symptomatic individuals with microbiologically confirmed TB by either 406 

sputum smear, sputum culture or positive PCR for Mtb. Individuals with other respiratory infections 407 

(ORI) were symptomatic with microbiologically confirmed respiratory tract infection caused by a 408 

pathogen other than Mtb, without a history of previous active TB. The causative agents in this group 409 



20 
 

comprised influenza virus A and B, respiratory syncytial virus, human metapneumovirus, 410 

Streptococcus pneumoniae, Staphylococcus aureus, and Mycoplasma pneumoniae.  All participants 411 

in validation cohort 2 were resident in Khayelitsha, Cape Town at the time of sample collection, were 412 

of Black African ethnicity and HIV-uninfected. The diagnosis of TB was based on TB symptoms, 413 

sputum smear and culture positivity, and chest radiograph findings.  414 

Sex as a biological variable 415 

Sex has been carefully considered as a biological variable in this investigation. For the discovery 416 

plasma mass spectrometry only samples from male patients were used as males exhibit the most 417 

florid pulmonary TB pathology. For both validation cohorts samples from males and females were 418 

tested, and ratios are presented in Supplemental Table 11 & 14.  419 

Sample processing 420 

For the discovery experiment, venous blood was collected in sodium heparin vacutainer tubes and 421 

plasma prepared according to standard operating procedures at the site of recruitment and stored 422 

at -80oC. Aliquots of 120µL of plasma were liquid fixed with 380µL of 7 M guanidine hydrochloride 423 

and 10% methanol and stored at -20oC until size exclusion chromatography. Aliquots of 20µL of each 424 

plasma sample in the discovery experiment was combined to generate a master-pool sample to help 425 

mitigate batch effects across different proteomic experiments.  426 

For the validation experiment in the MIMIC cohort, venous blood was collected in serum vacutainer 427 

tubes and serum prepared according to standard operating procedures at the site of recruitment 428 

and stored in 100µL aliquots at -80oC. For Proximity extension analysis (PEA) serum samples were 429 

thawed, centrifuged for 10 minutes at 1500 rpm, and 40µL per sample aliquoted into a 96 well plate 430 

and re-frozen at -80oC until analysis at the Oxford Genomics Centre.  431 
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Discovery proteomic analysis 432 

HP-SEC & protein digestion 433 

The methodology for high performance size-exclusion chromatography has been previously 434 

described (21). Total protein lyophilised extracts from each plasma segment were reconstituted with 435 

0.5 M triethylammonium bicarbonate and 0.05% sodium dodecyl sulphate and sonicated on ice. 436 

Following centrifugation at 16,000G for 10 minutes at 4oC protein content was estimated using a 437 

Nanodrop ND-1000 spectrophotometer (Thermo Fisher Scientific) at 280nm. Volume-adjusted 120µg 438 

of protein was reduced with 2 µL of 50 mM Tris-2-carboxymethyl phosphine and incubated at 60oC 439 

for 1 hour. Samples were then alkylated using 1 µL of 200 mM methylmethane thiosulphonate and 440 

incubated for 10 minutes at room temperature. Protein digestion was conducted to a ratio of 1:40 441 

enzyme/substrate with trypsin MS grade (Pierce, Thermo Fisher Scientific) overnight at 37oC in the 442 

dark.  443 

iTRAQ-labelling 444 

Isopropanol was added to iTRAQ labels to ensure more than 60% organic phase during sample 445 

labelling and each tag was added to the appropriate trypsinised sample. The masterpool was 446 

labelled using tag 113, and the samples were block randomised to the remaining tags according to 447 

Supplemental Table 2. The labelling reaction was conducted for 2 hours at room temperature and 448 

the reaction stopped with 8 µL of 5% ammonium hydroxylamine. Samples were lyophilised and 449 

stored at -20oC until chromatographic separation.  450 

Peptide fractionation 451 

Offline peptide fractionation was performed at high pH (0.08% NH4OH) using a C4 column (Kromasil, 452 

3.5 µm, 2.1 mm x 150 mm) on a Shimazdu HPLC system. iTRAQ-labelled peptides were reconstituted 453 

and pooled with 100 µL of mobile phase and centrifuged at 16,000G at room temperature for 10 454 

minutes. Supernatant was injected and separated at a flow rate of 0.3 mL/min at 30oC. Fractions 455 

were collected by peak detected at 215 nm. Peptide fractions were dried using a speedvac 456 
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concentrator (Thermo Fisher Scientific) and stored at -20oC until LC-MS/MS analysis. Highly 457 

hydrophilic and hydrophobic fractions from the extreme regions of the chromatographic traces were 458 

pooled and further cleaned using Gracepure SPE C18-AQ 100 mg/1 mL cartridges (Thermo Fisher 459 

Scientific).  460 

Mass spectrometry analysis 461 

Peptide fractions were analysed using a Dionex Ultimate UHPLC system coupled to a nano-ESI-LTQ-462 

Velos Pro Orbitrap Elite mass spectrometer (Thermo Fisher Scientific). Online chromatographic 463 

separation of each peptide fraction was conducted using a AcclaimPepMap RSLC C18 nanoViper 464 

column (Thermo Fisher Scientific 2 μm, 75 μm × 25 cm). This was retrofitted to a PicTip emitter 465 

(FS360-20-10-D-20-C7) for injection into the mass spectrometer. MS characterization of eluting 466 

peptides was conducted between 380 and 1500 m/z. The top 10 +2 and +3 precursor ions were 467 

further characterized by tandem MS (MS/MS). Higher energy collisional dissociation (HCD) and 468 

collision-induced dissociation (CID) fragmentation for each of the collected fractions was performed. 469 

Full MS scans and MS/MS scans were acquired at a resolution of 30,000 FWHM (full width at half 470 

maximum) for Set C segments 1-3, and 60,000 FWHM for all further plasma segments. Data were 471 

acquired using Xcalibur software (Thermo Fisher Scientific). Conditions for ionization, CID and HCD 472 

fragmentation, and ion detection for this method have been previously reported (69). 473 

MS data processing 474 

Target decoy searching of raw mass spectra was conducted with Proteome Discoverer v2.4 (Thermo 475 

Fisher Scientific). SequestHT was used for target decoy search for tryptic peptides, allowing 2 missed 476 

cleavages, 10 ppm mass tolerance and a minimum peptide length of 6 amino acids. Dynamic 477 

modifications of oxidation (M), deamidation (N, Q) and phosphorylation (S, T, Y) and static 478 

modifications of iTRAQ 8plex (N-terminus, K) and meythylthio (C) were permitted. Fragment ion 479 

mass tolerance was 0.02 Da for HCD-generated spectra and 0.5 Da for CID-generated spectra. 480 

Percolator was set to a concatenated strategy for target decoy selection with a strict FDR target of 481 
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0.01 and relaxed FDR target of 0.05. Spectra were searched against a concatenated FASTA file 482 

comprising the UniProtKB SwissProt human proteome and the reference M. tuberculosis H37Rv 483 

proteome (SwissProt and TrEMBL). Unique peptide spectrum matches were taken through to 484 

consensus workflow allowing a 50% co-isolation threshold and a signal-to-noise ratio of 3. 485 

Normalization was to total peptide amount and scaling was to controls average. This scaling enabled 486 

a multi-consensus workflow to generate grouped protein abundances across all four plasma 487 

segments for each experimental set. Protein abundances were imported to R for log2 488 

transformation, median normalisation, data visualisation and bioinformatic analysis. Data from 489 

plasma samples from TB patients labelled with iTRAQ tags 118 and 121 in experimental set C were 490 

excluded from further analysis at this stage due to failure of normalisation (tag 118) and clustering 491 

with the control group (121). Clinically the latter patient had microbiologically confirmed pulmonary 492 

TB, but minimal CXR changes and a normal CRP.  493 

Validation proteomic analysis 494 

Serum samples from the MIMIC cohort were thawed and centrifuged at 15,000g for 10mins at 4oC. 495 

Serum was aliquoted onto 96 well PCR plates and transported on dry ice to the Oxford Genomics 496 

Centre for analysis. Proximity Extension Assay (PEA) was performed as per the proteomic method 497 

that has been previously described (70) using Olink® Explore Cardiometabolic and Inflammation II 498 

panels. Each assay has been extensively validated for limit of detection, measurement ranges, 499 

precision, reproducibility and specificity as detailed at https://olink.com/our-platform/assay-500 

validation/#explore.  501 

Statistics 502 

Discovery proteomics 503 

Differentially expressed proteins were identified using linear modelling with the R package limma 504 

(23) including FDR correction for multiple comparisons and network correlation analysis using the R 505 

package WGCNA (24). Limma was applied on combined data from each plasma segment and on 506 
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multi-consensus analyses, following adjustment for experimental batch effects using the R package 507 

ComBat (22). WGCNA was applied to ComBat-adjusted data for combined multi-consensus analyses. 508 

WGCNA was used to determine clusters of highly correlated proteins (colour modules) and explore 509 

their correlation with phenotypic traits. Module significance was expressed as a correlation score 510 

with statistical significance. Gene ontology enrichment analysis was conducted using ShinyGO (71) 511 

with all proteins identified from the discovery experiment as a background proteome. Only gene 512 

ontology terms with an FDR-adjusted p-value less than 0.05 were considered. Graphical 513 

visualisations of the enrichment analysis were generated using the R package clusterProfiler (72) for 514 

cnet plots and GOplots for chord plots.  515 

Validation proteomics 516 

Differences in protein expression between groups for PEA measurements were analysed using 517 

GraphPad Prism v9. Data distributions were examined for normality and differences analysed by 518 

one-way ANOVA (analysis of variance) if Gaussian distribution was found. For non-parametrically 519 

distributed data differences between groups were analysed using Kruskal-Wallis method with 520 

Dunn’s test for multiple comparisons. A p-value of less than 0.05 was considered statistically 521 

significant. Combinatorial performance of biomarkers was assessed using the R package CombiROC 522 

(73). Receiver operating characteristics curves for clinical group classification were then explored for 523 

the best performing biomarker panels following binary logistic regression using SPSS v28.0.1.0 (IBM 524 

statistics).  525 

Study approval 526 

All clinical studies were conducted according to the Declaration of Helsinki principles. All participants 527 

gave written informed consent. The South African cohort was recruited under University of Cape 528 

Town Research Ethics Committee approval (HREC, REF 516/2011). Enrolment of participants in the 529 

Peruvian study was approved by the Universidad Peruana Cayetano Heredia Institutional Review 530 

Board (SIDISI 65314). University of Southampton Ethics and Research Governance approval was 531 
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given for transporting samples to the United Kingdom for analysis (approval 17758). The MIMIC 532 

study was approved by the National Research Ethics Service Committee South Central (Ref 13 SC 533 

0043).  534 

Data availability 535 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium 536 

via the Proteomics IDEntification Database partner repository (74).  Selected PEA data is available in 537 

Supplemental Tables 13 & 15. Values for all data points shown in graphs are reported in the 538 

Supporting Data Values file. Further data and analysis code are available from the corresponding 539 

author on request. 540 
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Figure 6: Divergently regulated proteins link with key biological processes in pulmonary TB
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(FDR q ≤ 0.05) are shown. Plot generated with the R package GOplots.
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Figure 7: Physiological changes in TB are re�ected in the plasma proteome
Functional enrichment analysis by biological process was performed on the 118 di�erentially expressed plasma proteins 
in TB. The gene concept network plot depicts the top 15 most enriched biological processes and their linkages to 
divergently regulated proteins. Gene ontology enrichment was performed using ShinyGO and the plot was generated 
using the cnetplot function in the R package GOplots.
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Figure 8: Discovery biomarker candidates validated by proximity extension analysis identify TB-speci�c 
biomarkers.  (A) Flow chart outlining the analysis approach to identify signi�cant biomarkers and the best performing 
biomarker combinations from our integrated proteomics approach.  (B-E) Box and whisker plots of four protein 
biomarkers signi�cantly di�erentially expressed in TB compared with both healthy controls and other respiratory 
infections by proximity extension assay. Boxes show median values and interquartile ranges, whiskers show minimum 
to maximum values. Statistical di�erences were calculated using one-way ANOVA with Tukey’s multiple comparisons 
test for data with a Gaussian distribution and Kruskal-Willis test with Dunn’s multiple comparisons test for 
non-parametrically distributed data. 
ANOVA; analysis of variance; NPX: normalised protein expression (log2scale); AUC: area under the curve; HC: healthy control (n = 30); TB: tuberculosis; 
(n= 32); ORI: other respiratory infections (n = 26); FCGR3B: low-a�nity immunoglobulin receptor 3B; FETUB: fetuin-B; GGH gamma-glutamyl 
hydrolase ; SERPIND1 serpin D1, also known as heparin cofactor 2. ns meaning p > 0.05; * p ≤ 0.05; ** p ≤ 0.01, *** p ≤ 0.001; **** p ≤ 0.0001
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Figure 9: A �ve protein biomarker panel distinguishes pulmonary TB from healthy controls
(A) Receiver operating curve (ROC) characteristics of the best performing �ve biomarker combination distinguishing 
pulmonary TB from healthy controls, demonstrating an AUC of 0.943 (95% CI: 0.889 - 1.000) (B-F) Box and whisker plots 
of the �ve constituent proteins signi�cantly di�erentially expressed in TB compared with healthy controls by proximity 
extension assay. Boxes show median values and interquartile ranges, whiskers show minimum to maximum values. 
Statistical di�erences were calculated using one-way ANOVA with Tukey’s multiple comparisons test for data with a 
Gaussian distribution and Kruskal-Willis test with Dunn’s multiple comparisons test for nonparametrically distributed 
data. (G) Classi�cation grid illustrating diagnostic performance of the �ve protein biomarker panel in the validation 
cohort demonstrating a sensitivity of 84.4% (95% CI 67.3 - 94.3), speci�city of 93.3% (95% CI: 75.8 - 98.8) and correct 
classi�cation in 88.7% of cases. 
ANOVA; analysis of variance; NPX: normalised protein expression (log2scale); AUC: area under the curve; HC: healthy control (n = 30); TB: tuberculosis; 
(n= 32); ORI: other respiratory infection (n = 26); ADA2: adenosine deaminase 2; CD14: monocyte di�erentiation antigen CD14; LRG1: leucine-rich 
alpha-2-glycoprotein; TNFSF13B:  tumour necrosis factor ligand superfamily member 13B; vWF: von Willebrand factor. ns meaning p > 0.05; * p ≤ 0.05; 
** p ≤ 0.01, *** p ≤ 0.001; **** p ≤ 0.0001

C 

D E 

F 



Below threshold

Number of markers

100

75

50

25

0
0 25 50 75 100

Combination

Above threshold

Speci�city

Se
ns

iti
vi

ty

5

10

A

HC TB ORI
-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

IG
FB

P3
 (N

PX
)

ns

✱✱

✱✱

HC TB ORI
-1.0

-0.5

0.0

0.5

1.0

1.5

G
SN

 (N
PX

)

ns

✱

✱

HC TB ORI
-1.0

-0.5

0.0

0.5

1.0

1.5

CL
EC

3B
 (N

PX
)

ns

✱✱✱✱

✱

HC TB ORI
-0.5

0.0

0.5

1.0

1.5

2.0

2.5

SE
LL

 (N
PX

)

ns

ns

✱

1 - Specificity
1.00.80.60.40.20.0

0.4

0.2

0.0

1.0

0.8

0.6

0.0

SELL (AUC 0.690)
Six protein combined panel (AUC 0.906) 

IGFBP3 (AUC 0.702)
GSN (AUC 0.686)

FETUB (AUC 0.881)
FCGR3B (AUC 0.713)
CLEC3B (AUC 0.719)

C

Se
ns

iti
vi

ty

Predicted
ORI TB % correct

Observed
ORI 20 6 76.9

TB 6 26 81.3

Overall % 79.3 

D

Speci�city

Sensitivity

Accuracy

TB vs. other respiratory infection

Figure 10: A six protein biomarker panel distinguishes pulmonary TB from other respiratory infections
(A) Bubble plot of possible protein combinations within the 14 proteins showing signi�cant di�erential expression 
between TB and ORI groups, generated using CombiROC R package. Dotted lines at 90% sensitivity and 70% speci�city 
corresponding to the WHO Target Product Pro�le for a triage test for active TB. (B-E) Box and whisker plots of protein 
biomarkers signi�cantly di�erentially expressed in TB compared with other respiratory infections by proximity extension 
assay. Box and whisker plots of FCGR3B and FETUB are shown in Figure 8. Boxes show mean values and interquartile 
ranges, whiskers from minimum to maximum values. (F) Receiver operating curve (ROC) characteristics of best perform-
ing biomarker combination and constituent proteins. The six protein combined panel AUC 0.906 (95% CI: 0.833 - 0.908) 
(G) Classi�cation grid illustrating diagnostic performance of the six protein biomarker panel in the validation cohort 
demonstrating a sensitivity of 81.3% (95% CI: 63.0 - 92.1), speci�city of 76.9% (95% CI: 56.0 - 90.2) and correct 
classi�cation in 79.3% of cases.  
NPX: normalised protein expression (log2scale); AUC: area under the curve; HC: healthy control; TB: tuberculosis; ORI: other respiratory infections; 
CLEC3B: tetranectin; GSN: gelsolin; IGFBP3: insulin-like binding protein 3; SELL: L-selectin; FCGR3B: low a�nity immunoglobulin receptor 3B; FETUB: 
fetuin-B. ns meaning p > 0.05; * p ≤ 0.05; ** p ≤ 0.01, *** p ≤ 0.001; **** p ≤ 0.0001
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Figure 11: A final combined six protein panel discriminates patients with TB from both healthy controls 
and other respiratory infections
(A) ROC curve and (B) classification grid of the final six protein panel comprising FCGR3B, FETUB, LRG1, 
ADA2, CD14 and SELL, demonstrating discrimination of patients with TB from healthy controls (AUC 0.972 (95% 
CI: 0.937 - 1.000), sensitivity 90.6% (95% CI: 73.8 - 97.5), specificity 90.0% (95% CI: 72.3 - 97.4)).  
(C) ROC curve and (D) classification grid of the final six protein panel discriminating patients with TB from 
patients with other respiratory infections (AUC 0.930 (95% CI: 0.867 - 0.993), sensitivity 90.6% (95% CI: 66.5 - 
96.7), specificity 80.8% (95% CI: 68.2 - 94.5)). 
All ROC curves and classification grids were generated using SPSS v28.0.1.0 after binary logistic regression for 
combined proteins. AUC was calculated under non-parametric assumption. TB was set as the positive test 
outcome and the test direction such that a larger test result indicates a more positive test.  
ADA2: adenosine deaminase 2; CD14: monocyte differentiation antigen; FCGR3B: low-affinity immunoglobulin receptor 3B; FETUB: fetuin-B; 
LRG1: leucine-rich alpha-2-glycoprotein; SELL: L-selectin. TB: tuberculosis; HC: healthy control; ORI: other respiratory infection
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Figure 12: The �nal six protein panel di�erentiates TB from both HC and ORI in a separate clinical cohort
(A-F) Box and whisker plots of the six proteins in the panel in pulmonary TB compared with HC and ORI by proximity 
extension assay. Boxes show median values and interquartile ranges, whiskers show minimum to maximum values. 
Statistical di�erences were calculated using one-way ANOVA with Tukey’s multiple comparisons test for data with a 
Gaussian distribution and Kruskal-Willis test with Dunn’s multiple comparisons test for nonparametrically distributed 
data. (G) Receiver operating curve (ROC) characteristics of the six protein panel distinguishing pulmonary TB from 
healthy controls. The six protein combined panel AUC 0.882 (95% CI: 0.796 - 0.968). (H) Receiver operating curve (ROC) 
characteristics of the six protein panel distinguishing pulmonary TB from other respiratory infection, AUC 0.876 (95% CI: 
0.765 - 0.987). (I) Classi�cation grid illustrating diagnostic performance of the six protein panel distinguishing pulmo-
nary TB from healthy controls demonstrating a sensitivity of 75.0% (95% CI: 54.8 - 88.6), speci�city of 83.3% (95% CI: 
64.5 - 93.7) and correct classi�cation in 79.3% of cases in this cohort. (J) Classi�cation grid illustrating diagnostic 
performance of the six protein panel distinguising pulmonary TB from other respiratory infection demonstrating a 
sensitivity of 92.9% (95% CI: 75.0 - 98.8), speci�city of 78.9% (95% CI: 53.9 - 93.0) and correct classi�cation in 87.2% of 
cases in this cohort.
All ROC curves and classi�cation grids were generated using SPSS v28.0.1.0 after binary logistic regression for 
combined proteins. AUC was calculated under non-parametric assumption. TB was set as the positive test outcome and 
the test direction such that a larger test result indicates a more positive test. 
ANOVA; analysis of variance; NPX: normalised protein expression (log2scale); AUC: area under the curve; HC: healthy control (n = 30); TB: tuberculosis; 
(n= 29); ORI: other respiratory infection (n = 19); ADA2: adenosine deaminase 2; CD14: monocyte di�erentiation antigen CD14; LRG1: leucine-rich 
alpha-2-glycoprotein; TNFSF13B:  tumour necrosis factor ligand superfamily member 13B; vWF: von Willebrand factor. ns meaning p > 0.05; * p ≤ 0.05; 
** p ≤ 0.01, *** p ≤ 0.001; **** p ≤ 0.0001
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SET A

iTRAQ

SET B MP

SET C MP

113 114 115 116 117 118 119 121

MP 1 632 7 2 3

3 41103 4 4

5 22 51 7 5

MP Masterpool Pulmonary
Tuberculosis

Healthy
Control Peruvian South

AfricanKEY

S1: Block randomised design of discovery proteomics experiment.  
The design comprised three experimental sets: A, B & C. Peptides from each sample were iTRAQ-labelled following trypsin 
digestion according to this block randomised design. Each experimental set contained a bridging masterpool plasma 
sample which was labelled with iTRAQ tag 113 and either 3 or 4 plasma samples from healthy controls and individuals 
with pulmonary TB. 
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Pre-ComBat correction Post-ComBat correction

S2: Adjustment for batch e�ects between experimental sets.  
Principal component analysis (PCA) depicting batch e�ect correction using the R package ComBat. PCA of protein 
abundances by experimental set before (A) and after (B) ComBat correction. PCA of protein abundances by clinical group 
before (C) and after (D) ComBat correction. 
PC1 principal component one; PC2 principal component 2; VarExp explained variance; MP masterpool; TB pulmonary tuberculosis; HC 
healthy control. 
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S3: Gene ontology analysis of signi�cantly upregulated proteins.  
Lollipop plots displaying fold enrichment and signi�cance as false discovery rate (FDR) of ontology terms for (A) cellular compart-
ment (B) molecular function (C) biological process and (D) KEGG pathways of upregulated proteins. The length of the lollipop is the 
fold enrichment of the pathway, the size of lollipop head indicates the number of proteins in the input dataset that are found within 
the pathway and the colour indicates the statistical signi�cance of the enrichment. Gene ontology enrichment performed using 
ShinyGO against the background of the entire plasma proteome identi�ed from discovery mass spectrometry proteomics. 
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S4: Concept network plot of signi�cantly upregulated proteins and their enriched biological processes.  
Plot generated from ShinyGO enrichment by biological process of upregulated proteins using the cnetplot function in the R 
package GOplots. The top 20 most enriched pathways are displayed linked to their relevant di�erentially expressed proteins. 
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S5: Gene ontology analysis of signi�cantly downregulated proteins.  
Lollipop plots displaying fold enrichment and signi�cance as false discovery rate (FDR) of ontology terms for (A) cellular 
compartment (B) molecular function (C) biological processes of downregulated proteins. The length of the lollipop is the 
fold enrichment of the pathway, the size of lollipop head indicates the number of proteins in the input dataset that are 
found within the pathway and the colour indicates the statistical signi�cance of the enrichment. Gene ontology enrich-
ment performed using ShinyGO against the background of the entire plasma proteome identi�ed from discovery mass 
spectrometry proteomics. 
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S6: Concept network plot of signi�cantly downregulated proteins and their enriched biological processes.  
Plot generated from ShinyGO enrichment by biological process of downregulated proteins using the cnetplot function in the 
R package GOplots. The top 20 most enriched pathways are displayed linked to their relevant di�erentially expressed 
proteins. 
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S7: Di�erential expression of ‘matrisome’-associated proteins in the plasma of active pulmonary TB patients.  
45 of 118 (38%) of di�erentially expressed plasma proteins in active pulmonary TB are contained within the ‘matrisome’, an 
ensemble of ~300 genes which encode the core extracellular matrix (ECM) and a further ~700 genes which encode ECM 
associated and regulatory proteins. Matrisome data accessed from http://matrisomeproject.mit.edu/other-resources/hu-
man-matrisome/ in September 2022. 
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S8: RBP4 is signi�cantly downregulated in the plasma of patients with active pulmonary TB 
(A) Box and whisker plot of �uorescence intensity values minus background levels in contrasting clinical groups of the 
MIMIC cohort.  (B) Box and whisker plot of RBP4 serum concentration showing signi�cant downregulation of RBP4 in 
active pulmonary TB. Values measured by Luminex assay.  
HC healthy control; LTBI latent TB infection; TB active pulmonary TB; ORI other respiratory infections; * p ≤ 0.05
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S9: Diagnostic performance of the final six protein panel in the UK MIMIC Cohort disaggregated by sex
(A) ROC curve and (B) classification grid of the final six protein panel demonstrating discrimination of male 
patients with TB from male healthy controls (AUC 0.962, sensitivity 92.3%, specificity 90.9%)
(C) ROC curve and (D) classification grid of the final six protein panel demonstrating discrimination of female 
patients with TB from female healthy controls (AUC 1.000, sensitivity 100%, specificity 100%)
(E) ROC curve and (F) classification grid of the final six protein panel demonstrating discrimination of male 
patients with TB from male ORI (AUC 0.928, sensitivity 92.3%, specificity 80.0%)
(G) ROC curve and (H) classification grid of the final six protein panel demonstrating discrimination of female 
patients with TB from female ORI (AUC 0.971, sensitivity 94.7%, specificity 72.7%)
All ROC curves and classification grids were generated using SPSS v28.0.1.0 after binary logistic regression for 
combined proteins. AUC were calculated under non-parametric assumption. TB was set as the positive test 
outcome and the test direction such that a larger test result indicates a more positive test.  
ADA2: adenosine deaminase 2; CD14: monocyte differentiation antigen; FCGR3B: low-affinity immunoglobulin receptor 3B; FETUB: fetuin-B; 
LRG1: leucine-rich alpha-2-glycoprotein; SELL: L-selectin. TB: tuberculosis; HC: healthy control; ORI: other respiratory infection
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Cohort 1: TB vs. both healthy controls 
& other respiratory infection
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S10: The final combined six protein panel discriminates patients with TB from a combined group of both 
healthy controls and other respiratory infections with high specificity in both patient cohorts
(A) ROC curve and (B) classification grid of the final six protein panel comprising FCGR3B, FETUB, LRG1, 
ADA2, CD14 and SELL, demonstrating discrimination of patients with TB from both healthy controls and other 
respiratory infection as a combined group in Cohort 1 (AUC 0.903, sensitivity 62.5%, specificity 89.3%)
(C) ROC curve and (D) classification grid of the final six protein panel comprising FCGR3B, FETUB, LRG1, 
ADA2, CD14 and SELL, demonstrating discrimination of patients with TB from both healthy controls and other 
respiratory infection as a combined group in Cohort 2 (AUC 0.889, sensitivity 72.7%, specificity 90.7%).
ROC curves and classification grids were generated using SPSS v28.0.1.0 after binary logistic regression for 
combined proteins. AUC was calculated under non-parametric assumption. TB was set as the positive test 
outcome and the test direction such that a larger test result indicates a more positive test.  
ADA2: adenosine deaminase 2; CD14: monocyte differentiation antigen; FCGR3B: low-affinity immunoglobulin receptor 3B; FETUB: fetuin-B; 
LRG1: leucine-rich alpha-2-glycoprotein; SELL: L-selectin. TB: tuberculosis; HC: healthy control; ORI: other respiratory infection
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