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A B S T R A C T

In this work, we present a novel approach for identifying the ageing history of lithium-ion batteries based
on experimental nonlinear frequency response analysis (NFRA) measurements. A regression model, trained
on simulated NFRA data, is shown to be capable of quantifying degradation modes such as solid electrolyte
interphase (SEI) growth, lithium plating, and loss of active material (LAM) with no a-priori knowledge of
the cell’s historical duty. Our analysis, combining experimental and simulation approaches, demonstrates
NFRA’s potential as a powerful tool for ageing diagnosis by capturing various degradation modes. Changes
in NFRA response through life exhibit strong correlations with ageing paths, particularly in the frequency
range of 0.2 to 10 Hz. Observations highlight a strong influence of the state of charge on the resultant
NFRA response, emphasizing that measurements at a single open circuit voltage (OCV) and harmonics values
from a single frequency are insufficient for comprehensive characterization. This analysis underscores the
need for correlating NFRA at multiple OCVs and frequencies for detailed ageing assessment. Evaluation on
commercially relevant cells enhanced the models’ reliability for industrial applications. This quantitative, data-
driven approach using NFRA holds potential to enhance battery management strategies, extend lifespan and
improve confidence in second-life applications of batteries. Future work should focus on improving regression
analysis robustness, reducing dimensionality, and broadening testing conditions.
1. Introduction

Understanding the impact of various ageing mechanisms inherent in
lithium-ion batteries on the overall capacity loss during their life cycle
is crucial for optimizing their performance, longevity, and safety. This
understanding becomes particularly crucial in automotive applications
where batteries are operated under diverse duties and environmental
conditions and are subjected to significant stress during their opera-
tional lifespan. The comprehensive understanding of the ageing history
of lithium-ion batteries also holds significant importance in the context
of future second life applications, which involve utilizing batteries,
previously aged in primary applications such as in the automotive
industry, for other uses like energy storage for stationary applications.
Assigning an accurate market value to a used battery asset requires
the knowledge of its ageing history and, in turn, its likely remaining
useful life. This underscores the critical need for developing improved
diagnostic methods and accurate models for precise evaluation of dif-
ferent ageing losses to ensure sustained and reliable performance of
lithium-ion batteries throughout their life.

The ageing of lithium-ion batteries in general is observed outwardly
as the reduction in capacity and the increase in the battery impedance.

∗ Corresponding author.
E-mail address: ottakathcs@coventry.ac.uk (Safeer Rahman O.C.).

However, internally at the microscale, battery degradation proceeds via
a complex set of interacting processes, driven and influenced by various
factors such as high charge–discharge rates, extreme temperatures and
mechanical stresses. Several studies have conducted detailed analyses
of various ageing processes, examining their potential impacts and un-
derlying causes [1–4]. The degradation of lithium ion batteries results
from complex interactions, but can be predominantly characterized in
two major modes of degradation, reduction in recyclable-lithium ions
(loss of lithium ion inventory—LLI) and reduction in the amount of
active materials (loss of active material—LAM) [1] in both negative
and positive electrode. Out of these two degradation modes, the widely
reported major degradation paths are SEI formation, lithium plating
leading to LLI and the LAM due to change in electrode material struc-
ture caused by mechanical stress. In this study the emphasis is on
identifying the SEI layer growth, lithium plating and active material
loss in negative electrode.

The SEI is a thin film that forms on the negative electrode’s sur-
face due to a chemical reaction between the liquid electrolyte and
the electrode’s conductive layer. Initially, this layer impedes further
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electrolyte reactions, but as cells age, its thickness usually increases.
Factors contributing to this growth include high current and temper-
atures. Elevated temperatures accelerate diffusion rates, consequently
increasing the rate of SEI growth. Similarly, high currents induce
particle cracking, fostering the formation of new SEI layers [2]. Lithium
plating, a parasitic reaction occurring during charging, involves the
formation of metallic lithium instead of the intended intercalation into
the graphite anode structure. This phenomenon is more pronounced
with high charging currents at low temperatures where intercalation
rates are significantly reduced. Dendrites are formed from lithium
plating, can breach the separator, potentially causing internal short
circuits and thermal runaway. Charge discharge cycles can lead to stress
and structural changes in the electrode materials. For graphite electrode
lithiation leads to volume expansion and de-lithiation causes contrac-
tion, which lead to cracks in the electrodes. High charge discharge rates
often enhance the cracking and this leads to the LAM and can cause
both capacity reduction and power fade [1].

Even though many methodologies and models used for identifica-
tion of battery state of health (SOH) have been reported [5], due to
its complexity quantification of ageing path during life time operation
less is explored. At present, the literature in this field is sparse and the
exploration of reliable and practical diagnostic techniques for quan-
tifying the contributions of various individual degradation modes to
overall State of Health (SOH) losses is still in its early stages. Teliz et al.
proposed a method to identify and measure the ageing mechanisms
in lithium-ion batteries using electrochemical impedance spectroscopy
(EIS). They fitted EIS spectra at a single state of charge(SOC) to a
second order equivalent electrical circuit model, whose parameters
were then used to predict the extent of individual degradation mech-
anisms (SEI, LLI, LAM) in the batteries aged through cycling at two
C-rates [6]. However, for a more comprehensive understanding, it is
essential to assess the EIS-based method’s performance on batteries
aged under varied temperatures to ensure its broader applicability. The
study [7] investigates ageing mechanisms of lithium-ion batteries using
half-cell and full-cell open-circuit voltage (OCV) characteristics and de-
veloped a model to identify ageing mechanisms based on changes in the
full-cell OCV characteristics. However the experimental measurements
used by this method require over 50 h and therefore not suitable for
high-throughput battery grading or re-manufacturing.

Here, we introduce Non-linear Frequency Response Analysis (NFRA)
as an alternative method for quantifying degradation modes in lithium-
ion batteries. In recent years NFRA has emerged as a valuable tool
for lithium-ion batteries, demonstrating its effectiveness in process
identification [8], state-of-health (SOH) diagnosis [9,10], and lithium
plating detection [11]. While Harting et al. and Wolff et al. have high-
lighted NFRA’s applicability, further exploration under diverse ageing
conditions and varying states of charge is needed. It is important to note
that the exploration of NFRA’s application in this context of lithium ion
batteries is still in its early stages, with a limited body of work currently
available.

2. Methodology

As there are limited practical diagnostic techniques capable of dis-
tinguishing different degradation modes, our approach uses a detailed
pseudo two dimensional (P2D) model to simulate ageing alongside
periodic, simulated NFRA measurements at well defined SOHs. Cru-
cially, the P2D model is able to track the progression of individual
ageing modes. The overall methodology of this study includes a com-
prehensive collection of data through both experimental and simulation
approaches. The NFRA responses at diverse ageing conditions were
simulated and then the harmonic features were extracted from these
simulations. The harmonic features obtained at the aged conditions
were compared to the initial cell simulation data and the delta values
2

were used in regression analysis based on a random forest approach to
correlate these data with the ageing modes. The outcome of this analy-
sis facilitated the development of distinct models for the three primary
degradation modes mentioned; SEI growth, Lithium plating, and LAM.
Subsequently, to evaluate the impact of ageing conditions, the NFRA
data gathered from cells cycled under various conditions were applied
to these regression models. The entire process is illustrated in Fig. 1,
and detailed explanations of each step are provided in the following
sections.

2.1. Non linear frequency response analysis- NFRA

The NFRA measurement technique involves the application of rela-
tively large sinusoidal currents across the battery cell, with amplitudes
(𝐼𝑎𝑚𝑝) typically in the range 1 to 3C at frequencies ranging from 10
millihertz (mHz) to 1 kilohertz (kHz). This contrasts with EIS, which
shares a similar frequency-based approach but typically utilizes smaller
amplitude perturbations. The time-dependent changes in the sinusoidal
output voltage are captured by applying a Fast Fourier Transformation
(FFT). The FFT transforms signal from the time domain to the frequency
domain, revealing not only the voltage response corresponding to the
input fundamental frequency 𝑌𝐹 , but also the higher harmonic re-
sponses 𝑌𝑛 with n ≥ 1. The non-linear processes inherent in lithium-ion
batteries are expected to generate higher harmonics. In general, it was
observed that the harmonic magnitudes were significantly attenuated
as the harmonic order increased [10]. In this study, we focus primarily
on the first two higher harmonics, 𝑌2 and 𝑌3. However, we have also
considered the total harmonic distortion (THD), 𝑌𝑡ℎ𝑑 and the ratio of
𝑌2, 𝑌3 as a measure of the amount of distortion present in the response
voltage. THD is calculated as the root mean square (RMS) value of the
higher harmonics. Higher-order harmonics (n ≫ 3) were not considered
as they were typically in the noise level of the instrument and could not
be measured accurately [10,12].

2.2. Experimental

The lithium ion cell selected for this investigation was the commer-
cially available LG M50 21700 NMC811 cylindrical cell, with a nominal
capacity of 4.85 Ah. To assess varied cyclic ageing characteristics, the
cells were subjected to temperature controlled cycling at five distinct
temperatures (50 ◦C, 45 ◦C, 25 ◦C, 10 ◦C, and −5 ◦C) and two different
C-rates. The cycling involved charging and discharging at 1C and 0.5C
rates. This charge–discharge cycling is detailed in Table 1. Performance
tests were performed at regular intervals during cycling, which include
capacity testing and NFRA tests at three different states of charge
(SOCs) corresponding to the open circuit voltages (OCV), 3.3, 3.6 and
3.9 V with an amplitude of 2C(9.3 A). In accordance with earlier
reported work [10] a minimum amplitude of 1.5 C is recommended
for higher harmonics analysis of lithium ion cells. However, to ensure
a comprehensive exploration of the system dynamics and to guarantee
a meaningful non linear response, we have opted to perform our exper-
iments with a 2C amplitude. The cells were equilibrated to an ambient
temperature of 25 ◦C before the capacity and NFRA tests. Cyclic ageing
was performed using the Neware cell cycler (BTS400). The Ivium-n-
stat(5 V 10 A module) was used for the NFRA measurements. The
details of experimental process are illustrated in the flowchart given
in Fig. 2, which includes the sequential test procedures and ageing
protocol as outlined in Table 1. The performance test referred in Fig. 2
includes the capacity and NFRA test.

In NFRA measurements, a logarithmic sweep comprising 50 fre-
quency points, ranging from 1 kHz to 0.01 Hz was conducted for
harmonic analysis. The amplitude throughout the sweep was main-
tained at a constant value of 2C. To eliminate the influence of the
fundamental frequency response on the higher harmonics and in the
THD calculation, the values where normalized by the fundamental
amplitude and the percentage value is calculated as given in Eqs. (1)

and (2). In this study, frequency values in the sweep are denoted as 𝑓1
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Fig. 1. The process flow of regression model development and experimental testing.
Table 1
Cell cycling protocol.

Step Time End condition

Charge CC-CV
(1C/0.5C)

– 4.2 V, 200 mA

Rest 0.5 h –
Discharge CC
(1C/0.5C)

– 2.5 V

Rest 1 h –

for 1 kHz and 𝑓50 for 0.01 Hz, serving as references for our subsequent
discussions and analyses.

𝑌𝑛% =
𝑌𝑛
𝑌𝐹

∗ 100 (1)

𝑌𝑡ℎ𝑑% =

√

(𝑌2%)2 + (𝑌3%)2

2
(2)

2.3. Simulation methods

2.3.1. PyBaMM
In this study, the Python-based multi-physics battery modelling

software package PyBaMM (Python Battery Mathematical Modelling)
is utilized for P2D modelling to generate simulated data [13]. The
employment of modelling techniques present a cost-effective and time-
efficient approach for examining diverse phenomena compared to ex-
perimental methods. Notably, given the intricate nature of ageing pro-
cesses and their potential simultaneous occurrences, modelling serves
3

as a valuable tool to isolate and assess individual ageing processes
effectively. PyBaMM’s modular architecture makes it easy to add new
features and functionality without having to make major changes to
the existing code. This makes it easier to employ new models and
numerical methods. The Doyler Fuller Newman (DFN) model pack-
age available in PyBaMM is used to simulate the beginning of life
performance of the cells. As explained in Section 1, to consider the
main ageing modes, the following sub models were added individually
and in combination: SEI growth: SEI-solvent-diffusion limited Lithium
plating: partial reversible and irreversible Loss of active material: stress-
driven Detailed simulation parameters and conditions are elucidated
in Section 3. However, the model formulations and considerations
pertaining to the SEI, lithium plating, and LAM submodels will not be
elaborated here. Interested readers are referred to the comprehensive
works of O’Kane et al. for an in-depth understanding [2,14]. PyBaMM
was used to simulate DC charge/discharge characteristics in addition
to AC impedance measurements. For AC simulations, a time-domain
sinusoidal current was defined and iterated over the same frequencies
used in experimental measurements, further details are explained in
Section 2.3.

2.3.2. Model parameters
The simulations were conducted utilizing the default Okane2022

parameter sets tailored for LG M50 cylindrical cells, which were de-
veloped based on the work of Chen et al. [15]. These parameters still
required some adjustment to achieve a satisfactory alignment with
experimental data. The identification of sensitive parameters and their
refinements were guided by the work of Budhi et al. [16]. The changed
parameter set is detailed in Table 2. Fig. 3(a) displays both experimen-
tal and simulated discharge curves with tuned parameters for 0.2C and
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Fig. 2. Experiment process flow (Performance test includes capacity check and NFRA
test).

1C DC discharges respectively and a very good fit was obtained. The
simulated DC curves showed minimal change with default parameters
and tuned parameters. Meanwhile in Fig. 3(b) the Nyquist EIS plot
comparison is presented, showcasing the model’s capability to simulate
AC impedance responses. The simulated EIS plot using tuned param-
eters demonstrates a robust qualitative alignment with experimental
data, effectively capturing key features such as the semicircular region
indicative of charge transfer and the diffusion tail observed in the
lower frequency range. However, it is essential to acknowledge certain
quantitative disparities between the experimental and simulated values.
For instance, the absence of initial inductive part observed in the
experimental data and warrants further investigation and refinement.
Despite this disparity, the overall agreement between the simulated
and experimental results are promising, providing a solid foundation
for ongoing research and paved the way for further exploration of
diverse ageing simulations by invoking different ageing sub models. For
better AC simulation, the surface form: differential sub model was
required to be used. This specific sub model, implemented within the
PyBaMM framework, plays a pivotal role in capturing and representing
the dynamic behaviour of the system at the surface level [13].

Additionally, to enhance solver performance and achieve more ef-
fective outcomes, the default value for spatial discretization in PyBaMM
was finely tuned, specifically adjusted to 30. The simulations were
conducted under isothermal conditions, prompted by the unavailability
of precise thermal parameters. This simplification is justified by the
findings in [11], which demonstrated the negligible impact of internal
cell heating on NFRA spectra. Furthermore, our experimental observa-
tions align with this assertion, revealing minimal temperature changes
during NFRA measurements.
4

Fig. 3. Comparison of experimental and simulation results for new cells.

2.4. Regression analysis

In an earlier study by Harting et al. [9], a data-driven model was
developed to correlate NFRA results with the battery health. Their
findings indicated an increase in 𝑌𝑡ℎ𝑑 values observed at a singular state
of charge (SOC-50%) with ageing. They developed a model correlating
y-intercept data of 𝑌𝑡ℎ𝑑 frequency plot to the SOH. However, previous
work in our group [12] and current study reveals that the NFRA
outcomes vary depending both on the battery’s SOC and the frequency
of testing. Specifically, the observations indicated a decrease in 𝑌𝑡ℎ𝑑
at lower SOCs with ageing. Also, it is shown that the similar SOH
cells aged at different temperature, had shown difference the 𝑌𝑡ℎ𝑑
response with cold temperature aged cells having higher THD value.
This possibly suggests that the existence of diverse ageing mecha-
nisms can impact harmonics at different SOCs, creating challenges for
characterizing ageing using only single NFRA response parameter and
values obtained at a single OCV. Here in the study, we observed that
rather than directly utilizing the harmonic values (𝑌2, 𝑌3) obtained at
various frequencies, the change of these values during ageing from
the pristine cell (𝛥𝑌𝑛) calculated as given in Eq. (3) offered a more
insightful perspective. Further details of these observations and analysis
are explained in the result and discussion, Section 3.

𝛥𝑌𝑛% = 𝑌𝑛𝑡ℎ𝑐𝑦𝑐𝑙𝑒% − 𝑌𝑖𝑛𝑖𝑡𝑖𝑎𝑙% (3)

In order to quantify degradation modes based on NFRA results data
analysis techniques were employed. Random Forest Regression Analysis
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Table 2
Tuned parameters.

Parameter Default value Tuned value

Positive and negative particle radius [m] 5.22e−6, 5.86e−6 1.22e−6, 1.86e−6
Positive and negative electrode solid diffusion coefficient 4e−15, 3.3e−14 1e−15, 5e−15
Electrolyte conductivity and diffusivity coefficient 1.7e3, 1.7e4 0.26e3, 8.5e4
Positive and negative electrode double-layer capacity [F m−2] 0.2, 0.2 4, 10
Positive and negative current collector conductivity [S m−1] 3.69e7, 5.84e7 3.41e5, 5.81e5
Table 3
Ageing parameter set.

Ageing submodel Parameter in PyBaMM Range of values used

SEI Growth Outer SEI solvent diffusivity 1e−23 to 1e−17
Plating -
Partially reversible
Irreversible

Lithium plating kinetic rate constant

Dead lithium decay constant

1e−14 to 5e−9

1e−6 to 1e−3
LAM-
Negative electrode

Positive electrode LAM constant proportional term 1e−4 to 8e−1
3
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was used to study and develop a correlation model between NFRA
responses and various ageing modes. A well-trained Random Forest
model can make predictions efficiently, even in real-time or near
real-time scenarios, making it suitable for BMS applications and at
diagnostic centres.

3. Results and discussion

3.1. NFRA ageing characteristic from experimental results

As discussed in Section 2.2, the cells were cycled at distinct ambi-
ent temperatures and charging rates aimed at inducing capacity fade
through diverse mechanisms. For each of the conditions a total of 3
cells were cycled. A clear trend of decreasing 𝑌𝑡ℎ𝑑% was observed with
ecreasing SOH at the lower OCV (3.3 V) for all ageing experiments.
ig. 4(a) displays this trend for a representative results of 𝑌𝑡ℎ𝑑% for
yclic ageing at 25 ◦C 1 C charge–discharge. The NFRA spectra for
ifferent aged cells exhibited significant variations in the frequency
ange of 0.01 to 10 Hz. As shown in Fig. 4(b), the harmonic response of
he cell demonstrates considerable variation with Open Circuit Voltage
OCV), notably with higher 𝑌2% values observed at lower OCV in agree-
ent with [12]. A parallel trend was observed for the higher harmonic
3%, however with a substantially lower magnitude compared to 𝑌2%.

While the harmonics values showed differences, the nature of spectra
remained similar The NFRA dependency on the ageing path was more
evident from the distinctive nature of 𝛥𝑌𝑛% curves, which represent the
changes in NFRA values from their initial states. 𝛥𝑌𝑡ℎ𝑑% obtained for

similar extent of degradation (soh 9̃3%) but subjected to different
geing temperatures (−5 ◦C and 45 ◦C) are shown in Fig. 4(c). Lower
emperature ageing, indicative of potential plating, exhibited a negative
lope in the characteristic frequency range. Conversely, higher tem-
erature ageing, suggestive of predominant SEI growth, demonstrated
n opposite trend. These findings underscore the correlation between
FRA results and ageing modes, revealing a high level of complexity

n the ageing processes. To further extend our analysis, we recognized
he necessity of exploring a more comprehensive parameter space
nd decided to use physics-based modelling, employing the PyBaMM
2D model. This modelling approach provided a detailed investigation
nto the battery’s behaviour, facilitating a deeper exploration of the
bserved phenomena. The outcomes of this modelling effort, along
ith the model development process, are presented in Section 3.2.
he key findings from the experimental results are that the change in
FRA responses for cells aged to similar soh via different modes were
arkedly different, and NFRA responses were highly dependant on SOC
5

s reported by [12].
.2. NFRA ageing characteristic from simulation results

The simulations conducted in this study were intended to generate
training dataset for the subsequent regression modelling task, con-

aining simulated NFRA spectra for cells having undergone simulated
geing under a broad range of conditions. The ageing sub models
ntegrated in PyBaMM are formulated to capture the dependency of
emperature and charge/discharge duty on ageing parameters. Hence
emperature and C-rates were not considered as predictors for the re-
ression analysis. To isolate the effects of individual degradation modes
n NFRA responses, the main parameters governing their respective
ates were varied, within the numerical range detailed in Table 3. In
ccordance to the previous works [14], the negative electrode often
ndergoes more pronounced degradation hence the emphasis of LAM
geing in the simulations is on negative electrode material loss.

Ihe NFRA simulations were performed at multiple OCVs at regu-
ar intervals of SOH values. A qualitative and quantitative similarity
etween the simulated spectra and experimentally obtained spectra
as observed. However, minor deviations were encountered, which

ould be attributed to inherent complexities in the simulation models or
otential experimental variabilities. Fig. 5 illustrates the simulated har-
onic responses 𝑌𝑡ℎ𝑑%, for a pristine cell at different OCVs, demonstrat-

ng the concordance between simulation and experimental outcomes.
he absolute magnitudes of the 𝑌𝑡ℎ𝑑% responses are broadly similar (in

the range 0%–6%) in simulated and experimental measurements, and
characterized by a roll-off towards 100 Hz. The distinct peak observed
around 7 Hz in the simulated NFRA response contrasts with its limited
presence in the experimental data at 3.3 V. Notably, this characteristic
peak only emerged at higher OCVs (>3.5 V) in the experimental mea-
surements, as illustrated in Fig. 4(b). Whilst there is clearly not precise
quantitative agreement between the experimental and simulated NFRA
responses shown in Figs. 4 and 5, respectively, there are qualitatively
similar trends. Both experimental and simulated NFRA spectra are
characterized by local peaks in THD around 7 Hz, a general increase
in THD towards lower frequencies and roll-off at higher frequencies.
The general increase in THD at lower OCVs illustrated in Fig. 4(b) is
consistent with previous experimental studies [12], and is replicated by
the simulated data shown in Fig. 5, although the increased responses
appears at OCVs < 3.1 V in simulations, versus < 3.3 V in experimental
data. This general qualitative agreement is considered sufficient for the
purposes of this exploratory study on the effects of ageing mechanisms
on NFRA response.

To reduce any systematic error due to difference in quantitative
agreement between experimental and simulated NFRA responses, we
adopted a strategy of computing the difference between spectra of aged
cells and their corresponding initial values. This approach is motivated
by the expectation that distinct ageing modes will result in variations
across different frequency regions, emphasizing the focus on observed
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variations rather than the specific values. PyBaMM ageing simulation
cycles were executed in such a way that solution files and parameter
sets obtained at the conclusion of each targeted SOH level were stored
and subsequently utilized as inputs for NFRA simulations. Sinusoidal
currents were generated using a current function class and five cycles
for each chosen frequency were applied. Following this, from the output
voltage obtained, the fifth cycle was then subjected to FFT analysis. In
order to enhance the resolution of harmonic peaks, last cycle output
voltage was extended to 500 cycles, each subdivided into 500 time
steps, with a time step size of 1

500×frequency per cycle before applying
FT. The ‘fft’ package from Python’s Scipy library was employed for
his analysis. The DC component was eliminated by subtracting the
ean value from the original voltage signal. Fig. 6 presents 3D char-

cteristic spectra illustrating variation of the 𝛥𝑌𝑣𝑎𝑙𝑢𝑒𝑠% response, with
requency, and OCV, for simulated individual ageing mechanisms plat-
ng, LAM and SEI growth. By inspection, it is apparent that the different
geing mechanisms result in markedly different NFRA responses within
his parameter space. Observations indicate a generally larger change in
2% is compared to change in 𝑌3%, particularly the 𝛥𝑌2% (Fig. 6(f)) has
much larger value for LAM ageing. As a result, the 𝛥𝑌𝑡ℎ𝑑% exhibits
similar trend to 𝛥𝑌2%. It can be seen that LAM ageing induces an

ncrease in 𝑌2% and 𝑌𝑡ℎ𝑑% within the mid OCV region (3.3 to 3.5 V),
while plating manifests effects in the lower region (2.8 to 3.1 V) and at
higher OCV (near to 4.1 V). In case of SEI growth, it shows a consistent
influence throughout the SOC range, but with increased variability
around 3.1 V region (Fig. 6(e)). Regarding 𝛥𝑌3%, SEI ageing appears
to have consistent variation expect for the higher voltage region. For
LAM ageing, 𝛥𝑌3% is dominant (Fig. 6(h)) in mid ocv region but it is
much lesser compared to the change in 𝑌2%, how ever in case of plating
it can seen that in Fig. 6(g) in the OCV region (3.3 to 3.5) there is
a significant change in 𝑌3% comparable to change in 𝑌2% observed in
Fig. 6(d). The variations in fundamental repose 𝛥𝑌𝐹 (𝑉 ), representing
the impedance rise indicate a consistent increase throughout the soc
range for SEI ageing, with the highest increase observed. In case of LAM
ageing, a larger increase is noted only in the lower OCV region, and
for plating, two regions with peaks in fundamental response increase
are evident but with lesser magnitude compared to other two ageing
modes. This underscores the importance of a comprehensive analysis
that extends beyond a singular SOC level. The effects observed across
different frequency ranges align with findings from prior work [10,11].
Notably, no quantifiable effect is shown above a frequency of 15 Hz.
The observed effects of the three ageing mechanisms indicate a region
of particular variation in the mid and lower OCV ranges, and therefore,
we have chosen to concentrate our subsequent analysis in this region.

3.3. Regression model results

The extent of degradation for ageing modes considered for the
study was quantified directly in the PyBaMM output in terms of two
key parameters: loss of lithium inventory (LLI%) and Loss of active
material in negative electrode (LossLAM). The total LLI% is contributed
6

Fig. 5. Simulated NFRA spectra at multiple OCVs.

y loss from plating (lossPl) and due to SEI growth (lossSEI) and
orresponding loss percentage are calculated from PyBaMM output
apacity loss parameter as shown in Eqs. (4) and (5) below.

𝑜𝑠𝑠𝑃 𝑙 =
Capacity loss to plating × LLI%

Total capacity loss to side reaction (4)

𝑙𝑜𝑠𝑠𝑆𝐸𝐼 =
Capacity loss to SEI × LLI%

total capacity loss to side reaction (5)

As discussed in Section 2.4, in this study we tried to correlate the
following predictors OCV, delta values of 𝑌𝐹 , 𝑌2%, 𝑌3%, 𝑌𝑡ℎ𝑑%, and
ratio of 𝑌2%, and 𝑌3% in the characteristic frequency range to the
ageing losses. First step to facilitate this correlation was normalizing
each of these predictors, while an initial attempt involved employing
a carpet parametrization, the disparate ranges of values for each pa-
rameter necessitated individual normalization. Subsequently, a feature
ranking algorithm was applied to identify the most significant pre-
dictors influencing the ageing losses. For the regression analysis, the
MLPRegressor from sklearn.neural_network module was employed.
The standardization of predictor data was done using StandardScaler
from sklearn.preprocessing. Feature importance was obtained us-
ing the python module permutation_importance from the library
sklearn.inspection. The dataset were split into training and validation
sets with a ratio of 70% and 30% respectively, ensuring a balanced
representation to robustly validate the predictive performance of the re-
gression model. As predictors, a comprehensive set of 200 parameters,
each of the 𝑌𝑠 mentioned earlier from 50 different frequencies, along
with the OCV values were used. Random Forest Regressor (RF) was
selected for model generation, by virtue of being well suited for appli-
cation to highly-dimensional datasets, offering resistance to over fitting
and delivering reliable predictions [17]. The intentional inclusion of pa-

rameters at higher frequencies, even in the absence of visible changes,
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Fig. 6. 3D characteristic spectra for 𝛥𝑌𝑠% response (a–c : 𝛥𝑌𝑡ℎ𝑑%, d–f : 𝛥𝑌2%, g–i : 𝛥𝑌3%, j–l : 𝛥𝑌𝐹 (𝑉 )), versus frequency (log scale), and OCV for individual ageing.
aimed to uncover potential hidden information. Correlations between
regression model output and PyBaMM simulated training/validation
data are shown in Fig. 7 for each of the degradation modes with the
top 5 ranked predictors. Good correlations were obtained for all ageing
mechanisms with 𝑅2 values around 0.98. The LAM model displayed the
best correlation. The feature ranking provides insight into the sensitiv-
ity of predictors to the degradation modes. The salient predictors for
the LAM degradation mode pertained mainly to changes in 𝑌𝐹 , which in
turn can be ascribed to straightforward changes in (linear) impedance.
The growth of SEI was found to correlate most significantly with 𝛥𝑌2%
at a higher fundamental frequency range of 300 Hz; a phenomenon
not observed in experimental results and warranting further validation.
Meanwhile, plating exhibited correlations with 𝛥𝑌3% in the fundamen-
7

tal frequency range 0.5–0.8 Hz. In addition, when attempting to derive
correlation outcomes using the harmonic predictors mentioned earlier
at any singular frequency along with frequency and OCV values as addi-
tional predictors, it became evident that the formulated model yielded
suboptimal results for predicting loss percentages. The 𝑅2 values were
notably lower, around 0.75. These findings underscore the necessity
of integrating predictors across multiple frequencies along with OCV
values to establish robust correlations.

3.4. Model application to experimental NFRA data

The trained RF models were applied to experimental NFRA data
measured at an OCV of 3.3 V on cells subjected to distinct ageing
protocols as described in Section 2.2. As discussed in Section 3.2, the

regression model was trained on the NFRA data in the lower ocv range
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Fig. 7. Results for regression fit using harmonic predictors in the ocv range 2.8 to 3.6 V.
(2.8–3.6 V), wherein the most pronounced variations were observed.
Furthermore, as the experimental data showed significant reduction of
harmonic values (variations < 0.5%) for 3.6 V and 3.9 V, these data
were not considered for model validation. The harmonic data obtained
at 3.3 V were preprocessed with employing the same normalization
technique before feeding into the RF models. The loss percentages, com-
puted by the RF models from the NFRA data, for a group of cells with
a comparable SOHs, (all within the 78%–83% range) are summarized
in Fig. 8. The details of cyclic ageing of the selected cells are given in
Table 4. This SOH range (78%–83%) was chosen because it contained
a comparable number of cells tested at different temperatures. It is
important to note that, due to the nature of accelerated ageing tests,
obtaining a larger number of cells falling within similar SOH groups
posed a considerable challenge. NFRA testing intervals were based on
number of cycles and controlling for similar SOH degradation was
inherently difficult. It is also crucial that cells of similar SOH need to
be compared not based on cycle number, because subjecting cells to
a same number of cycles under varied ageing conditions can result in
different extents of degradation. The results obtained underscore the
RF models’ effectiveness in predicting and quantifying their respective
ageing modes. In Fig. 8, the bars are colour-coded according to ageing
temperature conditions: green bars correspond to cells cycled at lower
temperatures (−5 ◦C and 10 ◦C), blue bars represent cycling at 25 ◦C,
and red bars depict cycling at 45 ◦C and 50 ◦C. The RF models estimate

ore pronounced plating loss in cells aged at lower temperatures,
s anticipated, and increased SEI growth loss in cells aged at higher
emperatures, aligning with existing knowledge in the field [14]. It is
oteworthy that the RF models estimate significant LAM and plating
egradation across all the ageing conditions, which is perhaps due to
he aggressive nature of ageing tests which employed relatively high
ate charge and discharge vs the cell manufacturer’s datasheet specifica-
ion. While our approach provides a degree of qualitative verification,
btaining quantitative validation on experimental cells requires an
xtensive postmortem tear-down analysis to independently quantify the
xtent of each degradation modes, an exercise which remains for future
ork.

. Conclusion

In this study, we have demonstrated the application of a regression
8

odelling approach, trained on data simulated via a P2D cell model, for
Table 4
Cell ageing details.

Cell No: C-rate Temperature SOH (%)
Ageing (◦C)

𝐶1 0.5C −5 81.7
𝐶2, 𝐶3 1C 10 82.3, 78.7
𝐶4, 𝐶5 1C 25 78.9, 78.7
𝐶6, 𝐶7 81.1, 80.1

𝐶8 1C 45 81.5
𝐶9 0.5C 50 79.1

identifying the ageing history of lithium-ion batteries from nonlinear
frequency response analysis (NFRA) measurements. By individually
quantifying the extent of major degradation modes, such as SEI growth,
lithium plating, and LAM, using the NFRA method, we have gained
valuable insights into the ageing history of these batteries. Our analysis,
conducted using both experimental and simulation approaches, has
revealed the ability of P2D modelling to simulate NFRA responses and,
in turn, for NFRA to act as a powerful diagnostic tool for elucidation of
battery ageing mechanisms. Simulated NFRA spectra, which are in good
qualitative agreement with experimental measurements, have shown
a clear dependence on the ageing pathway, indicating that NFRA can
effectively capture the ageing-induced changes in battery behaviour.
However, it is important to highlight that the qualitative nature of the
harmonic spectra remained similar during ageing, suggesting that the
absolute values of NFRA measurements alone is inadequate for distin-
guishing between various ageing modes. The delta harmonic values,
which represent the change in response vs. beginning of life are better
predictors of the ageing mechanisms than the absolute values. Addition-
ally, the change in NFRA responses are not always monotonous with
ageing, and the variations are highly influenced by the state of charge
(SOC) at which the measurements are taken. Our observations indicate
that harmonic distortions (𝑌𝑡ℎ𝑑%) in the fundamental frequency range
0.2–10 Hz exhibits a decreasing trend with ageing at lower open
circuit voltages (OCVs) and an increasing trend at higher OCVs. The
three ageing modes discussed here exhibited reasonable sensitivities in
the mid and lower OCV range. The feature ranking analysis revealed
that harmonic predictors with high-ranked values were mostly in the
frequency range of 0.2 to 10 Hz. Interestingly, the SEI growth ageing
mode showed a significant correlation with the change in 𝑌 value at a
2
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Fig. 8. Model prediction on experimental data based on Table 4 ageing conditions at 3.3 V for soh group 78%–83%. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
frequency near 300 Hz. The regression analysis results demonstrate that
for a comprehensive understanding of different ageing modes, NFRA
measurements are required at multiple OCVs and different fundamental
frequencies. Single OCV, single frequency values are not sufficient for
accurate ageing assessment. The application of these novel techniques
to a practically-relevant cell format and chemistry in this study further
highlights the potential for NFRA and the associated analytical and
modelling approaches for industrial application, wherever there is a
need for detailed assessment of battery SOH and estimation of remain-
ing useful life. By providing a quantitative and data-driven approach
to battery ageing assessment, NFRA has the potential to significantly
improve battery management strategies to extend battery lifespan and
also to evaluate suitability for second life applications. The areas open
for future work are particularly in terms of improving the robustness
of regression analysis, reducing dimensionality, and broadening testing
conditions and also application to other lithium ion chemistries.
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