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Abstract

The R-TopModel hydrological model coupled with two landslide and flood probability distribution models was applied to simulate the 
daily hydrological conditions of a small catchment in the Midlands of the British Isles, throughout 2017. Originally, the methodology 
was applied to a risk area in the tropical region. In this work, the application was extended to mid-latitude watersheds. The hydrographic 
basin around the Carsington Water dam (located in the Midlands of the Great Britain) is chosen because it presents risks. The model 
Nash-Sutcliffe Efficiency for the upstream discharge from the Carsington Water dam reached 50% with a correlation coefficient of 
the order of 70%, an acceptable value considering the seasonal effects of the dam on evapotranspiration and higher soil permeability. 
Modeling the distribution of soil moisture and excess surface water allowed obtaining the spatial distribution of the maximum 
conditional probability of landslides and floods in the Carsington Water catchment. These probability maps obtained are consistent 
with long-term susceptibility maps for Great Britain.
Keywords: R-TopModel; Hydrometeorological hazards; Carsington Water-UK
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Resumo

O modelo hidrológico R-TopModel acoplado a dois modelos de distribuição de probabilidade de deslizamento e enchente foi aplicado 
para simular as condições hidrológicas diárias de uma pequena bacia hidrográfica das terras médias das Ilhas Britânicas, ao longo de 
2017. Originalmente, a metodologia foi empregada a uma área de risco de região tropical. Neste trabalho, a aplicação foi estendida para 
bacias hidrográficas de latitudes médias. Escolheu-se a bacia hidrográfica da represa Carsington Water, localizada no Centro-Norte das 
Inglaterra, por apresentar riscos. A efficiência de Nash-Suftcliffe do modelo para a vazão emergente da represa de Carsington Water 
alcançou 50% com uma coeficiente de correlação de aproximadamente 70%, valores aceitáveis considerados os efeitos sazonais da 
evapotranspiração e a permeabilidade do solo. A modelagem da distribuição da umidade do solo e do excesso da água a superfície 
permitiu obter a distribuição da máxima probabilidade de deslizamentos e enchentes ao redor de Carsington Water. Os mapas obtidos 
são consistentes com mapas de suscetibilidade de longo prazo da Grã-Bretanha.
Palavras-chave: R-TopModel; Perigos hidrometeorológicos; Hidrologia de Carsington Water-UK

1 Introduction
Hydrologically caused natural hazard events are 

becoming increasingly common in an era of climate change. 
Such natural hazard events include cyclones (inside and 
outside the tropics), floods, and rainfall-induced mass 
movement events. With respect to the latter, Froude and 
Petley (2018) showed an overall increasing trend in the 
number of mass movement events between 2004 and 2016 
and a correspondingly high correlation (0.81) between 
average daily precipitation and average daily landslides, 
every month for the same period in South America. Their 
results support the hypothesis that the correlation is valid 
for any mountainous terrain. However, we can only assume 
that this correlation will be higher in topographically more 
extreme regions and/or regions with deep and unstable 
soils. It is more necessary than ever for scientists to better 
understand and model these events so that a reliable short-
term forecast and associated mitigation measures can be 
applied. There are two main causes of rain-induced mass 
movements: 1) the presence of surface water (excess 
precipitation minus infiltration), which can cause significant 
erosion on a sloped surface, and 2) the presence of water 
within the slope that adds weight to the slope, provides 
a means of lubrication, and creates a positive pore water 
pressure.

One model that has been widely used for several 
decades to simulate rainfall runoff (and, correspondingly, 
rainfall infiltration into the soil) resulting in the distribution 
of rainfall in soil is the TopModel (Beven & Kirkby 1979). 
This model can be parameterized with regionally specific 
soil, topography and rainfall characteristics to predict how 
the surface will react to rainfall events and the possibility 
of water-induced landslides (Devia, Ganasri & Dwarakish 
2015). In this last aspect, of modeling the probability of 
landslides, the hydrological model (e.g., TopModel) needs to 
be coupled to a soil mass movement model (e.g., a physical 
linear landslide model).

The TopModel was originally developed for mid-
latitude regions where rainfall events can be assumed to 
be homogeneous over the surface of the watershed, that 
is, the prevalence of stratiform precipitation is assumed 
(Beven & Kirkby 1979). Since its development, however, 
it has also been widely applied in the tropics, for example 
in Venezuela (Gomez & Kavzoglu 2005) and Guatemala 
(Preti & Letterio 2015) and in the State of Rio de Janeiro, 
where extreme convective events present heterogeneous 
precipitation (Karam 2014). Next, the improved hydrological 
TopModel for convective heterogeneous rainfall was applied 
to simulated landslides and a risk index associated with 
dangerousness and contingent probability, focusing on the 
Metropolitan Region of Rio de Janeiro. The results were 
presented in two master’s dissertations accomplished in 
the Post-Graduation Program Meteorology at the Geo-
sciences Institute of the Federal University of Rio de Janeiro 
(Siqueira 2017; Peña 2018).

In recent times, the application of the TopModel has 
been limited in temperate regions, such as northern Europe 
and in particular the British Isles, where precipitation causes 
and patterns are considerably different from the tropics, 
but where induced mass movements by rain are equally 
prevalent. This is unfortunate, as one of the key features 
of the British Isles, and the UK in particular, is its dense 
network of rain gauges (3285 meters or 1 per 74 km2) (Burt 
2010) that can provide empirically recorded data for input 
into TopModel.

Since 2015, the dense network of rain gauges in the 
UK has been supplemented with a 1km resolution daily and 
monthly rainfall estimation system: CEH-GEAR (available 
at: https://eip.ceh.ac.uk/rainfall) (Keller et al. 2015). In 
this system, gridded precipitation values are estimated by 
interpolation of rainfall observed from all UK rain gauges 
(Keller et al. 2015). Unusually too, the UK has a very varied 
topography for a relatively small country (242000 km2), 
with flat plains to the south and east and mountains reaching 
over 1000 m in Wales and Scotland. 
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Given these characteristics and the existence of 
high-resolution rainfall data (both actual and modeled), 
the reliability of applying TopModel to this UK dataset 
is currently excellent, although it also offers the potential 
to gain more information on 1) how improve TopModel 
for application in similar environments and 2) how to 
improve the prediction of landslides induced by rainwater 
in landslide-prone regions of the country. Figure 1 shows 
the topography and the landslide potential for Great Britain.

1.1 Objectives

In this work, the R-TopModel hydrological model is 
applied to simulate the surface water distribution in the area 
of the Carsington Water dam, in the Midlands of England. 
Furthermore, the hydrological model is coupled with a 
surface landslide model and a parametric flood surface 
model to assess both potential landslide and flood indices.

The associated goals are: 1) to obtain a better 
understanding of the specific location parameters of the 
hydrological modeling (R-TopModel) when coupled 

with the landslide proxy risk model proposed by Karam 
(2014); 2) to amend the system that was first applied also 
to topography of the State of Rio de Janeiro in Brazil 
by Siqueira (2017) and Peña (2018), to the topographic 
features in the British Isles; 3) to apply the coupled system 
to British Isles precipitation and river flow data (both 
measured data and high spatial resolution topography 
data of 50 m); and 4) to evaluate the model performance 
in retrospective prediction of water-induced landslides 
and flow in high resolution in small catchments of the 
British Isles and in its application to mid-latitude regions 
generally.

A careful evaluation of the parameters of the coupled 
models is necessary for a risk assessment system. The 
present work seeks to determine efficient parameters of the 
hydrological model, so that the numerical realization of the 
distribution of water in the soil and surface can be applied 
to assess the risk of floods and landslides. Customization 
of the system to resolutions of the order of 100 m and 
application of the model to risk prone areas of the British 
Isles depend on the correct evaluation of the parameters.

Figure 1 A. Topography of Great Britain (Danielson & Gesch 2011); B. Landslide potential in Great Britain (National Landslide Database 
2023). 
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2 Methodology
In this section, we present the data source and 

methods used to obtain soil water saturation deficit, 
landslide and flood risk distributions.

2.1 Watershed Topography

The topography of the area of interest was available 
in the digital elevation model OS Terrain 50 (Ordnance 
Survey 2017) (Figure 1A). The landslide potential 
distribution on the British Isle is shown in Figure 1B. 
The Carsington Water catchment is located in the English 
Midlands, where there is significant potential risk, with 
hills west and northward and aquifers eastward.

2.2 Carsington Water Watershed

The Henmore Brook receives the Carsington outflow 
(Figure 2), being itself only a small catchment that is part 
of the complex Trent river regional basin in the Midlands. 

The Henmore brook (identified in the UK reference 
grid by SK 242501, Station 28103) shows a catchment area 
of 15.8 km2 (Marsh & Hannaford 2008). Some open-sky 
mines of limestone are present in the hills at northward 

Carsington Water. These mines can contribute to the 
inferior quality of brook water, where mercury and its 
compounds, and Poly-brominated diphenyl ether (PBDE), 
were discovered, both priority hazardous substances (ED-
UK 2023). Henmore Brook Station 28103 use a rectangular 
thin-plate weir for measuring outflows from Carsington 
Water. Following the brook southward, a second station 
is found along Henmore Brook at Ashbourne (reference 
Station 28058). In that, it is used a crump profile flat V weir, 
6.0 m wide, within vertical wing walls, built up into a low 
flood bank with no arrangements to deal with non-modular 
discharge. The catchment shows moderate relief, draining 
drift-free Millstone Grit and Carboniferous Limestone. 
The catchment is responsive and the land use is composed 
predominantly of forest and pasture, and some moorland 
(Marsh & Hannaford 2008).

2.3 Precipitation Data

In this work, daily data of precipitation and flow 
measured in 2017 in the Carsington Water dam area were 
used. The data source is the UK National River Flow Archive, 
Environment Agency-UK (2023). The database is available 
from 1-Jan-1961 to 31-Dec-2017. The precipitation and 
discharge data series are shown in Figure 3.

Figure 2 Perspective of Carsington Water dam and its small watershed in the center-east of Great Britain-UK. The Carsington Water 
dam is located in the central position of the map (53.0587436°N, -1.63258027°W).
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2.4 Flow Data

The flow data comes from the monitoring station 
called Carsington Outflow (id. number 8103, grid ref. 
SK242501) at Henmore Brook entry, during a year period 
(2017). Data are available for the period since 1998. The 
average flow rate is small, 0.05 m3s-1, of which the base 
flow corresponds to 88%. The quantile distribution shows 
the values 0.03 m3s-1 (Q95%), 0.04 m3s-1 (Q70%), 0.05 
m3s-1 (Q50%), and 0.1 m3s-1 (Q10%). These flows are 
associated with an annual mean precipitation of 1028 mm, 
a mean annual runoff of 97 mm and a mean annual loss 
of 931 mm. A few kilometers downstream at the Station 
Henmore Brook 28058, in Ashbourne, SK176463, the flow 
has already been increased by the concentrated flow from 
the adjacent responsible surfaces. Gaussian convolution was 
applied to slightly reduce the unsystematic observational 
errors present in the original series.

2.5 The Hydrological Distributor TopModel

Beven, Kirkby and Freer (2021) published a 
comprehensive review of the TopModel history. Different 
investigators have addressed and discussed the basic 
assumptions used in the TopModel. Questions about the 
distribution of soil hydraulic conductivity, number of 
parameters and the hypothesis of hydrological similarity 
of saturated areas (hypothesis 1) have been investigated 
and modifications have been proposed (e.g., parabolic, 
non-exponential transmissivity profiles, etc).

An example of this type of investigation is 
exemplified by Lane et al. (2004) in which the connectivity 
of water parcel trajectories between areas of similar 
topographic index is considered. On the other hand, the 
version called Dynamic TopModel (Metcalfe, Beven & 
Freer 2015) also considers the issue of similarity, proposing 
to replace it with the kinematic wave solution, as a way 

Figure 3 Daily data series of precipitation (mm h-1) [impulses] and current flow (m3 s-1) [solid line] in 2017 at the outlet of Carsington 
Water Dam in the Midlands of England.
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to replace hypothesis 1, which is obtained at the expense 
of an increase in the number of model parameters and 
of introduction of complexity of more robust numerical 
formulations (higher order positively defined advection) 
to eliminate numerical instabilities from the solution of the 
hyperbolic wave equation (in finite differences or finite 
elements) (Beven, Kirkby & Freer 2021).

Another aspect of the TopModel was the preparation 
of the global mapping of the topographic index (topidx) in 
high resolution (15 arc seconds) by Marthews et al. (2015). 
The field of this surface index associated with the unique 
definition of water parcel trajectories over the terrain is 
the essential boundary condition of the TopModel. The 
proposition by Marthews et al. (2015) aims to use the 
TopModel for all river basins on the planet, however if 
on the one hand it provides the essential parameter of the 
model, on the other hand it highlights that the model was 
developed for small basins, provided that the hypothesis of 
rain and infiltration homogeneous in space and variable in 
time is used for the derivation of TopModel equations that 
imply conditions of hydrological similarity.

Karam, Pereira Filho and Flores Rojas (2017) 
proposed an approach applying the variational principle 
to this question, relaxing the need for spatial homogeneity of 
the atmospheric precipitation field (and also of infiltration), 
by using a variational functional under weak constraint, 
associated with mass conservation over time and minimum 
length paths for the water plots. Thus, modifications of the 
original topographic index are obtained as a function of 
both the local derivative of precipitation and its movement, 
in an Eulerian frame of reference.

In the present work, the R code corresponding to the 
original version of Beven and Kirkby (1979) in Fortran-77 
is used, as available in R (R-TopModel library), prepared 
and distributed by Buytaert (2022). In the simulation ahead, 
the topographic index is a two-dimensional invariant.

The topographic index obtained with R-TopModel 
is used to map the boundary conditions of the landslide 
and flood hazard models (i.e., the soil saturation deficit 
and the surface water excess, respectively).

2.6 GLUE Method to Parameters Tuning

The GLUE optimization method is a brute-force 
method that explores values in defined ranges of variations 
for each TopModel parameter, thus obtaining combinations 
among the possible random choices of parameter values.

Each combination of parameters is used to obtain 
a simulation member whose efficiency is evaluated. 
Generated members that produce simulation with higher 
efficiencies are separated and organized according to the 
obtained Nash-Sutcliffe efficiency, resulting in an ensemble.

In general, the parameter set (best ensemble) can 
be composed of 100 members or more, so a quantile 
distribution analysis can be readily obtained. The quantile 
analysis once performed results in the median output 
and confidence interval of the members of the ensemble 
along the time coordinates. Quantiles of 5% and 95% are 
commonly presented in the results (e.g., Beven, Kirkby & 
Freer 2021) that is followed here.

2.7 ANOVA and Homoscedasticity

An analysis of variance (one-way ANOVA) with 
verification of homoscedasticity was applied to verify 
the general validity of the hypothesis of normality of 
the covariance of errors used in linear structure models, 
following Chambers, Freeny and Heiberger (2017). 
Specifically, one-way ANOVA was applied to test the 
significance of the result obtained with a linear regression 
model, used as an approximation of non-linear models 
such as TopModel.

A non-linear model may differ from surface water 
wave conservation solutions such as the one obtained for 
a kinematic wave implemented in the dynamic TopModel. 
In the original TopModel (available in R-TopModel) 
convergence-divergence can occur along the surface water 
path (implicitly since no wave equation is explicitly solved).

As the input structure (precipitation and potential 
evapotranspiration data) and output structure of the original 
TopModel (river flow) presents likelihood (which is evident 
from the literature), the model can basically be ideally 
represented and simplified by a convolution of the function 
input by one or more Gaussian functions that serve as a 
time-phased filter.

In general, the ANOVA analysis is valid if the results 
(modelistic and observational) can be considered as drawn 
from the same set, differing from the expected values of 
the statistical model by values within a small statistical 
tolerance (e.g., 5%).

In summary, the verification of homoscedasticity was 
carried out considering the TopModel as a generalization 
of a linear structure model. One-way ANOVA was used to 
verify the necessary similarity between the model input and 
output error structures. The implementation of TopModel 
in R follows Bevans (2022).

2.8 Landslide Hazard Model and Flood Risk 
Assessment

The R-TopModel distribution model has been used 
to estimate both the height of excess water above the surface 
(i.e., defined by the precipitation rate minus the infiltration 
rate multiplied by the time step) and the distribution of water 
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in the topsoil layer (1 – Saturation Deficit). The associated 
dangerousness depends on the amplitude of these variables, 
while the risk depends on the dangerousness, exposure and 
vulnerability of the population. The spatial distribution of 
dangerousness can be overlap with the population map 
that varies throughout the day in risk areas. In general, the 
vulnerability also varies associated with health, age and 
mobility. In this way a contingent risk results.

2.8.1. Landslide Hazard Model

Tatizana et al. (1987a, 1987b) developed empirical 
curves that are useful for landslide risk analysis (single 
and multiple) based on the adjoint analysis of the hourly 
precipitation rate and the accumulated over the period 
of 24, 48, 72 and 96 hours. These curves are currently 
used in emergency management centers in Brazil. In the 
methodology proposed in this work, the approach is based 
on physics, that is, the effect of rain and humidity on soil 
cohesion, compression and shear stresses, friction force 
between soil layers on the slope, layer safety factor soil 
surface and its failure probability.

The stability is a function of the equilibrium 
condition between two opposite forces: first, the disruptive 
tangential force, and second, the friction force that resists 
the disruption and relative movement of layers.

The wetting of the soil by precipitation causes both 
an increase in the density of the soil, with the consequent 
increase both in the weight of the layer and the shear stress 
of the inclined terrain, as also this leads to decrease in 
cohesion, with associated decreasing of the friction force. 
For a dry soil, the weight by volume unity (γd) in units of 
(N m-3) is presented by Equation 1,

γd = (gρd) (1)

For humid soil column between surface and the 
water table below the soil wetness, and the associated 
saturation water deficit is limited to the interval [0;1], 
Αg ∈ [0;1] and Dg ∈ [0;1] while α∈[0;[ and D∈];1].

The excess of water over the soil surface can be 
expressed through Equation 2,

αexcess = (α – 1) (2)

This occurs always α >1 or D<0 associated with an 
excess of rainwater accumulated above the soil surface. 
The soil density variation when the soil is moistened (Δρ) 
(kg m-3) is defined by Equation 3,

Δρ = (ηαg ρw) (3)

The wet soil density is described in Equation 4,

ρg = ρd + Δρ (4)

For humid soils, we have to consider effects 
associated with the soil upper layer volumetric fraction of 
water or soil upper layer wetness (αg) and the corresponding 
soil upper layer water saturation deficit (Dg), both with 
values limited to the interval [0;1].

The excess of water over the surface is obtained 
always the total water available (α) is larger than soil 
capacity, this is represented by Equation 5,

αexcess = (α – 1) > 1 (5)

The wet soil density [ρg] (kg m-3) considers the 
replenishing of water by soil pores, given by the Equation 6,

αvol = ηαg (6)

Note that αvol is obtained from the product of 
porosity (η) and soil upper layer wetness (αg). The soil 
weight by volume unity in unit of (N m-3) is expressed 
by Equation 7,

γc = gρg (7)

An estimation of the effective friction coefficient 
is parameterized by Equation 8,

tan(φeff) = φmaxexp(–αg) (8)

In the function of the soil wetness. The dry soil 
cohesion is obtained using Equation 9,

Cd = (γd zw) (9)

The humid soil cohesion (in Pa) is given by 
Equation 10,

C = γzw (10)

The cohesion variation due to moistening of the 
upper soil layer by rainfall is expressed by Equation 11,

ΔC = C – Cd (11)

The normal stress tensor component (in Pa) is given 
by Equation 12,

σ = γzw cos2
 (θ

 ) ⁄ cz (12)

where the denominator is obtained using 13,

cz = exp(–αg)exp(–sinθ) (13)
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The tangent stress tensor component, in (Pa), is 
expressed in Equation 14,

τ = (γc zw) [sin(θ )cos(θ )] ⁄cw (14)

The resistance force (N) in accord with De Blasio 
(2011) is formulated by Equation 15,

FR = (ΔxΔy)
 [σ tan(φ) + C ] (15)

The water height above the surface (m) is estimated 
by Equation 16,

Hexcess = (zw ηαg ) + (rΔt ) (16)

The external pressure (Ce) considers only two natural 
factors: i) the weight force due to the accumulated water 
depth above the surface; ii) the weight force due to the 
water excess on the surface from the actual precipitation 
(r), given by Equation 17,

Ce = (gρw )(hscar ηαexcess + rΔt
 ) (17)

The safety factor (F) is expressed by Equation 18,

F = 0.9 + α0 (α1α2α3α4 ) (18)

where the hazard factors of F are represented by Equation 19,

α0 = exp[–(tanθ – tanφ) ⁄ tan φ],
α1 = exp(–Δρs ⁄ ρsd ),
α2 = exp(–αg ), (19)

α3 = exp(–ΔC ⁄ Cd ),
α4 = exp(–ΔCe ⁄ Cd ).

where Δρs and ρsd are the wet soil density increment and dry 
soil density; αg is the volumetric fraction of soil water; ΔC is 
the wet soil cohesion absolute reduction of the soil cohesion, 
and ΔCe is the external pressure variation associated with the 
water in excess over the surface and dynamic pressure due 
to the impact of drops during rainfall, directly associated 
is the saturation deficit variation up to rupture, given by 
Equation 20,

ΔD = F – 0.90 (20)

With these estimations, the critical rainfall (rc) to be 
provided up to the upper soil layer rupture can be expressed 
by Equation 21,

rc = rscale [exp(ΔD-1)]1.125 (21)

where rscale is the prior value of rainfall associated with 
landslide hazard, locally or regionally defined (here, 30 

mm h-1). Finally, the probability of landslides, Prob{μ} is 
the following accumulated probability logistic function as 
shown in Equation 22,

Prob{μ} = 1 – 1 ⁄ (1+eμ ) (22)

where the hazard metrics μ is given by the Equation 23,

μ = (r – rc ) ⁄ σm (23)

r is the actual rainfall, and σm is the margin of discriminant 
risk curve (supposed equal to 25% of rscale). Prob{μ} is 
the probability cumulative distribution function (CDF), 
obtained by integration of the associated function density 
of probability between 0 and μ. A landslide hazard mask 
is used as a binary indicator function, with value 1 is 
used to indicate a surface element with landslide hazard 
probability larger than 50% and value 0, otherwise. The 
total number of landslides by time step in the simulated 
area is evaluated using two comparative proxies: the data-
based proxy, expressed through Equation 24,

nlsd (1) = r R24h ⁄ (3200mm2h–1 ) – 1 (24)

with r (in mm h-1) and R24h (in mm), with r R24h greater than 
3200, and the modeled proxy, represented by Equation 25,

nlsd (2) = 24%[Prob(μ) – 0.5] (25)

The parameters used in the present landslide hazard 
model are given in Table 1.

2.8.2. Flood risk Assessment

An one-dimensional Gaussian filter convolution is 
applied to the topography field in the directions x and y 
resulting in a convoluted topography (zconv). The original 
topographic field is subtracted from the convoluted one to 
obtain the 2D distribution of the height to be overcome. 
This height needs to be surpassed whenever the river 
overflows. The Gaussian filter convolution is equivalent 
to a more complex Han’s convolution for circular boundary 
frontiers with FFT, but without the need for periodic lateral 
boundaries.

The local surface water height threshold for overflow 
Δzbank(x,y) is obtained by Equation 26,

Δzbank (x,y) = zconv (x,y) – z(x,y) – min{zconv } + min{z}    (26)

The excess water on the local surface (i.e., the part 
of precipitation not infiltrated) is standardized as shown 
in Equation 27.

μ(x,y) = [WaterExcess (x,y) – Δzbank (x,y)] ⁄ Δzbank (x,y)    (27)
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The distribution of the flood hazard probability 
(ProbF) (%) is then represented by a logistic model, as 
shown in Equation 28,

ProbF = 1 – 1 ⁄ [1 + exp(μ)] (28)

A categorical distribution can be associated with the 
dimensional values to support immediate decision actions. A 
associated categorical flood risk assessment for every river 
station can be defined by the ratio between the river deep 
(D) and the maximum height of the river bank max{D}, 
being this later depends on the position of the rated station 
along the stream. A useful categorical set proposition for 
qualifying flood risk is given by: monitoring (watching): 
D/Dmax<50%, warning: 50%≤D/Dmax<80%, alert: 80%≤D/
Dmax<90%, high alert: 80%≤ D/Dmax<90%, and overflow 
(plain flood): 100%≤ D/Dmax, which one associated with 
specific actions by emergency managers. For instance, 
similar thresholds are currently in use by the Institute of 
the Environment of the State of Rio de Janeiro in Brazil 
(Inea-RJ 2023), based in location rated monitoring river 
stations for short-term nowcasting to risk prone areas.

2.8.3. Numerical Verifications

In a new model approach, as presented in this work, 
has considered some scale relation model to checking built 
methods. For instance, the stream flow scales could be 
checked by comparison to the station rated scale model of 
Williams (1978). In this case, the flow scale relations are 
given by Equation 29,

Qm = V,
Qb = W, (29)
Qf = D.

where Q is the stream flow in (m3 s-1), V is the mean 
stream velocity, W is the mean stream width W (m) and 
D is the stream deep (m). For consistency, the sum of the 
exponents (m, b, and f) equals one. As Q is provided at 

each time step by a water-routing model, flow scales can 
be readily estimated in a first approximation and utilized 
for verifications.

3 Results
The digital terrain topography of Carsington Water 

watershed, measurements of rainfall and stream outflow 
were prepared to used in the hydrological model. The 
topography of England from the digital elevation model 
is shown in Figure 1. The spatial resolution is 16 km2 
enough to show mountain peaks with an altitude of up to 
1000 m (amsl). This coarse resolution digital elevation 
model (DEM) was prepared to further use in a proxy risk 
assessment online.

Carsington Water dam is located in east-central 
England. A local radar high resolution digital elevation 
model was used to obtain the topography in the interest 
area of Carsington Water watershed (Figure 2).

One alternative to obtain 2D rainfall fields every 
hour is the Hydroestimator/NOAA (Scofield 1987; 
Scofield & Kuligowski 2003; Vicente, Scofield & Menzel 
1998). Alternatively, in this work is used daily rainfall 
data series composed by 365 days, as have been provided 
by UK Weather Office, attending the application for 
the small catchment (i.e., 15.8 km2 Carsington Water 
catchment area).

Considered a benchmark, the Lake Carsington 
Water watershed was chosen (latitude: +53.061438717°N, 
longitude: -1.6282852790°W), located between the cities 
of Birmingham and Sheffield, south of the national park 
Pick District National Park in Matlock-UK.

Time series reanalysis of measured water volume 
outflow at Carsington station observed in border of the 
Lake Carsington Water were used for comparison with 
the modeled results and calibration using GLUE method. 
A series of parameters and corresponding solutions present 
adequate likelihood. Values of parameters in combinations 
with the other parameters showing higher NS efficiencies 

Table 1 Parameters of the landslide hazard model. Range references: (1) Coelho Netto (1996); (2) Deardorff (1978); (3) Sellers (1960); 
(5) De Blasio (2011); (6) D’Orsi, Feijo and Paes (2002, 2004) and D’Orsi (2016), (*) this work.

Par. Meaning Values(*) Usual Range Unit Ref.
rscale Landslide hazard critical rainfall 30 30 – 60 (mm h-1) (6)
σm Rainfall margin of the discriminant curve 4 10 – 60 (mm h-1) (6),(*)
zw Mean water table depth 4 0.25 – 25 (m) (2)
ρsd Mean dry soil density 1600 900 – 2500 (kg m-3) (3)

tan φ Mean friction coefficient 1 0.01 – ∞ (-) (5)
η Mean soil porosity 0.40 0.01 – 0.45 (-) (3)
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were separated to generate a set of members of ensemble 
solutions.

The final result of the flow modeling after GLUE 
calibration and assembly member generation is that the 
vast majority of observed values are within the confidence 
interval defined by the evolution of the 5 and 95% quantiles 
of the ensemble members. Good model performance was 
obtained by generation of ensemble members resulting 
NS > 30%. A number of the best members are selected 
to the final quantile analysis. General agreement between 
simulation and observation was found but presenting 
some dispersion into linear regression fit. The confidence 
interval of 5 and 95% were presented in Figure 4. The 
maximum NS was near to 65%, enough high considering 
the method limitations and simplifications (e.g., TopModel 
hypothesis of forcing homogeneity, defined soil water 
transmissibility profile, steady solution, unity hydrograph 
and first-order similarity).

The distribution of members of the ensemble allows 
the presentation of the thresholds of the Probability allows 
a link with the reality of the observed flow, since it allows 
decision-making in the face of the costs of preventive 
measures and the value of losses associated with not taking 
preparatory measures. The deviations from the modeled and 
observed flow are shown in Figure 4. Most of the values 
of 100% can be seen considering the concentration of a 
surface catchment area. These deviations can be associated 
with the concentration time scale and river celerity. Typical 
values are up to 1.2 m s-1. In general, rivers contained in the 
primary channel present celerities between 0.1 and 1.2 m s-1. 
Simulation bias shows variations over the simulation period. 
By excluding the initial spin-up period of the model, the 
bias value can be limited [-1.5; +1.5], probably associated 
with excess runoff.

The quantile-quantile diagrams were obtained for 
the linear regressions and for TopModel flow. Generally, 
the TopModel performs reasonably well (NSE>60%) in the 
range of mean flows, with a confidence interval between 
Q5% and Q95%. However, underestimates are expected 
for extreme flows.

3.1 Test of Homoscedasticity and Uncertainties 
of Linear Regression

To assess the validity of the TopModel nonlinearity 
hypothesis a test of homoscedasticity and uncertainties 
of linear regression was realized, as a linear approach 
of the more general validity conditions is required for 
modeling. Homoscedasticity was verified by one- and 
two-way ANOVA, represented by Qobs ~ Rain and Qobs ~ 
Rain+ETp, respectively. Thus, it was possible to verify large 

deviations of the linear regression in relation to the diagonal 
in relation to the expected quantile (Normal), mainly for 
lower and higher values. In this work, homoscedasticity 
was not confirmed beyond the central range of flow 
values. The non-normality of the precipitation is already 
known in the literature. Therefore, it confirms that rainfall-
runoff modeling by nonlinear physics-based models or by 
generalized statistical regression models is recommended.

Filtered precipitation time series were generated 
to evaluate the relative importance of the different time 
scales present in the original series. A post-hoc F-test of 
non-additivity for two-way ANOVA (Tukey 1949, 1962) 
revealed that the higher frequency scales of the data are 
not present in part of the observed flow data during the 
summer. A wavelet analysis (not shown) confirmed the 
absence of these higher frequency signals in the river 
discharge value, while suggesting the important role of 
potential evapotranspiration from the dam in the summer 
months. Thus, Tukey’s post-hoc test of filtered series 
results in a greater association with the low frequencies 
of the annual cycle.

In fact, a subsequent group comparison (Akaike 
information criterion, AIC) also resulted in greater flow 
gains in the linear composition of precipitation and 
potential evapotranspiration throughout the year, especially 
in the British Isles summer (values not shown). The annual 
variation of potential evapotranspiration is important for 
describing the water surface balance. The composition of 
the linear regression of the filtered data series indicates 
the main role of seasonal changes in precipitation and 
evapotranspiration, suggesting that these compositions 
are more advantageous for stream-flow modeling in the 
parametric conditions of the hydrological model, that is, 
when potential evapotranspiration decreases atmospheric 
forcing.

The statistical summary of the variables is shown 
in Table 2. Although the observed and simulated discharge 
present comparable averages, the same does not happen for 
the corresponding medians. The inter-quartile is close but the 
extremes are different. Therefore, the TopModel modeling 
presents limitation outside the inter-quartile interval.

The ANOVA brought the stream flow problem to 
light. Since the Carsington soil surface is highly permeable 
to infiltration and evapotranspiration, can contributes 
effectively to the aquifers westward on Midland of England.

Table 3 summarizes results from one-way ANOVA, 
and Tables 4 from two-way ANOVA. It is evident that 
the main predictor role of atmospheric forcing (i.e., 
precipitation minus potential evapotranspiration) for the 
Carsington Water dam overflow, for annual period. Tables 
4 and 5 summarize the interaction between predictor and 
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predicted variables and presents the degree of statistical 
significance of the iterations, with greater F associated 
with greater statistical confidence.

The hydrological model should account for the larger 
expected changes in space and time. At this point, TopModel 

has the advantage of being an efficient distributing model. 
The creek flow freely emerging from Carsington Water 
dam could be modeled by TopModel in function of the 
topographic index, parameters, rainfall and potential 
evapotranspiration data series (Figure 4).

Table 2 Summary of variable statistics (Qobs, Qsim, rain, ETp).

X Qobs (m3 s-1) Qsim (m3 s-1) rain (m s-1) ETp (m s-1)
Min. 0.01000 0.006467 3.615 x 10-11 0.000 x 1000

1st Qu. 0.02314 0.020174 7.261 x 10-09 8.653 x 10-09

Median 0.36552 0.069307 2.252 x 10-08 2.893 x 10-08

Mean 1.12001 1.114237 2.793 x 10-08 2.906 x 10-08

3rd Qu. 1.69823 1.890884 4.449 x 10-08 4.964 x 10-08

Max. 9.01115 6.156999 1.163 x 10-07 5.810 x 10-08

Figure 4 Comparison of the flow modeled by TopModel and observed at the monitoring point of the stream emerging from the Carsington 
Water dam, throughout 2017. The flow due to surface runoff (i.e., the observed flow minus the basic flow) is represented by open circles, 
precipitation by impulse in light green, potential evapotranspiration by the thick dashed line highlighted in red, the confidence interval by the 
area filled in green estimated by modeled quantiles between 5% and 90%, and the simulated flow median indicated by the dark green line.
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The model performance improves its performance 
with GLUE parameters generation. GRUE generation 
provides different ensemble members, each one associated 
with Nash-Sutcliffe efficiency larger than 50%. The 
associated stream flows are ranked to obtain quantiles 
curves. The ensemble median is given by the 50% quantile, 
and the confidence interval limited by the quantiles of 
5% and 95%.

3.2 Hydrometeorological Hazards Assessment

The coupling of the hydrological model, giving the 
distribution of water in the surface layer of the soil, with 
the models of landslides on slopes and of floods due to the 
overflow of riverbeds, allows access to risk from the point 

of view of conditional probability. This realization generates 
the contingent probability (median Q50% of the danger).

Figure 5 shows the 2D distribution of landslide 
(Figures 5A and 5B) and flood hazard (Figures 5C and 5D).

The greater danger of landslides is confirmed in the 
hills to the north and west of the Carsington Water dam, 
as well as the greater danger of water overflowing from 
the creeks as the drainage network progressively increases 
its drainage of the land (to the south and east of the dam).

By adding observation errors of atmospheric forcing 
by a Normal distribution generating function, it is even 
possible to extend the analysis to an ensemble of model 
tests. An analysis of the distribution of members (i.e., 2D 
fields) allows inferring the variability of the median and 
its statistical confidence thresholds.

Table 3 Summary of one-way ANOVAS.

Var Df Sum Sq Mean Sq F value Pr(>F) Signif.
Summary of one-way ANOVA ( Qobs ~ rain )
rain 1 463.7 463.7 373.2 < 2 x 10-16 ***
Residuals 363 450.9 1.2
Summary of one-way ANOVA ( Qobs ~ Etp )
Etp 1 70.0 70.01 30.09 7.75 x 10-08 ***
Residuals 363 844.6 2.33

Signif. Codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’

Table 4 Summary of two-way ANOVA ( Qobs ~ rain + Etp ).

Var Df Sum Sq Mean Sq F value Pr(>F) Signif.
rain 1 463.7 463.7 453.06 < 2 x 10-16 ***
Etp 1 80.5 80.5 78.62 < 2 x 10-16 ***
Residuals 362 370.5 1.0

Signif. Codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’

Table 5 Summary of ANOVA interations (Qobs ~ Qobs * rain * ETp ). 

Var Df Sum Sq Mean Sq F value Pr(>F) Signif.
rain 1 463.7 463.7 4235.06 < 2 x 10-16 ***
Etp 1 80.5 80.5 734.94 < 2 x 10-16 ***

Qobs:rain 1 298.3 298.3 2725.01 < 2 x 10-16 ***
Qobs:Etp 1 0.0 0.0 0.35 0.554
rain:Etp 1 14.6 14.6 133.00 < 2 x 10-16 ***

Qobs:rain:Etp 1 18.3 18.3 167.51 < 2 x 10-16 ***
Residuals 358 39.2 0.1

Signif. Codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’
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Figure 5 Modeled distribution of maximum hydrometeorological hazard probability in 2017 for the Carsington Dam catchment, in Midland 
of England: A. Conditional landslide hazard probability (%); B. Perspective view of A; C. Conditional flood hazard Probability (%);  
D. Perspective view of C. These spatial distributions correspond to the day of maximum atmospheric forcing in the data series of 2017.



14

Modeling of Soil Water Distribution in a Small Mid-Latitude Watershed on the British Isle... Karam et al.

Anu. Inst. Geociênc., 2024;47:57297

The area corresponding to landslide and flood 
hazards is sensitive to the magnitude of the atmospheric 
forcing (verified numerically), making it possible to 
generate different scenarios according to the intensity of the 
precipitation rate. This can be important for land planning 
and governance (e.g., decision-making about higher-risk 
areas that should be designated for preservation).

3.3 Verification of Model Results

The timescale of atmospheric precipitation systems, 
as well as the intrinsic characteristics of the watershed, 
are important for river response. For multi-scale systems, 
validations with multi-category prediction methods seem 
to be recommended (WWRP/WGNE 2017, Wilks 2019). 
Here, a verification of flooding results was carried out 
qualitatively by comparing the modeled risk areas with low 
frequency occurrence maps (UK Flooding Maps 2023).

Flood management centers generally focus on 
measuring the height of rivers and assessing overflow 
conditions. Forecast models for very short periods of areas 
at risk of flooding, in general, need to assess the probability 
of immediate risk in addition to the values of the increase 
in water height, to allow decision-making from a few 
minutes to a day before the event. In a dynamic approach, 
rapidly updating flood hazard maps can be superimposed on 
population maps and integrated by geographic information 
systems in automatic updated.

Similarly, a qualitative evaluation of the results of 
the landslide distribution model was made from comparison 
with maps of historical landslide records in the area 
(National Landslide Database 2023).

4 Conclusions
Digital terrain model and time series of precipitation, 

evapotranspiration and discharge measured at the outlet of 
the Carsington Water dam were used as input data in an 
original coupled system formed by the hydrological model 
(R-TopModel) and skilled landslide and flood risk models. 
The results are positive and indicate the possibility of 
operational use of the methodology, to map the distribution 
of hydrometeorological risks at each time step. In this work, 
the time step was daily, but it can be done in higher temporal 
resolution if hourly monitoring is available.

Some statistical analyzes of the input data, for 
example one-way and two-way ANOVA, time-scale 
filtering and wavelet analysis confirm the importance of 
atmospheric forcings (precipitation and evapotranspiration) 
for a qualified flow simulation in the Carsington Water 
flow. The results were obtained and evaluated to serve 

as a benchmark for further investigations (e.g., as such 
the development of an online dynamic hazard model for 
landslides and flooding in comparable basins of tropical 
and mid-latitude size).

In perspective, Beven and Wood (1983) and Lane 
et al. (2004) made relevant contributions to the modeling 
of wetlands under complicated conditions of topographic 
variation and high spatial resolution. To do so, the former 
applied variable contribution areas associated with 
approximation of the slope geometry (linear or curved) 
and the latter applied drainage network indices to direct the 
flow paths to obtain different degrees of connectivity at grid 
points, resulting in minimal areas connected by saturation.

In addition to the temporal variability of the forcings 
and the topological connectivity of the water path, the 
application of the Variational Principle to the conservation 
of mass along the water paths makes it possible to determine 
the trajectory in a unique way, considering the effect of 
the spatial heterogeneities of the atmospheric forcings as 
strong constraints of the problem.

Looking further, the use of satellite-derived 
precipitation would allow applying the methodology for 
analysis of short-term events in different areas simultaneously, 
which would be important for the verification and validation 
process of the complex hydrological system for known risk 
areas from historical database of landslides and floods.
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