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Abstract—In the midst of the COVID-19 pandemic, it was
essential to accurately forecast the demand for hospitalisation re-
sources to achieve an effective allocation of healthcare resources.
This paper explores the potential of various deep learning (DL)
models, namely basic Recurrent neural networks (RNNs), Long
short-term memory networks (LSTMs), Gated recurrent units
(GRU), Bidirectional RNNs, and Sequence-to-Sequence architec-
tures with the inclusion of attention mechanisms, to forecast the
demand for hospitalisation resources (mechanical ventilators) in
England during the COVID-19 pandemic. The implementation
of simulated annealing (SA) as a hyperparameter tuning method
produced certain model structures and good results in terms of
prediction accuracy. Our findings show that the LSTM-based
models (LSTM SA), achieved the lowest mean average error
(MAE), outperforming other architectures used in this study.
The results of this study show the potential of DL models to
forecast the demand for resources and could help inform the
distribution of hospitalisation resources in England during the
COVID-19 pandemic.

Index Terms—Deep learning, COVID-19, Hospitalisation fore-
casting, RNN, LSTM, GRU, Attention mechanism

I. INTRODUCTION

The COVID-19 pandemic has underlined the need for
an optimal allocation of hospitalisation resources to control
disease spread and prevent mortality. The challenges faced
by healthcare systems prompt the need to develop effective
strategies to forecast hospitalisation demand. Hospitalisation
services, such as beds in intensive care units (ICU) and
mechanical ventilators, can be forecasted for a given time
horizon within a certain location or health system.

In 2020, the United Kingdom saw a sharp increase in
the need for hospitalisation resources for those suffering
from severe acute respiratory diseases due to the COVID-19
pandemic1. Initially, national health services (NHS) had only
7,400 mechanical ventilators, but the target was set to acquire
30,000 by the end of June 2020 to cope with the pandemic
surge2.

Mathematical models such as SEIR and its variants, ma-
chine learning (ML) including regression models, and deep
learning, have been used to forecast the number of cases,
recoveries, and deaths [1]–[5]. Deep learning techniques, in-
cluding RNN, LSTM, GRU [6], graph neural networks (GNN),
and others, have been used to accurately forecast the demand
for beds and mechanical ventilators in the ICU during a
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pandemic [7]. Goic et al. [8] proposed a composite approach
by combining autoregressive, ML and epidemiological models
to forecast the short-term use of ICU beds at regional levels,
demonstrating the superiority of combined models over indi-
vidual ones. Tello et al. [9] used a ML methodology with a
support vector regression model to predict the weekly demand
for hospital beds, helping to strategically allocate resources to
emergency departments.

A recent study by Borges and Nascimento [10] highlighted
the difficulties posed by the COVID-19 pandemic, their re-
search explored the combination of Prophet and LSTM to
forecast the demand for ICU beds in Brazil. Recently, in [11],
the authors presented Variational AutoEncoder (VAE) as the
best performing model to forecast COVID-19 cases in different
counties. Since we are not looking at COVID-19 cases, but
data on hospitalisation resources usage in England, we cannot
compare our results with the work presented in [11]. Although
the models used will be useful in forecasting the demand
for hospitalisation resources in England. In [12], the EpiBeds
model is introduced to forecast the impact of COVID-19 on
hospital capacity in England, EpiBeds highlighting the value
of integrated data in accurately predicting healthcare demands.

In this paper, we explore the potential of various deep
learning models, namely LSTM, Vanilla RNNs, GRUs, Bidi-
rectional RNNs, and Sequence-to-Sequence (Seq2Seq) RNNs
with an attention mechanism, to predict the demand for
hospitalisation resources in England.

In summary, the contributions of this paper are listed below:
• This study leverages similar data feature utilised in the

EpiBeds model [12] for daily forecasting in England
using deep learning based approaches.

• The study introduces various deep learning models for
single-step and multi-step forecasting of hospitalisation
demands.

• Exploring simulated annealing as a technique for hy-
perparameter tuning across different RNN architectures
employed in this research.

The rest of the paper is organised as follows. Section II
explains the deep learning techniques used in the paper. Sec-
tion III describes the data preprocessing, forecasting metrics,
and experiments conducted. Section IV reports the experimen-

1https://www.kingsfund.org.uk/publications/critical-care-services-nhs
2https://www.nao.org.uk/reports/increasing-ventilator-capacity-in-response-to-covid-19/

mailto:olarinoyem@coventry.ac.uk
mailto:ab5839@coventry.ac.uk
mailto:ad0204@coventry.ac.uk
mailto:ad0067@coventry.ac.uk
mailto:ac4710@coventry.ac.uk
https://www.kingsfund.org.uk/publications/critical-care-services-nhs
https://www.nao.org.uk/reports/increasing-ventilator-capacity-in-response-to-covid-19/


tal results. Finally, Section V summarises the findings and
concludes the paper.

II. DEEP LEARNING FORECASTING ARCHITECTURES

In this study, we developed a variety of deep learning mod-
els to forecast the demand for hospitalisation resources (ICU
beds, mechanical ventilators) in England, represented as time
series data. In particular, models such as RNN, LSTM, and
GRU have been shown to be effective on time series data [7].
Given the nature of our data, we treated the problem as a
univariate time series forecasting task by selecting the daily
use of ventilators in England from the COVID-19 hospital
activity data. Formally, the relationship for a given time step
t based on a history of N steps that are daily data can be
expressed as

yt = h(yt−1, yt−2, . . . , yt−N ) (1)

where yt denotes the data point at time t and h represents
the function mapping the historical data points to the future.
The primary objective of the deep learning models to be
developed is to accurately learn and approximate the function
in Equation 1.

A. Recurrent neural networks

In 1986, Rumelhart et al. [13] introduced the backpropaga-
tion algorithm, a technique used for training artificial neural
networks (ANN) such as feedforward neural networks (FFNs)
and RNNs. RNNs unlike FFNs, are particularly adept at
handling sequential data, as they are capable of recognising
patterns in time series data. Traditional RNNs are known to
have the problem of vanishing and exploding gradients [14]
which hampers their ability to learn long-term dependencies.
To address this, Hochreiter and Schmidhuber [15] developed
LSTM networks in 1997, which have memory cells and gates
to control the flow of information. This design ensures that
gradients are propagated stably, making LSTMs especially
effective for learning long-term dependencies in data.

For an input xt at time t and the previous hidden state Ht−1,
LSTMs operate through three key gates:

• Input Gate (It):

It = σ(Wxixt +WhiHt−1 + bi) (2)

• Forget Gate (Ft):

Ft = σ(Wxfxt +WhfHt−1 + bf ) (3)

• Output Gate (Ot):

Ot = σ(Wxoxt +WhoHt−1 + bo) (4)

These gates function together to update the memory cell as:

Ct = Ft ⊙ Ct−1 + It ⊙ tanh(Wxcxt +WhcHt−1 + bc) (5)

and to compute the hidden state as:

Ht = Ot ⊙ tanh(Ct) (6)

The LSTM architecture contains weight matrices W , biases
b, sigmoid function σ, and element-wise multiplication ⊙.

The GRU proposed by Cho et al. in 2014 [16], which is
based on the LSTM, was created as a simplified version that
is still capable of managing long-term temporal dependencies.
As time passed, these structures have became more complex,
including stacked and bi-directional versions. These improve-
ments allow the model to use data from both past and future
states. Therefore, RNN, LSTM, and GRU and their variants are
used here to forecast the demand for hospitalisation resources.

B. Sequence-to-Sequence Models

Seq2Seq models, which are characterised by their encoder-
decoder architecture, have been highly successful in a variety
of tasks, such as machine translation and time series fore-
casting. This approach was first popularised in the works of
Sutskever et al. [17] and Cho et al. [16] in (2014). The core
concept of the Seq2Seq model is to encode sequential data in
a latent representation space that is then decoded to generate
the desired output sequence. This latent representation captures
the patterns and structures in the data, similar to how humans
can recognise patterns and features in complex entities.

A variety of techniques can be used to construct a Seq2Seq
model. Popular approaches include RNNs, which can be used
alone or in combination with another RNN. As an example,
an RNN-to-RNN model can be used, where both the encoder
and decoder are RNN-based architectures (Figure 1). During
training, the decoder is provided with the true output from
the previous time step, this a technique known as ”teacher
forcing”. This involves feeding the actual output from the
training data into the current step of the decoder instead of
the decoder’s own predictions from the prior step. This method
can speed up convergence, stabilise training, and often lead to
more accurate models, particularly for longer sequences. For
inference, the model’s own predictions are fed back into the
decoder to generate future steps in the sequence.
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Fig. 1. The encoder-decoder architecture

C. Enhanced Forecasting Through Attention Mechanisms

Accurate forecasting of hospitalisation demands poses a
complex challenge, primarily due to the need to capture intri-
cate long-term dependencies and temporal correlations across
multiple time steps. While traditional Seq2Seq models provide
a foundational framework for modelling such dependencies,
their efficacy diminishes when faced with extended sequences
or intricate temporal patterns.



To overcome these limitations, we employ the attention
mechanism, initially conceived to address challenges in ma-
chine translation [18] and later refined by Vaswani et al. [19].
Unlike traditional Seq2Seq models, which are limited by the
encoder’s final hidden state, the attention mechanism allows
our model to dynamically focus on different portions of the
input sequence at each step of output generation.

A(q,K, V ) =
∑

p(a(ki, q))× vi (7)

In this generalised attention framework, q represents the
query generated by the decoder, K are the keys derived from
the encoder, and V are the values that are weighted by the
attention distribution. Here, p(a(ki, q)) denotes the attention
weight computed for each key ki using the query q, and vi is
the corresponding value. This formulation allows our model
to adapt the attention distribution, providing a more robust
and flexible framework that is particularly suited for complex
forecasting tasks such as hospitalisation demand prediction.

III. EXPERIMENTAL SETUP AND DATA ANALYSIS

This study examined the use of both single-step and multi-
step forecasting to anticipate the demand for hospitalisation
resources in England. Single-step forecasting was used, which
trains the model to predict a future time point based on past
and current data. This approach is especially useful for short-
term predictions. However, its capacity to capture long-term
patterns is uncertain. To address this issue, multi-step fore-
casting was later used, with a window size of fourteen days,
twice the forecast horizon. Sequence-to-sequence (seq2seq)
deep learning models were used to predict a horizon of seven
days. The aim was to forecast the subsequent H timesteps,
yt+1, . . . , yt+H , where H > 1. Despite its practical relevance,
multistep forecasting has been relatively unexplored due to
its complexity; as we look further into the future, predictions
become increasingly uncertain due to the intricate interactions
between the forecasted steps. The framework strategies for the
experiments used in this paper are illustrated in Figure 3.

A. Data Preprocessing

The daily fluctuations in the time series data and the ever-
changing context of the pandemic make forecasting difficult
because of the stationarity property. To identify the underlying
trends and seasonality, we performed an exploratory data
analysis on the variable MVbeds (daily usage of mechanical
ventilator beds) from the COVID-19 hospital activity data set
[20]. In Figure 2 the rolling mean of 7 and 30 days of the
data is shown, indicating the present trends. The Augmented
Dickey-Fuller (ADF) test was used to determine whether
the data were stationary; however, the null hypothesis with
p > 0.05 was not met. To address this problem, we applied
an AutoStationary Transformer approach to the data. This
approach was proposed in a time series book by Joseph Manu
[21].

The AutoStationary Transformer executes a sequence of
operations to guarantee data stationarity. To begin with, it

performs a statistical test to detect trends and if a trend is
identified, it applies a detrending transformation. After that, it
inspects the data for seasonality and, if necessary, applies a
deseasonalisation transformation. Finally, it evaluates the data
for heteroskedasticity (variance that changes over time), and
if this condition is observed, it uses a Box-Cox transformation
to stabilise the variance. The data set used to train the deep
learning models was collected from April 8, 2020 to May 31,
2023. It was divided into three parts: training, validation, and
testing. 861 samples, which is 74.93% of the data set, were
allocated for training up to August 16, 2022. The following
segment, 115 samples (10.01%) from 17 August 2022, was
allocated for validation. Lastly, 173 samples (15.06%) from 10
December 2022 were kept for testing to guarantee an unbiased
assessment of the model’s performance.

Jul 2020 Jan 2021 Jul 2021 Jan 2022 Jul 2022 Jan 2023

0

500

1000

1500

2000

2500

3000

3500

Original

7-day Rolling Mean

30-day Rolling Mean

Rolling Statistics for covidOccupiedMVBeds

Date

c
o
v
id

O
c
c
u
p
ie

d
M

V
B

e
d
s

Loading [MathJax]/extensions/MathMenu.js

Fig. 2. COVID-19 daily cases of patients occupying mechanical ventilator
beds in England

B. Hyperparameter Optimisation using Simulated Annealing

Hyperparameter tuning is crucial for optimising the perfor-
mance of ML models. Given the vast hyperparameter space,
efficient optimisation techniques are imperative. In this work,
we employ Simulated Annealing (SA) [22], a probabilistic
optimisation method inspired by the annealing process in ma-
terial science, to fine-tune the hyperparameters of the models
[23]. In this instance, multiple objectives are passed to the
algorithm (Algorithm 1). Starting with an initial set of hyper-
parameters, the SA algorithm was run for a specified number
of iterations to find a (near) optimal set of hyperparameters in
the search space presented in Table I.

TABLE I
DEFINED SEARCH SPACE FOR HYPERPARAMETERS.

Hyperparameter Search Space
rnn type GRU, LSTM, RNN
attention mechanism general, concat, additive, dot
hidden size 32, 256
num layers 1, 10
bidirectional True, False
learning rate 1× 10−2, 1× 10−6



Algorithm 1 Hyperparameter Optimisation with SA
Input: f(x) - validation loss, N(x) - neighbour function,
T (t) - cooling schedule, x0 - initial hyperparameters, T0 -
initial temperature, k - iterations.
Output: xbest - optimal hyperparameters.
procedure SIMULATEDANNEALING(f,N, T0,x0, k)

Initialize x, fbest,xbest, T ← x0, f(x0),x0, T0

for t = 1 to k do
x′ ∼ N(x), ∆f = f(x′)− f(x)
if ∆f < 0 or rand(0, 1) < exp(−∆f/T ) then

x← x′

if f(x′) < fbest then
fbest,xbest ← f(x′),x′

end if
end if
T ← cooling(T )

end for
return xbest

end procedure

C. Experimental Configuration

The experiments were carried out on a laptop using Win-
dows Subsystem for Linux, equipped with an AMD Ryzen
7 5000 series processor, 16GB of DDR4 RAM, and an
NVIDIA RTX 3050 GPU. Pytorch and Lightning were used
for training and evaluation, referencing the metrics defined in
IV-A. Additional Python libraries facilitated data preprocess-
ing, exploratory analysis, and plotting.

The ease of hyperparameter modification was provided
by Pytorch Lightning. For reproducibility, the initial training
conditions were standardised as follows: hidden size fixed at
64, two layers per model, batch size of 64, and bidirectionality
determined within the model structure. All Seq2Seq models
were bidirectional, with a learning rate of 1 × 10−2 and a
teacher forcing ratio of 1 for models that employ attention
mechanisms. Training spanned a minimum of five and a
maximum of 100 epochs, with early stopping based on a
patience of three in monitoring validation loss. The initial
attention mechanism for Seq2Seq models was set to general.
After preprocessing and during training, the transformed data
were standardised using the formula:

standardized series =
series−mean

std
(8)

where the mean and standard deviation were computed from
the training data. Data loading and normalisation processes
were facilitated by the PyTorch data loader function.

IV. RESULTS

A. Evaluation Metrics

The performance of the forecasting models was assessed
using the following four key metrics: Mean Absolute Error
(MAE), averaging absolute differences between predicted and
observed values, offers a direct measure of the accuracy of

the forecast (Eq 9): the mean squared error (MSE) computes
the mean squared differences between the forecast and actual
values, highlighting larger errors (Eq 10); the mean absolute
scaled error (MASE) normalises the forecast errors, providing
a scale-independent evaluation (Eq 11), and Forecast Bias
(FB) identifies consistent over or under forecasting tendencies,
capturing systemic bias in predictions (Eq 12). These metrics
jointly facilitate a comprehensive model evaluation. Although
MAE and MSE highlight the magnitude and severity of errors,
MASE ensures scale independence and FB reveals systemic
biases.

MAE =
1

N

N∑
i=1

|fi − yi| (9)

MSE =
1

N

N∑
i=1

(fi − yi)
2 (10)

MASE =
1
N

∑N
i=1 |fi − yi|

1
N−1

∑N
j=1 |yj − yj−1|

(11)

FB =

∑N
i=1 fi −

∑N
i=1 yi∑N

i=1 yi
(12)

In these equations, N signifies the total number of obser-
vations, while f and y represent the forecasted and observed
values, respectively.

B. Single-step forecasting model

The comparison of the vanilla RNN, LSTM and GRU
models using the single-step forecast of 1 day ahead for each
point revealed that the LSTM model was the most successful.
It had a MAE of 0.1966, which was approximately 20% lower
than the MAE of 0.2441 for the RNN model. The GRU
model had a MAE of 0.1937, which was also lower than
the RNN model by around 21%. Similarly, the LSTM also
demonstrated superiority in terms of MASE, with roughly a
10% advantage over the other two models. Figure 4 shows the
forecast result for 1 month of the three models, including the
SA optimised model. The results of the LSTM model indicate
its strength and potential to be further developed and applied
to the task of forecasting hospitalisation demand from time
series data. All three models had a small forecast bias, but the
LSTM and GRU models had a negative bias, indicating that
they slightly underestimated the forecast, as evidenced by the
forecast bias metric. The Seq2Seq model was trained using
the single-step method, the results were acceptable except for
the RNN-RNN Seq2Seq model, which produced results that
were underforecasting more than the others, and can be seen
in Figure 4.

C. Multistep forcasting models

The effectiveness of Seq2Seq architectures with attention
mechanisms was demonstrated in multistep models. Two
LSTM models were used as Seq2Seq encoder-decoder models,
with the same parameters except for the last result in Table III.
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Figure 5 shows the 1 month forecast of the trained models.
The model with the concat attention mechanism had the best
MAE of 0.2326 and the lowest MSE of 0.0907. This implies
that attention mechanisms can be beneficial in improving the
predictability of multi-step models, although there is still room
for improvement, as indicated by the MASE and Forecast Bias
metrics. SA optimisation was also applied to find the optimal
attention mechanism and other parameters to produce a refined
model for the forecasting of hospitalisation demand.

The result presented in Table II was the result of using
SA to search the parameters, performed in the three instances
of experimentation that were trained on the data. i.e., single-
step forecasting with RNNs architecture, Seq2Seq models, and
multistep Seq2Seq models with attention network. Training
and evaluation to determine the optimal parameters took a

while to compute with the available computational power. The
results present the models that were selected, the number of
hidden size and the number of layers for each model structure,
as well as the learning rate. The LSTM model with a hidden
layer size of 143 took the shortest time to compute, while
the dot-attention (LSTM-LSTM) seq2seq model exhibited a
significantly higher computational demand in seconds.

TABLE II
BEST PARAMETERS AND TOTAL RUNNING TIME FOR VARIOUS MODELS

SA model hidden size num layers learning rate Time (sec)
LSTM 143 3 0.0065 1203.04
GRU RNN 172 3 0.009 1507.03
dot Attn 48 5 0.006 4072.23

TABLE III
PERFORMANCE COMPARISON OF ALL MODELS

Algorithm MAE MSE MASE Forecast Bias
RNN 0.2441 0.0819 0.6622 0.23%
LSTM 0.1966 0.0549 0.5333 -0.17%
GRU 0.1937 0.0547 0.5255 -0.16%
LSTM SA 0.1915 0.0525 0.5194 -0.16%
LSTM LSTM 0.2058 0.0584 0.5584 -0.17%
RNN RNN 0.9134 0.8697 2.4778 -0.91%
GRU RNN SA 1.1949 1.4545 3.2416 -1.19%
MultiStep general Attn 0.2314 0.0901 0.6277 0.01%
MultiStep concat Attn 0.2384 0.0938 0.6468 0.06%
MultiStep additive Attn 0.2707 0.1180 0.7343 0.17%
MultiStep dot Attn SA 0.2794 0.1248 0.7579 -0.15%
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The results of the hyperparameter-tuned models were good.
The LSTM SA model had a slight improvement on the LSTM
model, with a decrease of 2.6% in MAE, 4.4% in MSE,
and 2.6% in MASE. However, more complex architectures,
such as RNN RNN and GRU RNN SA, despite their intri-
cate architectures, did not perform well, with a considerable
decrease in MAE. The MAE of GRU RNN SA was 1.1949,
which is almost five times that of the basic GRU model. The
outcome of the experiments raises a critical question about
the efficacy and reliability of combining different architectures
for forecasting. In hindsight, the results are relatively positive
within the context of this research, serving to determine the
forecastability of the data set.

V. CONCLUSION

This study conducted a thorough evaluation of various deep
learning architectures to forecast the short-term demand for
hospitalisation resources during the COVID-19 pandemic in
England. The forecast horizon used in training these models
was 1 day and 14 days using data available since 2020.
The LSTM model, particularly LSTM SA, achieved the best
results. The impact of attention mechanisms and the simu-
lated annealing algorithm for hyperparameter tuning was also
examined, with varying degrees of success. This work makes
an important contribution to the field of healthcare analytics,
demonstrating the usefulness of deep learning models for
resource allocation in pandemics. Short-term forecasting for a
few days or weeks is a useful insight to better manage planning
during future pandemics, leading to a reduction in mortality
rates and an increase in quality of life. Future research should
consider incorporating external variables, such as vaccination
rates and policy changes, which makes the data multivariate, as
well as explore other hyperparameter optimisation techniques
to enhance forecast accuracy.
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