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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Deep learning health diagnostic frame
work to quantify composite electrode 
aging. 

• Rapid and transparent health di
agnostics while requiring low experi
mental data. 

• Sensitivity analysis determines a physi
cally informed appropriate voltage 
window. 

• The Grad-CAM approach provides 
explainable insights into how these 
CNNs work. 

• Robustness was validated which works 
well with the voltage noise of up to 10 
mV.  
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A B S T R A C T   

Lithium-ion batteries with composite anodes of graphite and silicon are increasingly being used. However, their 
degradation pathways are complicated due to the blended nature of the electrodes, with graphite and silicon 
degrading at different rates. Here, we develop a deep learning health diagnostic framework to rapidly quantify 
and separate the different degradation rates of graphite and silicon in composite anodes using partial charging 
data. The convolutional neural network (CNN), trained with synthetic data, uses experimental partial charging 
data to diagnose electrode-level health of tested batteries, with errors of less than 3.1% (corresponding to the loss 
of active material reaching ~75%). Sensitivity analysis of the capacity-voltage curve under different degradation 
modes is performed to provide a physically informed voltage window for diagnostics with partial charging data. 
By using the gradient-weighted class activation mapping approach, we provide explainable insights into how 
these CNNs work; highlighting regions of the voltage-curve to which they are most sensitive. Robustness is 
validated by introducing noise to the data, with no significant negative impact on the diagnostic accuracy for 
noise levels below 10 mV, thus highlighting the potential for deep learning approaches in the diagnostics of 
lithium-ion battery performance under real-world conditions. The framework presented here can be generalised 
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to other cell formats and chemistries, providing robust and explainable battery diagnostics for both conventional 
single material electrodes, but also the more challenging composite electrodes.   

1. Introduction 

Lithium-ion batteries are essential in e-mobility, electronic devices, 
and grid-level energy storage. Their energy densities have steadily 
increased year after year, enabled by advances in manufacturing [1] and 
the introduction of superior electrode materials [2–3]. Lithium-ion 
batteries with composite anodes consisting of high specific capacity 
silicon blended with graphite (Gr-Si), and nickel-rich nickel manganese 
cobalt oxide (NMC) cathodes, are regarded as one of the most promising 
chemistries [4]; with energy density reaching ~270 Wh⋅kg− 1. However, 
widespread adoption still has barriers [5], in part due to the complicated 
and coupled degradation mechanisms involved in blended anodes which 
negatively impacts predictability. 

Commonly used battery diagnostic techniques include differential 
capacity/voltage methods which can identify degradation modes (DMs) 
such as loss of lithium inventory (LLI) and loss of active material in the 
negative and positive electrodes (LAMNE, LAMPE). For composite Gr-Si 
anodes, Anseán et al [6]. explored how the incremental capacity (IC) 
peaks for these batteries can be deconvoluted and how they evolve with 
different aging modes, however the quantification of Gr and Si degra
dation was not presented. Schindler et al [7]. and Bazlen et al [8]. 
analysed the differential voltage (DV) peaks to quantify the DMs but 
used the full discharge curves, which are seldom found in real-world 
applications. Kirkaldy et al [9]. presented an open circuit voltage 
(OCV) fitting method to separate the amount of degradation in Gr-Si 
composite electrodes, but again focused on full-discharge data. 
Furthermore, almost all the quantitative diagnostics [6–9] for Gr-Si 
composite electrodes utilize discharging data rather than charging 
data, which often is more accessible in real-world conditions. 

Several efforts have been made at diagnosing battery health with 
partial charging data. For instance, Tian et al [10]. and Yang et al [11]. 
utilised machine learning and DV fitting methods to identify DMs of 
batteries, respectively. However, optimal determination of the partial 
charging window remains a gap. Marongiu et al [12]. collected voltage 
data and focused on the plateau regions to track the DMs in lithium iron 
phosphate batteries but this approach was only validated with 
non-composite anodes. Schmitt et al [13]. investigated the DM di
agnostics for Gr-Si batteries using the partial charging data at different 
current rates by fitting the OCV, however, a fixed anode potential curve 
is utilised without the separation of the Si and Gr degradation over 
battery lifetime. 

To bridge these gaps, we develop a deep learning approach for 
rapidly quantifying and decoupling degradation in Gr-Si composite 
battery anodes with partial charging data. A sensitivity analysis, 
comparing the OCV curve with different DMs, is conducted to determine 
an appropriate voltage window for diagnostics. Furthermore, we apply 
an explainable artificial intelligence approach towards developing 
conceptual understanding of how the deep learning algorithm identifies 
the DMs. We find that the traditional OCV matching techniques cannot 
accurately separate the composite anode degradation using partial 
charging data, while the proposed explainable deep learning approach 
works rapidly and transparently, with a diagnostic time of less than 7 ms 
and alleviation around the opaqueness of black box techniques. 

2. Battery health diagnostic framework 

2.1. Degradation analysis of batteries with Gr-Si composite anodes 

The thermodynamic DMs generally include LLI and (de)lithiated 
LAMs, all of which have a measurable influence on the battery OCV. As 
the combination of the identical LLI and delithiated LAM can create the 

same OCV as the corresponding lithiated LAM [14], we focus on the 
basic DMs: LLI, LAMdeGr, LAMdeSi, and LAMdePE, and refer to these LAM 
quantities as LAMGr, LAMSi, and LAMPE in the later sections. 

Fig. 1 depicts the OCV and available capacity changes under the four 
basic DMs for batteries with composite Gr-Si anodes. The full-cell OCV is 
the difference between the positive and negative electrode (PE, NE) 
potentials, assuming lumped battery resistance (see Methods). We as
sume the surface potential of Gr and Si particles are identical [9] when 
applying a low current, with the composite anode capacity the sum of 
both phases (see Methods). 

If LLI occurs, a smaller fraction of the electrodes’ capacities are used, 
due to the shift of the NE’s OCV (Fig. 1b). As illustrated in the example of 
20% LLI, the stoichiometric offset drives the PE to higher voltages at the 
end of charge, which could destabilize the cathode [15–16], and cause a 
noticeable increase in battery capacity, around 2%. 

If LAMdeGr was the dominant mechanism, the NE voltage would 
decrease at the end of charge, with an initially small effect on the OCV 
curve, due to an excess of the NE material. Once the remaining capacity 
of the NE is lower than the full-cell capacity, the full cell loses significant 
capacity. Here, Fig. 1c presents the example of 20% LAMdeGr, which 
drives the anode potential to decrease at the high state-of-charge (SOC) 
and thus cause the usage of excess Si materials. 

LAMdeSi occurs during charging as a result of particle cracking, or 
electrical isolation of active materials [17]. The example of 60% LAMdeSi 
is illustrated in Fig. 1d, but surprisingly the full-cell capacity loss is only 
2%, primarily attributed to the usage of more of the graphite phase and 
it’s higher mass fraction. Thus, we conclude that the Gr degradation 
means more Si usage and the Si degradation indicates additional Gr 
utilization, which highlights the challenge of separating composite 
anode behaviours. 

With 20% LAMdePE (Fig. 1e), the PE receives less charge at the end of 
discharge, with the steep drop of PE’s OCV triggering the full-cell 
voltage limits sooner. These discussions of the impact of full-cell 
voltage and capacity loss due to LLI and LAMs provide underpinning 
insights to understand the complicated degradation of composite elec
trodes, but it should be mentioned that the quantitates are specific to the 
electrode balance and composite anode ratio. 

2.2. Deep learning diagnostic framework 

Fig. 2 presents the proposed deep learning diagnostic framework 
which uses partial charging data as the input and identifies the 
component DMs (LLI, LAMGr, LAMSi, LAMPE, and resistance increase 
(RI)). The convolutional neural network (CNN) (see details in Methods, 
Supplementary Fig. S3), learns the features in the partial charging data, 
towards rapid quantification of battery DMs. This CNN is trained with a 
large number of datasets, which are synthetically generated using an 
OCV model (see Methods). This requires low training cost/time, as only 
the experimental half-cell and full-cell OCVs of fresh batteries are 
needed. The optimal selection of voltage windows for diagnostics is 
determined by a sensitivity analysis (see Methods), which investigates 
the change of OCVs with respect to different DMs. Here, highly sensitive 
regions will be taken as the appropriate window for diagnostics. In order 
to gain insight into the CNN based approach (a black box technique), an 
explainable model, the gradient-weighted class activation mapping 
(Grad-CAM, see details in Methods) visualization technique is utilised to 
explore how the trained CNN works and which parts of the input are 
important for quantification. Therefore, this framework provides a 
generalised diagnostic approach that can rapidly and transparently 
quantify composite electrode degradation while requiring low experi
mental data. 
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Fig. 1. . Examples of the different DMs for Gr-Si composite batteries. The bars in the left column illustrate the utilization of the electrodes as a result of the DMs, 
compared to the base case (fresh cell, not to scale). The plots on the right show the corresponding electrode and full-cell (FC) OCVs. The influence of the resistance 
increase (RI) on the full-cell capacity/resistance and the OCV model parameters are illustrated in Supplementary Fig. S1 and Table S1, respectively. It should be noted 
that this analysis is based on the current composite anode (Gr fraction: 0.88). The anode potential varies with Gr fractions (Supplementary Fig. S2) and the aging 
analysis results may be different with various Gr-Si ratios. 
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3. Results 

3.1. OCV model-based sensitivity analysis 

As we often take battery voltages as the termination condition during 
testing, the voltages are generally kept consistent under different aging 
stages, and we thus transform the OCV-capacity (OCV(Q)) data to 
capacity-OCV (Q(OCV)) profiles (see Methods). Fig. 3 illustrates the 
sensitivity of Q(OCV) under four independent DMs, which investigates 
the change of Q(OCV) curve when varying one DM by a given small 
percentage while leaving other DMs constant (see Methods), with a high 
variation of Q(OCV) indicating a high sensitivity. 

For LLI, as we make the initial point of charging almost the same, 
there is a small change of the Q(OCV) in lower voltage regions (3.0–3.4 
V), with high sensitivity observed from 3.45–4.2 V. The sensitivity 
profiles change with different amounts of LLI, which shift to higher 
voltages, corresponding to the NE movement. 

For LAMGr, the Q(OCV) sensitivity is low in voltage windows from 
3.0–4.0 V, except from 3.6–3.85 V, and it is high at the end of charge 
(4.0–4.2 V), especially for the high LAMGr (15%, 25%), which corre
sponds to the lower NE capacity compared to the full-cell capacity. 

For LAMSi, there are several peaks in the Q(OCV) sensitivity profiles 
but these peak values are low compared to the sensitivity due to LLI and 
LAMGr. This explains why it is challenging to distinguish the Si degra
dation. Since the excess Gr materials replace the inactive Si materials to 
accept/deliver the lithium, the Q(OCV) sensitivity in high voltage areas 
is still low even with 75% LAMSi. A sensitivity peak is observed at 3.4 V, 
corresponding to the unique change in the OCV curve at low voltage 
areas due to the LAMSi. 

When the LAMPE is low (i.e. <5%) the sensitivity values are positive, 
indicating the increase of full-cell capacity due to the lower PE voltage at 
low SOCs resulting from PE’s OCV scaling. With a high LAMPE (i.e. 15%) 
the sensitivity becomes negative and a high sensitivity is observed from 
3.4–4.2 V. 

We find the Q(OCV) sensitivity due to the different RI is almost the 
same, having high values from 3.45 V to 4.15 V (Supplementary 
Fig. S4a). The sensitivity peaks correspond to the IC peaks, as the 
resistance shows a strong influence on the OCV plateaus (Supplementary 
Fig. S4b). 

Determining a narrow voltage window for comprehensive di
agnostics is highly desirable, yet this needs to cover all the essential 
sensitive areas of Q(OCV) profiles with respect to all the DMs for good 
identifiability. With all highlighted sensitive areas in Fig. 3 considered, 
we select a voltage window from 3.5 V to 4.15 V to quantify the health of 

each composite electrode. 

3.2. Deep learning diagnostics with synthetic data 

We generated a dataset for a cell undergoing various degradation 
pathways, with varying rates of LLI, LAMs, and RI (see Methods), which 
include 82,810 OCV(Q) curves and this synthetic dataset has defined 
quantities of each DM, allowing them to be used for CNN training/ 
testing. We trained the CNN with 80% of the data and validated the deep 
learning approach using the remaining 20% data. Here, the root mean 
square error (RMSE) and maximal absolute error (MAE) are less than 
0.53% and 2.84% (Supplementary Fig. S5, Table S1), respectively, 
which implies high accuracy of the trained CNN. 

We assume two batteries degrade in two different paths, with one 
showing high Si degradation and another having high Gr degradation 
(Fig. 4, Supplementary Note 1). With the trained CNN and the partial 
charging data from 3.5–4.15 V, the DMs are rapidly quantified, which 
agree well with the target ones (Fig. 4, Table 1), with the RMSE and MAE 
of less than 1.27% and 2.67%, respectively. This highlights the ability of 
CNNs in distinguishing the Gr and Si degradation whatever their aging 
pathways during the whole lifetime are. 

3.3. Deep learning diagnostics with experimental data 

We validated the trained CNN using the experimental data from a 
cycle aging study of a commercial cell (LG M50T) which contains a Gr-Si 
composite NE and NMC811 (LiNi0.8Mn0.1Co0.1O2) PE (see Methods). We 
first utilize partial experimental charging data to quantify the electrode 
degradation of real Gr-Si composite cells cycled from 0%− 30% SOC, as 
shown in Fig. 5, with the electrode health identified in 7 ms for each 
input (tested on a general computer, see Methods). The LAMSi signifi
cantly increases in the initial 156 equivalent full cycles, primarily 
attributed to the Si particle fracture due to the high mechanical stress 
resulting from the almost full usage of the Si material [17–18]. The 
cracking exposes new particle surfaces to the electrolyte, leading to the 
formation of the solid electrolyte interphase (SEI), which results in a 
high increase of LLI. After 200 cycles, the LAMSi stablises to around 74%; 
the LLI gradually increases, likely resulting from the SEI growth/for
mation. The nickel-rich NMC degrades slowly, exhibiting good stability. 

With the identified DMs, the full-cell OCV can be reconstructed, and 
the available capacity and energy of composite electrode cell under 
different aging states can be estimated. From Fig. 5b and c, we observe 
that they show good consistency with the measured ones, with the RMSE 
of 10.40 mV, 0.58%, and 0.57% (Table 2), respectively, implying 

Fig. 2. Overview of the explainable deep learning health diagnostic framework for composite electrode batteries with partial charging data.  
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accurate comprehensive health diagnostics using only partial charging 
data. 

We use full charging data to diagnose battery health, with the 
quantified DMs (Supplementary Fig. S7) considered as the benchmark, 
and the diagnostic errors using partial data are displayed in Fig. 5d, 

having an RMSE of less than 3.1% (<0.07 Ah) for all thermodynamic 
DMs. This highlights the rationality of the selected voltage window 
using sensitivity analysis. 

We investigate the degradation mechanisms of the real Gr-Si com
posite electrode batteries aged in other conditions, with the quantified 
DMs using the proposed CNN method and the partial data from 3.5–4.15 
V, as shown in Fig. 6. For the battery cycled over the full SOC range, the 
LAMSi firstly increases and then stablises at ~27%, which is much lower 
than that in the low SOC cycling, primarily because of the lower silicon 
activity at high SOCs. LAMGr is higher than that aged in the low SOC 
range, likely due to the high mechanical stress when cycling at high 
SOCs [16,19]. 

The DMs of the battery aged over the 0–30% SOC range at 40 ◦C are 
similar to those at 25 ◦C but the LLI is higher, primarily attributed to the 
high SEI growth rate at high temperatures [20], which is validated by a 

Fig. 3. Sensitivity analysis of Q(OCV) curves under different DMs: a. LLI, b. LAMGr, c. LAMSi, and, d. LAMPE. The areas highlighted with the color represent the highly 
sensitive voltage region. 

Fig. 4. The diagnostic results with the proposed method using the partial charging data under different degradation paths: a. aging path I, and b, aging path II. The 
setting degradation modes in two aging paths and the generated OCVs are presented in Supplementary Note 1 and Fig. S5, respectively. 

Table 1 
The comparison results of the quantified DMs under different assumed aging 
paths leveraging the trained CNN with respect to the target DMs.    

LLI LAMGr LAMSi LAMPE 

Aging path I RMSE (%) 0.35 0.24 1.23 0.39 
MAE (%) 0.79 0.50 2.67 0.76 

Aging path II RMSE (%) 0.26 0.31 1.27 0.32 
MAE (%) 0.66 0.90 2.09 0.66  
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high identified resistance (Supplementary Fig. S8). 
The degradation at 10 ◦C is significantly different, with all the DMs 

gradually increasing. After 795 cycles, the LAMPE and LLI increase 
dramatically, leading to a rapid decrease in battery capacity. This fast 
degradation may be associated with the electrolyte consumption in the 
cathode areas [16,21], resulting in the available lithium trapped in the 
inactive lithiated cathode. 

We reconstruct the full-cell OCV (Supplementary Fig. S9), and 
calculate the available capacity and energy of composite electrode 
batteries using the identified DMs (Fig. 6d), with those agreeing with the 
measured ones, having the RMSE of 13.33 mV, 0.73%, and 0.63% 
(Table 2), respectively, which suggests high accuracy of comprehensive 
diagnostics. 

4. Discussion 

4.1. Interpreting the CNN 

We consider the individual DM to analyze which parts in the input 
are important to quantify the DMs; exploring how the diagnostic CNN 
works. The OCVs under each DM (Supplementary Fig. S10) are gener
ated using the OCV model, with the ΔQ(OCV) being the difference be
tween the aged and fresh Q(OCV) (Supplementary Fig. S11). With the 
ΔQ(OCV) under each DM as the input, we employ the Grad-CAM (see 
Methods) technique to compute the gradient of a differentiable output 
with respect to the convolutional features in a last convolutional layer, 
as shown in Fig. 7a. The parts with a large Grad-CAM value are those 
that most impact the CNN diagnosing the DMs. The Grad-CAM high
lights the input from 3.89–4.12 V, suggesting that the highly varied Q 
(OCV) at high voltage regions are important for quantifying LLI. This 
identified voltage range corresponds to the sensitive area of Q(OCV) due 
to LLI. 

The Grad-CAM outputs suggests the 4.12–4.15 V range has the 
greatest impact for the CNN on quantifying the LAMGr, and the region 
from 3.75–3.89 V is more important for the LAMSi identification deci
sion of the network, whilst 3.50–3.61 V contributes most to the quan
tification of LAMPE. We find these highlighted areas of the diagnostic 
CNN are different for identifying independent DMs. Although the Q 

Fig. 5. Comprehensive health diagnostic results: a. quantified DMs; b. reconstructed and experimental OCVs; c. estimated and experimental capacity/energy; d. the 
errors of identified DMs compared with those using full voltage data. The errors of the diagnostic using partial data compared to that using full data vary with battery 
aging and we use the box chart to illustrate the error distribution for the whole lifetime diagnostics. 

Table 2 
The estimation errors of OCVs, capacity and energy using the proposed method.  

Batteries OCV (mV) Capacity (%) Energy (%) 
RMSE MAE RMSE MAE RMSE MAE 

0–30% SOC, 25 ◦C 10.40 145.22 0.58 12.50 0.57 1.28 
0–100% SOC, 25 ◦C 13.33 154.20 0.22 4.47 0.24 0.57 
0–30% SOC, 40 ◦C 12.28 159.96 0.73 11.12 0.55 0.81 
0–30% SOC, 10 ◦C 9.92 181.41 0.61 18.29 0.63 1.36  
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(OCV) sensitivity due to LAMGr is low, the highly increased sensitivity 
areas in the high voltage range (near 4.15 V) are identified by the CNN to 
diagnose LAMGr. The Q(OCV) sensitivity profiles due to LAMGr and 
LAMSi are quite similar but the CNN finds the higher sensitive features 
(near 3.8 V) to quantify LAMSi. This demonstrates that the highlighted 
importance, using the Grad-CAM technique, is consistent with the 
sensitivity analysis, implying a trustable CNN. 

4.2. Diagnostics with different voltage windows 

We investigate the electrode health diagnostics using partial 
charging data with different voltage windows to validate the sensitivity 
analysis and check whether the selected voltages are optimal. Here, we 
take the diagnostic with the full charging data (3.17–4.2 V) as the 
benchmark, i.e. ‘truth’. Firstly, we keep the upper voltage fixed at 4.2 V 
and change the lower voltage, to investigate how the diagnostic errors of 
DMs vary. The CNN can accurately identify the LLI under different lower 
voltages, as shown in Fig. 8, while the quantification of LAMGr shows a 
large uncertainty due to the relatively low Q(OCV) sensitivity. When the 
lower voltage is less than 3.5 V, the CNN can quantify the LAMSi, but 
when over 3.6 V, the diagnostic error is high, likely because the sensi
tivity peak from 3.5–3.6 V (Fig. 3c) indicates a key feature of LAMSi. As 
the Q(OCV) due to LAMPE at low voltage areas changes in different ways, 

having a positive sensitivity sometimes and a negative value in other 
cases, the uncertainty of identifying the LAMPE increases, with the in
crease of the lower voltage. 

When decreasing the upper limit of the voltage window, the LLI and 
LAMPE errors are low, while the LAMGr error increases, having a mean 
error of about 2% with the upper voltage of 4.10 V, as Q(OCV) in the 
high voltage area is more sensitive to LAMGr, especially when the anode 
limits the full-cell capacity. With a low upper voltage, such as 4.05 V, the 
identification error of LAMSi is high, and the errors of all the DM in
crease. Therefore, we can conclude that the lower and upper voltages of 
3.5 V and 4.15 V respectively are the optimal partial voltage window 
that can be used for electrode health diagnostics. 

4.3. Diagnostic comparison with the OCV fitting 

We utilize partial charging data to parameterise an OCV model with 
the particle swarm optimization method [14] and identify the DMs, with 
the diagnostic results illustrated in Fig. 9. The quantified LLI and LAMPE 
are almost the same as those in the benchmark, respectively, while the 
identified LAMGr and LAMSi are significantly different, having a low 
LAMSi (~10%) and a high LAMGr (~30%), thereby attributing the initial 
fast degradation of batteries to the LAMGr. On the other hand, the OCV 
matching approach using the full voltage data gets similar diagnostic 

Fig. 6. Comprehensive health diagnostic results: DMs of batteries aged a. in the full SOC range at 25 ◦C; b. in the 0–30% SOC range at 40 ◦C; c. in the 0–30% SOC 
range at 10 ◦C. d, the estimated and experimental capacity aged under different conditions. 
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results (Supplementary Fig. S12) to those in the benchmark. This dem
onstrates that the OCV-fitting method has challenges when separating 
the Gr and Si with the partial data. 

Despite the excellent fitting of the OCV within the partial voltage 

window, with an RMSE of less than 3.5 mV (Fig. 9b, Table 3), a signif
icant deviation between the simulation and experimental OCVs is 
observed when extending the simulated OCV across the full voltage 
range (Fig. 9c), having an RMSE of ~31 mV. This indicates the over 

Fig. 7. The interpretation of how the diagnostic CNN works. a. The calculated Grad-CAM for the trained CNN using the ΔQ(OCV), and b. the Q(OCV) sensitivity due 
to 15% LLI, 15% LAMGr, 60% LAMSi, and, 15% LAMPE. 

Fig. 8. Electrode health diagnostic errors for: a, LLI, b, LAMGr, c, LAMSi, and d, LAMPE, with different lower voltages while keeping the upper voltage at 4.2 V; and e, 
LLI, f, LAMGr, g, LAMSi, and h, LAMPE, with different upper voltages and the constant lower voltage at 3.17 V, when compared the DM quantification that employed 
the full voltage data from 3.17V-4.2 V. The errors of the diagnostic using partial data with different lower/upper limits compared to that using full data vary with 
battery aging and we use the box chart to illustrate the error distribution for the whole lifetime diagnostics. 
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fitting happened when using the partial data, and the OCV fitting 
method is difficult to effectively capture the small key features of 
different DMs. 

In comparison, using the identified DMs with the proposed method, 
the OCV simulation errors are slightly higher for the partial data 
(Fig. 9d) but far lower in the full voltage range (Figs. 5b and 9e). This 
confirms that the developed CNN can effectively distinguish the key 
features of OCVs despite the partial data used. 

4.4. Diagnostics with noisy data 

In real-world applications, it’s likely there will be voltage measure
ment errors when sampling the charging data; to replicate this, we 
altered the OCV data by adding random noises at different amplitudes, 
from 5 mV to 20 mV. This allowed us to inspect the effect of the noisy 
data on the ability of the diagnostic method to accurately determine the 
DMs. Fig. 10 displays the diagnostic results with different levels of noise, 
with low noise (<10 mV) having a minimal impact on the diagnostic 
ability. When the noise is higher than 15 mV, the quantification errors of 
LAMSi and LAMGr become large, primarily due to their low sensitivity to 
OCV profiles. We can conclude that the proposed diagnostic is capable of 
tolerating the noise of up to 10 mV, highlighting the promising potential 
for diagnosing electrode health in the real world. 

4.5. Prospects 

We employed explainable AI to diagnose electrode health while 
providing underpinning knowledge of how the AI works, which facili
tates the optimization of the diagnostics. For example, the useful data 
features highlighted by the Grad-CAM technique can be directly used as 
the input of diagnostics; reducing the data required for diagnostics. 

Fig. 9. a, Health diagnostic with the OCV fitting method using partial voltage data; the experimental OCV and simulation OCV calculated with the identified pa
rameters using the OCV fitting method as well as the simulation error for b, the partial voltage window, c, the full voltage window; d, the experimental OCV and 
simulation partial OCV calculated with the identified parameters using the proposed method; e, The simulation OCV errors for the partial and full voltage data. 

Table 3 
The errors between the simulation and experimental OCVs at the 156th and 
1027th cycles when using different diagnostic methods.    

OCV (mV) from 
3.5–4.15 V 

OCV (mV) from 
3.17–4.2 V 

RMSE MAE RMSE MAE 

156th cycle OCV fitting 2.23 7.25 30.98 319.38 
Proposed method 7.77 18.72 10.42 82.00 

1027th cycle OCV fitting 3.46 14.50 30.87 296.43 
Proposed method 5.95 13.97 12.97 145.22  
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The proposed approach exhibits promising performance character
istics which are not limited to the studied NMC811/Gi-Si batteries; being 
chemistry and cell design agnostic. With the half-cell data of whatever 
the materials are, we can develop the OCV model and explainable deep 
learning diagnostics through referring to the proposed method. There
fore, this approach, using sensitivity analysis and explainable machine 
learning to identify voltage windows for decoupling the degradation 
modes should work with any cell and chemistry, and provides a useful 
tool for battery charge optimization, lifetime extension and safety 
monitoring algorithms 

5. Conclusions 

We propose a deep learning health diagnostic framework that uses 
partial charging data to quantify and decouple degradation modes in 
lithium-ion batteries with composite graphite-silicon anodes in 7 ms 
using a general purpose computer. The deep learning model is trained 
with synthetic data, which requires only full-cell and half-cell OCVs of 
fresh batteries rather than extensive experimental aging data. This is 
subsequently validated with experimental aging data, with the diag
nosing errors of less than 3.1% compared to the identified electrode 
capacity using full data. We utilize the gradient-weighted class activa
tion mapping method to explain how the convolutional neural network 
works when diagnosing electrode health. We find that the unique 
feature for each degradation mode can be learnt by the deep learning 
approach, which highlights the model transparency and explainability. 
Comparison with the standard OCV-fitting method further demonstrates 
that the developed approach can effectively identify the important 
features of each electrode material. 

By exploring the Q(OCV) sensitivity under each degradation mode, 

we identify the high sensitivity regions for each electrode degradation 
mode, providing a physical approach for determining the appropriate 
voltage window for diagnostics with partial charge data. We verified 
those results by performing the diagnostics on different partial charging 
voltage windows and via deep learning interpretation, confirming the 
effectiveness of sensitivity analysis to find the optimal partial voltage 
ranges. 

The Gr-Si composite battery cycled at room/elevated temperatures 
and low SOC range shows high Si degradation due to the particle 
cracking because of the high mechanical stress, and the resulting 
available lithium loss, from the SEI formation and growth. Cycling over 
full SOC range, the lower Si loss is found but with higher levels of Gr 
degradation, likely attributed to the unstable structure at this SOC range 
and larger concentration gradients forming during cycling. For the 
battery aged at low temperature and low SOC range, the degradation is 
significantly different, with all the electrode degradation proceeding 
slowly at first before increasing rapidly, possibly as a result of electrolyte 
dry out. 

The robustness of the proposed method is validated by introducing 
noise to the data, with no significant negative impact on the diagnostic 
for noise levels below 10 mV. The findings in this paper, thus provide 
new insights and new approaches for real-world diagnostics of lithium- 
ion batteries with composite graphite-silicon anodes. The general 
approach of using explainable machine learning to help understand the 
voltage windows within which the consequences of different degrada
tion mechanisms are most observable, should also be applicable to other 
degradation mechanisms, cells and chemistries. 

Fig. 10. Electrode health diagnostics with the experimental data when adding random noises of a, 5 mV, b, 10 mV; c, The partial OCV(Q) data at the 1027th cycles 
when adding random noises of 5 mV and 10 mV; The diagnostic errors for: d, LLI, e, LAMGr, f, LAMSi, and g, LAMPE with adding different noises, when compared the 
DM quantification that employed the full voltage data from 3.17V-4.2 V. 
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6. Methods 

6.1. Battery experiments 

High-energy density commercial 21,700 cylindrical cells (LG M50T, 
LG GBM50T2170, the diameter: 21 mm, and height: 70 mm, Supple
mentary Fig. S13), composed of a SiOx-doped graphite negative elec
trode alongside an NMC-811 positive electrode, with a nominal capacity 
of 5.0 Ah (18.2 Wh), were cycled at different temperatures and SOC 
ranges. During charging, the Li+ moves from cathode to the anode and 
the Gr and Si are competing to get the Li+and electron for the electro
chemical reactions, with the following Li diffusion processes. Generally, 
the Si is active in the low SOC areas. When discharging, the Li+ and 
electron moves from anode to the cathode. Three cells were tested in the 
low SOC range from 0–30% at 10 ◦C, 25 ◦C and 40 ◦C; they were charged 
by 1.5 Ah at 0.3 C and discharged to 2.5 V at 1 C. One cell was aged over 
the full SOC range (0–100%); it was charged to 4.2 V at 0.3 C, holding 
until the current was lower than 50 mA, and discharged to 2.5 V at 1C. 

Each aging set consisted of a fixed number of aging cycles (78 cycles 
for the 0–100% SOC cell, and 257 cycles for the 0–30% SOC cells); these 
are roughly equivalent in terms of equivalent full cycles (257×0.3 ≈ 78). 
After each aging set, the cells were characterised using a reference 
performance test which was always performed at 25 ◦C. This test 
included a full discharge/charge cycle at 0.1C; the cells were discharged 
to 2.5 V at 0.1C, rested under open-circuit conditions for 6 h, then 
charged to 4.2 V at 0.1C, with a CV hold at 4.2 V until the current 
dropped below 50 mA. The 0.1C charging data was used in the DM 
analyses described in this paper. After the performance test, cells would 
be subject to another aging set (as described above), with this procedure 
repeated until the cells reached end-of-life. The detailed testing pro
cedure and the accompanying data can be found in the references [9, 
22]. 

6.2. OCV model 

We modified our previously developed OCV model [14] for com
posite batteries, considering the graphite and silicon materials to be 
connected in parallel, which allows the OCV of batteries with the Gr-Si 
composite anode to be expressed as: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

UCell = UPE(xPE) − UNE(xNE) − IR

xPE = xPE,0 −
∫ t

0

I
QPE

dτ

xNE = xNE,0 +
∫ t

0

I
QNE

dτ

XNE(V) = λ⋅XGr(V) + (1 − λ)⋅XSi(V)

UNE(xNE) = f − 1(XNE(V))

(1)  

where subscripts PE, NE, Gr, Si, and Cell indicate the positive electrode, 
negative electrode, graphite, silicon, and the battery with the Gr-Si 
composite anode, respectively, and U, x, Q, λ, and X represent the 
OCV, stoichiometric coefficient, maximum available capacity, the ratio 
of graphite capacity with respect to the total NE capacity, and the nor
malised capacity, respectively. xPE,0 and xNE,0, stand for the values of xPE 
and xNE corresponding to the 0% SOC in the full cell, respectively. The 
currents I > 0 and I < 0 denote a discharge and charge processes, 
respectively, and R indicates an additional potential loss for the full cell 
constructed from the half cells of PE and NE, corresponding to the 
resistance in the full cell. 

When parameterizing the OCV model, not only the errors of the OCV 
(Q) but also the deviations of their differentials are taken into account. 

The differential signals, such as the IC and DV, highlight the key infor
mation of electrode transition processes [23] and thus they aid the ac
curacy of the OCV model by focusing on spectra that are more sensitive 
to PE and NE processes, respectively. We consider the objective function 
as: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

fobjOCV = ωU ⋅URMSE + ωIC⋅ICRMSE + ωDV ⋅DVRMSE

URMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
T

∑T

t=1

(
Ucellsim (t) − Ucellexp (t)

)2
√

ICRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N1

∑N1

n=1

(
ICUcellsim

(n) − ICUcellexp
(n)
)2

√

DVRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N2

∑N2

n=1

(
DVUcellsim

(n) − DVUcellexp
(n)
)2

√

(2)  

where ωU, ωIC, and ωDV stand for the weighting coefficients for the 
RMSEs of OCV, IC, and DV, respectively. 

6.3. Sensitivity analysis 

In the OCV model, we take the full-cell OCV as the output and the DM 
as the input. A sensitivity coefficient (ϕi,j) measures the ratio of the 
change in output (Yj) to the change in input (Xj) [24–25], while holding 
all other parameters fixed. The sensitivity coefficient (ϕi,j) can thus be 
approximated as the partial derivative: 

ϕi,j =
∂Yj
∂Xi

(2a)  

where subscripts i and j indicate one of five DMs and the data points in 
the Q(OCV) curve, respectively. We consider the Q(OCV) data and the 
sensitivity coefficient can thus be written as: 

ϕi,j,k =
ΔQj

ΔDMi,k
(3) 

We consider several small changes (represented by the subscript k) in 
the DMi, e.g. ΔDMi=±0.5%, ±0.25%, and calculate the mean sensitivity 
coefficient, described as: 

ϕ̃i,j =
1
N
∑

N
ϕi,j,k (4)  

6.4. Data generation and transformation 

We assume that the maximum values of LLI, LAMGr, and LAMPE are 
24% when synthetically generating data, and they varied from 0% to 
24% with 4%, 2%, and 4% increment, respectively. The maximum 
values of LAMSi and RI are 84% and 120%, changing with 7% and 10% 
increment, respectively. With different values of five independent DMs, 
the dataset for battery degradation included 82,810 independent com
binations, so we synthesized 82,810 unique OCVs with the half-cell 
potentials of PE and NE using Eq. (1). The synthetic OCV dataset 
would cover almost all aging paths [14], when the battery capacity loss 
and resistance increase are less than 20% and 120%, respectively. 

We considered the experimental full-cell OCV(Q) data as the capacity 
as a function of voltage (Q(OCV)), using Eq. (5) for data transformation, 
as there are plenty of data points in the OCV(Q) data due to the low 
current measurement. 

Qj
(
Vj
)
= median[Q(V)],Vj − ΔV ≤ V ≤ Vj + ΔV (5) 

For the CNN input, to highlight the Q(OCV) variation with respect to 
the initial Q(OCV) of fresh batteries, we considered the ΔQ(OCV), 
expressed as: 
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ΔQ(OCV) = Qaged(OCV) − Qfresh(OCV) (6)  

where Qaged(OCV), and Qfresh(OCV) represent the Q(OCV) of aged and 
fresh batteries, respectively. 

To standardize the capacity-voltage (Q(OCV)) data, the capacity was 
evaluated at 600 linearly spaced voltage points from 3.17–4.2 V, 
enabling the straightforward data subtraction to obtain ΔQ(OCV) data 
[26]. The min-max normalization method was applied to process the ΔQ 
(OCV) data before feeding into the CNN, which retains the original 
distribution of the ΔQ(OCV) data and all transformed data fall into the 
range of [0,1]. The maximum and minimum values of the ΔQ(OCV) 
were kept constant during training, testing and diagnostics with exper
imental data. 

6.5. Grad-CAM method 

Gradient-weighted class activation mapping (Grad-CAM) is an 
interpretability technique that can be used to help understand the pre
dictions made by a deep neural network [27]. The Grad-CAM is a 
generalization of the class activation mapping (CAM) technique, which 
is used to explore which parts of the input are most important for output 
identification. The Grad-CAM computes the importance map by taking 
the derivative of the regression output with respect to a convolutional 
feature map, i.e. a ReLU layer, which takes the output of a convolutional 
layer at the end of the network. The neuron importance weight (αc

k) can 
be calculated as: 

αck =
1
N

∑

i

∂yc
∂Ak

i
(7)  

where yc, Ak
i , and N are the network output, representing the scalar 

value for regression c, the k feature maps (channels), with i indicating 
feature elements, and the total number of elements in the feature map, 
respectively. The weight αc

k represents a partial linearization of the deep 
network downstream from A, and captures the ‘importance’ of feature 
map k for a target regression c. 

The Grad-CAM is a weighted combination of the feature maps with 
an applied ReLU: 

LcGrad− CAM = ReLU

(
∑

k
αckAk

)

(8) 

We apply a ReLU to the linear combination of maps because we are 
only interested in the features that have a positive influence on the 
regression of interest. The calculation is therefore a coarse heat map of 
the same size as the feature map A and then can be up-sampled to the 
size of the input data. The places where this gradient is large are exactly 
the places where the final quantification depends most on the data. 

6.6. Convolutional neural network 

The CNN in Supplementary Fig. S3 contains eight learned layers: one 
input layer, five convolutional layers, one fully-connected layer, and one 
output layer. The first and second convolutional layers are the same, 
consisting of two arms, which contain 64 1 × 3 kernels with stride=2, 
and 64 1 × 5 kernels with stride=2, respectively. The identical third and 
fourth convolutional layers includes three arms, which contains 96 1 × 1 
kernels with stride=2, 96 1 × 3 kernels with stride=2, and 96 1 × 5 
kernels with stride=2. The four convolutional arms of the fifth con
volutional layer are 256 1 × 1 kernels with stride=2, 256 1 × 1 kernels 
with stride=2 series connected to 256 1 × 3 kernels with stride=2, 256 1 
× 1 kernels with stride=2 series connected to 256 1 × 5 kernels with 
stride=2, and 256 1 × 3 pooling kernels series connected to 256 1 × 1 
kernels with stride=2. Each convolutional layer is with same-padding 
and followed by batch normalization and ReLU activation layers. They 
are concatenated, flattened and fed to five fully-connected layers. Each 

fully-connected layer contains 18,432 neurons and is connected to the 
regression output. The five outputs represent five independent DMs. 

The synthetic dataset was randomly partitioned to 80% for training, 
and 20% for testing and the Adam optimizer [28] was utilized to train 
the CNN with a mini-batch of size 512 for 50 epochs, where the training 
processes are similar to the work [14]. The cost function (Lloss) for 
training the CNN can be described as: 

Lloss =
∑5

j=1
ωj⋅Lj,Lj =

1
2
∑

(Yi − Xi)
2 (9)  

where ωj, Yi, and Xi stand for the weighting coefficient for every output, 
target values, and CNN predictions, respectively. We set the weighting 
coefficients as 1, 2, 8, 1, and 4 for LLI, LAMGr, LAMSi, LAMPE and RI, 
respectively. We used the RMS to evaluate the differences between the 
predicted and target values. All CNN training and testing for composite 
batteries were undertook in MATLAB on a single desktop computer with 
an NVIDIA Quadro P4000 GPU. The diagnostics with experimental data 
and the trained CNN was carried out in MATLAB on a single general 
computer with an Intel(R) Xeon(R) Silver 4110. 
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