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Abstract: In this work, we explore information geometry theoretic measures for characterizing neural
information processing from EEG signals simulated by stochastic nonlinear coupled oscillator models
for both healthy subjects and Alzheimer’s disease (AD) patients with both eyes-closed and eyes-open
conditions. In particular, we employ information rates to quantify the time evolution of probabil-
ity density functions of simulated EEG signals, and employ causal information rates to quantify
one signal’s instantaneous influence on another signal’s information rate. These two measures help
us find significant and interesting distinctions between healthy subjects and AD patients when they
open or close their eyes. These distinctions may be further related to differences in neural information
processing activities of the corresponding brain regions, and to differences in connectivities among
these brain regions. Our results show that information rate and causal information rate are superior
to their more traditional or established information-theoretic counterparts, i.e., differential entropy
and transfer entropy, respectively. Since these novel, information geometry theoretic measures can
be applied to experimental EEG signals in a model-free manner, and they are capable of quantify-
ing non-stationary time-varying effects, nonlinearity, and non-Gaussian stochasticity presented in
real-world EEG signals, we believe that they can form an important and powerful tool-set for both
understanding neural information processing in the brain and the diagnosis of neurological disorders,
such as Alzheimer’s disease as presented in this work.

Keywords: information geometry; information length; information rate; causal information rate;
causality; stochastic oscillators; electroencephalography; stochastic simulation; signal processing;
dementia; Alzheimer’s disease; information theory; neural information processing; brain networks

1. Introduction

Identifying quantitative features from neurophysiological signals such as electroen-
cephalography (EEG) is critical for understanding neural information processing in the
brain and the diagnosis of neurological disorders such as dementia. Many such features
have been proposed and employed to analyze neurological signals, which not only resulted
in insightful understanding of the brain neurological dynamics of patients with certain neu-
rological disorders versus healthy control (CTL) groups, but also helped build mathematical
models that replicate the neurological signal with these quantitative features [1–5].

An important distinction, or non-stationary time-varying effects of the neurological
dynamics, is the switching between eyes-open (EO) and eyes-closed (EC) states, where
numerous research studies have been conducted on this distinction between EO and EC
states to quantify important features of CTL subjects and patients using different techniques
on EEG data such as traditional frequency-domain analysis [6,7], transfer entropy [8],
energy landscape analysis [9], and nonlinear manifold learning for functional connectivity
analysis [10], while also attempting to relate these features to specific clinical conditions
and/or physiological variables, including skin conductance levels [11,12], cerebral blood
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flow [13], brain network connectivity [14–16], brain activities in different regions [17],
and performance on the unipedal stance test (UPST) [18]. Clinical physiological studies
found that there are distinct mental states related to the EO and EC states. Specifically,
there is an “exteroceptive” mental activity state characterized by attention and ocular
motor activity during EO, and an “interoceptive” mental activity state characterized by
imagination and multisensory activity during EC [19,20]. Ref. [21] suggested that the
topological organization of human brain networks dynamically switches corresponding to
the information processing modes when the brain is visually connected to or disconnected
from the external environment. However, patients with Alzheimer’s disease (AD) show loss
of brain responsiveness to environmental stimuli [22,23], which might be due to impaired
or loss of connectivities in the brain networks. This suggests that dynamical changes
between EO and EC might represent an ideal paradigm to investigate the effect of AD
pathophysiology and could be developed as biomarkers for diagnosis purposes. However,
sensible quantification of robust features of these dynamical changes between EO and
EC of both healthy and AD subjects, solely relying on EEG signals, is nontrivial. Despite
the success of many statistical and quantitative measures being applied to neurological
signal analysis, the main challenges stem from the non-stationary time-varying dynamics
of the human brain with nonlinearity and non-Gaussian stochasticity, which makes most, if
not all, of these traditional quantitative measures inadequate, and blindly applying these
traditional measures to nonlinear and nonstationary time series/signals may produce
spurious results, leading to incorrect interpretation.

In this work, by using simulated EEG signals of both CTL groups and AD patients
under both EC and EO conditions and based on our previous works on information geome-
try [24–26], we develop novel and powerful quantitative measures in terms of information
rate and causal information rate to quantify the important features of neurological dy-
namics of brains. We are able to find significant and interesting distinctions between CTL
subjects and AD patients when they switch between the eyes-open and eyes-closed status.
These quantified distinctions may be further related to differences in neural information
processing activities of the corresponding brain regions, and to differences in connectivities
among these brain regions, and therefore, they can be further developed as important
biomarkers to diagnose neurological disorders, including but not limited to Alzheimer’s
disease. It should be noted that these novel and powerful quantitative measures in terms
of information rate and causal information rate can be applied to experimental EEG signals
in a model-free manner, and they are capable of quantifying non-stationary time-varying
effects, nonlinearity, and non-Gaussian stochasticity presented in real-world EEG signals,
and hence, they are more robust and reliable than other information-theoretic measures
applied to neurological signal analysis in the literature [27,28]. Therefore, we believe that
these information geometry theoretic measures can form an important and powerful tool
set for the neuroscience community.

The EEG signals have been modeled using many different methodologies in the
literature. An EEG model in terms of nonlinear stochastic differential equation (SDE) could
be sufficiently flexible in that it usually contains many parameters, whose values can be
tuned to match the model’s output with actual EEG signals for different neurophysiological
conditions, such as EC and EO, of CTL subjects or AD patients. Moreover, an SDE model of
EEG can be solved by a number of numerical techniques to generate simulated EEG signals
superior to actual EEG signals in terms of much higher temporal resolution and much
larger number of sample paths available. These are the two main reasons why we choose
to work with SDE models of EEG signals. Specifically, we employed a model of stochastic
coupled Duffing–van der Pol oscillators proposed by Ref. [1], which is flexible enough to
represent the EC and EO conditions for both CTL and AD subjects and straightforward
enough to be simulated by using typical numerical techniques for solving SDE. Moreover,
the model parameters reported in Ref. [1] were fine tuned against real-world experimental
EEG signals of CTL and AD patients with both EC and EO conditions, and therefore,
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quantitative investigations on the model’s output of simulated signals are sufficiently
representative for a large population of healthy and AD subjects.

2. Methods
2.1. Stochastic Nonlinear Oscillator Models of EEG Signals

A phenomenological model of the EEG based on a coupled system of Duffing–van
der Pol oscillators subject to white noise excitation has been introduced [1] with the
following form:{

ẍ1 + (k1 + k2)x1 − k2x2 = −b1x3
1 − b2(x1 − x2)

3 + ϵ1 ẋ1(1 − x2
1),

ẍ2 − k2x1 + k2x2 = b2(x1 − x2)
3 + ϵ2 ẋ2(1 − x2

2) + µ dW,
(1)

where xi, ẋi, ẍi, i = 1, 2 are positions, velocities, and accelerations of the two oscillators,
respectively. Parameters ki, bi, ϵi, i = 1, 2 are the linear stiffness, cubic stiffness, and van
der Pol damping coefficient of the two oscillators, respectively. Parameter µ represents the
intensity of white noise and dW is a Wiener process representing the additive noise in the
stochastic differential system. The physical meanings of these variables and parameters
were nicely explained in a schematic figure in Ref. [1].

By using actual EEG signals, Ref. [1] utilized a combination of several different statis-
tical and optimization techniques to fine tune the parameters in the model equations for
eyes-closed (EC) and eyes-open (EO) conditions of both healthy control (CTL) subjects and
Alzheimer’s disease (AD) patients, and these parameter values for different conditions are
summarized in Tables 1 and 2.

Table 1. Optimal parameters of the Duffing–van der Pol oscillator for EC and EO of healthy control
(CTL) subjects.

Parameter Eyes-Closed (EC) Eyes-Open (EO)

k1 7286.5 2427.2

k2 4523.5 499.92

b1 232.05 95.61

b2 10.78 103.36

ϵ1 33.60 48.89

ϵ2 0.97 28.75

µ 2.34 1.82

Table 2. Optimal parameters of the Duffing–van der Pol oscillator for EC and EO of Alzheimer’s
disease (AD) patients.

Parameter Eyes-Closed (EC) Eyes-Open (EO)

k1 1742.1 3139.9

k2 1270.8 650.32

b1 771.99 101.1

b2 1.91 81.3

ϵ1 63.7 56.3

ϵ2 20.7 19.12

µ 1.78 1.74
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The model Equation (1) can be easily rewritten in a more standard form of stochastic
differential equation (SDE) as follows:

ẋ1 = x3,

ẋ2 = x4,

ẋ3 = −(k1 + k2)x1 + k2x2 − b1x3
1 − b2(x1 − x2)

3 + ϵ1x3(1 − x2
1),

ẋ4 = k2x1 − k2x2 + b2(x1 − x2)
3 + ϵ2x4(1 − x2

2) + µ dW,

(2)

which is more readily suitable for stochastic simulations.

2.2. Initial Conditions (ICs) and Specifications of Stochastic Simulations

For simplicity, we employ the Euler–Maruyama scheme [29] to simulate 2 × 107 tra-
jectories in total of the model Equation (2); although, other more sophisticated methods
for stochastic simulations exist. We simulate such a large number of trajectories, because
calculations of information geometry theoretic measures rely on accurate estimation of
probability density functions (PDFs) of the model’s variables xi(t), which requires a large
number of data samples of xi(t) at any given time t.

Since nonlinear oscillators’ solution is very sensitive to initial conditions, we start
the simulation with a certain initial probability distribution (e.g., a Gaussian distribution)
for all x1(0), x2(0), x3(0), x4(0), which means that the 20 million xi(0) (∀i = 1, 2, 3, 4) are
randomly drawn from a probability density function (PDF) of the initial distribution.
The time-step size dt is set to 10−6 to compensate for the very-high values of stiffness
parameters k1 and k2 in Tables 1 and 2. The total number of simulation time steps is 1 × 107,
making the total time range of simulation [0, 10]. The ∆t = 10−4 is the time interval when
the probability density functions (PDFs) p(x1, t) and p(x2, t) are estimated for calculating
information geometry theoretic measures such as information rates and causal information
rates, as explained in Section 2.3.

For nonlinear oscillators, different initial conditions can result in dramatically different
long-term time evolution. So in order to explore more diverse initial conditions, we simu-
lated the SDE with 6 different initial Gaussian distributions with different means and stan-
dard deviations, i.e., x1(0) ∼ N (µx1(0), σ2), x2(0) ∼ N (µx2(0), σ2), x3(0) ∼ N (µx3(0), σ2),
x4(0) ∼ N (µx4(0), σ2), where the parameters are summarized alongside other specifications
in Table 3.

Table 3. Initial conditions (IC): x1(0), x2(0), x3(0), x4(0) are randomly drawn from Gaussian distribu-
tions N (µxi(0), σ2) with different µxi(0)’s and σ’s (i = 1, 2, 3, 4).

IC No.1 IC No.2 IC No.3 IC No.4 IC No.5 IC No.6

µx1(0) 1.0 0.9 0.2 0.1 0.5 0.2

µx2(0) 0.5 0.1 0.5 0.5 0.9 0.9

µx3(0) 0 1.0 0.5 0.2 1.0 0.1

µx4(0) 0 0.5 1.0 1.0 0.8 0.5

σ 0.1 0.1 0.1 0.5 0.5 0.5

Num. of trajectories 2 × 107 2 × 107 2 × 107 2 × 107 2 × 107 2 × 107

dt 10−6 10−6 10−6 10−6 10−6 10−6

∆t 10−4 10−4 10−4 10−4 10−4 10−4

Num. of time-steps 1 × 107 1 × 107 1 × 107 1 × 107 1 × 107 1 × 107

Total range of t [0, 10] [0, 10] [0, 10] [0, 10] [0, 10] [0, 10]

For brevity, in this paper, we use the word “initial conditions” or its abbreviation
“IC” to refer to the (set of 4) initial Gaussian distributions from which the 20 million xi(0)
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(∀i = 1, 2, 3, 4) are randomly drawn. For example, the “IC No.6” in Table 3 (and simply
“IC6” elsewhere in this paper) refers to the 6th (set of 4) Gaussian distributions with which
we start the simulation, and the specifications of this stimulation are listed in the last
column of Table 3.

2.3. Information Geometry Theoretic Measures: Information Rate and Causal Information Rate

When a stochastic differential equation (SDE) model exhibits non-stationary time-
varying effects, nonlinearity, and/or non-Gaussian stochasticity, while we are interested
in large fluctuations and extreme events in the solutions, simple statistics such as mean
and variance might not suffice to compare the solutions of different SDE models (or same
model with different parameters). In such cases, quantifying and comparing the time
evolution of probability density functions (PDFs) of solutions will provide us with more
information [30]. The time evolution of PDFs can be studied and compared through the
framework of information geometry [31], wherein PDFs are considered as points on a
Riemannian manifold (which is called the statistical manifold), and their time evolution
can be considered as a motion on this manifold. Several different metrics can be defined on
a probability space to equip it with a manifold structure, including a metric related to the
Fisher Information [32], known as the Fisher Information metric [33,34], which we use in
this work:

gµν(θ)
def
=

∫
X

∂ log p(x; {θ})
∂θµ

∂ log p(x; {θ})
∂θν

p(x; {θ}) dx. (3)

Here, p(x; {θ}) denotes a continuous family of PDFs parameterized by parameters {θ}. If
a time-dependent PDF p(x, t) is considered as a continuous family of PDFs parameterized
by a single parameter time t, the metric tensor is then reduced to a scalar metric:

g(t) =
∫

dx
1

p(x, t)

[
∂p(x, t)

∂t

]2

. (4)

The infinitesimal distance dL on the manifold is then given by dL2 = g(t) dt2, where L is
called the Information Length and defined as follows:

L(t) def
=

∫ t

0
dt1

√∫
dx

1
p(x, t1)

[
∂p(x, t1)

∂t1

]2

. (5)

The Information Length L represents the dimensionless distance, which measures the total
distance traveled on the statistical manifold. The time derivative of L then represents the
speed of motion on this manifold:

Γ(t) def
= lim

dt→0

dL(t)
dt

=

√∫
dx

1
p(x, t)

[
∂p(x, t)

∂t

]2

, (6)

which is referred to as the Information Rate. If multiple variables are involved, such as
xi(t) where i = 1, 2, 3, 4 as in the stochastic nonlinear oscillator model Equation (2), we will
use subscript in Γ(t), e.g., Γx2(t) to denote the information rate of signal x2(t).

The notion of Causal Information Rate was introduced in Ref. [25] to quantify how
one signal instantaneously influences another signal’s information rate. As an example, the
causal information rate of signal x1(t) influencing signal x2(t)’s information rate is denoted

and defined by Γx1→x2(t)
def
= Γ∗

x2
(t)− Γx2(t), where

Γx2(t)
2 =

∫
dx2 p(x2, t)[∂t ln p(x2, t)]2, (7)
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and

Γ∗
x2
(t)2 def

= lim
t∗→t+

∫
dx1 dx2 p(x2, t∗; x1, t)[∂t∗ ln p(x2, t∗|x1, t)]2

= lim
t∗→t+

∫
dx1 dx2 p(x2, t∗; x1, t)[∂t∗ ln p(x2, t∗; x1, t)]2, (8)

where the relation between conditional, joint, and marginal PDFs p(x2, t∗|x1, t) = p(x2,t∗ ;x1,t)
p(x1,t)

and the fact ∂t∗ p(x1, t) = 0 for t∗ ̸= t are used in the 2nd equal sign above. Γ∗
x2

denotes
the (auto) contribution to the information rate from x2 itself, while x1 is given/known and
frozen in time. In other words, Γ∗

x2
represents the information rate of x2 when the additional

information of x1 (at the same time with x2) becomes available or known. Subtracting Γx2

from Γ∗
x2

following the definition of Γx1→x2 then gives us the contribution of (knowing
the additional information of) x1 to Γx2 , signifying how x1 instantaneously influences the
information rate of x2. One can easily verify that if signals x1(t) and x2(t) are statistically
independent such that the equal-time joint PDF can be separated as p(x1, t; x2, t) = p(x1, t) ·
p(x2, t), then Γ∗

x2
(t) will reduce to Γx2(t), making the causal information rate Γx1→x2 = 0,

which is consistent with the assumption that x1(t) and x2(t) are statistically independent
at the same time t.

For numerical estimation purposes, one can derive simplified equations Γx2(t)
2

= 4
∫

dx2

[
∂t

√
p(x2, t)

]2
and Γ∗

x2
(t)2 = 4 lim

t∗→t+

∫
dx1 dx2

[
∂t∗

√
p(x2, t∗; x1, t)

]2
to ease the

numerical calculations and avoid numerical errors in PDFs (due to finite sample-size estima-
tions using a histogram-based approach) being doubled or enlarged when approximating
the integrals in the original Equations (7) and (8) by finite summation. On the other hand,
the time derivatives of the square root of PDFs are approximated by using temporally
adjacent PDFs with each pair of two adjacent PDFs being separated by ∆t = 10−4 in time,
as mentioned at the end of Section 2.2.

2.4. Shannon Differential Entropy and Transfer Entropy

As a comparison with more traditional and established information-theoretic measures,
we also calculate differential entropy and transfer entropy using the numerically estimated
PDFs and compare them with information rate and causal information rate, respectively.

The Shannon differential entropy of a signal x(t) is defined to extend the idea of
Shannon discrete entropy as

h(x(t)) = E[− ln p(x, t)] = −
∫

p(x, t) ln p(x, t) dx = −
∫

P(dx(t)) ln
P(dx(t))

µ(dx)
, (9)

where µ(dx) = dx is the Lebesgue measure, and P(dx(t)) = p(x, t) µ(dx) = p(x, t) dx is
the probability measure. In other words, differential entropy is the negative relative entropy
(Kullback-Leibler divergence) from the Lebesgue measure (considered as an unnormalized
probability measure) to a probability measure P (with density p). In contrast, information

rate Γx(t) =
√∫

dx p(x, t)[∂t ln p(x, t)]2 =

√
lim
dt→0

2
dt2

∫
dx p(x, t + dt) ln

p(x, t + dt)
p(x, t)

(see

Ref. [24–26] for detailed derivations) is related to the rate of change in relative entropy
of two infinitesimally close PDFs p(x, t) and p(x, t + dt). Therefore, although differential
entropy can measure the complexity of a signal x(t) at time t, it neglects how the signal’s
PDF p(x, t) changes instantaneously at that time, which is crucial to quantify how new
information can be reflected from the instantaneous entropy production rate of the signal
x(t). This is the theoretical reason why the information rate is a much better and more
appropriate measure than differential entropy for characterizing the neural information
processing from EEG signals of the brain, and the practical reason for this will be illustrated
in terms of numerical results and discussed at the end of Sections 3.3.2 and 3.3.3.
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The transfer entropy (TE) measures the directional flow or transfer of information between
two (discrete-time) stochastic processes. The transfer entropy from a signal x1(t) to another
signal x2(t) is the amount of uncertainty reduced in future values of x2(t) by knowing the past
values of x1(t) given past values of x2(t). Specifically, if the amount of information is measured
using Shannon’s (discrete) entropy H(Xt) = −∑x p(x, t) log2 p(x, t) of a stochastic process Xt
and conditional entropy H(Yt2 |Xt1) = −∑x,y p(x, t1; y, t2) log2 p(y, t2|x, t1), the transfer entropy
from a process Xt to another process Yt (for discrete-time t ∈ Z) can be written as follows:

TEXt→Yt(t) = H
(

Yt+1 | Yt:t−(k−1)

)
− H

(
Yt+1 | Yt:t−(k−1), Xt:t−(l−1)

)
, (10)

= −∑
y

p(yt+1, yt:t−(k−1)) log2 p(yt+1|yt:t−(k−1))

+ ∑
x,y

p(yt+1, yt:t−(k−1), xt:t−(l−1)) log2 p(yt+1|yt:t−(k−1), xt:t−(l−1)),

= ∑
x,y

p(yt+1, yt:t−(k−1), xt:t−(l−1)) log2
p(yt+1|yt:t−(k−1), xt:t−(l−1))

p(yt+1|yt:t−(k−1))
,

= ∑
x,y

p(yt+1, yt:t−(k−1), xt:t−(l−1)) log2
p(yt+1, yt:t−(k−1), xt:t−(l−1))p(yt:t−(k−1))

p(yt:t−(k−1), xt:t−(l−1))p(yt+1, yt:t−(k−1))
, (11)

which quantifies the amount of reduced uncertainty in future value Yt+1 by knowing the
past l values of Xt given past k values of Yt, where Yt:t−(k−1) and Xt:t−(l−1) are shorthands
of past k values Yt, Yt−1, . . . , Yt−(k−1) and past l values Xt, Xt−1, . . . , Xt−(l−1), respectively.

In order to properly compare with causal information rate signifying how one signal
instantaneously influences another signal’s information rate (at the same/equal-time t),
we set k = l = 1 in calculating the transfer entropy between two signals. Also, since the
causal information rate involves partial time derivatives, which have to be numerically
estimated using temporally adjacent PDFs separated by ∆t = 10−4 in time (as mentioned
at the end of Section 2.2), the discrete-time t ∈ Z in transfer entropy should be changed to
n∆t with n ∈ Z. Therefore, the transfer entropy appropriate for comparing with the causal
information rate should be rewritten as follows:

TEx1→x2(t) = H(x2(t + ∆t) | x2(t))− H(x2(t + ∆t) | x2(t), x1(t)), (12)

= ∑
x1,x2

p(x2, t + ∆t; x2, t; x1, t) log2
p(x2, t + ∆t|x2, t; x1, t)

p(x2, t + ∆t|x2, t)
,

= ∑
x1,x2

p(x2, t + ∆t; x2, t; x1, t) log2
p(x2, t + ∆t; x2, t; x1, t)p(x2, t)
p(x2, t; x1, t)p(x2, t + ∆t; x2, t)

. (13)

Numerical estimations of the information rate, causal information rate, differential entropy,
and transfer entropy are all based on numerical estimation of PDFs using histograms.
In particular, in order to sensibly and consistently estimate the causal information rate
(e.g., to avoid getting negative values), special caution is required when choosing the

binning for histogram estimation of PDFs in calculating Γx2(t)
2 = 4

∫
dx2

[
∂t

√
p(x2, t)

]2

and Γ∗
x2
(t)2 = 4 lim

t∗→t+

∫
dx1 dx2

[
∂t∗

√
p(x2, t∗; x1, t)

]2
. The finer details for these numerical

estimation techniques are elaborated in Appendix A.

3. Results

We performed simulations with six different Gaussian initial distributions (with differ-
ent means and standard deviations summarized in Table 3). Initial Conditions No.1 (IC
No.1, or simply IC1) through No.3 (IC3) are Gaussian distributions with a narrow width
or smaller standard deviation, whereas IC4 through IC6 have a larger width/standard
deviation, and therefore, the simulation results of IC4 through IC6 exhibit more diverse
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time evolution behaviors (e.g., more complex attractors, as explained next), and hence,
the corresponding calculation results are more robust or insensitive to the specific mean
values µxi(0)’s of the initial Gaussian distributions (see Table 3 for more details). Therefore,
in the main text here, we focus on these results from initial Gaussian distributions with
wider width/larger standard deviation, and we list complete results from all six initial
Gaussian distributions in the Appendix B. Specifically, we found that the results from IC4
through IC6 are qualitatively the same or very similar, and therefore, in the main text here,
we illustrate and discuss the results from Initial Conditions No.4 (IC4), which is sufficiently
representative for IC5 and IC6, and refer to other IC’s (by referencing the relevant sections
in Appendix B or explicitly illustrating the results) if needed.

3.1. Sample Trajectories of X1(T) and X2(T)

To give a basic idea of how the simulated trajectories evolve in time, we start by
illustrating 50 sample trajectories of x1(t) and x2(t) from the total 2 × 107 simulated trajec-
tories for both CTL subjects and AD patients with both EC and EO conditions, which are
visualized in Figures 1 and 2. Notice that from Figure 1c, one can see that it takes some
time for the trajectories of x2(t) to settle down on some complex attractors for EC, which
suggests a longer memory associated with EC of CTL. This is more evident as shown in the
time evolution of PDF p(x2, t) in Figure 3c below.

(a) CTL EC x1(t)

(b) CTL EO x1(t)
Figure 1. Cont.
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(c) CTL EC x2(t)

(d) CTL EO x2(t)
Figure 1. Fifty Sample trajectories of healthy CTL subjects. Each single trajectory is labeled by a
different color.

(a) AD EC x1(t)

(b) AD EO x1(t)
Figure 2. Cont.
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(c) AD EC x2(t)

(d) AD EO x2(t)
Figure 2. Fifty Sample trajectories of AD patients. Each single trajectory is labeled by a different color.

3.2. Time Evolution of PDF P(X1, T) and P(X2, T)

The empirical PDFs p(x1, t) and p(x2, t) can better illustrate the overall time evolution
of a large number of trajectories, and they serve as a basis for calculations of information
geometry theoretic measures such as information rates and causal information rates. These
empirical PDFs are estimated using a histogram-based approach with Rice’s rule [35,36],
where the number of bins is nbins = 2 3

√nsamples, and since we simulated 2 × 107 sample
trajectories in total, the nbins is rounded to 542. The centers of bins are plotted on the y-axis
in sub-figures of Figures 3 and 4, where the function values of p(x1, t) and p(x2, t) are
color-coded following the color bars.

As mentioned in the previous section, from Figure 3c, one can see more clearly that
after around t ≥ 5, the trajectories settle down on some complex attractors, and the time
evolution of p(x2, t) undergoes only minor changes. Meanwhile, from Figure 3a, one can
observe that a similar settling down of x1(t) on some complex attractors happens after
around t ≥ 7.5. Therefore, we select only PDFs with t ≥ 7.5 for statistical analysis of
information rates and causal information rates to investigate the stationary properties.

From Figures 3 and 4, one can already observe some qualitative differences between
healthy control (CTL) subjects and AD patients. For example, the time evolution patterns
of p(x1, t) and p(x2, t) are significantly different when CTL subjects open their eyes from
eyes-closed (EC) state, whereas for AD patients, these differences are relatively minor.
One of the best ways to provide quantitative descriptions of these differences (instead of
being limited to qualitative descriptions) is using information geometry theoretic mea-
sures such as information rates and causal information rates, whose results are listed in
Sections 3.3 and 3.4, respectively.
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(a) CTL EC p(x1, t)

(b) CTL EO p(x1, t)

(c) CTL EC p(x2, t)

(d) CTL EO p(x2, t)
Figure 3. Time evolution of estimated PDFs of healthy CTL subjects.
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(a) AD EC p(x1, t)

(b) AD EO p(x1, t)

(c) AD EC p(x2, t)

(d) AD EO p(x2, t)
Figure 4. Time evolution of estimated PDFs of AD patients.
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As can be seen from Appendix B.2, IC1 through IC3 exhibit much simpler attractors
than IC4 through IC6. Since the width/standard deviation of the initial Gaussian distri-
butions of IC1 through IC3 is much smaller, they are more sensitive to the specific mean
values µxi(0)’s of the initial Gaussian distribution, and one can see that IC3’s time evolu-
tion behaviors of p(xi, t) are somewhat qualitatively different from IC1 and IC2, whereas
p(xi, t)’s time evolution behaviors of IC4 through IC6 are all qualitatively the same.

3.3. Information Rates Γx1(t) and Γx2(t)

Intuitively speaking, the information rate is the (instantaneous) speed of PDF’s motion
on the statistical manifold, as each given PDF corresponds to a point on that manifold,
and when the time changes, a time-dependent PDF will typically move on a curve on the
statistical manifold, whereas a stationary or equilibrium state PDF will remain at the same
point on the manifold. Therefore, the information rate is a natural tool to investigate the
time evolution of PDF.

Moreover, since the information rate is quantifying instantaneous rate of change in the
infinitesimal relative entropy between two adjacent PDFs, it is hypothetically a reflection of
neural information processing in the brain, and hence, it may provide important insight
into the neural activities in different regions of the brain, as long as the regional EEG signals
can be sufficiently collected for calculating the information rates.

3.3.1. Time Evolution

The time evolution of information rates Γx1(t) and Γx2(t) are shown in Figure 5a,b
for CTL subjects and AD patients, respectively. Since Γx1(t) and Γx2(t) quantify the (in-
finitesimal) relative entropy production rate instantaneously at time t, they represent the
information-theoretic complexities of signals x1(t) and x2(t) of the coupled oscillators,
respectively, and are hypothetical reflections of neural information processing in the corre-
sponding regions in the brain.

For example, in Figure 5a, there is a clear distinction between eyes-closed (EC) and
eyes-open (EO) for CTL subjects: both Γx1(t) and Γx2(t) decrease significantly when healthy
subjects open their eyes, which may be interpreted as the neural information processing
activities of the corresponding brain regions being “suppressed” by the incoming visual
information when eyes are opened from being closed.

(a) Health CTL subjects.
Figure 5. Cont.
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(b) AD patients.
Figure 5. Information rates along time of CTL and AD subjects.

Interestingly, when AD patients open their eyes, both Γx1(t) and Γx2(t) are increasing
instead of decreasing, as shown in Figure 5b. This might be interpreted as that the incoming
visual information received when eyes are opened is in fact “stimulating” the neural
information processing activities of the corresponding brain regions, which might be
impaired or damaged by the relevant mechanism of Alzheimer’s disease (AD).

In Figure 5a,b, we annotate the mean and standard deviation for Γx1(t) and Γx2(t)
after t ≥ 7.5 in the legend, because as mentioned above, the PDFs of this time range
reflect longer-term temporal characteristics, and hence, the corresponding Γx1(t ≥ 7.5)
and Γx2(t ≥ 7.5) should reflect more reliable and robust features of neural information
processing activities of the corresponding brain regions. Therefore, meaningful statistics
will require collecting samples of Γx1(t) and Γx2(t) in this time range, for which the results
are shown in the section below.

3.3.2. Empirical Probability Distribution (for T ≥ 7.5)

The statistics of Γx1(t ≥ 7.5) and Γx2(t ≥ 7.5) can be further and better visualized
using empirical probability distributions of them, as shown in Figure 6. Again, we use
histogram-based density estimation with Rice’s rule, and since the time interval ∆t for
estimating PDFs and computing Γx1(t) and Γx2(t) is 10−4 (whereas the time-step size dt for
simulating the SDE model is 10−6), we collected 24,999 samples of both Γx1(t) and Γx2(t)
for 7.5 ≤ t < 10, and hence, the number of bins following Rice’s rule is rounded to 58.
Figure 6 confirms the observation in the previous section, while it also better visualizes the
sample standard deviation in the shapes of the estimated PDFs, indicating that the PDFs of
both Γx1(t) and Γx2(t) are narrowed down when healthy subjects open their eyes but are
widened when AD patients do so.

As a comparison, we also calculate more traditional/established information-theoretic
measure, namely, the Shannon differential entropy h(x1(t)) and h(x2(t)), and estimate their
empirical probability distributions in the same manner as we do for information rates, as
shown in Figure 7.

One can see that the empirical distributions of differential entropy h(x1(t)) and
h(x2(t)) are not able to make clear distinction between EC and EO conditions, especially for
AD patients. This may be better summarized in Table 4, comparing the mean and standard
deviation values of information rate vs. differential entropy for the four cases. Therefore,
the information rate is a superior measure for quantifying the non-stationary time-varying
dynamical changes in EEG signals when switching between EC and EO states and is a
better and more reliable reflection of neural information processing in the brain.
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Figure 6. Empirical probability distributions of information rates Γx1 (t) and Γx2 (t) (t ≥ 7.5).

Figure 7. Empirical probability distributions of differential entropy h(x1(t)) and h(x2(t)) (t ≥ 7.5).

Table 4. Mean and standard deviation values (µ ± σ) of information rates Γx1 (t) & Γx2 (t) vs. differen-
tial entropy h(x1(t)) & h(x2(t)) (t ≥ 7.5).

CTL EC CTL EO AD EC AD EO

Γx1 (t) 744.48 ± 165.91 172.80 ± 22.59 147.95 ± 18.72 451.10 ± 108.99

Γx2 (t) 620.95 ± 148.37 179.85 ± 18.51 113.74 ± 27.85 217.84 ± 89.11

h(x1(t)) 0.59 ± 0.57 1.05 ± 0.22 1.11 ± 0.19 0.73 ± 0.34

h(x2(t)) −0.05 ± 0.46 0.78 ± 0.20 1.11 ± 0.21 0.93 ± 0.17

3.3.3. Phase Portraits (for T ≥ 7.5)

In addition to empirical statistics of information rates for t ≥ 7.5 in terms of estimated
probability distributions, one can also visualize the temporal dynamical features of Γx1(t)
and Γx2(t) combined using phase portraits, as shown in Figure 8. Notice that when healthy
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subjects open their eyes, the fluctuation ranges of Γx1(t) and Γx2(t) shrink by roughly 5-fold,
whereas when AD patients open their eyes, the fluctuation ranges are enlarged.

Figure 8. Phase portraits of information rates Γx1 (t) vs. Γx2 (t) (t ≥ 7.5).

Moreover, when plotting EC and EO of healthy subjects separately in Figure 9a to
zoom into the ranges of Γx1(t) and Γx2(t) for EO, one can also see that the phase portrait of
EO exhibits a fractal-like pattern, whereas the phase portrait of EC exhibits more regular
dynamical features, including an overall trend of fluctuating between bottom left and top
right, indicating that the Γx1(t) and Γx2(t) are somewhat synchronized, which could be
explained by the strong coupling coefficients in Table 1 of healthy subjects. Contrarily, for
AD patients, the phase portraits of EC and EO both exhibit fractal-like patterns in Figure 9b.

(a) Health CTL subjects. (b) AD patients.
Figure 9. Phase portraits of information rates Γx1 (t) vs. Γx2 (t) (t ≥ 7.5) of CTL and AD subjects.

Same as at the end of Section 3.3.2, as a comparison, we also visualize the phase
portraits of Shannon differential entropy h(x1(t)) and h(x2(t)) in Figures A52d and A56
in Appendix B.4.3, where one can see that it is hard to distinguish the phase portraits of
h(x1(t)) vs. h(x2(t)) of AD EC from those of AD EO, as they are qualitatively the same
or very similar. Contrarily, in Figure 8, the fluctuation ranges of phase portraits of Γx1(t)
vs. Γx2(t) are significantly enlarged when AD patients open their eyes. Therefore, this
reconfirms our claim at the end of Section 3.3.2 that the information rate is a superior
measure than differential entropy in quantifying the dynamical changes in EEG signals
when switching between EO and EO states and is a better and more reliable reflection of
neural information processing in the brain.

3.3.4. Power Spectra (for T ≥ 7.5)

Another perspective to visualize the dynamical characteristics of Γx1(t) and Γx2(t) is
by using power spectra, i.e., the absolute values of (fast) Fourier transforms of Γx1(t) and
Γx2(t), as shown in Figure 10. Frequency-based analyses will not make much sense if the
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signals or time series of Γx1(t) and Γx2(t) have non-stationary time-varying effects, and this
is why we only consider time range t ≥ 7.5 for Γx1(t) and Γx2(t), when the time evolution
patterns of p(x1, t) and p(x2, t) almost stop changing as shown in Figure 3 (and especially
in Figure 3a,c).

Figure 10. Power spectra of information rates Γx1 (t) and Γx2 (t) (t ≥ 7.5).

The power spectra of Γx1(t) and Γx2(t) also exhibit a clear distinction between EC
and EO for CTL and AD subjects. Specifically, the power spectra of Γx1(t) and Γx2(t) can
be fit by power law for frequencies between ∼100 Hz to ∼1000 Hz (the typical sampling
frequency of experimental EEG signals is 1000 Hz, whereas most of brain wave’s/neural
oscillations’ frequencies are below 100 Hz). From Figure 11a, one can see that power law fit
exponents (quantifying how fast the power density decreases with increasing frequency) of
Γx1(t)’s and Γx2(t)’s power spectra are largely reduced when healthy subjects open their
eyes, which indicates that the strength of noise in Γx1(t) and Γx2(t) decreases significantly
when switching from EC to EO. Contrarily, for AD patients as shown in Figure 11b, the
power law fit exponents of Γx1(t)’s and Γx2(t)’s power spectra increase significantly and
slightly, respectively, indicating that the strength of noise in Γx1(t) and Γx2(t) increases
when switching from EC to EO.

(a) Health CTL subjects. (b) AD patients.
Figure 11. Power law fit for power spectra of information rates Γx1 (t) and Γx2 (t) (t ≥ 7.5) of CTL
and AD subjects.
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3.4. Causal Information Rates Γx2→X1(T), Γx1→X2(T), and Net Causal Information Rates
Γx2→X1(T)− Γx1→X2(T)

The notion of causal information rate was introduced in Ref. [25], which quantifies
how one signal instantaneously influences another signal’s information rate. A comparable
measure of causality is transfer entropy; however, as shown in Appendix B.6, our calcula-
tion results of transfer entropy are too spiky/noisy to reliably quantify causality, and hence,
the results are only included in Appendix as a comparison, which we will discuss at the
end of this section. Nevertheless, similar to net transfer entropy, one can calculate the net
causal information rate, e.g., Γx2→x1(t)− Γx1→x2(t), signifying the net causality measure
from signal x2(t) to x1(t). Since ẋ2(t) is the only variable that is directly affected by random
noise in the stochastic oscillator model Equation (2), we calculate Γx2→x1(t)− Γx1→x2(t) for
the net causal information rate of the coupled oscillator’s signal x2(t) influencing x1(t).

Notice that for stochastic coupled oscillator model Equation (2), causal information
rates Γx2→x1(t) and Γx1→x2(t) will reflect how strongly the two oscillators are directionally
coupled or causally related. Since signals x1(t) and x2(t) are the results of neural activities
in the corresponding brain regions, the causal information rates can be used to measure
connectivities among different regions of the brain.

3.4.1. Time Evolution

Similar to Section 3.3.1, we also visualize the time evolution of causal information rates
Γx2→x1(t) and Γx1→x2(t) in Figure 12a,b for CTL subjects and AD patients, respectively.

For both CTL and AD subjects, Γx2→x1(t) and Γx1→x2(t) both decrease when changing
from EC to EO, except for AD subjects’ Γx2→x1(t) increasing on average. On the other hand,
the net causal information rate Γx2→x1(t)− Γx1→x2(t) changes differently: when healthy
subjects open their eyes, it increases and changes from significantly negative on average
to slightly positive on average, whereas for AD patients, it increases from almost zero on
average to significantly positive on average without net directional change. A possible
interpretation might be that, when healthy subjects open their eyes, the brain region
generating the signal x2(t) becomes more sensitive to the noise, causing it to influence x1(t)
more compared to the eyes-closed state.

(a) health CTL subjects.

Figure 12. Cont.
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(b) AD patients.
Figure 12. Causal information rates along time of CTL and AD subjects.

3.4.2. Empirical Probability Distribution (for T ≥ 7.5)

Similar to Section 3.3.2, we also estimate the empirical probability distributions of
Γx2→x1(t), Γx1→x2(t) and Γx2→x1(t)− Γx1→x2(t) to better visualize their statistics in Figure 13a.
In particular, we plot the empirical probability distributions of Γx2→x1(t)− Γx1→x2(t) for
both healthy and AD subjects with both EC and EO conditions together in Figure 13b, in
order to better visualize and compare net causal information rates’ changes when CTL and
AD subjects open their eyes. It can be seen that the estimated PDF of Γx2→x1(t)− Γx1→x2(t)
shrinks its width in shape when healthy subjects open their eyes. Combining with the
observation that the magnitude of sample mean of Γx2→x1(t)− Γx1→x2(t) is close to 0 for
healthy subjects with eyes opened, a possible interpretation might be that the directional
connectivity between brain regions generating signals x1(t) and x2(t) is reduced to almost
zero, either by incoming visual information received by opened eyes or due to the brain
region generating signal x2(t) becoming more sensitive to noise when eyes are opened.
Contrarily, the estimated PDF of Γx2→x1(t)− Γx1→x2(t) for AD patients qualitatively change
in an inverse direction to become widened in shape.

As mentioned earlier, as a comparison, we also calculate more traditional/established
information-theoretic measure of causality, i.e., transfer entropy (TE), and estimate their
empirical probability distributions in the same manner as we do for causal information
rates, as shown in Figure 14.

One can see that the empirical distributions of transfer entropy TEx2→x1(t) and
TEx1→x2(t), as well as net transfer entropy TEx2→x1(t)− TEx1→x2(t) are not able to make
clear distinction between EC and EO conditions, especially for AD patients in terms of
net transfer entropy. This may be better summarized in Table 5, comparing the mean and
standard deviation values of causal information rate vs. transfer entropy for the four cases.

Table 5. Mean and standard deviation values (µ ± σ) of causal information rates Γx2→x1 (t), Γx1→x2 (t)
and net causal information rates Γx2→x1 (t)− Γx1→x2 (t) vs. transfer entropy TEx2→x1 (t), TEx1→x2 (t)
and net transfer entropy TEx2→x1 (t)− TEx1→x2 (t) (t ≥ 7.5).

CTL EC CTL EO AD EC AD EO

Γx2→x1 (t) 545.40 ± 227.23 494.11 ± 114.95 125.38 ± 52.89 201.58 ± 92.02

Γx1→x2 (t) 626.65 ± 243.03 489.87 ± 103.08 125.06 ± 52.25 109.07 ± 63.88

Γx2→x1 (t)− Γx1→x2 (t) −81.25 ± 84.15 4.24 ± 31.96 0.32 ± 25.96 92.51 ± 80.23

TEx2→x1 (t) 0.011 ± 0.012 0.015 ± 0.0068 0.0067 ± 0.0043 0.0086 ± 0.0062

TEx1→x2 (t) 0.013 ± 0.013 0.011 ± 0.0036 0.004 ± 0.0019 0.0046 ± 0.0028

TEx2→x1 (t)− TEx1→x2 (t) −0.0018 ± 0.015 0.0038 ± 0.0062 0.0027 ± 0.0049 0.004 ± 0.0068
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(a) Causal information rates and net causal information rates.

(b) Net causal information rates only.

Figure 13. Empirical probability distributions of causal information rates and net causal information
rates (t ≥ 7.5).
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(a) Transfer entropy and net transfer entropy.

(b) Net transfer entropy only.

Figure 14. Empirical probability distributions of transfer entropy and net transfer entropy (t ≥ 7.5).

Moreover, the magnitude of numeric values of transfer entropy and net transfer
entropy is ∼10−2 or ∼10−3, which is too close to zero, making it too noise-like or unreliable
to quantify causality. Therefore, the causal information rate is a much superior measure
than transfer entropy in quantifying causality, and since causal information rate quantifies
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how one signal instantaneously influences another signal’s information rate (which is a
reflection of neural information processing in corresponding brain region), it can be used
to measure directional or causal connectivities among different brain regions.

4. Discussion

A major challenge for practical usage of information geometry theoretic measures on
real-world experimental EEG signals is that they require a significant amount of data sam-
ples to estimate the probability density functions. For example, in this work, we simulated
2 × 107 trajectories or sample paths of the stochastic nonlinear coupled oscillator models,
such that at any time instance, we always have a sufficient amount of data samples to accu-
rately estimate the time-dependent probability density functions with a histogram-based
approach. This is usually not possible for experimental EEG signals which often contain
only one trajectory for each channel, and one has to use a sliding window-based approach
to collect data samples for histogram-based density estimation. This approach implicitly
assumes that the EEG signals are stationary within each sliding time window, and hence,
one has to balance between the sliding time window’s length and number of available data
samples, in order to account for non-stationarity while still having enough data samples
to accurately and meaningfully estimate the time-dependent probability densities. And
therefore, this approach will not work very well if the EEG signals exhibit severely non-
stationary time-varying effects, requiring a very short length of sliding windows, which
will contain too few data samples.

An alternative approach to overcome this issue is using kernel density estimation to
estimate the probability density functions, which usually requires a much smaller number
of data samples while still being able to approximate the true probability distribution with
acceptable accuracy. However, this approach typically involves a very high computational
cost, limiting its practical use for many cases such as computational resource-limited
scenarios. A proposed method to avoid this is using the Koopman operator theoretic
framework [37,38] and its numerical techniques applicable to experimental data in a model-
free manner, since the Koopman operator is the left-adjoint of the Perron–Frobenious
operator evolving the probability density functions in time. This exploration will be left for
our future investigation.

5. Conclusions

In this work, we explore information geometry theoretic measures to characterize
neural information processing from EEG signals simulated by stochastic nonlinear coupled
oscillator models. In particular, we utilize information rates to quantify the time evolution
of probability density functions of simulated EEG signals and utilize causal information
rates to quantify one signal’s instantaneous influence on another signal’s information rate.
The parameters of the stochastic nonlinear coupled oscillator models of EEG were fine
tuned for both healthy subjects and AD patients, with both eyes-closed and eyes-open
conditions. By using information rates and causal information rates, we find significant and
interesting distinctions between healthy subjects and AD patients when they change their
eyes’ open/closed status. These distinctions may be further related to differences in neural
information processing activities of the corresponding brain regions (for information rates)
and to differences in connectivities among these brain regions (for causal information rates).

Compared to more traditional or established information-theoretic measures such
as differential entropy and transfer entropy, our results show that information geometry
theoretic measures such as information rate and causal information rate are superior to
their more traditional counterparts, respectively (information rate vs. differential entropy,
and causal information rate vs. transfer entropy). Since information rates and causal
information rates can be applied to experimental EEG signals in a model-free manner,
and they are capable of quantifying non-stationary time-varying effects, nonlinearity, and
non-Gaussian stochasticity presented in real-world EEG signals, we believe that these
information geometry theoretic measures can become an important and powerful tool-
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set for both understanding neural information processing in the brain and diagnosis of
neurological disorders such as Alzheimer’s disease in this work.
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Abbreviations
The following abbreviations are used in this manuscript:

PDF probability density function
SDE stochastic differential equation
IC Initial Conditions (in terms of initial Gaussian distributions)
CTL healthy control (subjects)
AD Alzheimer’s disease
EC eyes-closed
EO eyes-open
TE transfer entropy

Appendix A. Finer Details of Numerical Estimation Techniques

Recall from Equation (7) that the squared information rate is

Γx(t)2 =
∫

dx p(x, t)[∂t ln p(x, t)]2 = 4
∫

dx
[

∂t

√
p(x, t)

]2
, (A1)

where the partial time derivative and integral can be numerically approximated using dis-

cretization, i.e., ∂t
√

p(x, t) ≈ 1
(∆t) (

√
p(x, t + ∆t)−

√
p(x, t)) and

∫
dx f (x) ≈ ∑

i
∆xi f (xi),

respectively, where for brevity and if no ambiguity arises, the summation over index i is
often omitted and replaced by x itself as ∑

x
∆x f (x), and the symbol x serves as both the

index of summation (e.g., the x-th interval with length ∆x) and the actual value x in f (x).
A common technique to improve the approximation of integral by finite summation

is the trapezoidal rule
∫

dx f (x) ≈ ∑
i

∆xi
f (xi−1) + f (xi)

2
, which will be abbreviated as

∑
Trapz.
x ∆x f (x) to indicate that the summation is following the trapezoidal rule imposing

a 1/2 weight/factor on the first and last summation terms (corresponding to the lower
and upper bounds of the integral). Similarly, we use ∑

Trapz.2D
x,y ∆x∆y f (x, y) to denote
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a 2D trapezoidal approximation of the double integral
∫

dx dy f (x, y), where different

weights (1/4 or 1/2) will be applied to the “corner”/boundary terms of the summation.
Meanwhile, to distinguish regular summation from trapezoidal approximation, we use the
notation ∑naive

x ∆x f (x) to signify a regular summation as a more naive approximation of
the integral.

The PDF p(x, t) is numerically estimated using a histogram with Rice’s rule applied,
i.e., the number of bins is nbins =

⌊
2 3
√nsample

⌋
(with uniform bin width

∆x =
range of samples’ values

nbins
), which is rounded towards zero to avoid overestimating the

number of bins needed. And for joint PDF p(xi, ti; xj, tj), since the bins are distributed in a

2D plane of (xi, xj), the number of bins in each dimension is rounded to
⌊√⌊

2 3
√nsample

⌋⌋
(and similarly for 3D joint probability as in the transfer entropy calculation, the number of

bins in each dimension is rounded to
⌊

3

√⌊
2 3
√nsample

⌋⌋
). Combining all of the above, the

information rate’s square will be approximated by

Γx(t)2 = 4
∫

dx
[

∂t

√
p(x, t)

]2
≈ 4

Trapz.

∑
x

∆x
[∆t]2

[√
p(x, t + ∆t)−

√
p(x, t)

]2
, (A2)

where the bin width ∆x can be moved into the square root and multiplied with the PDF to
get the probability (mass) of finding a data sample in the x-th bin, which is estimated as
nsample inside x-th bin

nsample
, i.e., the number of data samples inside that bin divided by the number

of all data samples (using the relevant functions in MATLAB or Python). The trapezoidal
rule imposes a 1/2 factor on the first and last terms of summation, corresponding to the
first and last bins.

For the causal information rate Γx1→x2(t)
def
= Γ∗x2

(t)− Γx2(t), the Γ∗x2
(t) can be estimated by

Γ∗
x2
(t)2 = lim

t∗→t+

∫
dx1 dx2 p(x2, t∗; x1, t)[∂t∗ ln p(x2, t∗; x1, t)]2

= 4 lim
t∗→t+

∫
dx1 dx2

[
∂t∗

√
p(x2, t∗; x1, t)

]2

≈ 4 ∑
x2,x1

∆x2∆x1

[∆t]2

[√
p(x2, t + ∆t; x1, t)−

√
p(x2, t; x1, t)

]2
,

(A3)

where the number of bins in each of the x1 and x2 dimensions is rounded to
⌊√⌊

2 3
√nsample

⌋⌋
,

and the Γx2(t)
2 can be estimated as above as 4

∫
dx2

[
∂t
√

p(x2, t)
]2

≈ 4 ∑
x2

∆x2
[∆t]2

[√
p(x2, t + ∆t)−

√
p(x2, t)

]2 using reg-

ular or trapezoidal summation. However, here for Γx2(t)
2, the number of bins for x2 must

not be chosen as
⌊

2 3
√nsample

⌋
following the 1D Rice’s rule, which is very critical to avoid

insensible or inconsistent estimation of Γx1→x2(t), for which the reason is explained below.
Consider the quantity Γ∗

x2
(t)2 − Γx2(t)

2; theoretically and by definition, the dx2 can
be pulled outside the integral over dx1 to combine the two integrals into one integral
as follows:

Γ∗
x2
(t)2 − Γx2(t)

2 = 4 lim
t∗→t+

∫
dx2

{∫ [
∂t∗

√
p(x2, t∗; x1, t)

]2
dx1 −

[
∂t

√
p(x2, t)

]2
}

, (A4)
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and the corresponding numerical approximations of integrals should be combined as

≈ 4 ∑
x2

∆x2

{
∑
x1

[√
p(x2, t + ∆t; x1, t)−

√
p(x2, t; x1, t)

]2 ∆x1

[∆t]2

−

[√
p(x2, t + ∆t)−

√
p(x2, t)

]2

[∆t]2

,

(A5)

where the sum over x2 is performed on the same bins for both of the two terms inside the
large braces {·} above. On the other hand, if one numerically approximates Γ∗

x2
(t)2 and

Γx2(t)
2 separately as

Γ∗
x2
(t)2 − Γx2(t)

2 ≈ 4 ∑
x2,x1

∆x2∆x1

[∆t]2

[√
p(x2, t + ∆t; x1, t)−

√
p(x2, t; x1, t)

]2

− 4 ∑
x2

∆x2

[∆t]2

[√
p(x2, t + ∆t)−

√
p(x2, t)

]2
,

(A6)

then the sum over x2 in the second term 4 ∑x2
∆x2
[∆t]2

[√
p(x2, t + ∆t)−

√
p(x2, t)

]2
should

still be performed on the same bins of x2 for the first term involving the joint PDFs esti-

mated by 2D histograms (i.e., using the square root number of bins
⌊√⌊

2 3
√nsample

⌋⌋
of

Rice’s rule, instead of following the 1D Rice’s rule without the square root), even though
this second summation term is written as a separate and “independent” term from the

first double-summation term. The definition Γx1→x2(t)
def
= Γ∗

x2
(t)− Γx2(t) might result in

a misimpression that one can estimate Γx2(t)
2 ≈ 4 ∑x2

∆x2
[∆t]2

[√
p(x2, t + ∆t)−

√
p(x2, t)

]2

separately by using a Rice’s rule’s binning method containing
⌊

2 3
√nsample

⌋
bins, while esti-

mating Γ∗
x2
(t)2 ≈ 4 ∑x2,x1

∆x2∆x1
[∆t]2

[√
p(x2, t + ∆t; x1, t)−

√
p(x2, t; x1, t)

]2
using the square

root of Rice’s rule’s number of bins
⌊√⌊

2 3
√nsample

⌋⌋
. Using different bins for x2 will make

it invalid to combine the two summations into one summation over the same x2’s (and
hence invalid to combine the two integrals into one integral by pulling out the same dx2).

Using
⌊

2 3
√nsample

⌋
bins for x2 will overestimate the value of Γx2 (t)

2 ≈ 4 ∑x2
∆x2
[∆t]2

[√
p(x2, t + ∆t)−

√
p(x2, t)

]2,
for example, if there are 1 million samples/data points to estimate the PDFs, then⌊

2 3
√nsample

⌋
= 200 for 1D distribution and

⌊√⌊
2 3
√nsample

⌋⌋
≈ 14 for 2D joint distri-

bution. Calculating Γx2(t)
2 ≈ 4 ∑x2

∆x2
[∆t]2

[√
p(x2, t + ∆t)−

√
p(x2, t)

]2
using 200 bins will

result in a much larger value than calculating it using 14 bins, which will result in nega-
tive values in calculating the causal information rate Γx1→x2(t) = Γ∗

x2
(t)− Γx2(t). When

using the same 14 bins of x2 (for estimating the 2D joint PDF of (x1, x2)) to estimate the

1D PDF in Γx2(t)
2 ≈ 4 ∑x2

∆x2
[∆t]2

[√
p(x2, t + ∆t)−

√
p(x2, t)

]2
, all the unreasonable neg-

ative values disappear, except for only some isolated negative values remained, which
is related to estimating Γ∗

x2
(t)2 and Γx2(t)

2 using 1D and 2D trapezoidal rules for sum-
mations approximating the integrals: if one uses 1D trapezoidal summation for Γx2(t)

2

≈ 4 ∑
Trapz.
x2

∆x2
[∆t]2

[√
p(x2, t + ∆t)−

√
p(x2, t)

]2
, while on the other hand, one blindly and in-

consistently uses 2D trapezoidal summation for Γ∗x2
(t)2 ≈ 4 ∑

Trapz.2D
x2,x1

∆x2∆x1
[∆t]2 [

√
p(x2, t + ∆t; x1, t)

−
√

p(x2, t; x1, t)]2, this will also result in some negative values in computing Γx1→x2(t)
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= Γ∗
x2
(t)− Γx2(t), because the 2D trapezoidal sum will under-estimate the Γ∗

x2
(t)2 as com-

pared to the 1D trapezoidal-sum-estimated Γx2(t)
2.

To resolve this inconsistent mixing of 1D and 2D trapezoidal rules, there are two
possible methods:

1. Using 2D trapezoidal rule for both Γ∗
x2
(t)2 and Γx2(t)

2, that is, Γ∗
x2
(t)2 ≈ 4 ∑

Trapz.2D
x2,x1

∆x2∆x1
[∆t]2 [

√
p(x2, t + ∆t; x1, t)−

√
p(x2, t; x1, t)]2, and Γx2(t)

2 ≈ 4 ∑
Trapz.
x2

∆x2
[∆t]2

[√
p(x2, t + ∆t)−

√
p(x2, t)

]2
≈ 4 ∑

Trapz.
x2

∆x2
[∆t]2 [

√
∑

Trapz.
x1 ∆x1 p(x2, t + ∆t; x1, t)−√

∑
Trapz.
x1 ∆x1 p(x2, t; x1, t)]2. In other words, when calculating Γx2(t)

2, instead of es-
timating marginal PDF p(x2, t + ∆t) and p(x2, t) directly by 1D histograms (using
the relevant functions in MATLAB or Python), one first estimates the joint PDF
p(x2, t + ∆t; x1, t) and p(x2, t; x1, t) by 2D histograms and integrates over x1 by trape-
zoidal summation on it. This will reduce the value of estimated Γx2(t), and integrals
over both x1 and x2 are both estimated by trapezoidal summation.

2. Using the 1D trapezoidal rule for both Γx2(t) and Γ∗
x2
(t), that is, Γx2(t)

2 ≈ 4 ∑
Trapz.
x2

∆x2
[∆t]2

[√
p(x2, t + ∆t)−

√
p(x2, t)

]2
= 4 ∑

Trapz.
x2

∆x2
[∆t]2 [

√
∑naive

x1
∆x1 · p(x2, t + ∆t; x1, t)

−
√

∑naive
x1

∆x1 · p(x2, t; x1, t)]2, and Γ∗x2
(t)2 ≈ 4

[∆t]2
∑

Trapz.
x2

∆x2

{
∑naive

x1
∆x1

[√
p(x2, t + ∆t; x1, t)−

√
p(x2, t; x1, t)

]2}. In

this approach, the marginal PDF p(x2, t) =
∫

p(x2, t; x1, t)dx1, where the equal sign

holds exactly for the regular or naive summation p(x2, t) = ∑naive
x1

∆x1 · p(x2, t; x1, t).
This is because the histogram estimation in MATLAB and Python is performed by
counting the occurrence of data samples inside each bin, and the probability (mass)

is estimated as
nsample inside x-th bin

nsample
, and the density is estimated as

nsample inside x-th bin
nsample·∆x ,

where ∆x is the width of the x-th bin (and for 2D histogram, this is replaced by
bin area Ax1,x2 = ∆x1 · ∆x2), and therefore, summing over x1 is aggregating the
2D bins of (x1, x2) and combining or mixing samples with x2-values/coordinates in
the same x2-bin (but with x1-values/coordinates in different x1-bins) together. In
other words, it is always true that nx2 = ∑naive

x1
nx1,x2 , where nx2 is the number of

samples inside the x2-th bin and nx1,x2 is number of samples inside the (x1, x2)-th
bin in 2D, and hence, for estimated probability (mass),

nx2
nsample

= ∑naive
x1

nx1,x2
nsample

, and

for estimated PDFs,
nx2

nsample·∆x2
= ∑naive

x1

nx1,x2
nsample·∆x2·∆x1

· ∆x1, which is why p(x2, t)

= ∑naive
x1

∆x1 · p(x2, t; x1, t) holds exactly for numerically estimated marginal and joint
PDFs using histograms, which is consistent with the theoretical relation between
marginal and joint PDFs p(x2, t) =

∫
p(x2, t; x1, t)dx1, and this has been numerically

verified using the relevant 1D and 2D histogram functions in MATLAB and Python,
i.e., by (naively) summing the estimated joint PDF over x1, and the (naively) summed
marginal is exactly the same as the one estimated directly by 1D histogram function.
So in this approach, integral over x1 is estimated by naive summation on x1, but
integral over x2 is estimated by trapezoidal summation on x2.



Entropy 2024, 26, 213 27 of 61

The 1st approach will violate the relation between joint and marginal p(x2, t)

=
∫

p(x2, t; x1, t)dx1, because as explained in the 2nd approach above, when using MAT-

LAB’s and Python’s 1D and 2D histogram functions, one will always get exactly p(x2, t)
= ∑naive

x1
∆x1 · p(x2, t; x1, t) and p(x2, t+∆t) = ∑naive

x1
∆x1 · p(x2 +∆t, t; x1, t) for naive sum-

mation, but not for trapezoidal summation over x1 due to the weights/factors ( ̸=1) imposed
on the “corner”/boundary/first/last summation terms, which is used in the 1st approach.
However, the 2nd approach puts different importance or weights on the summation over
x1 as compared to x2, which might also be problematic, because the original definition is
a double integral over x1 and x2 without different weights/factors imposed by different
summation methods.

To resolve this, we use the regular or naive summations on both x1 and x2, which
avoids the issues in both the 1st and 2nd approaches, and we find that the numerical
difference between the 1st and 2nd approaches and our adopted simply naive summations
are really negligible, and because in this work, we are performing empirical statistics on the
estimated causal information rates and illustrating the qualitative features of the empirical
probability distributions of them, we use our simple naive summations over both x1 and x2
when estimating Γ∗

x2
(t)2 and Γx2(t)

2 in causal information rate Γx1→x2(t) = Γ∗
x2
(t)− Γx2(t).

Appendix B. Complete Results: All Six Groups of Initial Conditions

For completeness, we list the full results of all figures for all six different initial
Gaussian distributions listed in Table 3.

Appendix B.1. Sample Trajectories of x1(t) and x2(t)

Appendix B.1.1. Initial Conditions No.1 (IC1)

(a) IC1: CTL EC x1(t) (b) IC1: CTL EO x1(t)

(c) IC1: CTL EC x2(t) (d) IC1: CTL EO x2(t)
Figure A1. Initial Conditions No.1 (IC1): 50 sample trajectories of healthy CTL subjects. Each single
trajectory is labeled by a different color.



Entropy 2024, 26, 213 28 of 61

(a) IC1: AD EC x1(t) (b) IC1: AD EO x1(t)

(c) IC1: AD EC x2(t) (d) IC1: AD EO x2(t)
Figure A2. Initial Conditions No.1 (IC1): 50 sample trajectories of AD patients. Each single trajectory
is labeled by a different color.

Appendix B.1.2. Initial Conditions No.2 (IC2)

(a) IC2: CTL EC x1(t) (b) IC2: CTL EO x1(t)

(c) IC2: CTL EC x2(t) (d) IC2: CTL EO x2(t)
Figure A3. Initial Conditions No.2 (IC2): 50 sample trajectories of healthy CTL subjects. Each single
trajectory is labeled by a different color.
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(a) IC2: AD EC x1(t) (b) IC2: AD EO x1(t)

(c) IC2: AD EC x2(t) (d) IC2: AD EO x2(t)
Figure A4. Initial Conditions No.2 (IC2): 50 sample trajectories of AD patients. Each single trajectory
is labeled by a different color.

Appendix B.1.3. Initial Conditions No.3 (IC3)

(a) IC3: CTL EC x1(t) (b) IC3: CTL EO x1(t)

(c) IC3: CTL EC x2(t) (d) IC3: CTL EO x2(t)
Figure A5. Initial Conditions No.3 (IC3): 50 sample trajectories of healthy CTL subjects. Each single
trajectory is labeled by a different color.
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(a) IC3: AD EC x1(t) (b) IC3: AD EO x1(t)

(c) IC3: AD EC x2(t) (d) IC3: AD EO x2(t)
Figure A6. Initial Conditions No.3 (IC3): 50 sample trajectories of AD patients. Each single trajectory
is labeled by a different color.

Appendix B.1.4. Initial Conditions No.4 (IC4)

(a) IC4: CTL EC x1(t) (b) IC4: CTL EO x1(t)

(c) IC4: CTL EC x2(t) (d) IC4: CTL EO x2(t)
Figure A7. Initial Conditions No.4 (IC4): 50 sample trajectories of healthy CTL subjects. Each single
trajectory is labeled by a different color.
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(a) IC4: AD EC x1(t) (b) IC4: AD EO x1(t)

(c) IC4: AD EC x2(t) (d) IC4: AD EO x2(t)
Figure A8. Initial Conditions No.4 (IC4): 50 sample trajectories of AD patients. Each single trajectory
is labeled by a different color.

Appendix B.1.5. Initial Conditions No.5 (IC5)

(a) IC5: CTL EC x1(t) (b) IC5: CTL EO x1(t)

(c) IC5: CTL EC x2(t) (d) IC5: CTL EO x2(t)
Figure A9. Initial Conditions No.5 (IC5): 50 sample trajectories of healthy CTL subjects. Each single
trajectory is labeled by a different color.
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(a) IC5: AD EC x1(t) (b) IC5: AD EO x1(t)

(c) IC5: AD EC x2(t) (d) IC5: AD EO x2(t)
Figure A10. Initial Conditions No.5 (IC5): 50 sample trajectories of AD patients. Each single trajectory
is labeled by a different color.

Appendix B.1.6. Initial Conditions No.6 (IC6)

(a) IC6: CTL EC x1(t) (b) IC6: CTL EO x1(t)

(c) IC6: CTL EC x2(t) (d) IC6: CTL EO x2(t)
Figure A11. Initial Conditions No.6 (IC6): 50 sample trajectories of healthy CTL subjects. Each single
trajectory is labeled by a different color.
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(a) IC6: AD EC x1(t) (b) IC6: AD EO x1(t)

(c) IC6: AD EC x2(t) (d) IC6: AD EO x2(t)
Figure A12. Initial Conditions No.6 (IC6): 50 sample trajectories of AD patients. Each single trajectory
is labeled by a different color.

Appendix B.2. Time Evolution of PDF p(x1, t) and p(x2, t)

Appendix B.2.1. Initial Conditions No.1 (IC1)

(a) IC1: CTL EC p(x1, t) (b) IC1: CTL EO p(x1, t)

(c) IC1: CTL EC p(x2, t) (d) IC1: CTL EO p(x2, t)
Figure A13. Initial Conditions No.1 (IC1): Time evolution of estimated PDFs of healthy CTL subjects.
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(a) IC1: AD EC p(x1, t) (b) IC1: AD EO p(x1, t)

(c) IC1: AD EC p(x2, t) (d) IC1: AD EO p(x2, t)
Figure A14. Initial Conditions No.1 (IC1): Time evolution of estimated PDFs of AD patients.

Appendix B.2.2. Initial Conditions No.2 (IC2)

(a) IC2: CTL EC p(x1, t) (b) IC2: CTL EO p(x1, t)

(c) IC2: CTL EC p(x2, t) (d) IC2: CTL EO p(x2, t)
Figure A15. Initial Conditions No.2 (IC2): Time evolution of estimated PDFs of healthy CTL subjects.
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(a) IC2: AD EC p(x1, t) (b) IC2: AD EO p(x1, t)

(c) IC2: AD EC p(x2, t) (d) IC2: AD EO p(x2, t)
Figure A16. Initial Conditions No.2 (IC2): Time evolution of estimated PDFs of AD patients.

Appendix B.2.3. Initial Conditions No.3 (IC3)

(a) IC3: CTL EC p(x1, t) (b) IC3: CTL EO p(x1, t)

(c) IC3: CTL EC p(x2, t) (d) IC3: CTL EO p(x2, t)
Figure A17. Initial Conditions No.3 (IC3): Time evolution of estimated PDFs of healthy CTL subjects.
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(a) IC3: AD EC p(x1, t) (b) IC3: AD EO p(x1, t)

(c) IC3: AD EC p(x2, t) (d) IC3: AD EO p(x2, t)
Figure A18. Initial Conditions No.3 (IC3): Time evolution of estimated PDFs of AD patients.

Appendix B.2.4. Initial Conditions No.4 (IC4)

(a) IC4: CTL EC p(x1, t) (b) IC4: CTL EO p(x1, t)

(c) IC4: CTL EC p(x2, t) (d) IC4: CTL EO p(x2, t)
Figure A19. Initial Conditions No.4 (IC4): Time evolution of estimated PDFs of healthy CTL subjects.
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(a) IC4: AD EC p(x1, t) (b) IC4: AD EO p(x1, t)

(c) IC4: AD EC p(x2, t) (d) IC4: AD EO p(x2, t)
Figure A20. Initial Conditions No.4 (IC4): Time evolution of estimated PDFs of AD patients.

Appendix B.2.5. Initial Conditions No.5 (IC5)

(a) IC5: CTL EC p(x1, t) (b) IC5: CTL EO p(x1, t)

(c) IC5: CTL EC p(x2, t) (d) IC5: CTL EO p(x2, t)
Figure A21. Initial Conditions No.5 (IC5): Time evolution of estimated PDFs of healthy CTL subjects.
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(a) IC5: AD EC p(x1, t) (b) IC5: AD EO p(x1, t)

(c) IC5: AD EC p(x2, t) (d) IC5: AD EO p(x2, t)
Figure A22. Initial Conditions No.5 (IC5): Time evolution of estimated PDFs of AD patients.

Appendix B.2.6. Initial Conditions No.6 (IC6)

(a) IC6: CTL EC p(x1, t) (b) IC6: CTL EO p(x1, t)

(c) IC6: CTL EC p(x2, t) (d) IC6: CTL EO p(x2, t)
Figure A23. Initial Conditions No.6 (IC6): Time evolution of estimated PDFs of healthy CTL subjects.
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(a) IC6: AD EC p(x1, t) (b) IC6: AD EO p(x1, t)

(c) IC6: AD EC p(x2, t) (d) IC6: AD EO p(x2, t)
Figure A24. Initial Conditions No.6 (IC6): Time evolution of estimated PDFs of AD patients.

Appendix B.3. Information Rates Γx1(t) and Γx2(t)

Appendix B.3.1. Time Evolution: Information Rates
Initial Conditions No.1 (IC1)

(a) IC1: health CTL subjects. (b) IC1: AD patients.
Figure A25. Initial Conditions No.1 (IC1): Information rates along time of CTL and AD subjects.

Initial Conditions No.2 (IC2)

(a) IC2: health CTL subjects. (b) IC2: AD patients.
Figure A26. Initial Conditions No.2 (IC2): Information rates along time of CTL and AD subjects.



Entropy 2024, 26, 213 40 of 61

Initial Conditions No.3 (IC3)

(a) IC3: health CTL subjects. (b) IC3: AD patients.
Figure A27. Initial Conditions No.3 (IC3): Information rates along time of CTL and AD subjects.

Initial Conditions No.4 (IC4)

(a) IC4: health CTL subjects. (b) IC4: AD patients.
Figure A28. Initial Conditions No.4 (IC4): Information rates along time of CTL and AD subjects.

Initial Conditions No.5 (IC5)

(a) IC5: health CTL subjects. (b) IC5: AD patients.
Figure A29. Initial Conditions No.5 (IC5): Information rates along time of CTL and AD subjects.

Initial Conditions No.6 (IC6)

(a) IC6: health CTL subjects. (b) IC6: AD patients.
Figure A30. Initial Conditions No.6 (IC6): Information rates along time of CTL and AD subjects.
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Appendix B.3.2. Empirical Probability Distribution: Information Rates (for t ≥ 7.5)

(a) Initial Conditions No.1 (IC1) (b) Initial Conditions No.2 (IC2)

(c) Initial Conditions No.3 (IC3) (d) Initial Conditions No.4 (IC4)

(e) Initial Conditions No.5 (IC5) (f) Initial Conditions No.6 (IC6)
Figure A31. Empirical probability distributions of information rates Γx1 (t) and Γx2 (t) (t ≥ 7.5).
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Appendix B.3.3. Phase Portraits: Information Rates (for t ≥ 7.5)

(a) Initial Conditions No.1 (IC1) (b) Initial Conditions No.2 (IC2)

(c) Initial Conditions No.3 (IC3) (d) Initial Conditions No.4 (IC4)

(e) Initial Conditions No.5 (IC5) (f) Initial Conditions No.6 (IC6)
Figure A32. Phase portraits of information rates Γx1 (t) vs. Γx2 (t) (t ≥ 7.5).

Initial Conditions No.1 (IC1):

(a) IC1: health CTL subjects. (b) IC1: AD patients.
Figure A33. Initial Conditions No.1 (IC1): Phase portraits of information rates Γx1 (t) vs. Γx2 (t)
(t ≥ 7.5) of CTL and AD subjects.
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Initial Conditions No.2 (IC2):

(a) IC2: health CTL subjects. (b) IC2: AD patients.
Figure A34. Initial Conditions No.2 (IC2): Phase portraits of information rates Γx1 (t) vs. Γx2 (t)
(t ≥ 7.5) of CTL and AD subjects.

Initial Conditions No.3 (IC3):

(a) IC3: health CTL subjects. (b) IC3: AD patients.
Figure A35. Initial Conditions No.3 (IC3): Phase portraits of information rates Γx1 (t) vs. Γx2 (t)
(t ≥ 7.5) of CTL and AD subjects.

Initial Conditions No.4 (IC4):

(a) IC4: health CTL subjects. (b) IC4: AD patients.
Figure A36. Initial Conditions No.4 (IC4): Phase portraits of information rates Γx1 (t) vs. Γx2 (t)
(t ≥ 7.5) of CTL and AD subjects.
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Initial Conditions No.5 (IC5):

(a) IC5: health CTL subjects. (b) IC5: AD patients.
Figure A37. Initial Conditions No.5 (IC5): Phase portraits of information rates Γx1 (t) vs. Γx2 (t)
(t ≥ 7.5) of CTL and AD subjects.

Initial Conditions No.6 (IC6):

(a) IC6: health CTL subjects. (b) IC6: AD patients.
Figure A38. Initial Conditions No.6 (IC6): Phase portraits of information rates Γx1 (t) vs. Γx2 (t)
(t ≥ 7.5) of CTL and AD subjects.

Appendix B.3.4. Power Spectra: Information Rates (for t ≥ 7.5)
Initial Conditions No.1 (IC1):

(a) IC1: health CTL subjects. (b) IC1: AD patients.
Figure A39. Initial Conditions No.1 (IC1): Power law fit for power spectra of information rates Γx1 (t)
and Γx2 (t) (t ≥ 7.5) of CTL and AD subjects.
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Initial Conditions No.2 (IC2):

(a) IC2: health CTL subjects. (b) IC2: AD patients.
Figure A40. Initial Conditions No.2 (IC2): Power law fit for power spectra of information rates Γx1 (t)
and Γx2 (t) (t ≥ 7.5) of CTL and AD subjects.

Initial Conditions No.3 (IC3):

(a) IC3: health CTL subjects. (b) IC3: AD patients.
Figure A41. Initial Conditions No.3 (IC3): Power law fit for power spectra of information rates Γx1 (t)
and Γx2 (t) (t ≥ 7.5) of CTL and AD subjects.

Initial Conditions No.4 (IC4):

(a) IC4: health CTL subjects. (b) IC4: AD patients.
Figure A42. Initial Conditions No.4 (IC4): Power law fit for power spectra of information rates Γx1 (t)
and Γx2 (t) (t ≥ 7.5) of CTL and AD subjects.

Initial Conditions No.5 (IC5):

(a) IC5: health CTL subjects. (b) IC5: AD patients.
Figure A43. Initial Conditions No.5 (IC5): Power law fit for power spectra of information rates Γx1 (t)
and Γx2 (t) (t ≥ 7.5) of CTL and AD subjects.
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Initial Conditions No.6 (IC6):

(a) IC6: health CTL subjects. (b) IC6: AD patients.
Figure A44. Initial Conditions No.6 (IC6): Power law fit for power spectra of information rates Γx1 (t)
and Γx2 (t) (t ≥ 7.5) of CTL and AD subjects.

Appendix B.4. Shannon Differential Entropy of p(x1, t) and p(x2, t)

Appendix B.4.1. Time Evolution: Shannon Differential Entropy
Initial Conditions No.1 (IC1):

(a) IC1: health CTL subjects. (b) IC1: AD patients.
Figure A45. Initial Conditions No.1 (IC1): Shannon differential entropy along time of CTL and
AD subjects.

Initial Conditions No.2 (IC2):

(a) IC2: health CTL subjects. (b) IC2: AD patients.
Figure A46. Initial Conditions No.2 (IC2): Shannon differential entropy along time of CTL and
AD subjects.
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Initial Conditions No.3 (IC3):

(a) IC3: health CTL subjects. (b) IC3: AD patients.
Figure A47. Initial Conditions No.3 (IC3): Shannon differential entropy along time of CTL and
AD subjects.

Initial Conditions No.4 (IC4):

(a) IC4: health CTL subjects. (b) IC4: AD patients.
Figure A48. Initial Conditions No.4 (IC4): Shannon differential entropy along time of CTL and
AD subjects.

Initial Conditions No.5 (IC5):

(a) IC5: health CTL subjects. (b) IC5: AD patients.
Figure A49. Initial Conditions No.5 (IC5): Shannon differential entropy along time of CTL and
AD subjects.

Initial Conditions No.6 (IC6):

(a) IC6: health CTL subjects. (b) IC6: AD patients.
Figure A50. Initial Conditions No.6 (IC6): Shannon differential entropy along time of CTL and
AD subjects.
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Appendix B.4.2. Empirical Probability Distribution: Shannon Differential Entropy (for
t ≥ 7.5)

(a) Initial Conditions No.1 (IC1) (b) Initial Conditions No.2 (IC2)

(c) Initial Conditions No.3 (IC3) (d) Initial Conditions No.4 (IC4)

(e) Initial Conditions No.5 (IC5) (f) Initial Conditions No.6 (IC6)
Figure A51. Empirical probability distributions of Shannon differential entropy h(x1(t)) and h(x2(t))
(t ≥ 7.5).
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Appendix B.4.3. Phase Portraits: Shannon Differential Entropy (for t ≥ 7.5)

(a) Initial Conditions No.1 (IC1) (b) Initial Conditions No.2 (IC2)

(c) Initial Conditions No.3 (IC3) (d) Initial Conditions No.4 (IC4)

(e) Initial Conditions No.5 (IC5) (f) Initial Conditions No.6 (IC6)
Figure A52. Phase portraits of Shannon differential entropy h(x1(t)) and h(x2(t)) (t ≥ 7.5).

Initial Conditions No.1 (IC1):

(a) IC1: health CTL subjects. (b) IC1: AD patients.
Figure A53. Initial Conditions No.1 (IC1): Phase portraits of Shannon differential entropy h(x1(t))
and h(x2(t)) (t ≥ 7.5) of CTL and AD subjects.
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Initial Conditions No.2 (IC2):

(a) IC2: health CTL subjects. (b) IC2: AD patients.
Figure A54. Initial Conditions No.2 (IC2): Phase portraits of Shannon differential entropy h(x1(t))
and h(x2(t)) (t ≥ 7.5) of CTL and AD subjects.

Initial Conditions No.3 (IC3):

(a) IC3: health CTL subjects. (b) IC3: AD patients.
Figure A55. Initial Conditions No.3 (IC3): Phase portraits of Shannon differential entropy h(x1(t))
and h(x2(t)) (t ≥ 7.5) of CTL and AD subjects.

Initial Conditions No.4 (IC4):

(a) IC4: health CTL subjects. (b) IC4: AD patients.
Figure A56. Initial Conditions No.4 (IC4): Phase portraits of Shannon differential entropy h(x1(t))
and h(x2(t)) (t ≥ 7.5) of CTL and AD subjects.

Initial Conditions No.5 (IC5):

(a) IC5: health CTL subjects. (b) IC5: AD patients.
Figure A57. Initial Conditions No.5 (IC5): Phase portraits of Shannon differential entropy h(x1(t))
and h(x2(t)) (t ≥ 7.5) of CTL and AD subjects.
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Initial Conditions No.6 (IC6):

(a) IC6: health CTL subjects. (b) IC6: AD patients.
Figure A58. Initial Conditions No.6 (IC6): Phase portraits of Shannon differential entropy h(x1(t))
and h(x2(t)) (t ≥ 7.5) of CTL and AD subjects.

Appendix B.4.4. Power Spectra: Shannon Differential Entropy (for t ≥ 7.5)

(a) Initial Conditions No.1 (IC1) (b) Initial Conditions No.2 (IC2)

(c) Initial Conditions No.3 (IC3) (d) Initial Conditions No.4 (IC4)

(e) Initial Conditions No.5 (IC5) (f) Initial Conditions No.6 (IC6)
Figure A59. Power spectra of Shannon differential entropy h(x1(t)) and h(x2(t)) (t ≥ 7.5).
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Appendix B.5. Causal Information Rates Γx2→x1(t), Γx1→x2(t), and Net Causal Information Rates
Γx2→x1(t)− Γx1→x2(t)

Appendix B.5.1. Time Evolution: Causal Information Rates
Initial Conditions No.1 (IC1):

(a) IC1: health CTL subjects. (b) IC1: AD patients.
Figure A60. Initial Conditions No.1 (IC1): Causal information rates along time of CTL and
AD subjects.

Initial Conditions No.2 (IC2):

(a) IC2: health CTL subjects. (b) IC2: AD patients.
Figure A61. Initial Conditions No.2 (IC2): Causal information rates along time of CTL and
AD subjects.

Initial Conditions No.3 (IC3):

(a) IC3: health CTL subjects. (b) IC3: AD patients.
Figure A62. Initial Conditions No.3 (IC3): Causal information rates along time of CTL and
AD subjects.
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Initial Conditions No.4 (IC4):

(a) IC4: health CTL subjects. (b) IC4: AD patients.
Figure A63. Initial Conditions No.4 (IC4): Causal information rates along time of CTL and
AD subjects.

Initial Conditions No.5 (IC5):

(a) IC5: health CTL subjects. (b) IC5: AD patients.
Figure A64. Initial Conditions No.5 (IC5): Causal information rates along time of CTL and
AD subjects.

Initial Conditions No.6 (IC6):

(a) IC6: health CTL subjects. (b) IC6: AD patients.
Figure A65. Initial Conditions No.6 (IC6): Causal information rates along time of CTL and
AD subjects.
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Appendix B.5.2. Empirical Probability Distribution: Causal Information Rates (for t ≥ 7.5)
Initial Conditions No.1 (IC1):

(a) IC1: causal information rates and net causal
information rates.

(b) IC1: net causal information
rates only.

Figure A66. Initial Conditions No.1 (IC1): Empirical probability distributions of causal information
rates and net causal information rates (t ≥ 7.5).

Initial Conditions No.2 (IC2):

(a) IC2: causal information rates and net causal
information rates.

(b) IC2: net causal information
rates only.

Figure A67. Initial Conditions No.2 (IC2): Empirical probability distributions of causal information
rates and net causal information rates (t ≥ 7.5).

Initial Conditions No.3 (IC3):

(a) IC3: causal information rates and net causal
information rates.

(b) IC3: net causal information
rates only.

Figure A68. Initial Conditions No.3 (IC3): Empirical probability distributions of causal information
rates and net causal information rates (t ≥ 7.5).
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Initial Conditions No.4 (IC4):

(a) IC4: causal information rates and net causal
information rates.

(b) IC4: net causal information
rates only.

Figure A69. Initial Conditions No.4 (IC4): Empirical probability distributions of causal information
rates and net causal information rates (t ≥ 7.5).

Initial Conditions No.5 (IC5):

(a) IC5: causal information rates and net causal
information rates.

(b) IC5: net causal information
rates only.

Figure A70. Initial Conditions No.5 (IC5): Empirical probability distributions of causal information
rates and net causal information rates (t ≥ 7.5).

Initial Conditions No.6 (IC6):

(a) IC6: causal information rates and net causal
information rates.

(b) IC6: net causal information
rates only.

Figure A71. Initial Conditions No.6 (IC6): Empirical probability distributions of causal information
rates and net causal information rates (t ≥ 7.5).
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Appendix B.6. Causality Based on Transfer Entropy (TE)

Appendix B.6.1. Time Evolution: Transfer Entropy (TE)
Initial Conditions No.1 (IC1):

(a) IC1: health CTL subjects. (b) IC1: AD patients.
Figure A72. Initial Conditions No.1 (IC1): Transfer Entropy (TE) along time of CTL and AD subjects.

Initial Conditions No.2 (IC2):

(a) IC2: health CTL subjects. (b) IC2: AD patients.
Figure A73. Initial Conditions No.2 (IC2): Transfer Entropy (TE) along time of CTL and AD subjects.

Initial Conditions No.3 (IC3):

(a) IC3: health CTL subjects. (b) IC3: AD patients.
Figure A74. Initial Conditions No.3 (IC3): Transfer Entropy (TE) along time of CTL and AD subjects.
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Initial Conditions No.4 (IC4):

(a) IC4: health CTL subjects. (b) IC4: AD patients.
Figure A75. Initial Conditions No.4 (IC4): Transfer Entropy (TE) along time of CTL and AD subjects.

Initial Conditions No.5 (IC5):

(a) IC5: health CTL subjects. (b) IC5: AD patients.
Figure A76. Initial Conditions No.5 (IC5): Transfer Entropy (TE) along time of CTL and AD subjects.

Initial Conditions No.6 (IC6):

(a) IC6: health CTL subjects. (b) IC6: AD patients.
Figure A77. Initial Conditions No.6 (IC6): Transfer Entropy (TE) along time of CTL and AD subjects.
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Appendix B.6.2. Empirical Probability Distribution: Transfer Entropy (TE) (for t ≥ 7.5)
Initial Conditions No.1 (IC1):

(a) IC1: Transfer Entropy (TE) and net Transfer Entropy. (b) IC1: Net Transfer Entropy only.
Figure A78. Initial Conditions No.1 (IC1): Empirical probability distributions of Transfer Entropy
(TE) and net Transfer Entropy (t ≥ 7.5).

Initial Conditions No.2 (IC2):

(a) IC2: Transfer Entropy (TE) and net Transfer Entropy. (b) IC2: Net Transfer Entropy only.
Figure A79. Initial Conditions No.2 (IC2): Empirical probability distributions of Transfer Entropy
(TE) and net Transfer Entropy (t ≥ 7.5).

Initial Conditions No.3 (IC3):

(a) IC3: Transfer Entropy (TE) and net Transfer Entropy. (b) IC3: Net Transfer Entropy only.
Figure A80. Initial Conditions No.3 (IC3): Empirical probability distributions of Transfer Entropy
(TE) and net Transfer Entropy (t ≥ 7.5).



Entropy 2024, 26, 213 59 of 61

Initial Conditions No.4 (IC4):

(a) IC4: Transfer Entropy (TE) and net Transfer Entropy. (b) IC4: Net Transfer Entropy only.
Figure A81. Initial Conditions No.4 (IC4): Empirical probability distributions of Transfer Entropy
(TE) and net Transfer Entropy (t ≥ 7.5).

Initial Conditions No.5 (IC5):

(a) IC5: Transfer Entropy (TE) and net Transfer Entropy. (b) IC5: Net Transfer Entropy only.
Figure A82. Initial Conditions No.5 (IC5): Empirical probability distributions of Transfer Entropy
(TE) and net Transfer Entropy (t ≥ 7.5).

Initial Conditions No.6 (IC6):

(a) IC6: Transfer Entropy (TE) and net Transfer Entropy. (b) IC6: Net Transfer Entropy only.
Figure A83. Initial Conditions No.6 (IC6): Empirical probability distributions of Transfer Entropy
(TE) and net Transfer Entropy (t ≥ 7.5).

References
1. Ghorbanian, P.; Ramakrishnan, S.; Ashrafiuon, H. Stochastic Non-Linear Oscillator Models of EEG: The Alzheimer’s Disease

Case. Front. Comput. Neurosci. 2015, 9, 48. [CrossRef]

http://doi.org/10.3389/fncom.2015.00048


Entropy 2024, 26, 213 60 of 61

2. Szuflitowska, B.; Orlowski, P. Statistical and Physiologically Analysis of Using a Duffing-van Der Pol Oscillator to Modeled
Ictal Signals. In Proceedings of the 2020 16th International Conference on Control, Automation, Robotics and Vision (ICARCV),
Shenzhen, China, 13–15 December 2020; pp. 1137–1142. [CrossRef]

3. Nguyen, P.T.M.; Hayashi, Y.; Baptista, M.D.S.; Kondo, T. Collective Almost Synchronization-Based Model to Extract and Predict
Features of EEG Signals. Sci. Rep. 2020, 10, 16342. [CrossRef] [PubMed]

4. Guguloth, S.; Agarwal, V.; Parthasarathy, H.; Upreti, V. Synthesis of EEG Signals Modeled Using Non-Linear Oscillator Based on
Speech Data with EKF. Biomed. Signal Process. Control 2022, 77, 103818. [CrossRef]

5. Szuflitowska, B.; Orlowski, P. Analysis of Parameters Distribution of EEG Signals for Five Epileptic Seizure Phases Modeled by
Duffing Van Der Pol Oscillator. In Proceedings of the Computational Science—ICCS 2022, London, UK, 21–23 June 2022; Groen,
D., De Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A., Eds.; Springer International Publishing:
Cham, Switzerland, 2022; Volume 13352, pp. 188–201. [CrossRef]

6. Barry, R.J.; De Blasio, F.M. EEG Differences between Eyes-Closed and Eyes-Open Resting Remain in Healthy Ageing. Biol.
Psychol. 2017, 129, 293–304. [CrossRef] [PubMed]

7. Jennings, J.L.; Peraza, L.R.; Baker, M.; Alter, K.; Taylor, J.P.; Bauer, R. Investigating the Power of Eyes Open Resting State EEG for
Assisting in Dementia Diagnosis. Alzheimer’s Res. Ther. 2022, 14, 109. [CrossRef] [PubMed]

8. Restrepo, J.F.; Mateos, D.M.; López, J.M.D. A Transfer Entropy-Based Methodology to Analyze Information Flow under
Eyes-Open and Eyes-Closed Conditions with a Clinical Perspective. Biomed. Signal Process. Control 2023, 86, 105181. [CrossRef]

9. Klepl, D.; He, F.; Wu, M.; Marco, M.D.; Blackburn, D.J.; Sarrigiannis, P.G. Characterising Alzheimer’s Disease with EEG-Based
Energy Landscape Analysis. IEEE J. Biomed. Health Inform. 2022, 26, 992–1000. [CrossRef] [PubMed]

10. Gunawardena, R.; Sarrigiannis, P.G.; Blackburn, D.J.; He, F. Kernel-Based Nonlinear Manifold Learning for EEG-based Functional
Connectivity Analysis and Channel Selection with Application to Alzheimer’s Disease. Neuroscience 2023, 523, 140–156. [CrossRef]
[PubMed]

11. Barry, R.J.; Clarke, A.R.; Johnstone, S.J.; Magee, C.A.; Rushby, J.A. EEG Differences between Eyes-Closed and Eyes-Open Resting
Conditions. Clin. Neurophysiol. 2007, 118, 2765–2773. [CrossRef]

12. Barry, R.J.; Clarke, A.R.; Johnstone, S.J.; Brown, C.R. EEG Differences in Children between Eyes-Closed and Eyes-Open Resting
Conditions. Clin. Neurophysiol. 2009, 120, 1806–1811. [CrossRef]

13. Matsutomo, N.; Fukami, M.; Kobayashi, K.; Endo, Y.; Kuhara, S.; Yamamoto, T. Effects of Eyes-Closed Resting and Eyes-Open
Conditions on Cerebral Blood Flow Measurement Using Arterial Spin Labeling Magnetic Resonance Imaging. Neurol. Clin.
Neurosci. 2023, 11, 10–16. [CrossRef]

14. Agcaoglu, O.; Wilson, T.W.; Wang, Y.P.; Stephen, J.; Calhoun, V.D. Resting State Connectivity Differences in Eyes Open versus
Eyes Closed Conditions. Hum. Brain Mapp. 2019, 40, 2488–2498. [CrossRef] [PubMed]

15. Han, J.; Zhou, L.; Wu, H.; Huang, Y.; Qiu, M.; Huang, L.; Lee, C.; Lane, T.J.; Qin, P. Eyes-Open and Eyes-Closed Resting State
Network Connectivity Differences. Brain Sci. 2023, 13, 122. [CrossRef] [PubMed]

16. Miraglia, F.; Vecchio, F.; Bramanti, P.; Rossini, P.M. EEG Characteristics in “Eyes-Open” versus “Eyes-Closed” Conditions: Small-
world Network Architecture in Healthy Aging and Age-Related Brain Degeneration. Clin. Neurophysiol. 2016, 127, 1261–1268.
[CrossRef] [PubMed]

17. Wei, J.; Chen, T.; Li, C.; Liu, G.; Qiu, J.; Wei, D. Eyes-Open and Eyes-Closed Resting States with Opposite Brain Activity in
Sensorimotor and Occipital Regions: Multidimensional Evidences from Machine Learning Perspective. Front. Hum. Neurosci.
2018, 12, 422. [CrossRef] [PubMed]

18. Springer, B.A.; Marin, R.; Cyhan, T.; Roberts, H.; Gill, N.W. Normative Values for the Unipedal Stance Test with Eyes Open and
Closed. J. Geriatr. Phys. Ther. 2007, 30, 8. [CrossRef] [PubMed]

19. Marx, E.; Deutschländer, A.; Stephan, T.; Dieterich, M.; Wiesmann, M.; Brandt, T. Eyes Open and Eyes Closed as Rest Conditions:
Impact on Brain Activation Patterns. NeuroImage 2004, 21, 1818–1824. [CrossRef] [PubMed]

20. Zhang, D.; Liang, B.; Wu, X.; Wang, Z.; Xu, P.; Chang, S.; Liu, B.; Liu, M.; Huang, R. Directionality of Large-Scale Resting-State
Brain Networks during Eyes Open and Eyes Closed Conditions. Front. Hum. Neurosci. 2015, 9, 81. [CrossRef]

21. Xu, P.; Huang, R.; Wang, J.; Van Dam, N.T.; Xie, T.; Dong, Z.; Chen, C.; Gu, R.; Zang, Y.F.; He, Y.; et al. Different Topological
Organization of Human Brain Functional Networks with Eyes Open versus Eyes Closed. NeuroImage 2014, 90, 246–255. [CrossRef]

22. Jeong, J. EEG Dynamics in Patients with Alzheimer’s Disease. Clin. Neurophysiol. 2004, 115, 1490–1505. [CrossRef]
23. Pritchard, W.S.; Duke, D.W.; Coburn, K.L. Altered EEG Dynamical Responsivity Associated with Normal Aging and Probable

Alzheimer’s Disease. Dementia 1991, 2, 102–105. [CrossRef]
24. Thiruthummal, A.A.; Kim, E.j. Monte Carlo Simulation of Stochastic Differential Equation to Study Information Geometry.

Entropy 2022, 24, 1113. [CrossRef] [PubMed]
25. Kim, E.j.; Guel-Cortez, A.J. Causal Information Rate. Entropy 2021, 23, 1087. [CrossRef] [PubMed]
26. Choong, H.J.; Kim, E.j.; He, F. Causality Analysis with Information Geometry: A Comparison. Entropy 2023, 25, 806. [CrossRef]

[PubMed]
27. Baravalle, R.; Rosso, O.A.; Montani, F. Causal Shannon–Fisher Characterization of Motor/Imagery Movements in EEG. Entropy

2018, 20, 660. [CrossRef] [PubMed]
28. Montani, F.; Baravalle, R.; Montangie, L.; Rosso, O.A. Causal Information Quantification of Prominent Dynamical Features of

Biological Neurons. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 20150109. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/ICARCV50220.2020.9305339
http://dx.doi.org/10.1038/s41598-020-73346-z
http://www.ncbi.nlm.nih.gov/pubmed/33004963
http://dx.doi.org/10.1016/j.bspc.2022.103818
http://dx.doi.org/10.1007/978-3-031-08757-8_18
http://dx.doi.org/10.1016/j.biopsycho.2017.09.010
http://www.ncbi.nlm.nih.gov/pubmed/28943465
http://dx.doi.org/10.1186/s13195-022-01046-z
http://www.ncbi.nlm.nih.gov/pubmed/35932060
http://dx.doi.org/10.1016/j.bspc.2023.105181
http://dx.doi.org/10.1109/JBHI.2021.3105397
http://www.ncbi.nlm.nih.gov/pubmed/34406951
http://dx.doi.org/10.1016/j.neuroscience.2023.05.033
http://www.ncbi.nlm.nih.gov/pubmed/37301505
http://dx.doi.org/10.1016/j.clinph.2007.07.028
http://dx.doi.org/10.1016/j.clinph.2009.08.006
http://dx.doi.org/10.1111/ncn3.12674
http://dx.doi.org/10.1002/hbm.24539
http://www.ncbi.nlm.nih.gov/pubmed/30720907
http://dx.doi.org/10.3390/brainsci13010122
http://www.ncbi.nlm.nih.gov/pubmed/36672103
http://dx.doi.org/10.1016/j.clinph.2015.07.040
http://www.ncbi.nlm.nih.gov/pubmed/26603651
http://dx.doi.org/10.3389/fnhum.2018.00422
http://www.ncbi.nlm.nih.gov/pubmed/30405376
http://dx.doi.org/10.1519/00139143-200704000-00003
http://www.ncbi.nlm.nih.gov/pubmed/19839175
http://dx.doi.org/10.1016/j.neuroimage.2003.12.026
http://www.ncbi.nlm.nih.gov/pubmed/15050602
http://dx.doi.org/10.3389/fnhum.2015.00081
http://dx.doi.org/10.1016/j.neuroimage.2013.12.060
http://dx.doi.org/10.1016/j.clinph.2004.01.001
http://dx.doi.org/10.1159/000107183
http://dx.doi.org/10.3390/e24081113
http://www.ncbi.nlm.nih.gov/pubmed/36010777
http://dx.doi.org/10.3390/e23081087
http://www.ncbi.nlm.nih.gov/pubmed/34441227
http://dx.doi.org/10.3390/e25050806
http://www.ncbi.nlm.nih.gov/pubmed/37238561
http://dx.doi.org/10.3390/e20090660
http://www.ncbi.nlm.nih.gov/pubmed/33265749
http://dx.doi.org/10.1098/rsta.2015.0109
http://www.ncbi.nlm.nih.gov/pubmed/26527819


Entropy 2024, 26, 213 61 of 61

29. Higham, D.J. An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations. SIAM Rev. 2001,
43, 525–546. [CrossRef]

30. Guel-Cortez, A.-J.; Kim, E.-j. Information Geometric Theory in the Prediction of Abrupt Changes in System Dynamics. Entropy
2021, 23, 694. [CrossRef] [PubMed]

31. Amari, S.i.; Nagaoka, H. Methods of Information Geometry; American Mathematical Soc.: Providence, RI, USA, 2000; Volume 191.
32. Frieden, B.R. Science from Fisher Information; Cambridge University Press: Cambridge, UK, 2004; Volume 974.
33. Facchi, P.; Kulkarni, R.; Man’ko, V.I.; Marmo, G.; Sudarshan, E.C.G.; Ventriglia, F. Classical and Quantum Fisher Information in

the Geometrical Formulation of Quantum Mechanics. Phys. Lett. A 2010, 374, 4801–4803. [CrossRef]
34. Itoh, M.; Shishido, Y. Fisher Information Metric and Poisson Kernels. Differ. Geom. Its Appl. 2008, 26, 347–356. [CrossRef]
35. Sahann, R.; Möller, T.; Schmidt, J. Histogram Binning Revisited with a Focus on Human Perception. arXiv 2021,

arXiv:cs/2109.06612.
36. Terrell, G.R.; Scott, D.W. Oversmoothed Nonparametric Density Estimates. J. Am. Stat. Assoc. 1985, 80, 209–214. [CrossRef]
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