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Abstract: The upsurge of autonomous vehicles in the automobile industry will lead to better driving
experiences while also enabling the users to solve challenging navigation problems. Reaching such
capabilities will require significant technological attention and the flawless execution of various
complex tasks, one of which is ensuring robust localization and mapping. Recent surveys have not
provided a meaningful and comprehensive description of the current approaches in this field. Accord-
ingly, this review is intended to provide adequate coverage of the problems affecting autonomous
vehicles in this area, by examining the most recent methods for mapping and localization as well
as related feature extraction and data security problems. First, a discussion of the contemporary
methods of extracting relevant features from equipped sensors and their categorization as semantic,
non-semantic, and deep learning methods is presented. We conclude that representativeness, low cost,
and accessibility are crucial constraints in the choice of the methods to be adopted for localization
and mapping tasks. Second, the survey focuses on methods to build a vehicle’s environment map,
considering both the commercial and the academic solutions available. The analysis proposes a
difference between two types of environment, known and unknown, and develops solutions in each
case. Third, the survey explores different approaches to vehicle localization and also classifies them
according to their mathematical characteristics and priorities. Each section concludes by presenting
the related challenges and some future directions. The article also highlights the security problems
likely to be encountered in self-driving vehicles, with an assessment of possible defense mechanisms
that could prevent security attacks in vehicles. Finally, the article ends with a debate on the potential
impacts of autonomous driving, spanning energy consumption and emission reduction, sound and
light pollution, integration into smart cities, infrastructure optimization, and software refinement.
This thorough investigation aims to foster a comprehensive understanding of the diverse implications
of autonomous driving across various domains.

Keywords: autonomous driving; feature extraction; mapping; localization; automotive security;
SLAM

1. Introduction

In the last decade, self-driving vehicles have shown impressive progress, with many
researchers working in different laboratories and companies and experimenting in various
environmental scenarios. Some of the questions in the minds of potential users relate
to the advantages that are offered by this technology and whether we can rely on it or
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not. To respond to these questions, one needs to look at the numbers of accidents and
deaths registered daily from non-autonomous vehicles. According to the World Health
Organization’s official website, approximately 1.3 million people, mainly children and
young adults, die yearly in vehicle crashes. Most of these accidents (93%) are known to
occur in low- and middle-income countries [1]. Human behaviors, including traffic offenses,
driving while under the influence of alcohol or psychoactive substances, and late reactions,
are the major causes of crashes. Consequently, self-driving technology has been conceived
and developed to replace human–vehicle interaction. Despite some of the challenges of
self-driving vehicles, the surveys in [2] indicate that about 84.4% of people are in favor of
using self-driving vehicles in the future. Sale statistics also show that the worth of these
vehicles was USD 54 billion in 2021 [3]. This outcome demonstrates the growing confidence
in the usage of this technology. It has also been suggested that this technology is capable of
reducing pollution, energy, time consumption, and accident rates, while also ensuring the
safety and comfort of its users [4].

The Society of Automotive Engineers (SAE) divides the technical revolution resulting
from this technology into five levels. The first two levels do not provide many automatic
services and, therefore, have a low risk potential. The challenge starts from level three,
where the system is prepared to avoid collisions and has assisted steering, braking, etc.
Moreover, humans must be prudent with respect to any hard decision or alert from the
system. Levels four and five refer to vehicles that are required to take responsibility for
driving without any human interaction. Hence, these levels are more complex, especially if
one considers how dynamic and unpredictable the environment can be, where there may
be a chance of collision from anywhere. Ref. [4] affirms that no vehicle has achieved robust
results in these levels at the time of writing this paper.

Creating a self-driving vehicle is a complicated task, where it is necessary to perform
predefined steps consistently and achieve the stated goals in a robust manner. The principal
question that should be answered is: how can vehicles work effectively without human
interaction? Vehicles need to continuously sense the environment; hence, they should be
equipped with accurate sensors, like Global Navigation Satellite System (GNSS), Inertial
Measurement Unit (IMU), wheel odometry, LiDAR, radar, cameras, etc. Moreover, a high-
performance computer is needed to handle the immense volume of data collected and
accurately extract relevant information. This information helps the vehicles make better
decisions and execute them using specific units prepared for this purpose.

To achieve autonomous driving, Ref. [5] proposed an architecture that combines local-
ization, perception, planning, control, and system management. Localization is deemed an
indispensable step in the operation autonomous systems since we need accurate informa-
tion of its location. Figure 1 illustrates the importance of localization and mapping steps in
the deployment of other self-driving tasks, like path planning (e.g., finding the shortest path
to a certain destination), ensuring reliable communications with other AVs, and performing
necessary tasks at the right moment, such as overtaking vehicles, breaking, or accelerating.
A small localization error can lead to significant issues, like traffic perturbation, collisions,
accidents, etc.

Finding positions can be implemented with a 3D vector, with lateral, longitudinal, and
orientation components called ”heading”:

xt = [at, bt, θt]

where at and bt are the Cartesien coordinates of the vehicle and θt is the rotation of it. There
exist other representations using speed, acceleration, etc., see [6] for more details. However,
we use the above representation most of the time, where the height is generally equal to 0,
as there is no rotation about x-axis and y-axis. This vector is denoted by the state vector xt.
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Figure 1. Steps to follow to achieve a self-driving vehicle.

One of the classical methods is based on the Global Navigation Satellite Systems
(GNSS). This technique uses the trilateration approach, which allows the detection of the
position anywhere in the world using three satellites. Moreover, this is a cheap solution.
However, GNSS-based methods may suffer from signal blockage, and they are not preferred
in some environments, especially when an obstacle cuts the line of sight. In addition, the
errors of positioning exceed 3 m. All these issues can lead to unreliability and unsafety
in driving. Several papers in the literature have attempted to address this problem. For
example, the D-GPS or RTK-based technologies [7].

Localization based on wheels odometry is another approach that can be used to find
the poses that represents the position based on a known starting point and the distance
traveled. This alternative method can be applied without external references and utilized in
other autonomous systems not only in self-driving vehicles. However, the method suffers
from cumulative errors provided by wheel slips [7].

Inertial Navigation System (INS) uses the data provided by the IMU sensor, including
accelerometers, gyroscopes, and magnetometers, and the dead-reckoning to localize the
vehicle without any external references. But, that is still very restricted and limited because
of cumulative errors [7].

The weakness of the traditional methods is that they work only with one source of
information, and their performance depends relatively on the structure of the environment.
Due to these limitations, researchers have attempted to combine information from various
sensors in order to explore the advantages provided by each of them and tackle the above
mentioned issues. We found that the subject of localization and mapping is widely treated
and surveyed by other previous articles in the literature. Table 1 presents our effort to
put together the previous surveys that investigated the same subject. We have identified
some concepts that must be investigated in relation to the localization and mapping in
autonomous vehicles, which include feature extraction, mapping, ego-localization (vehicle
localization based on its own sensors), co-localization (vehicle localization based on its own
sensors and nearby vehicles), simultaneous localization and mapping (SLAM), security of
autonomous vehicles, environmental impact, and finally we present the challenges and
future directions in the area.
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Table 1. Comparison of previous surveys on localization and mapping.

Survey Sensors Features
Extraction Mapping Ego-

Localization
Co-

Localization SLAM Security
Autonomous

Environmental
Impact

Challenges and
Future Directions

[4]
GPS/INS
Cameras
LiDAR

Middle Middle Middle No Middle Limited No Limited

[8] Cameras Extensive Limited Extensive No Middle No No Middle

[9] Cameras Extensive Limited Extensive No Middle No No Middle

[10] Cameras
LiDAR Limited Limited Extensive No Limited No No Extensive

[11] LiDAR Extensive No No No No No No Extensive

[12] LiDAR Extensive No No No No No No Extensive

[13] Cameras
LiDAR Limited Extensive Extensive No Extensive No No Extensive

[14] Cameras
LiDAR Limited Extensive Extensive No Extensive No No Extensive

[15] Cameras Limited Extensive Extensive No Extensive No No Extensive

[16] Cameras
LiDAR Limited Extensive Extensive No Extensive No No Extensive

[17] Cameras
LiDAR Limited Extensive Extensive Extensive Extensive No No Extensive

[18] All No Middle Extensive Extensive Limited Limited No Limited

[19] Cameras
LiDAR Extensive Extensive Extensive No Limited No No Limited

[20]
GPS/INS
Cameras
LiDAR

Limited Limited Extensive No Limited No No Extensive

Ours
GPS/INS
Cameras
LiDAR

Extensive Extensive Extensive Extensive Extensive Extensive Extensive Extensive

The surveys [8,9] studied visual-based localization methods, where they investigated
a couple of methods of data representation and feature extraction. They deeply discussed
the localization techniques as well as the challenges that can be met by these techniques.
However, Light Detection and Ranging (LiDARs) methods are neglected in these two
surveys. Grigorescu et al. [10] restricted their survey to only deep learning methods.
Similarly, Refs. [11,12] have surveyed 3D object detection methods and feature extraction
methods in points cloud datasets. On the other hand, many articles [13–16] have tackled
the problem of Simultaneous Localization and Mapping (SLAM) and have listed recent
works previously elaborated in this field. These surveys lack information on the feature
extraction, and they did not present much information about the existing types of maps.
An interesting survey was performed in [17], where they analyzed different methods that
can be applied to Vehicular Ad-hoc Network (VANET) localization, but without tackling
neither feature extraction nor mapping methods. Like the survey we present here, Kuutti
et al. [18] have investigated the positioning methods according to each sensor. Moreover,
they have emphasised the importance of cooperative localization, by reviewing the Vehicle-
to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I) localization. However, these surveys
did not present any feature extraction methods. Badue et al. [19] surveyed extensively
the methods that aim to solve the localization and mapping problem in self-driving cars.
However, issues related to the protection and security of autonomous vehicles have not
been investigated. The survey in [20] covered the localization and mapping problem for
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racing autonomous vehicles. Based on these limitations in the previous surveys that can be
found in the literature, we put forward here a survey that consists of the following main
contributions:

• Comprehensively reviewing the feature extraction methods in the field of autonomous
driving.

• Providing clear details on what are the solutions to create a map for autonomous
vehicles, by investigating the solutions that use pre-built maps, which can be pre-
existing commercial maps or generated by some academic solutions, or the online
map solution, which creates a map in the same time with the positioning process.

• Providing necessary background information and demonstrating many existing solu-
tions to solve the localization and mapping tasks.

• Reviewing and analysing localization approaches that exist in the literature together
with the related solutions to ensure data security.

• Exploring the environmental footprint and impact of self-driving vehicles in relation
to localization and mapping techniques and unveiling solutions for this.

The rest of this paper is organized as follows: Section 2 presents different methods
to extract relevant features, precisely from LiDAR and camera sensors. Section 3 depicts
relevant tips to generate an accurate map. Section 4 addresses the recent localization
approaches in the literature. Section 5 highlights the levels of possible attacks and some
defense mechanisms for localization security. Section 6 discusses the environmental impact
of self-driving vehicle. Section 7 draws a synthetic conclusion and provides a perspective
for future work in the area.

2. Feature Extraction

Feature extraction is the process of providing a relevant representation of the raw data.
In other words, it is manipulating the data to be easy to learn while being more robust to
generalize. It is the same here with sensors’ data. Extracting suitable information is very
useful, and it will reduce cost, energy and aid the models to be fast and accurate in the
execution. In this section, we give an overview of what was done previously in the area.
However, we limit the discussions to two sensors, namely, LiDAR and cameras, because
we believe that they are more suitable and useful in practice. Figure 2 provides a clear
flowchart to understand these features.

Figure 2. Flowchart of feature extraction.

2.1. Semantic Features

Semantic features essentially deals with extracting a known target (poles, facades,
curbs, etc.) from the raw data, in order to localize the vehicle more accurately.

LiDAR features: We can extract lane markings using specialized methods that differ-
entiate lanes from the surrounding environment. These techniques analyze how LiDAR
beams reflect off surfaces and consider variations in elevation to accurately separate lane
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boundaries. In [21], authors extract lane marking as a feature to localize the vehicle by
using the Radon transform to approximate polylines of the lane. Then, they have applied
the Douglas-Peukers algorithm to refine the shape points that estimate the road center
lines. In the work carried out by Im et al. [22], attempts were made to detect two kinds of
features. The first category was produced using LiDAR reflectivity from layer 17 to 32 to
extract road marking. Indeed, a binarization layer was applied on the extracted ground
plane. This binarization is done by using the Otsu thresholding method [23]. Finally, they
used the Hough transform to infer road marking lines. On the other hand, the second
category focuses on the extraction of the building walls because they resemble lines in the
2D horizontal plane. So, they have projected all these features into a 2D probabilistic map.
However, the existence of the poles like street trees affects the creation of the map of lines.
To solve this problem, unnecessary structures were eliminated by applying the Iterative-
End-Point-Fit (IEPF) algorithm. This is considered as one of the most reliable algorithms
for line fitting, and it gives the best accuracy in a short calculation time. Zhang et al. [24]
explored the height of curbs between 10–15 cm, and the smoothness and continuity of
points cloud around the curbs to propose a method to track the curbs. This approach is also
used in [25] with some modifications. The existence of curbs on almost every road could
be regarded as very useful. The authors of [26] used the combination of information from
LiDAR and cameras to extract poles like traffic signs, trees, and street lamps, since they
are more representative for localization purposes. The authors projected, in each layer, the
point clouds in a 2D grid map after removing the ground plane, and they assumed that
the connected grid cell of points, at the same height, is supposed to be a candidate object.
To ensure the reliability of this method, they have created a cylinder for each landmark
candidate and form the poles’ shapes. From the camera, they attempted to calculate a
dense disparity mapping and apply pattern recognition on the result of the map to detect
landmarks. Kummerle et al. [27] adopts the same idea as [26], where they attempted to
extract poles and facades from the LiDAR scans. They also detected road marking by a
stereo camera. In [28], the authors extracted, as the first kind of such features, building
facades, traffic poles, and trees, by calculating the variance of each voxel, then, they checked
the size of a fixed threshold, and concluded on the closeness of the points. Those voxels are
grouped and arranged in the same vertical direction. Hence, each cluster that respects the
variance condition in each voxel is considered as a landmark. The second kind is interested
in the reflectivity of the ground, which is extracted with the RANSAC algorithm from
LiDAR intensity. A performant algorithm to detect poles was proposed in [29]. Firstly, a
3D voxel map was applied on the set of points cloud; then, they eliminated cells with fewer
points. Thereafter, they determined the cluster’s boundaries by calculating the intensity
of points in the pole’s shape candidate to deduce the highest and lowest parts. Finally,
they checked if the points clouds in the entire core of the pole candidates did satisfy the
density condition to be considered as pole candidates. Ref. [30] implemented a method
with three steps: voxelization, horizontal clustering, and vertical clustering (voxelization is
a preprocessing step). Typically, it is intended to remove the ground plan and regroup each
part of the points cloud into voxels; then, pick the voxels with the number of points greater
than a fixed threshold. Also, they exploited the pole characteristics in an urban area, like
the isolation of the poles, distinguishable from the surrounding area, in order to extract
horizontal and vertical features. Ref. [31] is an interesting article that provides highly accu-
rate results of detecting pole landmarks. Indeed, the authors have used a 3D probabilistic
occupancy grid map based mainly on the Beta distribution applied for each layer. Then,
they have calculated the difference between the average occupancy value inside the pole
and the maximum occupancy value of the surrounding poles, which is a value between
[−1, 1]. Greater value means higher probability that it is a pole. A GitHub link for the
method was provided in [31]. Ref. [32] is another method that uses the pole landmarks,
providing a high-precision method to localize self-driving vehicles. The method assumed
five robust conditions: common urban objects, time-invariant location, time-invariant ap-
pearance, viewpoint-invariant observability, and high frequency of occurrence. First, they
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removed the ground plan using the M-estimator Sample Consensus (MSAC). Secondly,
they performed an occupied grid map, which isolates the empty spaces. Afterwards, they
performed clustering with the connected component analysis (CCA) to group the connected
occupied grid into an object. Finally, PCA was used to infer the position of the poles. The
idea is to use the three eigenvalues λx, λy, λz obtained in these three conditions (sth is a
fixed threshold).

λz ≫ λx, λy > 0
λx ≈ λy
λz

min(λx ,λy)
≤ sth

These conditions formed precisely the dimensions of the poles. The article [33] has
detected three kinds of features. First, planar features, like walls, building facades, fences,
and other planar surfaces. Second, pole features include streetlights, traffic signs, tree
trunks. Third, curbs shapes. After removing the ground plan using the Cloth Simulation
Filter, the authors have concluded that all landmarks are vertical and higher above the
ground plan and contain more points than its surrounding. They filtered cells that do not
respect the above conditions. Planar features and curb features are considered as lines
that could be approximated by a RANSAC algorithm or running a Hough transform. This
research focuses on the use of pole-like structures as essential landmarks for accurate
localization of autonomous vehicles in urban and suburban areas. A novel approach is
to create a detailed map of the poles, taking into account both geometric and semantic
information. Ref. [34] improves the localization of autonomous vehicles in urban areas
using bollard-like landmarks. A novel approach integrates geometric and semantic data to
create detailed maps of bollards using a mask-rank transformation network. The proposed
semantic particle filtering improves localization accuracy, validated on the Semantic KITTI
dataset. Integrating semantics into maps is essential for robust localization of autonomous
vehicles in uncertain urban environments. Ref. [35] introduces a novel method for accurate
localization of mobile autonomous systems in urban environments, utilizing pole-like
objects as landmarks. Range images from 3D LiDAR scans are used for efficient pole
extraction, enhancing reliability. The approach stands out for its improved pole extraction,
efficient processing, and open-source implementation with a dataset, surpassing existing
methods in various environments without requiring GPU support.

Camera features. Due to its low cost, and lightweight, the camera is an important sensor
widely used by researchers and automotive companies. Ref. [13] divided cameras into
4 principal types: monocular camera, stereo camera, RGB-D camera, and event camera.
Extracting features from the camera sensor is another approach that should be investigated.
Ref. [8] is one of the best works done in visual-based localization, where the authors
have given an overall idea about the recent trend in this field; they divide features into
local and global features. Local features search to extract precise information from a local
region in the image, which is more robust for the generalization task and more stable
with image variations. Secondly, global features focus on the extraction of features from
the whole image. These features could either be semantical or not. Most researchers
working with semantics try to extract contours, line segments, and objects in general.
In [36], the authors extracted two types of linear features, edges, and ridges by using a
Hough transform. Similarly, authors of [37] have used a monocular camera to extract lanes’
markings and pedestrian crossing lines. Polylines approximate these features. On the
other hand, Ref. [38] performed a visual localization using cameras, where they brought
out edges from environment scenes as a features/input. Each image input is processed
as follows: the first step consists of solving the radial distortion issue, which is the fact
that straight lines bend into circular arcs or curves [39]. This problem can be solved by the
radial distortion correction methods and projective transformation into the bird’s eye view.
Moreover, they calculated the gradient magnitude, which creates another image, called
gradient image, split into several intersecting regions. After that, a Hough transform is
applied to refine the edges of the line segments. Finally, a set of conditions depending on
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geometric and connectivity of the segment was checked to find the last representation of the
edge polylines. Localization of mobile devices was investigated in [40] by using features
that satisfy some characteristics, such as: permanent (statical), informative (distinguishable
from others), widely available. From the features we can derive: alignment tree, autolib
station, water fountain, street lights, traffic lights, etc. Reference [41] introduced MonoLiG ,
a pioneering framework for monocular 3D object detection that integrates LiDAR-guided
semi-supervised active learning (SSAL). The approach optimizes model development using
all data modalities, employing LiDAR to guide the training without inference overhead. The
authors utilize a LiDAR teacher, monocular student cross-modal framework for distilling
information from unlabeled data, augmented by a noise-based weighting mechanism to
handle sensor differences. They propose a sensor consistency-based selection score to
choose samples for labeling, which consistently outperforms active learning baselines by
up to 17% in labeling cost savings. Extensive experiments on KITTI and Waymo datasets
confirm the framework’s effectiveness, achieving top rankings in official benchmarks and
outperforming existing active learning approaches.

2.2. Non-Semantics Features

Non-semantics features are unlike the semantics once; they do not have any signifi-
cance in their contents. They provide an abstract scan without adopting any significant
structure like poles, buildings, etc. This gives a more general representation of the environ-
ment and reduces execution time instead of searching about a specific element that can not
exist everywhere.

LiDAR features. In [42], the method consists of four main steps. They started with
pre-processing, which aligns each local neighborhood to a local reference frame using
Principal Component Analysis (PCA). The smallest principal component is taken as a
normal (perpendicular to the surface). Secondly, Pattern Generation is where the remaining
local neighborhood points are transformed from 3D into 2D within a grid map; each cell
contains the maximum value of reflectivity. Furthermore, the descriptor calculation is
performed by the DAISY descriptor, which works by convolving the intensity pattern
by a Gaussian kernel. After that, a gradient of intensities is calculated for eight radial
orientations. Moreso, a smoothening is performed using Gaussian kernel of three different
standard deviations. Finally, a normalization step is applied to maintain the value of the
gradients within the descriptor. ’GRAIL’ [42] is able to compare the query input with
twelve distinctive shapes that can be used as relevant features for localization purposes.
Hungar et al. [43] used a non-semantical approach where a reduction of the time of
execution, by selecting points whose sphere of the local neighborhood with radius r,
including an amount of point that will exceed a fixed threshold, was carried out. After that,
they distinguish the remaining patterns into curved and non-curved by using k-medoids
clustering. The authors use a DBSCAN clustering to aggregate similar groups to infer
features. Lastly, the creation of the key features and map features relied on different criteria,
including distinctiveness, uniqueness, spatial diversity, tracking stability, persistence. A
6D pose estimation was performed by [44], where they describe the vehicle’s roadside and
considered it a useful feature for the estimation model. To achieve this, they proposed
preprocessing the point cloud through ROI (Region of Interest) filtering in order to remove
long-distance background points. After that, a RANSAC algorithm was performed to find
the corresponding equation of the road points. Thanks to the Radius Outlier Removal filter,
which the authors used to reduce the noise by removing isolated points and reduce their
interference. Meanwhile, the shape of the vehicles was approximated with the help of the
Euclidean clustering algorithm presented in [45]. Charroud et al. [46,47] have removed the
ground plan of all the LiDAR scan to reduce a huge amount of points, and they have used
a Fuzzy K-means clustering technique to extract relevant features from the LiDAR scan.
An extension of this work [48] adds a downsampling method to speed up the calculation
process of the Fuzzy K-means algorithm.
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Descriptors based methods can be considered an interesting idea since they are widely
used to extract meaningful knowledge directly from a set of points’ cloud. These methods
do enable a separation of each feature point regarding the perturbation caused by noise
and varying density, and the change of the appearance of the local region [49]. They also
added that four main criteria should be used while performing features description, citing
the descriptiveness, robustness, efficiency, and compactness. These criteria involved the
reliability, the representativity, the cost of time and the storage space. These descriptors can
be used in the points pair-based approach, which is the task of exploiting any relationship
between two points like distance or angle between normals (the perpendicular lines to
a given object), or boundary to boundary relations, or relations between two lines [50].
Briefly, with respect to this methods, we can cite CoSPAIR [51], PPFH [52], HoPPF [53],
PPTFH [54]. Alternatively, they can be included to extract local features. For example,
TOLDI [55], BRoPH [49], and 3DHoPD [56].

Camera features. Extracting non-semantic features from the camera sensor is widely
treated in the literature. However, this article focuses on methods that work to find pose
estimation. Due to the fastness of the ORB compared to other descriptors like SIFT or
SURF, many researchers have adopted this descriptor to represent image features. For this
purpose, Ref. [57] attempted to extract key features by using an Oriented FAST and rotated
BRIEF (ORB) descriptor, to achieve an accurate matching between the extracted map and
the original map. Another matching features’ method was proposed in [58], where the
authors sort to extract holistic features from front view images by using the ORB layer and
BRIEF layer descriptor to find a great candidate node, while local features from downward
view images were detected using FAST-9, which are fast enough to cope with this operation.
Gengyu et al. [59] extracted ORB features and converted them to visual words based on the
DBoW3 approach [60,61] used ImageNet-trained Convolutional Neural Networks (CNN)
features (more details in the next sub-section) to extract object landmarks from images,
as they are considered to be more powerful for localization tasks. Then, they implement
Scale-Invariant Feature Transform (SIFT) for further improvement of the features.

2.3. Deep Learning Features

It is worth mentioning the advantage of working with deep learning methods, which
try to imitate the working process of the human brain. Deep learning (DL) is widely
encountered in various application domains, such as medical, financial, molecular biology,
etc. It can be used for different tasks, such as object detection and recognition, segmentation,
classification, etc. In the followings, we survey recent papers that use DL for vehicle
localization and mapping.

LiDAR and/or Camera features.One of the most interesting articles done in this field
is [11], where the authors provided an overall picture of object detection with LiDAR
sensors using deep learning. This survey divides the state-of-art algorithms into three
parts: projection-based methods, which project the set of points cloud into a 2D map
respecting a specific viewpoint; voxel-based methods, which involve the task of making
data more structured and easier to use by discretizing the space into a fixed voxel grid map;
finally, point-based methods, which work directly on the set of points’ cloud. Our literature
investigation concludes that most of the methods are based on the CNN architecture with
different modifications in the preprocessing stage.

• MixedCNN-based Methods: Convolutional Neural Network (CNN) is one of the most
common methods used in computer vision. These types of methods use mathematical
operations called ’convolution’ to extract relevant features [62]. VeloFCN [63] is a
projection-based method and one of the earliest methods that uses CNN for 3D
vehicle detection. The authors used a three convolution layer structure to down-
sample the input front of the view map, then up-sample with a deconvolution layer.
The output of the last procedure is fed into a regression part to create a 3D box for
each pixel. Meanwhile, the same results were entered for classification to check if
the corresponding pixel was a vehicle or not. Finally, they grouped all candidates’
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boxes and filtered them by a Non-Maximum Suppression (NMS) approach. In the
same vein, LMNet [64] increased the zone of detection to find road objects by taking
into consideration five types of features: reflectance, range, distance, side, height.
Moreover, they change the classical convolution by the dilated ones. The Voxelnet [65]
method begins with the process of voxelizing the set of points cloud and passing it
through the VFE network (explained below) to obtain robust features. After that, a
3D convolutional neural network is applied to group voxels features into a 2D map.
Finally, a probability score is calculated using an RPN (Region Proposal Network). The
VFE network aims to learn features of points by using a multi-layer-perceptron and a
max-pooling architecture to obtain point-wise features. This architecture concatenates
features from the MLP output and the MLP + Maxpooling. This process is repeated
several times to facilitate the learning. The last iteration is fed to an FCN to extract the
final features. BirdNet [66] generates a three-channel bird eye’s view image, which
encodes the height, intensity, and density information. After that, a normalization
was performed to deal with the inconsistency of the laser beams of the LiDAR devices.
BirdNet uses a VGG16 architecture to extract features, and they adopt a Fast-RCNN
to perform object detection and orientation. BirdNet+ [67] is an extension of the
last work, where they attempted to predict the height and vertical position of the
centroid object in addition to the processing of the source (BirdNet) method. This field
is also approached by transfer learning, like in Complex-YOLO [68], and YOLO3D
[69]. Other CNN-based method include regularized graph CNN (RGCNN) [70],
Pointwise-CNN [71], PointCNN [72], Geo-CNN [73], Dynamic Graph-CNN [74] and
SpiderCNN [75].

• Other Methods: These techniques are based on different approaches. Ref. [76] is a
machine learning-based method where the authors try to voxelize the set of points
cloud into 3D grid cells. They extract features just from the non-empty cells. These fea-
tures are a vector of six components: mean and variance of the reflectance, three shape
factors, and a binary occupancy. The authors proposed an algorithm to compute the
classification score, which takes in the input of a trained SVM classification weight and
features, then a voting procedure is used to find the scores. Finally, a non-maximum
suppression (NMS) is used to remove duplicate detection. Interesting work is done
in [77], who tried to present a new architecture of learning that directly extracts local
and global features from the set of points cloud. The 3D object detection process is
independent of the form of the points cloud. PointNet shows a powerful result in
different situations. PointNet++ [78] extended the last work of PointNet, thanks to the
Furthest Point Sampling (FPS) method. The authors created a local region by cluster-
ing the neighbor point and then applied the PointNet method in each cluster region to
extract local features. Ref. [79] introduces a novel approach using LiDAR range images
for efficient pole extraction, combining geometric features and deep learning. This
method enhances vehicle localization accuracy in urban environments, outperforming
existing approaches and reducing processing time. Publicly released datasets support
further research and evaluation. The research presents PointCLIP [80], an approach
that aligns CLIP-encoded point clouds with 3D text to improve 3D recognition. By
projecting point clouds onto multi-view depth maps, knowledge from the 2D domain
is transferred to the 3D domain. An inter-view adapter improves feature extraction,
resulting in better performance in a few shots after fine-tuning. By combining Point-
CLIP with supervised 3D networks, it outperforms existing models on datasets such
as ModelNet10, ModelNet40 and ScanObjectNNN, demonstrating the potential for
efficient 3D point cloud understanding using CLIP. PointCLIP V2 [81] enhances CLIP
for 3D point clouds, using realistic shape projection and GPT-3 for prompts. It out-
performs PointCLIP [80] by +42.90%, +40.44%, and +28.75% accuracy in zero-shot
3D classification. It extends to few-shot tasks and object detection with strong gener-
alization. Code and prompt details are provided. The paper [82] presents a "System
for Generating 3D Point Clouds from Complex Prompts and proposes an accelerated
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approach to 3D object generation using text-conditional models. While recent methods
demand extensive computational resources for generating 3D samples, this approach
significantly reduces the time to 1–2 min per sample on a single GPU. By leveraging
a two-step diffusion model, it generates synthetic views and then transforms them
into 3D point clouds. Although the method sacrifices some sample quality, it offers a
practical tradeoff for scenarios, prioritizing speed over sample fidelity. The authors
provide their pre-trained models and code for evaluation, enhancing the accessibility
of this technique in text-conditional 3D object generation. Researchers have developed
3DALL-E [83], an add-on that integrates DALL-E, GPT-3 and CLIP into the CAD
software, enabling users to generate image-text references relevant to their design
tasks. In a study with 13 designers, the researchers found that 3DALL-E has potential
applications for reference images, renderings, materials and design considerations.
The study revealed query patterns and identified cases where text-to-image AI aids
design. Bibliographies were also proposed to distinguish human from AI contribu-
tions, address ownership and intellectual property issues, and improve design history.
These advances in textual referencing can reshape creative workflows and offer users
faster ways to explore design ideas through language modeling. The results of the
study show that there is great enthusiasm for text-to-image tools in 3D workflows
and provide guidelines for the seamless integration of AI-assisted design and existing
generative design approaches. The paper [84] introduces SDS Complete, an approach
for completing incomplete point-cloud data using text-guided image generation. De-
veloped by Yoni Kasten, Ohad Rahamim, and Gal Chechik, this method leverages
text semantics to reconstruct surfaces of objects from incomplete point clouds. SDS
Complete outperforms existing approaches on objects not well-represented in training
datasets, demonstrating its efficacy in handling incomplete real-world data. Paper [85]
presents CLIP2Scene, a framework that transfers knowledge from pre-trained 2D
image-text models to a 3D point cloud network. Using a semantics-based multimodal
contrastive learning framework, the authors achieve annotation-free 3D semantic
segmentation with significant mIoU scores on multiple datasets, even with limited
labeled data. The work highlights the benefits of CLIP knowledge for understanding
3D scenes and introduces solutions to the challenges of unsupervised distillation of
cross-modal knowledge.

Figure 3 represents a timeline of the most popular 3D object detection algorithms.

Figure 3. Timeline of 3D object detection algorithms [11].

2.4. Discussion

Table 2 provides a categorization for the surveyed papers in this section. The papers
were grouped regarding the extracted features. We noticed that the papers extracted three
kinds of object features from the environment: vertical, horizontal, or road curve features
in case of semantic type. Also, papers have used non-semantic and deep learning methods
to represent any kind of objects that exist in the environment, or to represent only a part
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of them. Moreover, the table provides some methods and concepts used to extract the
features. We have analysed the robustness of the extracted features to help the localization
and mapping tasks by using three criteria deduced from our state-of-art investigation.

• Time and energy cost: being easy to detect and easy to use in terms of compilation
and execution.

• Representativeness: detecting features that frequently exist in the environment to
ensure the matching process.

• Accessibility: being easy to distinguish from the environment.

We have used the column ’Robustness’ as a score given to each cluster of papers. The
score is calculated based on the three criteria above and the analysis of experiments in the
papers. According to the same table, extracting non-semantic features have the highest
robustness score regarding their ability to represent the environment even with less texture,
i.e., in the case of few objects in the environment like in the desert. This competence is due
to the way the features are extracted. Those methods do not limit themselves to extracting
one type of object. However, the map created by those features will not have a meaning.
They are just helpful reference points for the localization process only.

On another hand, using semantic features helps to get a passable score to be used in
localization tasks since they consume a bit more time and energy for executions because
most of the time they are not isolated in the environment. One more thing is that they can
not be found in any environment, which hardly affects the localization process. Despite
all these negative points, these techniques reduce effectively the huge amount of points
data (LiDAR or Camera) compared with the non-semantic ones. Also, those features can be
used for other perception tasks.

Deep learning methods also get a passable score regarding their efficiency to represent
the environment. Like the non-semantic techniques, the DL approaches ensure the repre-
sentativeness of the features in all environments. However, the methods consume a lot of
time and computational resources to be executed.

2.5. Challenges and Future Directions

In order to localize itself within the environment, the vehicle needs to explore the
received information from the sensors. However, the huge amount of data received makes
it impossible to be used in real-time localization on the vehicle, since the vehicle needs an
instant interaction with the environment, e.g., accelerating, breaking, steering the wheel,
etc. That is why the on-board systems need effective feature extraction methods that will
distinguish relevant features for better execution of the localization process.

After surveying and analyzing related papers, the following considerations for effec-
tive localization were identified:

• Features should be robust against any external effect like weather changes, other
moving objects, e.g., trees that move in the wind.

• Provide the possibility of re-use in other tasks.
• The detection system should be capable to extract features even with a few objects in

the environment.
• The proposed algorithms to extract features should not hurt the system by requiring

long execution time.
• One issue that should be taken into consideration is about safe and dangerous features.

Each feature must provide a degree of safety (expressed as percentage), which helps
to determine the nature of the feature and where they belong to, e.g., belonging to the
road is safer than being on the walls.
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Table 2. Categorization of the state-of-art methods that extract relevant features for localization and mapping purposes.

Paper Features Type Concept Methods Features-Extracted Time and Energy Cost Representativeness Accessibility Robustness

[21,22],
[33,36],
[37,38].

- Semantic - General

- Radon transform
- Douglas &
Peukers
algorithm

- Binarization
- Hough transform
- Iterative-End-
Point-Fit (IEPF)

- RANSAC

- Road lanes
- lines
- ridges Edges
- pedestrian
crossings lines

- Consume a lot - High - Hard - Passable

[24,25],
[33].

- Semantic - General

- The height of
curbs between
10 cm and
15 cm

- RANSAC

- Curves - Consume a lot - High - Hard - Passable

[26,27],
[28,29],
[30,31],
[32,33],
[40].

- Semantic - Probabilistic
- General

- Probabilistic
Calculation

- Voxelisation

- Building facades
- Poles

- Consume a lot - Middle - Hard - Low

[42,43],
[44,46],
[47,48],
[51,52],
[53,54],
[49,55],
[56,57],
[58,59],
[60].

- Non-Semantic - General

- PCA
- DAISY
- Gaussian kernel
- K-medoids
- K-means
- DBSCAN
- RANSAC
- Radius Outlier
Removal filter

- ORB
- BRIEFFAST-9

- All the environment - Consume less - High - Easy - High
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Table 2. Cont.

Paper Features Type Concept Methods Features-Extracted Time and Energy Cost Representativeness Accessibility Robustness

[61,62],
[63,64],
[65,66],
[67,68],
[69,70],
[71,72],
[73,74],
[75,76],
[77,78].

- Deep-learning
- Probabilistic
- Optimization
- General

- CNN
- SVM
- Non-Maximum
Suppression

- Region Proposal
Network

- Multi Layer
Perceptron

- Maxpooling
- Fast-RCNN
- Transfer learning

- All the environment - Consume a lot - High - Easy - High
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3. Mapping

Mapping is the task of finding a relevant representation of the environment’s surround-
ings. This representation can be generated according to different criteria. For example, in
autonomous driving systems, maps play an indispensable role in providing highly precise
information about the surrounding of the vehicles, which aids in dealing with vehicles
localization, vehicles control, motion planning, perception, and system management. Map-
ping also helps in better understanding of the environment. Maps seek information from
different sensors, which are divided into three groups. The first one employs the Global
Navigation Satellite System (GNSS) sensors with an HD map that relies on layers on a
Geographic Information System (GIS) [18] (GIS is a framework that provides the possibility
of analyzing spatial and geographic data). The second group is based on the range and
vision-based sensors such as LiDAR, cameras, RADAR, etc., which help in the creation of a
point cloud map. The third group uses cooperative approaches. Each vehicle will generate
its local map and then assemble them through Vehicle-to-Vehicle (V2V) communication
to generate the global map, which is lower in cost and more flexible and robust. Data
received from these sensors are classified into stable objects in time, i.e., immovable, such
as buildings, traffic lights, bridges, curbs, pavements, traffic signs, lanes, poles-landmarks.
This information is tremendously essential to change lines, avoid obstacles, respect road
traffic in general. Furthermore, the dynamic objects change coordinates over time, like
vehicles, pedestrians, cyclists. This information is helpful in the context of using V2V or
V2I communications. Other than that, it is not recommended to be mapped. Wong et al.
[86] added another class named temporary objects, which are features that exist within a
time period sense, like parked vehicles, temporary road works, and traffic cones. Maps are
prone to be inaccurate due to errors of sensor measurements, hence, that can lead to failures
in the positioning of objects on the map, which makes driving impossible in this situation.
10 cm of accuracy is recommended by Seif and Hu [87]. Moreover, the massive amount of
data received from different sensors need high storage space and computational processing
units. Fortunately, this can be covered by the new generation of computational capacities
like NVIDIA cards. Ref. [88] discussed the required criteria for getting a robust map with
respect to three aspects: storage efficiency, usability, and centimeter- level accuracy.

Our literature review found that maps for autonomous driving systems can be divided
into two categories: offline maps and online maps. We will discuss each type of maps in
more detail below.

3.1. Offline Maps

Offline maps (also called a priori or pre-built maps) are generated in advance to help
autonomous driving systems in the navigation and localization tasks. According to [89],
the turnover resulting from the their usage increased to 1.4$ billion in 2021 and is intended
to reach 16.9$ billion by 2030. The number of investments in this field tends to grow daily,
and the competition between map manufacturers is at a high level. These companies
use different technologies and strategies of partnership and collaboration. In the last few
years, major auto manufacturers have accelerated the efforts to produce new generations of
advanced driver assistance systems (ADAS). In consequence, developing such great maps
is a must for these vehicles.

According to [90], three types of maps can be identified, including digital maps, en-
hanced digital maps, (HD) high-definition maps. Digital maps (cartography) are topometric
maps that encode street elements and depict major road structures, such as Google maps,
OpenStreetMap, etc. These maps also provide the possibility of finding the distance from
one place to another. However, these maps are useless for autonomous vehicles due to the
limited information provided, the low update frequency, and lack of connectivity. So, it
cannot be accessed from external devices. The enhanced digital map is a little bit more
developed than the first one. Furthermore, from what we identified, these maps are charac-
terized by additional data information, including poles-landmarks, road curvature, lane
level, metal barrier. The most important one is the HD map, which is a concept developed
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by the Mercedes-Benz research planning workshop [91]. This map consists of a 3D repre-
sentation of the environment which is broken down into five layers, i.e., Base map layer,
Geometric map layer, Semantic map layer, Map priors layer, Real-time knowledge layer, as
are clearly explained in [90,92].

To build a HD map, we should take into consideration four main principles mentioned
in [90,92]. First, mapping a precomputation that facilitates the work of the autonomous
driving system in real-time by solving, partially or completely, some problems in the offline
stage in a highly accurate manner. The second principle is mapping to improve safety,
highlighting the importance of providing accurate information about the surrounding
objects to ensure safety, especially if we are talking about level four and five autonomous
vehicles, which need more maintenance and surveillance. Alternatively, a map is another
tool used at the moment of driving. The third principle is that a map should be robust
enough against the dynamic objects that cause run-time trouble. Finally, a map is a global
shared state working as a team, where each (AV) system provides its information. So, this
idea can solve the problems related to the large computational memory usage as well as and
reduce energy. Maps should be underpinned with hardware and software components. As
aforementioned, hardware components are the data source of the map, while the software
components are intended to analyze and manipulate, and even power the hardware [93].

Maps are prone to errors from various sources, including the change of reality, local-
ization error, inaccurate map, map update error, etc., and we can define an accuracy metric
to measure how much the map is an accurate representation of the real-word. According
to [94], two metric accuracies are defined:

• Global accuracy: (Absolute accuracy) position of features according to the face of the
earth.

• Local accuracy: (Relative accuracy) position of features according to the surrounding
elements on the road.

In Table 3, we detail some companies that are developping digital map solutions for
autonomous systems.

However, these maps are usually not publicly available and they need to be generated
frequently, which give rise to the need for an in-house solution, and which can be created
with vehicle sensors and with the help of academic solutions. So, all feature extraction
algorithms we have already discussed are candidates for solving localization and mapping
tasks. Features that are widely used for the purpose of creating a map are lanes [21,22,36],
buildings [22,28,33], curbs [24,25,33], poles [26–30,32,33], or a combination of these. These
maps are referred to as feature maps. There is a lot of types of maps in the literature, like
the probabilistic occupancy map, which is a lightweight, and low-cost map that gives the
probability that a cell is occupied or not, such as the work in [31]. Voxel grid map is another
type of maps based on 3D voxelization of the environment; each voxel is equivalent to
a pixel in a 2D environment. Also, these maps are used most of the time to discretize
3D points cloud, which reduces the work into voxels and offers more opportunities to
employ relevant algorithms [76]. Schreier [95] adds more map representations depending
on various levels of abstractness including parametric free space maps, interval maps,
elevation maps, stixel world, multi-level surface maps, raw sensor data. Note that it is
possible to combine the information from maps to gain a better understanding of the
environment scene.

3.2. Online Maps

The localization and mapping problems were first treated separately, and good results
were reported. In recent years, a significant advancement known as simultaneous localiza-
tion and mapping (SLAM) has emerged to address the issue of non-existing mapping in
indoor environments, or if there is no access to the map of the environment. This problem
is more difficult because we try to estimate the map and find the position of the vehicles at
the same time. For this reason, we call it online maps. In reality, there are many unknown
environments, especially for the in-house robots. So the robot creates its own map map [96].
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Let us look from the mathematics perspective, mainly from a probability and optimization
viewpoint. We define the motion control by uk (vehicle motion information using IMU, or
wheel odometry, etc.), the measurement by zk (providing a description of the environment
using LiDAR, camera, etc.) and the state by xk (the vehicle position). So we can distinguish
between two main forms of SLAM problems, with the same importance.

The first one is the online SLAM which estimates only the pose at the time k and the
map m. Mathematically, we search:

b(xk, m) = p(xk, m | z0:k, u0:k) which is called “belief”

The second type is the full SLAM, which approximates the entire trajectory x0:k and
the map m, expressed by:

b(x0:k, m) = p(x0:k, m | z0:k, u0:k)

The online SLAM is just an integration of all past poses from the full SLAM:

p(xt, m | z0:t, u0:t)

=
∫∫

· · ·
∫

p(x1:t, m | z0:t, u0:t)dx0dx1 . . . dxt−1

The idea behind the online SLAM is to use the Markov assumption (i.e., the current
position depends only on the last acquired measurement). With this assumption, SLAM’s
methods are also based on the Bayes theorem so that we can write [96,97]:

posterior =
likelihood · prior

marginal_likelihood

Then, employing this theorem to the belief p(xk, m | z0:k, u0:k) and incorporating each
term (namely, posterior, likelihood, and marginal likelihood) with its precise definition,
including pertinent details. This process is referred to as the Measurement_Update.

p(xk, m | z0:k, u0:k) =
p(zk | xk, m)p(xk, m | z0:k−1, u0:k)

p(zk | z0:k−1, u0:k)
(1)

where:

• Likelihood = p(zk | xk, m) which gives the possibility of making an observation zk
when the vehicle position is xk and the set of landmarks m are known. Called in the
literature the observation_model [97].

• Prior = p(xk, m | z0:k−1, u0:k)

=
∫

p(xk | xk−1, uk)

× p(xk−1, m | z0:k−1, u0:k−1)dxk−1

=
∫

p(xk | xk−1, uk) · b(xk−1, m)dxk−1

This calculation of the prior is called the Prediction_Update, which represents the best
possibility of the state xk. The term p(xk | xk−1, uk) is called motion_model [14,16,97].

• Marginal_likelihood = p(zk | z0:k−1, u0:k) is a normalization term which depends
only on the measurement and it can be calculated as given below [97]:

p(zk | z0:k−1, u0:k)



Machines 2024, 12, 118 18 of 48

=
∫

p(zk | xk, m)p(xk, m | z0:k−1, u0:k)dxk

At this moment, let us replace what we got in the calculation of the prior in the
Equation (1) and explore that the Marginal_likelihood is only dependent on the zk to
deduce this formulation [14,16]:

p(xk, m | z0:k, u0:k) =
p(zk | xk, m)p(xk, m | z0:k−1, u0:k)

p(zk | z0:k−1, u0:k)

proportional
∝ p(zk | xk, m)p(xk, m | z0:k−1, u0:k)

prior
= p(zk | xk, m)

∫
p(xk | xk−1, uk) · b(xk−1, m)

Table 3. Commercial companies are developing digital mapping solutions for self-driving cars.

Map Original
Country Description/Key Features

Here is one of the companies that provides HD maps solutions and promise its clients to ensure
the safety and get the driver truth by providing relevant information to offer vehicles more option

HERE Netherlands and to decide comfortably. Here uses machine learning to validate map data against
the real-word in the real-time, this technology achieve around 10–20 cm of the accuracy in the

identification of the vehicles and their surrounding. Moreover, this map contains three
main layers Road Model, HD Lane Model, and HD Localisation Model [98,99].

Support many applications in an (ADAS) like Hans-free driving, advanced lane guidance, lane split,
curves speed warning, etc. Also, provide a high precise vehicle positioning with an accuracy of 1 m

Tomtom Netherlands or better compared to reality and 15 cm in the relative accuracy. Also, Tomtom take the advantage
of using the RoadDNA where it converts the 3D points cloud into a 2D raster image which made

it much easier to implement in-vehicles. Tomtom consist of three-layer
Navigation data, Planning data, RoadDNA [100,101].

Sanborn USA Exploit the data received from different sensors Cameras, LiDAR to generate a high-precise 3D base-map.
This map attain 7–10 cm of the absolute accuracy [102].

Ushr use only stereo camera imaging techniques to reduce the cost of acquiring data, and they use advanced
Ushr USA/Japan machine vision and machine learning enable to achieve 90% of automation of data processing,

also this map has mapped over 200,000 miles under 10 cm level of absolute accuracy [103].

NVIDIA map detect semantics road features and provides information about vehicles position with
NVIDIA USA robustness and centimeter-level of accuracy. Also, NVIDIA offers the possibility to build and update

a map using sensors available on the car [104].

Waymo affirmed that a map for (AV) contain much more information than the traditional one and deserve
to have a continuous maintain and update, due to its complexity and the huge amount of data received.

Waymo USA Waymo extract relevant features on the road from LiDAR sensor, which help to accurately find
the vehicle position by matching the real-time features with the pre-built map features,

this map attains a 10 cm of accuracy without using a GPS [99].

Zenrin is one of the leaders’ companies in the creation of map solution in japan, founded in 1948
Zenrin Japan and has subsidiaries worldwide in Europe, America, and Asia. The company adopt

the Original Equipment Manufacturers (OEM) for the automobile industry. Zenrin offer 3D digital
maps containing Road networks, POI addresses, Image content, Pedestrian network, etc. [105].

Explore the fusion of three modules HD-GNSS, DR engine, and Map fusion to provide high accurate
NavInfo China positioning results. Also, they allow parking the vehicle by a one-click parking system.

NavInfo is based on the self-developed HD map engine and provide a scenarios library based on
HD map, simulation test platform, and other techniques [106].

In lvl5, they believe that vehicles did not need to have a LiDAR sensor, unlike Waymo. The company
Lvl5 USA The company focus on cameras sensor and computer vision algorithm to analyze and manipulate

videos captured and converted into a 3D map. The HD maps created change multiple times in a day which is
a big advantage compared with other companies. lvl5 get an absolute accuracy in the range of 5–50 cm [86,107].

To obtain a highly accurate map, Atlatec uses cameras sensors to collect data.
Atlatec Germany After that, a loop closure is applied to get a consistent result. They use a combination of artificial

intelligent (AI) and manual work to get a detailed map of the road objects.
This map arrived to 5 cm in the relative accuracy [91,108].

The problem of SLAM, as we have noticed above, can be solved by following the two
steps: Measurement_Update and Prediction_Update. So any solution to this problem
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should be a great representation of the observation_model and the motion_model, which
will give us the best estimation of the two steps aforementioned. The above explanation
was about the probabilistic representation of the SLAM problem [16]. Now, let us change
the focus to optimization and formalize the problem. Indeed, optimization is involved in
resolving SLAM problems by minimizing a cost function which depends on the pose xk and
the map m with constraints. In the case of Graph SLAM, the cost function can be [14,109]:

Fun(x) = ∑
ij

eij(xi, xj)
TΩijeij(xi, xj) (2)

x∗ = argmin
x

Fun(x)

where x = {x0, x1, . . . , xi, xj, . . . , xn} is the set of vehicles poses, m is the set of landmarks that
consist the map, eij

(
xi, xj

)
= zij − z∗ij

(
xi, xj

)
is the error function which calculates the distance

between the prediction and real observation in the node i, j , Ωij is the information matrix.

3.3. Challenges

• Data storage is a big challenge for AVs. We need to find the minimum information
required to run the localization algorithm.

• Maps are updated frequently, so an update system should take place here to update
and maintain the changes. Also, the vehicle connectivity system should support this
task and supply the changes for other vehicles.

• Preserving the information on vehicle localization and ensuring privacy is also a
challenge.

4. Localization

Localization is a crucial task within the context of any autonomous system develop-
ment. This task is indispensable, i.e., to tell the vehicle where it is at each moment in time.
Without this information, the vehicles can not avoid collision properly and can not drive in
the correct line. At this level, we have seen in Section 2 how to extract relevant features
from sensor measurements, and we have investigated different approaches to find the best
representation of the environment (Section 3), which means that we have discussed the
steps needed before localizing the vehicle. In the remainder of this section, we will depict
what is new on localization approaches.

4.1. Dead Reckoning

Dead Reckoning (DR) is one of the oldest methods that determines the position of
an object based-on three known pieces of information, including the courses that have
been traveled, the distance covered (which can be calculated by using the speed of the
object in the trajectory and the time spent within), and lastly a reference point, which is
to know the departure point and the estimated drift, if there is. This method does not use
any celestial reference, and it is helpful in marine navigation, air navigation, or terrestrial
navigation [110,111]. So the coordinates can be found mathematically by:

xk = x0 +
k−1

∑
i=0

di × cos θi

yk = y0 +
k−1

∑
i=0

di × sin θi

where (x0, y0) is an initial position and di, θi are, respectively, the shortest way and the
angle between the current and last position.
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4.2. Triangulation

Triangulation strives to estimate vehicles’ position based on geometrical properties.
The principal idea is that if we have two known points, we can deduce the coordinate
of the third point. For an accurate estimation of vehicles’ positions, we should use at
least three satellites. To solve this estimation, the procedure requires two steps as detailed
below [110,112].

• Distance estimation:

This is approximately the distance between the transmitter (satellites) and the receiver
(vehicle). In the literature, many methods have been implemented to estimate this distance.
One of them is based on the Time of Arrival (ToA), which is the time that takes a signal
to arrive at the receiver, and it is based on the signal propagation speed. So, the distance
can be estimated (distance is equal to speed * time). One of the problems here is that the
time should be synchronized between the sender and the receiver, which is difficult. An
extension of this method is the Time Difference of Arrival (TDoA), which calculates the
difference of time between two signals with different propagation speeds, from which we
can deduce the position. There are other methods to do that, including Received Signal
Strength Indicator (RSSI), Hop-based, Signal attenuation, Interferometry [110,112].

• Position estimation:

The position of the vehicles can be found based on the geometric properties and based
on the distance estimated above. The calculation complexity depends on the dimensionality
sought (2D or 3D) and the type of coordinates (Cartesian or spherical). Let us take a small
example in 2D Cartesian coordinate system; see Figure 4 [113].

Based on Pythagoras’s theorem:

r2
1 = x2 + y2

r2
2 = (U − x)2 + y2

Thus U is the first coordinates of C2; see Figure 4.

x =
r2

1 − r2
2 + U2

2U

y = ±
√

r2
1 − x2

We conclude that the remaining coordinates (x, y) can be found based on the distance
to the satellites.

Figure 4. Cartesian 2D example scenario. C1 and C1 are the centers of circles (satellites). P is point
of interest (vehicle) with coordinates (x, y) and r1, r2 are the distances from the center of circle,
respectively from C1 and C1, to the desired point [113].
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4.3. Motion Sensors

Three principal components, namely acceleration, gyroscope, magnetometer, and
motion sensor are used to detect object motions. Motions can be a translation over the axis
x, y, or z, calculated by integrating the acceleration and computing the difference between
the current and last positions. Motion can also be a rotation, which can be calculated by
the gyroscope that provides the orientation using the roll, pitch, and yaw [110]. Much
research has been done to use the motion sensors like IMU and wheel odometry to localize
vehicles, and exploring machine learning algorithms in this field has shown its performance.
Various architecture have been proposed. Input Delay Neural Network (IDNN) was used
by Noureldin et al. [114] to learn error patterns in GPS outages. A comparative study
was performed in [115], where they attempted to find the best guess of the INS during
GPS outage, by testing different methods including Radial Basis Function Neural Network
(RBFNN), propagation neural network, Higher-Order Neural Networks (HONN), Full
Counter Propagation Neural network (Full CPN), back- propagation neural network,
Adaptive Resonance Theory- Counter Propagation Neural network (ART-CPN), and the
IDNN. Recent work by Dai et al. [116] used Recurrent Neural Networks (RNN) to learn
the INS drift error, which is more robust and performs well given that the RNN is intended
to solve time series problems. Onyekpe et al. [117] suggested that a slight change in the
diameter of the tire or the pressure can lead to a miss-displacement in the odometry. Also,
LSTM-based methods have been performed to learn the uncertainties in the wheel speed
measurement that appear while the vehicle displacement is more potent than the INS
solutions. The same authors extended their work to obtain computational efficiency and
robustness against different GPS outages. The Wheel Odometry Neural Network (WhONet)
framework justifies the use of the RNN network by examining various networks, including
IDNN, GRU, RNN, and LSTM [118].

4.4. Matching Data

It is the task of matching data recorded from a sensor like signals, point cloud, and
images with the real-word data reference to extract the autonomous vehicle’s location.
Some preliminaries are presented below to enable further discussions in this subsection.
The Rigid transform matrix is in this form:

tx
R ty

tz
ine0 0 0 1


where R is the Rotation matrix, which is an orthogonal matrix with a determinant of ±1 (i.e.,
RRT = RT R = I3) and T = (tx, ty, tz) the translation vector. In the rest of this subsection
we will present some approaches that are based on the matching process.

4.4.1. Fingerprint

This method enables the localization of a vehicle based on matching techniques.
Indeed, the process is to create a database based on a reference car equipped with different
sensors to record various environmental changes. After that, a” query” car will travel the
environment and register its fingerprint, which will be compared with the database and
pick the position that has the best match [110,119].

4.4.2. Point Cloud Matching

3D point cloud registration provides a highly accurate source of information that
enables it to be employed in various domains, including surface reconstruction, 3D object
recognition, and, lastly, localization and mapping in self-driving cars, which is our purpose.
To do so, scan registration can present sufficient information for vehicle localization by
aligning multiple scans in a unique coordinate system and matching similar parts from the
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scans. In literature, several methods have been proposed to solve the scan matching. The
Iterative Closest Point (ICP) is one of the earliest, proposed in 1992 by Besl and Mckay [120].
Its precision enables it to be very usable simultaneously in the positioning and mapping
tasks. The idea behind this is to find a rotation matrix R and a translation vector T that
will align the query scan with the reference scan iteratively. In fact, the aim is to minimize
the distance between the points ai from the target scan and their neighbor one bi from the
query scan [121]. M is number of point cloud in a scan:

arg min
R,T

{
1
M

M

∑
j=1

∥∥aj −
(

Rbj + t
)∥∥

2

}

Note that, in each iteration, we stock the new value of the query scan bi
′
= Rbj + T.

However, this method suffers from some serious limitations and assumptions that can
affect the convergence of the algorithm, including the good initialization of the algorithm,
e.g., one surface being a subset of another, high computational cost, etc. [122]. As a
consequence of these issues, many types of methods have been proposed to improve
the ICP algorithm. The article [122] divides these extensions into five stages, depending
mainly on the selection of the sampling and the feature metric used like point-to-point or
point-to-plan methods, which effectively reduce the number of iterations. In recent years,
the Normal Distribution Transformation (NDT) [123] emerged to solve the problem of
measurement error and cover the problem of the no-correspondence relationship. Indeed,
the idea is to break down the set of points’ cloud into a 3D Voxels representation and assign
for each voxel a probability distribution. So, even if we have a millimeter of error far from
our real measurements, the NDT algorithm takes place to match far points based on the
probability distribution [124]. As a result, some researches have combined the NDT process
with the standard ICP algorithm, like in [125]. Another interesting approach, the Robust
Point Matching (RPM), has been performed to overcome the problem of the initialization
(RPM) and change the traditional correspondence into a 0, 1 matrix. Let mi be the ith point
in M and sj be the jth point in S, so we define the correspondence matrix µ by:

µij =

{
1 if point mi corresponds to point sj

0 otherwise

Thus, according to this method, the problem is to find the Affine transformation T and the
match matrix µ that make the best fit. The decomposition can give the transformation:

T(m) = Am + T

T is a translation vector, m is a point from the scan, A is a matrix that depends on some
parameter to be estimated based on a cost function [121,126]. An extension of this method
is the thin plate spline robust point matching (TPS-RPM) algorithm, which augments the
capability to handle the non-rigid registration [127].

Gaussian mixture models (GMM) family takes its place in this field as evidenced in
literature. GMMReg [128] is one of them, where they try to represent the two points cloud
into a GMM model to be robust to noise and outliers. Instead of aligning points, which is
prone to error, they align distributions. e.g taking the intersection of these two distributions.
Then, a standard minimization of the euclidean distance of the two new points cloud was
performed to refine the transformation. DeepGMR [129] utilised the strategy of using
deep learning methods to learn the correspondence between the GMM component and the
transformation. Other methods based on deep learning can be found, like relativeNet [130],
PointNetLK [131], Deep closest point (DCP) [132]. A complete survey on point cloud
registration methods can be found in [133].



Machines 2024, 12, 118 23 of 48

4.4.3. Image Matching

Images contain plenty of information that can be explored to do many things, like
object tracking, segmentation, object detection, and so forth. Due to that, the vision-based
localization is supported by geospatial information. It is now possible to estimate the poses
of vehicles by checking the movement of a point (pixel or features) from one image to
another. In the literature, vision-based localization is divided into local methods (or indirect
or feature-based) and global methods (or direct or appearance or featureless) [134]. Local
ones consider just a part of the local region that characterizes the images in the database
and the query image. The global method, or the direct method, uses the movement of the
intensity of each pixel without using a pre-processing step, such as feature extraction.

Based on [135], image-based localization can be divided into three groups. Primarily,
the video surveillance based-methods track the vehicles based on cameras mounted on
road infrastructure, and they determine their position based on cameras calibration after
detection. Secondly, they tend to search the similarity between the query image and a
pre-built database. So the process is called similarity search. After performing the feature
extraction (Section 2), we receive a massive amount of data features that should be reduced
to search quickly the similarity in images. Typically, we need to profit from these features
as much as possible without losing the generalization. Quantization is one solution for that.
This is the process of creating an index, which make it easy to search image by query. It
adopt the concept of text research where they express each image by a vector of features,
and a dictionary is built based on a large set of features which are extracted from visual
documents, then applying a clustering method to reduce the size of the dictionary, each
cluster centroid being called a visual word. Hence we can calculate the frequency of a
specific visual word in the visual document, which is called the bag of feature (BOF) [136].
Another method called k nearest visual words was used in [137].

The similarity can be obtained by calculating the L2 norm between the identified
features. However, this method does not work well in when there are of many descriptors,
which means we need to find a robust algorithm that will search for similarity efficiently.
Researches like [138,139] turn this problem into an SVM classification task. Ref. [140]
presents a new architecture to associate the similarity features, called Multi-Task Learning
(MTL). To improve the similarity process, we add another step of ranking, which is the
task of underpinning the results of the retrieved data by classifying them into a list of
candidates. For further information, the reader is referred to [8].

The last group is the visual odometry (VO) based methods, where the idea is to track
the movement between two consecutive frames by matching the overlapping area. This
method is widely used in the robotics field.

Let M1, M2 two image matrices, respectively, of image 1 and 2. The problem is to find
a vector t = [u, v] where: [

pm1

pn1

]
=

[
u
v

]
+

[
pm2

pn2

]
(pm1 , pn1) and (pm2 , pn2) are points, respectively, from image 1 and 2. The position of the
vehicle can be calculated by minimizing the photo-metric error. The advantage of this
method is that it can be performed even in a low-texture environment. However, it suffers
from a high computational cost.

In the literature, we found some cost functions that we can use to find the best
transformation vector t, such as to minimize the sum of squared difference (SSD):

SSD(t) = ∑
pm ,pn

(M1(pm, pn)− M2(pm + u, pn + v))2,

Or minimizing the sum of absolute differences (SAD):

SAD(t) = ∑
pm ,pn

|M1(pm, pn)− M2(pm + u, pn + v)|,
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Alternatively, maximizing the sum of cross-correlation coefficients.

CC(t) = − ∑
pm ,pn

M1(pm, pn)M2(pm + u, pn + v)

In the case of changing in the environment condition (i.e illumination), we must normalize
another metric:

A = M1(pm, pn)− M̄1

B = M2(pm + u, pn + v)− M̄2

NCC(t) =
−∑pm ,pn A ∗ B√

∑pm ,pn(A)2 ∑pm ,pn(B)2

where M̄1, M̄2 are the mean intensities in each image. More information can be found
in [134]. Moreover, the survey [8] divides the set of direct methods into three approaches.
First class is Direct vision-based localization (VBL) with prior, which are a group of methods
that are built under the assumption of an existing prior (from GPS, magnetic compass).
From the methods that hold this assumption, we found the article [141], where they use an
initialization from the GPS and compass embedded in a smart-phone to refine the global
GPS coordinates. A coarse GPS initialization was given in [142] to perform a particle
filter localization, also [143] used an indirect method as pre-processing step to refine
estimation pose. The second class of methods is features (from images) to points (point
cloud) matching, which find coherence between 2D image features and 3D points cloud,
like in [144]. The third class is Pose regression approaches, which learn to regress the visual
input data to the corresponding pose using mainly the regression forest method and CNN,
like in [145,146].

4.5. Optimization-Based Approches

Optimization is the task of finding the best guess that can minimize or maximize
a cost function with respect to defined constraints These problems can exist in various
domains, including operations research, economics, computer science, and engineering.
In our case, we will use it to solve the localization and mapping problem, particularly the
SLAM problem. Solving the SLAM problem is divided into front-end and back-end steps,
from an optimization perspective. Front-end is the task of processing the data by extracting
features, data association, checking loop closure, etc., in order to build a highly accurate
map. The back-end step is responsible for finding the best guess of the locations of the
vehicles by minimizing (or maximizing) a cost function [147].

One question is raised here: what is the difference between the loop closure and
the re-localization. Loop closure is performed to cover the problem of error of sensors’
measurement, because a measurement taken from any sensor is not what it is in reality. Also,
the vehicles are prone to having different issues like drifting, acceleration changes, and
weather conditions, which can affect the reliability and credibility of these measurements.
Loop closure presents an aid in detecting whether the vehicle can re-visit the same location.
If this were the case, the loop will be closed. See the example in Figure 5.

Re-localization is a task performed if the system fails to detect its position in the
map. Often, this problem appears when there is an inadequate matching process. Thus we
’re-localize’ through place recognition.
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Figure 5. In a loop closure system, the recognition of a return to a previously visited location enables
the correction of any accumulated errors in the system’s map or position estimate. Figure (a) shows
an example before applying the loop closure. Figure (b) shows an example after applying the loop
closure [148].

4.5.1. Bundle Adjustment Based Methods

One of the earliest methods that adopt the optimization techniques is the bundle
adjustment. Bundle adjustment estimate simultaneously the camera pose parameter and
the 3D point by minimizing a cost function. This method was used primarily in the 3D
reconstruction. However, an adaptation was performed to apply this method to solve the
SLAM problem. Due to its high performance, the Levenberg-Marquardt algorithm has
been widely used to solve the optimization task [14,149]. Ref. [149] divides the series of
bundle adjustment methods into a group that tries to improve the efficiency of the bundle
adjustment algorithms and a second group that aims to reduce the frequency of invocation
of individual bundle adjustment. The term bundle adjustment refers to the light ray that
gets out from the features and converges to the camera center ’bundle’, which should be
’adjusted’ according to the features and camera center. The core idea is the sum of errors
between 2D observations and the 2D points extracted from the re-projection from the 3D
object with the help of camera parameters. Mathematically, the bundle adjustment is a
non-linear least square problem:

min
n

∑
i=1

m

∑
j=1

(
uij − π

(
Cj, Xi

))2

uij is what we observe in the pixel at ith and jth node, π
(
Cj, Xi

)
is the operation that takes in

as input the 3D points X = {Xi} and the camera parameter C = {Ci}, which can be divided
into intrinsic and extrinsic parameters. The output is the corresponding re-projected 2D
coordinates. The process of this algorithm starts with the transformation from the world
coordinates to the camera coordinates. Then, the 3D point coordinates are projected into
a normalized image plane using triangular theory. After that, a distortion correction is
applied. Finally, the remaining 2D point is deduced by projecting the corrected points into
the pixel plan (intrinsic parameters) [149].

Attention-SLAM [150] is a newest method that uses a modified bundle adjustment
(weight-BA) method in SLAM to reduce the trajectory error. Also, SalNavNet [150] was
proposed to extract relevant features to help, as much as possible, to keep the vehicle
on the trajectory. The method was tested in a dataset collected by the same authors
named Euroc [151]. The test shows that the proposed method outperforms the ORB-SLAM
method [152]. BALM [153] is a BA-based framework for LiDAR mapping. This method uses
a new voxel architecture to adapt the use of BA in LiDAR. After that, the new BA method
was incorporated with LOAM [154] to refine the map. Ref. [155] attempted to imitate the
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human vision character by introducing a Salient Bundle Adjustment (SBA). DO-SLAM was
proposed by Lu et al. [156]. They tried to combine direct-based and features-based methods
to create an accurate SLAM framework. Indeed, the direct method was used for camera
tracking, and the features method was used to infer the keyframe poses. The motion-only
bundle adjustment gave an initialization pose.

4.5.2. Graph Based Methods

Recently, the SLAM problem has been solved by a new and fresh intuitive approach,
the graph-based approach. This method involves building a graph whose nodes are the
vehicles poses, and a measurement acquired and its edges can be considered as constraints.
These constraints are obtained by the collected measurement and the motion actions. Once
the graph is created (front-end), solving a minimization problem that involves finding the
optimal configuration of the poses is required (back-end). For the first time, this method
has suffered from the high computational time, which made it inapplicable, but with the
development in the field of linear algebra, this method takes its place in the state-of-art of
SLAM problem solver [157,158].

In regards to the mathematical approach, we focus on minimizing a specific cost
function which is explained in depth in Section 3.2:

Fun(x) = ∑
ij

eij(xi, xj)
TΩijeij(xi, xj)

x∗ = argmin
x

Fun(x)
(3)

where
eij
(
xi, xj

)
= zij − z∗ij

(
xi, xj

)
is the error distance between the real observation zij and the expected observation z∗ij, and
for the reason of abbreviation we will note it as eij. We will depict a traditional nonlinear
least-squares optimization solution for this problem. Lets begin with applying first-order
Taylor expansion to approximate the error eij.

eij
(
x̆i + ∆xi, x̆j + ∆xj

)
= eij(x̆ + ∆x)

≃ eij + Jij∆x

where x̆ is a good initialization and Jij is the Jacobian of eij = eij(x̆) computed on x̆, ∆x is
an increment that should be estimated, because the optimal solution is equal to the sum of
the initial pose and the increment.

x∗ = x̆ + ∆x

We deduce the formulation (at the node i, j) by replacing the new error estimated:

Funij(x̆ + ∆x)

= eij(x̆ + ∆x)TΩijeij(x̆ + ∆x)

≈
(
eij + Jij∆x

)TΩij
(
eij + Jij∆x

)
= eT

ijΩijeij + 2eij
TΩij Jij∆x + ∆xT Jij

TΩij Jij∆x

= cij + 2bij∆x + ∆xHij∆x

where 
cij = eT

ijΩijeij

bij = eT
ijΩij Jij

Hij = JT
ij Ωij Jij
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We generalize over all the nodes i, j. So we can rewrite the cost function:

Fun(x̆ + ∆x) = ∑
ij

Fij(x̆ + ∆x)

≃ ∑
ij

cij + 2bij∆x + ∆xT Hij∆x

= c + 2bT∆x + ∆xT H∆x

(4)

where 
c = ∑ij cij = ∑ij Funij(x̆) = Fun(x̆)
b = ∑ij bij
H = ∑ij Hij

(5)

The result is a quadratic form with a linear shift. So the minimum (after setting the gradient
of Fun to 0) is:

H∆x = −b

which is a linear system that can be resolved with QR decomposition, Cholesky factoriza-
tion, Levenberg Marquardt, etc. This theory works with the assumption of an Euclidean
space of x, which is not the case most of the time for the SLAM problem. To solve that, a com-
mon approach is to solve the problem in a local Euclidean space called manifold [157,159].

Recently EyeSAM [160] introduced a novel graph-based approach based on the iSAM
algorithm to help the surgeon under challenging eyes operations, especially in intraocular
microsurgery. This paper aims to generate a map of vasculature points and their positions
in the camera by exploring a series of inputs video frames. Jung and Choi [161] use an
HG-SLAM: Hierarchical Graph-Based SLAM in a (UAV) Unmanned Aerial Vehicle with
the aim of inspecting a bridge. Ref. [162] used a sensor fusion method to generate nodes by
using visual-inertial (VI) (for camera and IMU) and normal distribution transform (NDT)
odometry (for LiDAR), then, Generalized iterative closest point (G-ICP) matching is applied
to define the constraint of the optimization problem. Finally, a Graph-based method (iSAM)
was applied to refine the (UAV) trajectory. In [163] a robust ICP modification was proposed
to solve the problem of the mismatched scanned image, then a Graph-based method was
performed to deduce the robot path. This paper [164] introduces a Dynamic Object Tracking
SLAM (DyOb-SLAM) system that enhances the conventional Simultaneous Localization
and Mapping (SLAM) process by considering dynamic objects. Utilizing neural networks
and optical flow algorithms, DyOb-SLAM effectively distinguishes between static and
dynamic elements, resulting in separate maps. The system’s real-time dynamic object
tracking capability and accurate performance make it a promising solution for various
robotic applications. DROID-SLAM [165], a pioneering deep learning-based SLAM system
by Zachary Teed and Jia Deng, introduces recurrent iterative updates for camera pose
and depth estimation through Dense Bundle Adjustment. Its exceptional accuracy and
resilience surpass prior methods, with fewer catastrophic failures in challenging scenarios.
Notably versatile, it leverages monocular, stereo, or RGB-D inputs during testing, yielding
even better performance. With open-source code available on GitHub, DROID-SLAM
fosters collaboration and advancements in the visual SLAM field.

4.6. Probability-Based Approches

In the probabilistic approach, solving the localization and mapping problem refers to
finding a best estimation of:

p(xk, m | z0:k, u0:k)
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A probabilistic estimation was calculated based-on the Markov and Bayesian assump-
tion in Section 3.2:

p(xk, m | z0:k, u0:k)

proportional
∝ p(zk | xk, m)

∫
p(xk | xk−1, uk) · b(xk−1, m)

where:

• b(xk−1, m): is the belief on xk−1
• p(zk | xk, m): is the observation model
• p(xk | xk−1, uk) : is the motion model

Finding the best guess of the state xk is by applying the Prediction_Update stage.
Practically, it can be modeled mathematically by a non-linear or linear function (ϵk−1 is an
iid noise model) [97]:

xk = fk(xk−1, uk, ϵk−1)

And the Measurement_Update stage, which can be modeled by [97] (nk is an iid noise model):

zk = hk(xk, uk, nk)

These two stages depend mainly of the good estimation of motion_model p(xk | xk−1, uk)
and the observation_model p(zk | xk, m).

The motion_model gives an idea about how the state change over time given the state
before. observation_model answers the question of if I have a state xk and a control input
uk what will be the measurement zk?

Note that these formulations are intended to solve the SLAM problem. However, we
can solve the problem interchangeably, estimating the localization problem and deducing
the map or vice versa. In the rest of this section, we will propose some methods to
solve just the localization problem, whereas we can adapt these methods for solving the
SLAM problem.

4.6.1. Parametric Methods—Kalman Filter Family

Kalman filter (KF) is a method that aims to predict the future state based on the
previous state. Typically, KF estimates the model’s parameters when it is delicate to
estimate them directly. KF attempts to reduce the error and noise that could affect the
model’s accuracy and provide fast and efficient data processing since it uses just the last
previous state. Mathematically, the idea behind the KF is to find the x̂ that will maximize
the posterior p(xk, m | z0:k, u0:k) by using some analytical solution. In this case by a linear
function where the Prediction_Update is [97,163]:

xk = Fk−1xk−1 + Gk−1uk−1 + ϵk−1 = fk(xk−1, uk, ϵk−1)

And the Measurement_Update:

zk = Hkxk + nk = hk(xk, uk, nk)

So the prediction of the state, at the time t is [166]:

x̂k = Fk−1 x̂k−1 + Gk−1uk−1

Pk = Fk−1Pk−1FT
k−1 + Qk−1

After exploring the previous state by the prediction state and the co-variance matrix, a
Kalman gain was introduced to update these two last formulations [166]:

Kk = Pk

(
HkPk HT

k + Rk

)−1
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x̂k = x̂k + Kk(yk − Hk x̂k)

Pk = (I − Kk Hk)Pk

where:

• Fk: is a matrix which represent the effect of the state xk−1 on the parameters at time t
• Qk: the covariance of the process noise
• Gk: is a matrix that gives the effect pf the control input on the parameters
• Hk: is the observation matrix that the state parameters to the measurement domain
• Pk: is the co-variance matrix that describe the the correlation between parameters
• ϵk: is the motions noise
• nk : is the measurement noise

KF assumes the linearity, and the noise should be Gaussian, which is not the case in
real-life systems. Consequently, many extensions inherited from the KF concept aim to fix
these limitations. Beginning with the Extended Kalman Filter (EKF), which is, in fact, a
linearization of a non-linear system by applying the Taylor expansion, then, directly KF is
performed on the remaining system. However, EKF suffers from the high computational
cost, especially the calculation of the Jacobian matrix, which can affect the accuracy re-
sults. Using Unscented Kalman Filter (UKF), we apply a non-linear transformation (the
Unscented Transform (UT)) for each sigma sampling point which is more adopted and
robust for the actual case. Robust Kalman Filters (RKF) also has been used for linear and
non-linear systems. This method uses linear matrix inequality that provides an upper
bound for the co-variance error matrix [163,166]. More extensions, Cubature Kalman Filter
(CKF), ensemble Kalman filter (EnKF), adaptive Kalman filter (AKF), switching Kalman
filter (SKF), fuzzy Kalman Filter, motor EKF (MEKF), and more can be found in [167]. Most
of them are interested in reducing large number of variables, linearization, minimization of
the sampling set.

4.6.2. Non-Parametric Methods—Particle Filter Family

Particle filter (PF) was introduced in the 1990s to overtake the problem of non-linearity
and non-Gaussianity. PF is a great solution for many applications, such as wireless
network [168]. PFs have registered significant progress, with a large number of exten-
sions that will be discussed later. This method comes with a robust idea that can tackle any
system without any prior assumption of linearity or Gaussianity. Again, let us take a look
at the mathematics of it. PF uses the sequential Monte Carlo method in which to represent
the posterior p(xk | z0:k, u0:k) by a set

{
wi

0:k, xi
0:k

}Ns
i=1 of Ns sample and weights:

p(x0:k | z0:k, u0:k) ≈
NS

∑
i=1

wi
kδ
(

x0:k − xi
0:k

)
where xi

0:k is a set of possible realization of the trajectory, wi
0:k is a set of weights that give a

degree of importance to the sample xi
0:k that verified:

Ns

∑
i=1

wi
k = 1

The higher the weight, the more important is the sample. δ(a) is the Dirac function (0
everywhere except a).

This approximation of the integrals by a discrete method enables an approximate prob-
ability distributions without regarding if it is Gaussian or not. However, one question can be
raised here which is how we can sample from an unknown distribution p(x0:k | z0:k, u0:k)?
So the idea is to use importance sampling, which is a method that generates particles from
some usual distribution to deduce the distribution in question. Projecting this idea in
our case and letting q(xk | z0:k, u0:k) a known distribution, in which we can draw samples
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and verify (for the sake of abbreviation we will give formulates without motion control
measurement u0:k)

q(xk | z0:k) = q
(

xk | xi
k−1, zk

)
q(xk−1 | z0:k−1) (6)

So the new approximation is:

p(xk | z0:k) ≈
Ns

∑
i=1

w̃i
kδ
(

xk − x̃i
k

)
where:

x̃i
k ∼ q(xk | z1:k)(i = 1, 2, . . . , Ns)

and

w̃i
k ∝

p
(
xi

k | z1:k
)

q
(

xi
k | z1:k

)
Practically, w̃i

k formulation should be a recursive one, i.e., depending on its last step w̃i
k−1

which is more suitable for calculation. (applying Bayesian theorem in the nominator and
formulate (5) in the denominator) gives:

w̃i
k ∝

p
(
xi

k | z1:k
)

q
(
xi

k | z1:k
)

∝
p
(
zk | xi

k
)

p
(

xi
k | z1:k−1

)
q
(

xi
k | xi

k−1, zk

)
q
(

xi
k−1 | z1:k−1

)
∝

p
(
zk | xi

k
)

p
(
xi

k | z1:k−1
)

q
(

xi
k | xi

k−1, zk

)
(7)

On the other hand (demonstration is in [168])

p(xk | z1:k−1) =
Ns

∑
i=1

w̃i
k−1 p

(
xk | x̃i

k−1

)
So

p
(

xi
k | z1:k−1

)
= w̃i

k−1 p
(

xi
k | x̃i

k−1

)
By now we replace in (6) and we get

w̃i
k ∝ w̃i

k−1

p
(
zk | xi

k
)

p
(

xi
k | x̃i

k−1

)
q
(

xi
k | xi

k−1, zk

)
Common choise of the importance density in the robot localization in general is [97]
p(xi

k | xi
k−1) so

w̃i
k ∝ w̃i

k−1 p
(

zk | xi
k

)
According to [97], PF is fronted by some serious challenge that could generate difficul-

ties in the convergence including:
• Degeneracy Problem: which appears in the case of a one weight particle being closed to
1, whereas the other are close to be 0 due to the increase of the unconditional variance of the
importance weights. This degenerecy can be measured by the effective sample size (ESS)

ESS =
Ns

1 + var
(
w̃i

k
)
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A big variance means a small ESS which lead to the degeneracy problem.
Hints: Re-sampling after the measurement update.

• Sample Impoverishment: inherent from the Degeneracy Problem, is where the particles
collapse into a single point due to the low variance provided in the prediction update

Hints: Generate a sufficient amount of noise in the prediction update.
• Divergence: Caused by various things, including the inconsistent measurement, failures
in the hardware, etc.

Hints: Prevent these causes by monitoring and update.
• Selecting the Importance Density: because it is the core of particles filter. Generating
particles from a non-efficient Importance Density means that particles are out of range and
will not converge to the state.

Hints: Choosing a big one that will maximize the signal to noise ratio (SNR) ratio [169].
• Execution: a large number of particles directly affecting the computational cost, a small
number of particles affecting the convergence of the method.

Hints: Check an optimal amount.
Due to these challenges, PF has been widely extended and developed to cover the

discussed issues. An interesting one is the Unscented Particle Filter (UPF). An unscented
transform is taken here to approximate the transformation of Gaussian variables [168].
Auxiliary Particle Filters (APF) is another extension that aims to highlight the particles that
have a high likelihood by reusing the last measurement in the prediction step [97]. Extended
Kalman Particle Filter (EKPF) is a mix of KF and PF to construct a robust importance density
that can boost the experiments’ performance. Rao–Blackwellized Particle Filter (RBPF) is a
very important improvement, where they divide the state x0:k into two chunks x1

0:k and x2
0:k.

Thus, the posterior p(x1:k | z1:k) = p
(
x1

1:k′ , x2
1:k | z1:k

)
can be written as follow

p
(

x1
1:k′x

2
1:k | z1:k

)
= p

(
x1

1:k | z1:k

)
· p

(
x2

1:k | x1
1:k, z1:k

)
The core advantage of this method is the reduction in time consumption. Another method
is by reducing the dimensionality by the use of Adaptive Particle Filter (AdPF), which is
based on varying the number of particles [97].

4.6.3. Localization with Filter-Based Methods

PF and KF are widely used in the literature for localization vehicles like in [22], who
used a KF to localize the vehicles based on the road marking features and LiDAR reflectivity.
Ref. [25] used double-layer KF to refine the location after extracting curbs features. Ref. [26]
utilized a particle-based localization framework. Ref. [28] made use of a PF layer and
a histogram filter layer based on the vertical features and ground features. In [29,31],
PF-based localization with some modification is also used. The SLAM problem, in the
meanwhile, was very well treated with these filters. Invariant Kalman filter was proposed
in [170] to solve the SLAM problem, which is based on an Unscented KF and the theory of
lie group. Ref. [171] is an improvement of the UKF-SLAM, where a maximization method
was designed to find the best parameters-collection for the model. A Rao–Blackwellized
particle filter was used in [172] to solve the Monocular SLAM problem with a special
weighting method. Zhang and Li [173] attempted to combine a probabilistic architecture
with graph theory. Indeed, the authors proposed a Bathymetric Particle Filter mixed with
graph-based theory. This study [174] offers a comprehensive analysis of LiDAR-based
Simultaneous Localization and Mapping (SLAM) for autonomous vehicles. The authors
employ an adaptive Kalman filter (KF) to fuse landmark sensor and IMU data, enhancing
accuracy in real-time scenarios. Closed-form expressions for crucial SLAM components aid
real-time implementation, and observability analysis demonstrates the system’s reliability.
This research advances LiDAR-based SLAM for autonomous vehicles by integrating IMU
data through an adaptive Kalman filter, improving accuracy and real-time implementation
while ensuring robust performance. Ref. [175] presents a novel approach to radio-based
vehicular Simultaneous Localization and Mapping (SLAM) using a sequence of three
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Poisson multi-Bernoulli mixture (PMBM) filters. These filters progressively enhance SLAM
accuracy while reducing complexity, offering a promising solution for efficient vehicular
SLAM in real-world scenarios. Ref. [176] offers a tutorial on SLAM Backends with Objects
in Motion, introducing an extended optimization-based framework for dynamic scenes.
The authors present a new algorithm, dynamic EKF SLAM, which efficiently handles
moving objects and features while ensuring accurate localization, object pose estimation,
and map generation. This tutorial provides valuable guidance for addressing dynamic
challenges in SLAM applications, bridging recent advancements with practical solutions.

4.7. Cooperative Localization

A more recent, and accurate approach is cooperative localization. According to [177],
three key elements should be provided for successful autonomous vehicles, first, fusing
information collected by the sensors. Second, integrating a high precision map. Third,
providing technology to ensure communication which is the subject of interest of this
section. The core idea is to create a communication between the vehicles with something
(lets call it X) in order to provide a fluid exchange of information, mainly their positions,
speed, etc. This communication can be created using some devices, including WiFi, cellular,
and UWB radio communications [18]. However, what does ’X’ mean, and what are the
exciting communications that exist? [178] (see Figure 6);

• Vehicle-to-Vehicle (V2V): generate such a network between the vehicles where the
information can be transmitted; this information (position, speed, orientation, etc.)
can be used interchangeably between vehicles to perform principal tasks like avoiding
collision, changing lines.

• Vehicle-to-Infrastructure (V2I): create communication between vehicles based on an
intermediate infrastructure that is suitable to share information, from the node to any
connected vehicles.

• Vehicle-to-people (V2P): most generally uses the interaction of vehicles and other
road users like walking people, people using mobile devices or bicycles or wheelchairs,
etc.

• Vehicle-to-Cloud (V2C): this is a technology that enables the vehicles to connect to
the cloud-based on a cloud-based connected platform and via broadband cellular
connectivity.

• Vehicle-to-X (V2X): Offers the possibility of connecting the vehicles with everything,
which is a great idea because providing information from road users’ early gives
enough time to execute, in a comfortable way, vehicles’ task and checking the prioriti-
zation so that to increase the safety.

With regards to V2V mode of communication, V2V requires a wireless signal to ensure
communication between vehicles. In fact, V2V works in a Vehicular Ad-Hoc Network
(VANET) environment, which is a temporary network environment where vehicles commu-
nicate with each other [18,177]. V2V has so many applications, including emergency brake
lights, pre-crash sensing, blind intersection warning, forward collision, left turn assist, stop
sign assist, roadside service finder, etc. [177]. The history of information (like the position,
speed, travel direction, acceleration) consists of the core messages that should be transmit-
ted between vehicles to deal with the randomness of life road events. Most of the time,
performing this communication requires the IEEE 802.11p protocol, which is an extension of
the IEEE 802.11 protocol [18]. The paper [179] introduces the A-DRIVE protocol to address
deadlocks in connected and automated vehicle scenarios. It consists of two components:
V2V communication-based A-DRIVE and Local perception-based A-DRIVE. Simulations
show improved traffic throughput and reduced recovery time compared to a baseline
protocol. The protocol presents a promising solution for enhancing intersection efficiency
and safety in various road situations. The paper [180] presents innovative distributed
multimodal localization methods for connected and automated vehicles (CAVs) that use
information dissemination through vehicular communication networks. The methods use
Adapt-then-Combine strategies with Least-Mean-Squares (LMS) and Conjugate Gradient
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(CG) algorithms to enable cooperative fusion of different measurement modalities, allowing
better position estimation without centralized control or GPS. Simulation studies, using
kinematic models and the CARLA simulator, validate the superiority of the proposed
approaches over existing methods in terms of accuracy and convergence, and provide
valuable information for the design of robust localization strategies in CAV systems. The
study [181] introduces an optimization-based path-planning algorithm for both connected
and non-connected automated vehicles on multilane motorways. The algorithm optimizes
vehicle advancement, passenger comfort, collision avoidance, and other factors within a
model predictive control framework. Numerical simulations demonstrate that optimally
controlled automated vehicles exhibit improved speed adherence and traffic flow efficiency,
with connected controlled vehicles showing even higher efficiency The paper [182] in-
troduces a fully distributed control system for coordinating connected and automated
vehicles (CAVs) at intersections. The approach uses a model predictive control framework
combined with V2V communication, localization, and collision estimation. Experimental
tests demonstrate its efficacy in ensuring safe and efficient traffic flow, offering a promising
solution for future transportation systems. The research [183] delves into the application
of Infrastructure-to-Vehicle (I2V) data in autonomous driving under challenging visibility
and dense traffic scenarios. The paper emphasizes the advantages of leveraging external
sensors to enhance a vehicle’s perception capabilities. However, the critical concern of
cyber-security in I2V communication is addressed. To mitigate this, the authors propose
an anomaly detection algorithm for elevating the vehicle’s self-awareness at intersections.
This algorithm, integrated into autonomous vehicles, evaluates I2V communication health
against potential cyber attacks. When employing cyber-attack scenarios from the Secredas
Project [183], the study uses a simulation environment to analyze the impact of I2V attacks
on autonomous vehicle performance, particularly in situations where sensor redundancy is
compromised. The findings reveal that the introduced anomalies during such attacks can be
effectively identified and managed by the autonomous vehicle, ensuring safer navigation
through intersections while maintaining precise object tracking.

Probabilistic approaches were very used with the cooperative localization. Ref. [184]
used features like inactive cars, traffic lights, or people who are linked with V2V communi-
cation to be fed as an input to Kalman filter method based on GPS. Also, Ref. [185] proposed
using the Enhanced Innovation-Based Adaptive Kalman Filter (EIAE-KF) architecture by
fusing the Innovation-based Adaptive Estimation Kalman Filter (IAEKF) with vehicular
kinematic information. One of the most recent approaches [186] outperformed the GPSIDR
system and Extended Kalman Filter (EKF), which uses information (i.e., location, speed,
acceleration, etc.) to feed the Unscented Kalman Filter (UKF). A particle-based method was
used in [187] based on the roadside unit (RSU), which achieved an error of 0.1–0.2 m. A
detailed survey was performed in [17]. This paper [188] introduces crowdsourced vehicle
trajectories as a solution to enhance autonomous vehicle (AV) mapping and navigation in
work zones. By incorporating Gaussian Mixture Models (GMM) and occupancy grid maps
(OGM) based on human-driven data, the proposed approach improves AVs’ understanding
of drivable areas in changing environments. Compared to pure SLAM methods, the intro-
duced crowdsourcing technique significantly enhances AVs’ ability to accurately define
drivable areas, ensuring better path planning and control. This research contributes to the
advancement of AV technology in work zones, showcasing the potential of integrating
crowd-sourced data for improved mapping and navigation in challenging scenarios. The
authors of [189] propose a labeled multi-Bernoulli filter solution for connected vehicles,
utilizing local consensus iterations for complementary fusion of sensor data. They intro-
duce a novel label merging algorithm to address double counting and extend the label
space for improved consistency. Experimental results demonstrate its superiority over
standard approaches, enhancing situation awareness in connected vehicles for applications
like autonomous driving and intelligent transportation systems.



Machines 2024, 12, 118 34 of 48

Figure 6. Illustration of the V2V-V2I-V2P-V2X.

4.8. Discussion, Challenges, and Future Directions

We have surveyed in this section the approaches used to solve the problem of local-
ization in self-driving vehicles (even for any autonomous systems in some cases). We
have summarized in Table 4 those approaches, applicable sensors, their accuracy in real
environment scenarios, and the main challenges that should be taken into account in the
upcoming research. Using some of these approaches must ensure fast interaction with
other vehicle’s tasks, which reduces time and energy consumption for the vehicles and
save battery life for the long term. Moreover, we need to develop a self-driving vehicle
that can overcome the challenges presented by rapid and violent shaking environments.
This vehicle must ensure the accuracy of the laser odometer and effectively manage the
accumulation of errors during extended long-distance operations. We need also to ensure
the reliability of the methods, and provide options to supply other vehicles with infor-
mation, which creates the challenge of privacy and security in this application domain.
Also, another interesting challenge is the conflict between information received from the
sensors and what we got from the nearby connected vehicles. Furthermore, developing
self-driving tech involves other crucial challenges like processing sensor data in real-time
for split-second decisions, creating detailed semantic maps to understand road elements
deeply, adapting to adverse conditions like heavy rain, and handling uncommon scenarios
confidently. These advancements are key for safer and more reliable autonomous driving.

Table 4. Summary of existing approaches to solve the localization problem.

Approach Sensors Score Main Challenges

Dead
Reckoning

GPS
INS
Wheel odometry

Low Prone to error in case drifting

Triangulation GNSS High Limited in some environment senarios

Motion tracking LiDAR
Cameras Passable

High cost of time and energy
A few objects in the environment mislead
the matching process.

Optimization LiDAR
Cameras High High computational time to solve the

matrix calculation

Probability LiDAR
Cameras High Problem of initialization

Cooperative
localization Vehicle connectivity High Limitation if there is a long distance

between vehicles
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5. Security in Localization

Integrating the revolution on telecommunication technologies in autonomous vehi-
cles does bring about the problem of data security given the massive amount of data
received from different sources (GPS, IMU, Cameras, LiDAR, etc.) and transmitted (or
received) via different connection means (WiFi, Bluetooth, cellular connection, IEEE802.11p,
WAVE). Attack threats, according to [190], could affect most of the sensors, and they can
be performed remotely without using any attached component and without modifying
parts of the AV. These attacks are not executed vainly, without a purpose or benefit. So,
they should be interrupted from corrupting the autonomous system and stealing personal
information, such as the location, destination, or other confidential information. In this
article [191], the authors underscore the rising significance of cybersecurity within the
realm of autonomous vehicles. As these vehicles increasingly depend on intricate embed-
ded systems and external connectivity to process their surroundings and make informed
decisions, the heightened connectivity exposes them to potential cyber threats of grave
consequences. The authors highlight the existing trend of automotive system attacks and
predict a surge in such threats with the proliferation of autonomous vehicles. Given these
vulnerabilities, the urgency to fortify cybersecurity protocols becomes paramount. To tackle
this challenge, the authors propose a comprehensive roadmap aimed at establishing secure
autonomous vehicles. They delve into noteworthy past automotive cyber-attacks and
present contemporary AI-driven solutions as a means to bolster cybersecurity. Leveraging
AI technologies, such as machine learning and deep learning algorithms, proves effective
in promptly detecting and mitigating potential cyber risks. Nevertheless, despite these
advancements, there remain crucial open challenges. Among these are real-time threat
identification and response capabilities, development of robust authentication mechanisms
for vehicle-to-vehicle communication, and implementation of secure over-the-air software
updates. Ultimately, safeguarding cybersecurity takes precedence as autonomous vehicles
redefine transportation safety and convenience. The proposed roadmap delineates the
integration of AI to elevate cybersecurity in autonomous vehicles, offering insights into
the mitigation of challenges and implementation of robust security measures for a safer
autonomous transportation future. According to [190], most of the defense methods can be
summarized into the Anomaly-based Intrusion Detection System (IDS) category, which can
help detect unauthorized access data. Also, the abundance of information can be obtained
by gathering data from different AVs, which can then be used to increase confidentiality.
The final category is the Encryption method, which is intended to help sensors that lack
authentication like Controller Area Network (CANs). In Table 5, we surveyed some in-
teresting attacks that threaten different sensors of the AVs. Also, we present some key
solutions to prevent these attacks.

This study [192] introduces a cloud-computing-based approach to enhance the re-
silience of Connected and Automated Vehicles (CAVs) against potential malicious vehicle
attacks. By sharing local sensor data and employing a cloud-based sensor fusion algorithm,
the proposed method aims to identify and isolate malicious information while maintaining
accurate state estimation for legitimate vehicles. Numerical examples demonstrate the
effectiveness of this approach in detecting and addressing malicious vehicles, contributing
to the security and reliability of CAVs in autonomous driving scenarios. The [193] paper
introduces a novel approach, for secure vehicle communication. It utilizes secure clusters
based on vehicular secrecy capacity, hash chains, and Mobile Edge Computing. The pro-
posed method holds potential to enhance vehicle communication security and efficiency,
contributing to the development of autonomous driving technologies. The authors of [194]
establish a practical definition of a security cluster in vehicle-to-vehicle (V2V) communi-
cations based on secrecy capacity, specifically with respect to Signal-to-Noise Ratio (SNR)
values. They incorporate conventional and vehicle-related parameters, such as vehicle
speed and safety distance, to model secrecy capacity. This approach ensures real-time
control of secrecy capacity, contributing to robust V2V communication security. Overall,
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the paper advances the field of autonomous driving systems by enhancing communication
security through a comprehensive approach that considers various parameters.

Table 5. A description of some of the attacks that threaten vehicle security systems and possible
solutions.

Name Devices Access Attack Effect Countermeasure

Malicious OBD
devices OBD Physical • Controlling some AV components • Authenticity, Integrity

• Injecting codes to ECUs • Reduce the time of execution [190]

CAN access
through OBD CAN Physical

• Eavesdrop CAN messages from the ODB • Reinforce authenticity and confidentiality by proposing a robust methods of
encryption [195]

• Insert code in the ECUs • Detecting attempts to transmit messages to the ECUs [196]

ECU access
through CAN ECU Physical • Change/add codes to the ECUs • Same as the first two attacks
ine LiDAR
spoofing LiDAR Remote • ECUs make believe that there is an object

close • Signal filter, using machine learning [197]

LiDAR
jamming LiDAR remote • Denial-of-Service

• Changing wave frequency [198]
• Integrating V2V communications [198]
• Multiple LiDAR views [198]

Radar spoofing Radar Remote • False distance estimation to the object • [199] Propose (PyCAR) that detect malicious signals by transmitting a chal-
lenging signal that will be compared with certain threshold

Radar jamming Radar Remote • Miss detection object • Distinguish the correct signal from the counterfeit one [190]

GPS Spoofing GPS Remote • False GPS location
• Controlling the GPS absolute, relative signal strength perform a time com-

parison
• Use redundant information from multiple-GPS satellites [190]

Camera
blinding Camera Remote • Miss object detection • Use multiple-cameras to increase the redundancy [200]

Adversarial
Images Images Remote • Provide incorrect prediction

• Increase the performance of
• The pre-processing step after feeding to
• The machine learning algorithms

Falsified
information

V2V
&V2I Remote • Threat the AVs operations and the flow

traffics • Reinforce the authentication schemes [190]

6. Environmental Impact of Localization and Mapping Techniques in
Self-Driving Vehicles

In this section, we present a comprehensive exploration of the potential impact of
autonomous driving localization and mapping techniques. Our research covers a range of
factors, including energy consumption and emissions reduction, noise and light pollution,
integration of autonomous vehicles into smart cities, optimization of infrastructure to
support autonomous driving technology, and refinement of software algorithms to improve
performance.

• Energy Consumption and Emission Reduction (air pollution): Self-driving vehicles
require energy-intensive sensors, computing systems, and data centers for mapping,
potentially increasing overall energy demand. Ref. [201] affirmed that a connection
exists (mutual causation) between energy usage and CO2 emissions. Energy con-
sumption influences CO2 emissions (in the near term), indicating that higher energy
consumption might result in increased CO2 emissions, and conversely (in the ex-
tended period). The [202] paper mentioned that current autonomous electric vehicles,
which are based on conventional propulsion systems, have limitations in terms of
energy efficiency and power transmission. These limitations may hinder large-scale
adoption in the future. To address this issue, a study was conducted to analyze the
energy consumption and efficiency improvement of a medium-sized autonomous
electric vehicle powered by wheel motors. The study involved the development of
a numerical energy model, which was validated against real driving data and ap-
plied in a case study. The energy analysis focused on three driving conditions: flat
road, uphill and downhill. This allowed the energy consumption to be examined
and the potential for energy savings through the use of an in-wheel drive system.
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The analysis took into account factors such as regenerative braking, which allows
energy to be recovered during deceleration. Energy consumption and regenerated
energy were calculated based on vehicle dynamics and autonomous driving patterns
specific to each driving cycle. A case study was conducted based on driving data from
electric vehicles in West Los Angeles. In this chapter [203], the authors introduce a
novel framework aimed at creating energy-efficient autonomous driving policies for
shared roads. This innovative approach combines cognitive hierarchy theory and rein-
forcement learning to address the complexities of human driver behavior. Cognitive
hierarchy theory is employed to model decision-making at various levels of rationality
exhibited by human drivers. By comprehending human choices, autonomous vehicles
(AVs) enhance their ability to predict and adjust to these behaviors, facilitating safe
navigation on shared roads. The framework also integrates reinforcement learning,
enabling AVs to continually learn from their environment and enhance their decision-
making skills. This iterative learning process empowers AVs to adapt to changing road
conditions, optimize energy usage, and ensure consistent safe performance. These
vehicles grapple with the dual challenge of precise sub-centimeter and millisecond
self-localization while maintaining energy efficiency. In this context, localization takes
center stage. This paper [204] presents FEEL—an inventive indoor localization system
that amalgamates three low-energy sensors: IMU (Inertial Measurement Unit), UWB
(Ultra-Wideband), and radar. The authors elaborate on FEEL’s software and hardware
architecture. The paper also introduces an Adaptive Sensing Algorithm (ASA) that
optimizes energy usage by adapting sensing frequency according to environmental
dynamics. By judiciously curtailing energy consumption, ASA achieves up to 20%
energy savings with minimal impact on accuracy. Extensive performance evaluations
across various scenarios underscore FEEL’s exceptional accuracy, with deviations
of under 7cm from ground truth measurements, coupled with ultra-low latency of
around 3ms. These findings underscore FEEL’s prowess in satisfying the stringent
demands of AIV localization. The proposed control strategy in [205] considers energy
consumption, mobility, and passenger comfort while enabling vehicles to pass signal-
ized intersections without stops. The leader vehicle plans its trajectory using dynamic
programming (DP), optimizing energy consumption and other factors. Following
CAVs either use cooperative adaptive cruise control or plan their own trajectories
based on intersection conditions. Simulation results demonstrate reduced energy
consumption without compromising mobility.

• Sound and light pollution: Sound and luminous pollution are additional plausible
environmental consequences associated with autonomous vehicle operation. The pa-
per [206] aims to introduce the project “DICA-VE: Driving Information in a Connected
and Autonomous Vehicle Environment: Impacts on Safety and Emissions”. It also
proposes a comprehensive approach to evaluate driving behavior volatility and create
alerts for mitigating road conflicts and noise emissions in a connected vehicle setting.
While literature on autonomous driving often overlooks noise and light pollution,
these issues carry significant consequences for ecosystems and communities. Quieter
driving and reduced vehicle volume may alleviate noise pollution. Additionally, AVs
driving in darker conditions could decrease artificial lighting. These considerations
call for more attention [207].

• Smart cities: The idea of smart cities necessitates merging multiple technologies—
immersive sensing, ubiquitous communication, robust computing, substantial storage,
and high intelligence (SCCSI). These are pivotal for applications like public safety, au-
tonomous driving, connected health, and smart living. Foreseeing the rise of advanced
SCCSI-equipped autonomous vehicles in smart cities, [208] proposes a cost-efficient
Vehicle as a Service (VaaS) model. In VaaS, SCCSI-capable vehicles act as mobile
servers and communicators, delivering SCCSI services in smart cities. VaaS’s potential
in smart cities is explored, including upgrades from traditional vehicular ad-hoc net-
works (VANETs). The VaaS architecture effectively renders SCCSI services, addressing
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architectural, service, incentive, security, and privacy aspects. The paper offers a
sustainable approach using VaaS, shedding light on SCCSI integration in smart cities
through autonomous vehicles for diverse applications. The research in [209] examines
autonomous vehicles (AVs) as potential smart and sustainable urban transportation
amidst rapid urbanization. Growing urban mobility needs necessitate sustainable so-
lutions to counter adverse societal, economic, and environmental effects. Addressing
privacy and cybersecurity risks is pivotal for AVs’ development in such cities. The
study evaluates global government measures to manage these risks. Privacy and cy-
bersecurity are vital factors in AVs’ smart and sustainable city integration. The authors
review literature supporting AVs’ role in sustainable development. Governments
enforce regulations or guidelines for privacy. Cybersecurity relies on existing regu-
lations while partnering with private sector for improvements. Efforts by countries
like the US, UK, China, and more, along with state-level actions, tackle AV-related
risks. This study offers a comprehensive analysis of AVs’ privacy and cybersecurity
implications in smart, sustainable cities. It underscores global governmental actions
and their significance in ensuring safe AV deployment, providing insights crucial for
future transport systems. The [210] paper introduces AutoDRIVE, a comprehensive
research and education ecosystem for autonomous driving and smart city solutions.
AutoDRIVE prototypes, simulates, and deploys cyber-physical solutions, offering
both software and hardware-in-the-loop interfaces. It is modular, scalable, and sup-
ports various frameworks, accommodating single and multi-agent approaches. The
paper showcases ecosystem capabilities through use-cases: autonomous parking,
behavioral cloning, intersection traversal, and smart city management. AutoDRIVE
validates hardware-software components in intelligent transportation systems. As
an open-access platform, AutoDRIVE aids prototyping, simulation, and deployment
in autonomous driving and smart cities. Its adaptability to diverse frameworks and
expandability aligns with field trends. AutoDRIVE enhances research and education
in autonomous driving effectively.

• Infrastructure optimization: The study in [211] explores integrating solar energy
into mobility systems, particularly Solar-electric Autonomous Mobility-on-Demand
(AMoD). Solar roofs on vehicles generate energy, impacting consumption. The aim is to
optimize operations including passenger service, charging, and vehicle-to-grid (V2G)
interactions. Authors model fleet management using graphs and a linear program.
Applied to a Gold Coast case, results show 10–15% lower costs with solar-electric fleets
vs. electric-only. Larger V2G batteries reduce expenses through energy trading and
potential profits. This research highlights solar’s benefits in AMoD for cost savings
and efficiency. The [212] paper optimizes the routing and charging infrastructure for
Autonomous Mobility on Demand (AMoD) systems. With the advent of autonomy
and electrical engineering, an AMoD system becomes possible. The authors propose
a model for fleet and charging optimization. Using a mesoscopic approach, they
create a time-invariant model that reflects routes and charging, taking into account
vehicle charging. The road network is based on a digraph with isoenergetic arcs
to achieve energy accuracy. The problem is a globally optimal mixed-integer linear
program that is solved in less than 10 min, which is practical in the real world. Their
approach is validated with case studies from taxis in New York City. Collaborative
infrastructure optimization outperforms heuristics. Increasing the number of stations
is not always beneficial.

• Software optimization: Software optimization is another important way to mitigate
the environmental impact of self-driving vehicles. Authors of [213] confirmed that
the energy consumption of edge processing reduces a car’s mileage with up to 30%,
making autonomous driving a difficult challenge for electric cars. Ref. [214] addresses
the significant challenge of managing computational power consumption within au-
tonomous vehicles, particularly for tasks involving artificial intelligence algorithms for
sensing and perception. To overcome this challenge, the paper introduces an adaptive
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optimization method that dynamically distributes onboard computational resources
across multiple vehicular subsystems. This allocation is determined by the specific
context in which the vehicle operates, accounting for factors like autonomous driving
scenarios. By tailoring resource allocation to the situation, the proposed approach aims
to enhance overall performance and reduce energy usage compared to conventional
computational setups. The authors conducted experiments to validate their approach,
creating diverse autonomous driving scenarios. The outcomes highlighted that their
adaptive optimization method effectively enhanced both performance and energy
efficiency in autonomous vehicles. This research makes a significant contribution
by addressing a key hurdle in autonomous vehicle development—optimizing com-
putational resource allocation using real-time contextual information. Overall, the
paper presents an innovative strategy to tackle the issue of high computational power
consumption in autonomous vehicles. Through dynamic resource allocation based on
context, it offers potential enhancements in performance and energy efficiency. The
findings yield valuable insights for optimizing computational resource allocation in
autonomous vehicles and provide guidance for future research in this area. Moreover,
reliance on multiple sensors, resource-intensive deep-learning models, and powerful
hardware for safe navigation comes with challenges. Certain sensing modalities can
hinder perception and escalate energy usage. To counteract this, the authors of [215]
introduce EcoFusion—an energy-conscious sensor fusion approach that adapts fusion
based on context, curtailing energy consumption while preserving perception qual-
ity. The proposed approach surpasses existing methods, improving object detection
by up to 9.5%, while reducing energy consumption by around 60% and achieving
a 58% latency reduction on Nvidia Drive PX2 hardware. Beyond EcoFusion, the
authors suggest context identification strategies and execute a joint optimization for
energy efficiency and performance. Context-specific results validate the efficacy of
their approach.

7. Conclusions

In this survey, we have discussed the Features extraction, Mapping, and Localiza-
tion processes in order to ensure safe localization and navigation in autonomous driving.
Features represent the landmarks of the map, or, more precisely, what we want from the ve-
hicle’s environment (e.g., poles, curbs, buildings, intensity). The more relevant the features
are the more accurate the mapping, and therefore the more accurate vehicle localization will
be. This survey presents a novel classification including the semantic, non-semantic, and
deep learning approaches to facilitate the comprehension of these methods. Our investiga-
tion concluded that using non-semantic features is more suitable to solve localization and
mapping tasks. We also identified that the extraction of semantic features from the vehicles
environment is time intensive and that such features do not exist in all environments. Deep
learning methods are excellent tools to represent the environment semantically or not
depending on the approach used. Although the performance of deep learning methods are
high, the high computational cost makes it a bit difficult to execute.

Different mapping techniques have been investigated, including the pre-built and
online ones and their underlying mathematical intuitions. We note that maps need to be
frequently updated to reflect changes in the vehicles environment. Moreover, choosing the
right features to include in the map is crucial to minimising computational memory use.

The last concept that should be demystified is localization, where we have tried to
present, as much as possible, the methods that aim to localize the vehicles according
to different sensors. The approaches based on probability, optimization, or cooperative
localization are more robust and provide accurate results compared to the classical ones.
Each approach was described briefly and recent related papers in the literature were
investigated. We have also reviewed some of the attack methods that can threaten the AV
systems in general.
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In conclusion, our analysis offers an extensive investigation into the potential ram-
ifications of autonomous driving. In addition, this study embraces a broad spectrum of
considerations, encompassing areas such as energy usage reduction, emission management,
noise and light pollution mitigation, seamless integration within smart urban landscapes,
infrastructure optimization to facilitate self-driving technology, and the fine-tuning of
software algorithms for optimal performance. By delving into these essential dimensions,
our endeavor seeks to furnish a comprehensive understanding of the intricate and diverse
repercussions associated with the widespread adoption of autonomous driving across
various spheres of interest.
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