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Abstract: The field of image analysis with artificial intelligence has grown exponentially thanks to the
development of neural networks. One of its most promising areas is medical diagnosis through lung
X-rays, which are crucial for diseases like pneumonia, which can be mistaken for other conditions.
Despite medical expertise, precise diagnosis is challenging, and this is where well-trained algorithms
can assist. However, working with medical images presents challenges, especially when datasets are
limited and unbalanced. Strategies to balance these classes have been explored, but understanding
their local impact and how they affect model evaluation is still lacking. This work aims to analyze
how a class imbalance in a dataset can significantly influence the informativeness of metrics used to
evaluate predictions. It demonstrates that class separation in a dataset impacts trained models and is
a strategy deserving more attention in future research. To achieve these goals, classification models
using artificial and deep neural networks implemented in the R environment are developed. These
models are trained using a set of publicly available images related to lung pathologies. All results are
validated using metrics obtained from the confusion matrix to verify the impact of data imbalance
on the performance of medical diagnostic models. The results raise questions about the procedures
used to group classes in many studies, aiming to achieve class balance in imbalanced data and open
new avenues for future research to investigate the impact of class separation in datasets with clinical
pathologies.

Keywords: image analysis; artificial intelligence algorithms; detection of clinical pathologies; lung
pathologies; R packages

1. Introduction

Artificial neural networks are fundamental in processing information for decision-
making across diverse domains like business, computing, and healthcare, drawing inspira-
tion from the human brain’s structure and functions [1–4]. While effective in simple tasks
such as classification, regression, or clustering, artificial neural networks face limitations
with complex datasets [2,3]. Addressing these challenges, artificial neural networks have
evolved into deep neural networks or deep learning, characterized by multiple neuron
layers that enhance the ability to learn and represent intricate patterns [2,4]. Deep neural
networks are equipped to solve more sophisticated problems than artificial neural networks,
handling higher complexity data more effectively [2,4–7].

Data analysis hinges on various critical factors, such as the problem’s nature, com-
putational resources, dataset complexity, the model’s type (classification, regression, or
clustering), and performance evaluation metrics. These elements necessitate thorough con-
sideration by designers [2–4,6,7], underscoring the significance of the designer’s experience
in these decisions [8].
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In image-based data analysis, particularly for clinical pathologies, processing hinges
on factors like small and imbalanced datasets [9,10], computational requirements [11],
and image quality [12,13]. The prevalent issue of class imbalance, often due to limited
medical data [14], can introduce statistical biases leading to result misinterpretations [10].
This imbalance allows larger classes to disproportionately influence model predictions
[15], affecting model performance as highlighted in various studies [16,17]. Therefore,
choosing appropriate metrics is crucial to accurately reflect model performance, especially
in AI-driven models [17].

Studies such as that of [16] underscore the importance of metrics as confidence in-
dicators in algorithms and methodologies. However, ref. [17] critiques the misuse of
performance metrics in classification models, while [9] addresses the complexities in com-
paring AI models due to numerous balancing criteria.

In [14], an interesting study is conducted regarding the scarcity of chest X-ray images,
employing deep neural network-based models through transfer learning. Despite the use
of metrics associated with the confusion matrix, they do not guarantee performance-related
outcomes. Other studies have presented their results obtained with models developed from
imbalanced data associated with clinical pathology images, showing promising results in
terms of accuracy and other performance indicators, and they even specify the metrics
used. In [18], feature extraction from images for lung cancer classification is explored, using
accuracy, precision, recall, specificity, and F1 Score to assess model performance.

In [19], research focuses on developing classifiers using unprocessed images via
transfer learning, with performance assessed through confusion matrix metrics against
models from processed data, highlighting the underexplored area of image preprocessing
necessity. Similarly, ref. [20] examines lung nodule detection through transfer learning,
utilizing confusion matrix-derived metrics. In [21], a comprehensive review of lung cancer
imaging is performed, detailing various evaluation metrics and pointing out the challenge
of selecting the most appropriate one. In [22], a systematic review of AI techniques in
detecting and classifying COVID-19 medical images is presented, emphasizing the lack of
studies on AI technique evaluation in classification tasks. Additionally, ref. [23] explores an
automated system using an artificial neural network for identifying key diabetic retinopathy
features. Systematic reviews by [24,25] discuss the application of deep learning, particularly
convolutional neural networks, in COVID-19 detection from radiographic images and deep-
learning techniques in image analysis.

In all these studies and approaches, the versatility and applicability of artificial and
deep neural networks in various tasks related to clinical pathology image processing are
primarily emphasized. However, it is concerning that in most of the reviewed articles, in-
sufficient attention is given to the proper use of evaluation metrics, particularly addressing
issues stemming from data scarcity that can lead to imbalances in the processed datasets.
In many works, results are summarized globally in terms of accuracy, while other metrics,
such as sensitivity, specificity, and precision, derived from the confusion matrix and allow-
ing for individual class prediction assessment, are often overlooked. This leads to a lack of
comprehensive understanding of discrimination among different involved classes and the
local influence each of them might have on the model’s performance.

It is relevant to highlight that in several of the previously mentioned works, which deal
with sets of images related to clinical pathologies, reports are made on model predictions
using only two defined classes from the dataset, even though, in many cases, the problem
involves more than two classes. This lack of clarity regarding the effect of all classes during
model training can also negatively impact the accuracy of the diagnoses issued. It is crucial
to appropriately address model evaluation in class-imbalanced scenarios and consider the
local influence of classes on model performance to achieve more reliable results in the
detection and diagnosis of clinical pathologies.

To support and further enrich the foundation of this research, it is essential to delve
deeper into information extracted from previous studies. An outstanding example can
be found in the analysis conducted by [26], where an exploration of chest X-ray images



Appl. Sci. 2024, 1, 0 3 of 27

related to various lung pathologies is carried out. This study points out that pulmonary
pneumonia can have viral or bacterial origins [26]. This assertion is corroborated by
consulting the public repository [27], which effectively categorizes pneumonia images into
the corresponding virus and bacteria categories.

On the other hand, another repository has been reviewed, such as the one presented in
[28], which has been used in the research by [9]. These repositories contain images from nine
categories of common signs of lung diseases, and the results obtained with the proposed
methods are promising. However, it is important to note that they do not make clear
distinctions between the different classes that cause pneumonia and their impact on the
trained models. Additionally, ref. [29] points out the possibility of confusing pneumonia
with other conditions, such as bronchitis or cardiomegaly, among other diseases. The
study focuses on the [27] repository and does not differentiate between the classes causing
pneumonia.

In summary, in situations involving multiple classes, it is necessary to incorporate all
of them into the model training and validation process, giving significant importance to
the analysis of specific metrics for each category. It can be understood from [10] that, in
most cases, individualized evaluation for each class is highlighted as the most informative
and comparative strategy, which can lead to superior results in model training. This aspect
is crucial in this research because, even though pneumonia is clearly distinguished into
two classes, the cited works group it into a single class as “pneumonia” and do not provide
information on how these classes have influenced the training process locally, nor do they
report the influence of classes on the results in the test sets used to validate their models.

Finally, in all these studies reporting good results, there is no clear analysis of the
impact of classes on the model’s performance or the effect of sample imbalance by classes
in the treated clinical image datasets. In this context, this work aims to demonstrate how
sample imbalance in a dataset can significantly affect the informativeness of metrics when
making global-level predictions. To achieve this, the following objectives are proposed:

• Develop effective image classification models for lung pathology using artificial and
deep neural networks, implementing available algorithms in R packages.

• Evaluate the effectiveness of the image classification models for lung pathology de-
veloped with artificial and deep neural networks using confusion matrix metrics
provided by R packages.

• Identify models that achieve the highest overall accuracy rates and record specific
metrics for each class.

• Compare global metrics with local metrics to demonstrate how sample imbalance in a
lung pathology-related dataset can have a significant impact on the interpretation of
global-level metrics.

The a priori selection of metrics provided by the confusion matrix is based on its ability
to inform not only about the overall predictions generated by a classification model but also
about point predictions or predictions by class [15,30]. Several studies have already used
the confusion matrix to measure the effectiveness of classification models [15,31], although
few of them employ this method to compare the effectiveness of different classification
models [15].

The confusion matrix is not only used to measure the efficacy of models in the analysis
of clinical pathologies but has also been extensively examined in numerous studies that
make direct use of its metrics or combinations thereof. Authors such as [10,16,17,32,33]
highlight various aspects of performance evaluation, focusing on this metric among others.
They share a common view on its applications and the limitations it presents in contexts
with imbalanced clinical data.

Among the metrics used, overall accuracy serves to indicate the proportion of correct
predictions in relation to the total number of cases. However, its effectiveness can be
compromised in situations where a specific class dominates. Sensitivity and specificity,
derived from the confusion matrix, are established as standards in medical evaluations to
determine the model’s ability to identify positive and negative cases, respectively, although
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specificity may be insufficient in contexts with class imbalance. The AUC (Area Under the
Curve) provides a comprehensive assessment of the model’s performance across various
decision thresholds but may not fully address deficiencies in the classification of minority
classes in unbalanced environments. Additionally, the F1 Score is considered, which
attempts to balance precision and sensitivity, although it may not always effectively reflect
efficacy across all classes in unbalanced datasets. The IoU metric compares the overlap
of model predictions with actual annotations, being susceptible to biases towards more
frequent classes, which can result in high IoU for these classes and low for less common
ones. Regarding MAP, this metric assesses detection accuracy at different thresholds and
can be negatively affected in unbalanced contexts if the model favors the detection of the
majority class, especially when all classes contribute equally to the calculation of MAP.
Metrics such as MSE (Mean Squared Error) and MAE (Mean Absolute Error), common in
regression models, are also analyzed, which may not fully capture the impact of inaccurate
predictions on minority samples in the presence of class imbalance.

To maintain consistency and avoid ambiguities with different authors, in this study,
efficiency is defined as a model’s ability to achieve high accuracy rates. In turn, the
accuracy rate is defined as the number of samples predicted correctly out of the total
number of samples. This measure is commonly referred to as precision and is part of the
various metrics provided by the confusion matrix [30]. It can be measured either globally,
considering all the samples predicted correctly, or locally when examining a particular class
[15]. The definitions provided will later be used to understand the qualitative evaluation
based on the metrics from the confusion matrix obtained from the quantitative results
when testing the dataset associated with lung pathology images after the models have been
trained.

The structure of the remainder of this work is organized as follows. Section 2 presents
the materials and methods. Section 3 focuses on the results and their analysis. Section 4
is dedicated to a discussion of the results in contrast to other findings. Finally, Section 5
covers the conclusions and future work.

2. Materials and Methods
2.1. Artificial Neural Networks

Section 1 has explored artificial and deep neural networks, their role in data analysis,
their capabilities, and some limitations. Next, a brief overview is provided of how artificial
and deep neural networks are structured and distinguished, particularly in their application
for image processing.

The human brain, composed of interconnected neurons, forms a biological neural
network regulating bodily functions [1,3]. While many of these functions are present at
birth, adaptation enables learning to tackle complex tasks and cultivate cognitive abilities
[1,3]. The brain’s structure is malleable due to nervous system plasticity, where neuron
connections adapt to stimuli [34,35]. Despite the neuron’s intricate biochemistry and
electricity, scientists have delineated it into three distinct parts [34–36]: the cell body,
housing the nucleus and conducting metabolic activities; dendrites, specialized in receiving
electrical signals from other nerve cells; and axons, transmitting impulses to facilitate
neuron communication. The synapse, connecting the axon of one neuron to the dendrite of
another, is crucial for one-way nerve impulse transmission and sequential neuron excitation
[35]. This concept inspired the initial development of algorithms simulating brain function
in 1943, when McCulloch and Pitts introduced a computing unit modeling biological
neurons [34]. Subsequent research validated their analogy [1,3,35,36].

2.2. Topology of Artificial Neural Networks

A single neuron is unable to address problems of significant complexity independently.
However, when neurons are aggregated, as observed in the human brain, they create a
multilayer network capable of solving more intricate problems once trained. The structure
of this network, referred to as the topology of an artificial neural network, arises from the
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arrangement of neurons organized into layers [3,37–39]. Expanding on this concept, three
types of layers can be identified, each of which will be elaborated on below:

• Input layer: receives the data directly, typically associated with input dimensions or
data points. In this study, lung pathology images represent this input data, where each
pixel in the image corresponds to a dimension or variable. Through the preprocessing
proposed in this research, the images are adjusted to a resolution of 30 x 30 pixels,
resulting in an input layer composed of 900 neurons.

• Hidden layers: play a pivotal role in shaping the network’s architecture by connecting
neurons. Striking the right balance in terms of layer count, neurons per layer, and
connectivity levels is crucial. While increasing these parameters can offer benefits, it
may also prolong training duration and heighten the risk of overfitting. Hidden layers
retain critical information linked to input data, accumulating insights in synaptic
weights during training. This knowledge is indispensable for the network to discern
patterns in new data. In this study, neural networks ranging from 1 to 4 layers are
examined, assessing configurations of 10 to 500 neurons per layer to determine optimal
settings for achieving high accuracy in processing lung pathology images.

• Output layer: receives information from the hidden layers and externally transmits it.
In this study, the objective is to classify lung pathology images into three categories:
normal, viral, and bacterial. Each category is represented by a specific neuron in the
output layer, allowing the network to specialize during training. When presented
with an unknown image, the neuron corresponding to the appropriate class activates
to identify it, and the highest produced value is associated with the predicted label.
Additionally, the option of using a single output neuron is considered, where each
class is assigned a unique value, facilitating the inference of the associated label.

2.3. Deep Neural Networks

At the outset of this work, deep neural networks, also known as deep learning in the
field of AI, were introduced. This algorithm, regarded as a tool in machine learning, is
primarily characterized by its ability to identify patterns in complex data, notably outper-
forming traditional machine learning algorithms. Its effectiveness has been demonstrated
in various domains [40], including AI, image processing, and automation, where it has
provided reliable and efficient solutions, thus solidifying its role in the development of
advanced applications [2]. For a more in-depth exploration of the problems, solutions, and
applications developed through deep learning, additional references such as [4,37] can be
consulted.

Deep learning relies on extracting features from data using multiple layers and is
implemented through traditional algorithms based on artificial neural networks. It is
primarily based on convolutional neural networks and recurrent neural networks [4,40].
However, other types of networks can also be implemented, as detailed in a comprehensive
resource available on IBM Developer [38]. Figure 1 illustrates the types of architectures that
can be formed in deep learning, both for supervised and unsupervised learning.

Figure 1. Deep-learning architectures.
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In general, typical problems that had not previously found satisfactory solutions are
related to computer vision, image analysis, and classification. Deep learning, particularly
convolutional neural networks for computer vision and recurrent neural networks for
natural language processing, is employed to address these issues. Additionally, other
advancements are intertwined with research efforts, leading to the development of high-
performance applications such as ChatGPT [41,42].

The fundamental difference between artificial neural networks and deep neural net-
works can be succinctly explained without delving into technical details. A model based
on artificial neural networks can classify patterns as long as the inputs define features
independently, as shown in Figure 2. Each feature is independent because it does not
require another for comprehension and is thus immediately used by the neural network to
adjust its weights. Each feature is associated with a variable without the need for additional
information from another variable for interpretation. However, not all problems can be
summarized in the input of a neural network with an independent feature space. Two clear
examples are image processing and natural language processing.

Figure 2. Variables associated with the cost of a house as inputs in artificial neural networks.

In the context of this work focused on images, it is essential to understand that the
pixels composing them represent individual characteristics, but they are not sufficient on
their own to effectively train a conventional neural network. For example, when presenting
the network with an image of a lung (see Figure 3), each pixel serves as input. However,
analyzing a single pixel is not enough to determine if the image represents a lung or another
specific object. This limitation arises from the interdependence of pixels within an image;
their spatial arrangement and distribution give rise to complex structures, as observed
in the case of a lung or another figure. Even for simpler shapes like lines or circles, it is
necessary to collectively analyze the spatial arrangement of pixels rather than individually.
It is evident that a single pixel does not provide the necessary information to identify
specific patterns.
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Figure 3. Variables associated with the pixels of an image as input in artificial neural networks.

Based on the above, extracting features, hidden patterns, or trends from problems
similar to the one depicted in Figure 2 is somewhat simpler compared to those illustrated
in Figure 3. Consequently, traditional artificial neural networks suffice for the former, as
they can immediately process the data. However, for problems associated with Figure 3, it
is more appropriate to utilize deep neural networks like convolutional neural networks.
These networks have a dedicated stage for pattern extraction from the input data, followed
by another stage specializing in classification, as depicted in Figure 4.

Figure 4. General architecture of a CNN.

In this study, both approaches will be employed to accomplish the stated objectives.
However, in the results section, it will become apparent that artificial neural networks face
greater challenges in feature extraction. This will be evident in the metrics results, which
are consistently lower compared to those produced by convolutional neural networks.

2.4. R Packages for Artificial Intelligence

In this subsection, the R packages used to build and analyze classification models
based on artificial and deep neural networks using a dataset of lung pathology images are
presented. Among these packages, RSNNS, Neuralnet, and Keras provide valid results,
while Deepnet and nnet do not yield valid results. The algorithms for all defined neural
networks undergo exploration to determine the number of neurons per layer in topologies
ranging from 1 to 4 layers. Some of the hyperparameters are kept at their default values.
For further information on the packages, please refer to [43,44].

• RSNNS: This package, based on the Stuttgart Neural Network Simulator (SNNS),
offers both high-level and low-level APIs in C++. The low-level interface provides
access to full functionality and flexibility, while the high-level interface implements
common neural network topologies and learning algorithms [45]. In this work, a
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multilayer perceptron network trained with backpropagation is created. Logistic and
identity activation functions are used in the hidden and output layers, respectively.
For the processed dataset, in most cases, training is limited to a maximum of 200
epochs. The built-in “predict” function is used to compute accuracy after training
completion. Weight initialization ranges from −0.3 to 0.3, and the weight update
function is set to “Topological_Order” with a learning-rate parameter of 0.2.

• Neuralnet: This package provides neural network training using backpropagation, al-
lowing for adjustments in weights, neurons, layers, epochs, learning algorithms, activa-
tion functions, error functions, and other hyperparameters [46]. Hyperparameters like
“threshold” = 10, “stepmax” = 1000, “linear.output” = TRUE, “lifesign” = “minimal”,
and “act.fct” = “logistic” are adjusted in this network. Various values for “threshold”
and “stepmax” were tested to find optimal settings for faster training, as the algo-
rithm’s performance tends to slow down during training. Similar to RSNNS, no more
than 200 training epochs are allowed for the processed dataset in most cases.

• Deepnet: This package allows for the implementation of various deep-learning archi-
tectures and neural network algorithms [47]. However, it did not yield valid results
for the implemented DBN network with the dataset used in this study. In spite of
adjusting parameters such as learning rate and momentum, this package was unable to
handle images with high dimensionality. Alternative experiments with reduced image
dimensionality demonstrated its functionality, but the results could not be compared
with those of other packages used in this research due to their lack of validity.

• Keras: It is a high-level API based on TensorFlow, allowing for rapid development
of machine learning models and artificial neural networks, including deep neural
networks, within the R environment [48]. In this study, two types of networks were
implemented using this package: an artificial neural network and a convolutional
neural network (CNN). The artificial neural network comprises dense layers with
ReLU activation, followed by a dropout layer to prevent overfitting, and a dense
output layer with SoftMax activation for multi-class classification. It is compiled with
categorical cross-entropy loss, RMSprop optimizer, and accuracy metrics. Training
runs for up to 3000 epochs with a batch size of 128 and a 20% validation split. The CNN
includes 2D convolutional layers with 32 filters and ReLU activation, each followed by
a dropout layer with a 20% dropout rate. Additionally, it incorporates two more 2D
convolutional layers with 64 and 128 filters, respectively, and ReLU activation, each
followed by a dropout layer. A max-pooling layer with a 2 × 2 pool size is inserted to
downsample the feature maps, followed by a flattening layer to convert the features
into a vector, which is then connected to the previously defined neural network.

• nnet: According to [49], it is a package used for implementing feed-forward neural
networks with a single hidden layer, as well as for multinomial log-linear models. It
allows for the configuration of artificial neural network models by assigning values
to the feature variables and the target variable, enabling the setting of weights, the
number of neurons in the hidden layer, and optimizers. However, this package is not
suitable for handling the dimensionality of the images processed in this study.

2.5. Metrics

An important aspect of this study is to assess the performance of the developed models
when processing data associated with clinical pathology images. This evaluation will be
carried out during both the training and testing phases. During training, only overall
accuracy will be calculated, and its value will be distinguished in separate tables and bar
charts within the results section, labeled as “Accuracy Train”. This metric assesses how
effectively the model has captured patterns from the training data. However, it may not
fully reflect the model’s performance on unseen data (test dataset). It is computed as
the percentage of training examples correctly classified by the model relative to the total
number of training examples, as depicted in Equation (1):
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Training Accuracy =
Correctly Classified

Total Training Examples
× 100% (1)

Regarding the metrics in model testing, the use of the confusion matrix was mentioned
in the introduction of this work due to its ability to provide information on both overall
predictions and class-specific predictions. Consequently, the overall accuracy in testing will
be distinguished in the various tables and bar charts in the results section under the name
“Accuracy Test”. For class-specific predictions, sensitivity, specificity, and precision metrics
will be calculated, and these will be distinguished in the tables and bar charts in the results
section by appending each metric with the initial letter “N”, “V”, or “B”, corresponding
to the classes normal, virus, or bacteria, respectively. It should be noted that the overall
accuracy in testing assesses how well the model generalizes unseen data during training.
Sensitivity indicates the percentage of positive cases detected. Precision represents the
percentage of correct positive predictions. Specificity indicates the percentage of negative
cases detected. It is important to note that the calculation will be performed using the Caret
package in R for the test datasets [50]. For further information on the confusion matrix,
refer to [30,51].

2.6. Dataset

The dataset used to test the models developed using R packages pertains to lung-
related diseases. This publicly available dataset can be downloaded from the repository
[27]. It is also found in [52]. It consists of chest X-ray images depicting various conditions:
normal chest X-rays with clean lungs and no abnormal opacification areas, chest X-rays
with bacterial pneumonia typically showing focal lobular consolidation visible in the
center of the image, and chest X-rays with viral pneumonia often exhibiting a more diffuse
“interstitial” pattern in both lungs [27,53]. The dataset is organized into three folders (train,
test, val), each containing subfolders for each image category (Pneumonia/Normal). There
are a total of 5856 JPEG X-ray images categorized into two groups: Pneumonia and Normal.

2.7. Image Preprocessing

Preprocessing begins with an inspection of the image dataset, revealing 1349 X-ray
images of healthy individuals and 3884 images of individuals with pneumonia only in the
”train“ directory. However, not all images have uniform width and height; they exhibit
varying proportions, which may result in distortions during resizing.

To address this concern practically, the initial preprocessing involved selecting images
with both width and height exceeding 1000 pixels. Figure 5 illustrates the comparison of
dimensions between sets of normal and pneumonia images. The use of Figures 6 and 7,
providing statistics on the width and height of image sets, aids in the identification of
potential selections. The data suggests that images without pathologies (normal) can be
chosen from the first quartile, while images with pneumonia are typically selected from
around the third quartile. Subsequently, these images were resized to a size of 1000 × 1000,
chosen as an average to avoid loss of valuable information from radiographs.

Figure 5. Comparison of the dimensions between normal versus pneumonia imaging sets.
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Figure 6. Statistics on width and height for set of images “normal”.

Figure 7. Statistics on width and height for set of images “pneumonia”.

This process results in a dataset comprising 1244 normal images and 881 images with
pneumonia. Within the pneumonia category, 393 images are attributed to viral pneumonia
and 488 to bacterial pneumonia. Once images are cropped to 1000 × 1000, they are resized
to 30 × 30 dimensions. The entire process is illustrated in Figure 8, showing the final
transformation applied to the images. This transformation can yield a 900-feature vector or
a matrix with a resolution of 30 × 30, depending on the classification model development
package used.

Finally, two image sets are created: an imbalanced set comprising all 2125 images and
a balanced set consisting of 393 images selected for each type (normal, virus, and bacteria),
totaling 1179 samples. These sets are utilized for all experiments, enabling examination of
the impact of image balance or imbalance on classification model generation.
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Figure 8. Image preprocessing .

2.8. Generation of Classification Models

After preprocessing the image dataset, as shown in Figure 8, experiments were con-
ducted using different packages to primarily obtain two types of models: classification
models with artificial neural networks and classification models with deep neural networks.
These models were generated for both balanced and imbalanced datasets, dividing the data
in a 70–30 ratio for training and testing, respectively. Among the selected packages to build
the models were Neuralnet, RSNNS, and Keras for artificial neural networks and Deepnet
and Keras for deep neural networks. Although preliminary tests were conducted with the
nnet package, these proved unsuccessful as the package could not handle the dataset used.
Regarding the topology of the models (see Section 2.2), they were developed to have 1, 2, 3,
and 4 layers.

The model generation involves an exploration routine to determine the number of
neurons to be set in each layer, consisting of two parts:

• Coarse Exploration: The exploration spans from 10 to 500 neurons, increasing by
increments of 10 for the first 100, then by 50. Its aim is to identify the neuron count
yielding the highest accuracy in both training and testing. Each increment in neuron
count is trained for 100 epochs. Data are collected epoch by epoch for single-layer
models, and for models with 2, 3, and 4 layers, they are collected at the end of the
100 epochs. At the end of training, the best model per epoch is saved along with the
collected data.

• Fine Exploration: The data collected during the initial exploration are reviewed to
select the best-performing model characterized by high accuracy and a specific number
of neurons. This model undergoes a training and testing process, consisting of 1000
and 300 epochs, respectively, aimed at further improving its final accuracy.

Figure 9 displays the flowchart guiding the execution of this experiment.
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Figure 9. Diagram for the development of models.

3. Results and Analysis

In this section, the results obtained from processing the set of images associated with
lung pathologies using the different classification models generated, as indicated in Section
2.8, are presented. This was done using the R packages discussed in Section 2.4. All
models were evaluated according to the metrics outlined in Section 2.5. The experiments
conducted aim to demonstrate how sample imbalance in a dataset can significantly affect
the informativeness of metrics when making predictions at a global level.

3.1. Results and Analysis for One Layer

In this preliminary exploration using various R packages, the challenge lies in deter-
mining the optimal number of neurons in the hidden layer and other aspects of network
topology to achieve high accuracy rates in both training and testing. The objective is
to achieve high accuracy values both in training and testing or at least to approximate
those found in related works involving image datasets associated with lung pathologies
discussed in this study. Notably, not every combination of neurons can achieve this, but
due to the lack of clear guidelines, empirical rules are utilized, suggesting that the number
of neurons in the hidden layers should fall within the range defined by the neuron counts
of the input and output layers. Experimentation plays a crucial role in determining the best
configuration.

To address this issue, an exploratory experiment was conducted aiming to find the
optimal number of neurons in the hidden layer, varying this parameter from 10 to 500
neurons. The increments were made in intervals of 10 neurons up to the first 100 neurons
and increments of 50 neurons thereafter. Each increase in the number of neurons was
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accompanied by training epochs ranging from 1 to 100. For a clearer understanding of the
experiment, Figure 9 can be referred to, which depicts the flowchart. With each increase in
neurons and epochs, information was gathered to analyze the generated models. Addi-
tionally, experiments were conducted with both balanced and unbalanced data, seeking
optimal cases for each package from among 1900 possibilities.

Table 1 presents a summary of the outstanding results, focusing on the overall accuracy
achieved in the training set as the primary evaluation criterion. These results are detailed
in Column 6. Additional training details are observed in Columns 2, 3, 4, and 5, such as the
search range established to determine the number of neurons in the hidden layer, the type
of dataset used (whether balanced or imbalanced), the specific number of neurons set to
achieve the best result, and the training epochs, respectively.

Table 1. Summary of the data obtained for 100 training epochs with one layer and the testing of the
different R packages.
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deepnet 10–100 No_bal 80 64 0.65 0.65 637 373 451 118 186 146 – –
deepnet 100–500 No_bal 100 99 0.64 0.64 637 373 396 118 241 146 – –
deepnet 10–100 Bal 80 94 0.47 0.48 354 118 105 118 249 118 – –
deepnet 100–500 Bal 100 4 0.33 0.33 354 118 354 118 118 – –

keras 10–100 No_bal 30 85 0.70 0.71 637 373 450 118 187 146 – –
keras 100–500 No_bal 150 77 0.67 0.68 637 373 373 118 264 146 – –
keras 10–100 Bal 100 91 0.54 0.53 354 118 145 118 209 118 – –
keras 100–500 Bal 150 89 0.55 0.54 354 118 182 118 172 118 – –

keras-cnn 10–100 No_bal 40 88 0.89 0.78 637 373 462 118 60 146 115 –
keras-cnn 100–500 No_bal 450 53 0.92 0.80 637 373 380 118 90 146 167 –
keras-cnn 10–100 Bal 30 89 0.74 0.63 354 118 154 118 160 118 40 –
keras-cnn 100–500 Bal 150 84 0.85 0.63 354 118 91 118 111 118 152 –

neuralnet 10–100 No_bal 10 81 0.67 0.67 637 373 393 118 173 146 68 3
neuralnet 100–500 No_bal 100 62 0.69 0.60 637 373 317 118 243 146 66 11
neuralnet 10–100 Bal 40 6 0.62 0.55 354 118 90 118 197 118 63 4
neuralnet 100–500 Bal 100 42 0.63 0.53 354 118 80 118 198 118 62 14

rsnns 10–100 No_bal 70 92 0.70 0.71 637 373 490 118 24 146 123 –
rsnns 100–500 No_bal 150 96 0.70 0.70 637 373 478 118 33 146 126 –
rsnns 10–100 Bal 100 55 0.47 0.49 354 118 171 118 183 118 – –
rsnns 100–500 Bal 400 92 0.47 0.50 354 118 60 118 218 118 76 –

It should be noted that when analyzing different packages, the overall accuracy in the
training set is consistently higher when the dataset is unbalanced. Contrast Columns 1, 3,
and 6 of Table 1 to verify this. As mentioned in Section 2.5, the overall accuracy during
training reflects how well patterns from the training data have been captured by the model,
although it may not provide information on the model’s performance on new data.

Analyzing the models’ performance on new data, one can observe the overall accuracy
in the test set in Column 7, indicating that it is also consistently higher when the dataset is
unbalanced. In this initial experiment, it is evident that the best-performing model was
generated using the Keras package with convolutional layers, achieving an 80% overall
accuracy on new data. While this value is respectable, it does not truly inform about the
model’s performance concerning the individual classes present. In other words, an 80%
overall accuracy on new (test) data suggests that out of every 100 samples analyzed by the
model, 80 were correctly predicted. However, the following crucial question arises: does
this hold true for all samples? According to the results obtained in this initial experiment,
it becomes apparent that this is not the case.

To demonstrate this, the total number of processed labels during testing, as well as
the number of actual and predicted labels for samples of normal (N) pathologies, viruses
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(V), and bacteria (B), are recorded from Column 8 to Column 15. Based on the provided
information, the Keras package is analyzed in its implementation version for convolutional
layers (see keras_cnn in Row 11 of Table 1), where an 80% overall accuracy in testing
has been achieved. However, this model predicted 380 samples with normal labels when
there were actually 373. It also predicted 90 and 167 samples with virus and bacteria
labels, respectively, when there are actually 118 and 146 of each. These results do not align
adequately with the observed overall accuracy of 80% in the tests, as there would be an
expectation to see 298, 94, and 116 respective samples for the labels involved.

While the initial analysis focuses on the highest-performing model, the assessment of
alternative models reveals that the overall accuracy achieved in tests does not provide a
comprehensive representation of predictive performance by class. Referencing the Deepnet
package, which achieves an overall accuracy of 65% in evaluations (see Deepnet in Row 2
of Table 1), a predisposition towards identifying features associated with normal pathology
samples is detected, resulting in 451 predictions for this category, despite there being
only 373 actual samples. Furthermore, this model shows an inability to identify bacterial
pathology samples, failing to predict any of the 146 samples belonging to this classification.
This discrepancy between observed results and the indicated overall accuracy of 65%
suggests that evaluation metrics do not adequately reflect specific predictive performance
by category, with distributions of 242, 76, and 94 samples for the respective labels being
expected.

Exploring more alternative models is feasible; however, the inclination towards inef-
fective predictions indicated by the overall accuracy will continue to be misleading. This
stems from its fundamental inability to elaborate on the predictions made by the model for
each class, a limitation consistently observed across all implementations with R packages.
Additionally, a discrepancy has been noted in the results presented in Table 1, marked by
figures that exceed the actual quantities of predicted labels. This phenomenon suggests the
existence of underlying causes presented below:

• The number of dimensions handled per image. Despite preprocessing that reduces the
image set to 900 features, it is high for certain neural networks, limiting their ability
to map patterns effectively. However, improved mapping is observed for neural
networks developed with the Keras package, especially when working with convolu-
tional layers. In this case, pattern extraction is more efficient because convolutional
layers do not specialize in individual pixels but rather in their spatial distribution, as
discussed in Section 2.3.

• The topology. The experiments in this first part involve only a single layer. This can
be addressed by increasing the number of layers, which will be tested in subsequent
phases.

• The selection of hyperparameters. The neural networks handled by the various
packages used in this work allow for the selection of multiple hyperparameters.
To keep the experiments less complicated, tests were conducted with the default
hyperparameter settings, and adjustments were made only in cases where contrasting
results were not achieved or when the tests consumed a significant amount of time
(see Section 2.4).

• The established epochs for training. The pattern of inefficient predictions observed in
all models developed with the R packages may be a result of the limited training, which
barely reaches 100 epochs in this initial experiment. During each epoch, the different
neural networks need to process and extract information from the images to update
their weights; however, 100 epochs may not be sufficient for this task. To address this
limitation, subsequent experiments will involve training the best-performing models
with more epochs to achieve more robust results.

• The number of neurons per layer. Not only the number of layers or topology, as it is
often called, can affect the effectiveness of a neural network, but also the number of
neurons per layer. However, the optimal models for a single layer have already been
presented in Table 1, where the number of neurons can be observed in Column 4.
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• The dataset used. In the introduction, it has been noted that the dataset can sig-
nificantly impact the model’s performance, including class balance. In this initial
experiment, these variables have been controlled. Although the dataset was initially
unbalanced, during preprocessing, the quantities of images per class were equalized.
The summary in Table 1, particularly in Columns 3, 6, and 7, enables a comparison to
understand the data balance’s influence.

Based on the preliminary discussion and the data from Table 1, a second experiment is
conducted using the best models, selected based on the highest values of overall accuracy in
both the training and testing sets (see Columns 6 and 7 of Table 1). This entails considering
only the models trained with unbalanced datasets (see Column 3 of Table 1). However, not
all selected models allowed for the second experiment, so their results are not displayed in
Table 2.

Table 2. Summary of the data obtained for 1000 training epochs with one layer and the testing of the
different R packages.
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keras_30 10–100 No_bal 30 1000 0.79 0.75 373 478 368 118 32 23 146 127 84
keras_150 100–500 No_bal 150 1000 0.89 0.77 373 349 325 118 71 44 146 217 120
keras_cnn_40 10–100 No_bal 40 1000 0.95 0.81 373 402 359 118 107 67 146 128 92
keras_cnn_450 100–500 No_bal 450 1000 0.96 0.80 373 419 362 118 90 57 146 128 93
Neuralnet_100 100–500 No_bal 100 1000 0.77 0.58 373 290 241 118 243 66 146 67 43

Table 2 summarizes the data obtained after 1000 training epochs and testing for these
models. The model selected from Table 1 and the overall accuracy achieved after com-
pleting the 1000 training epochs are shown in Columns 1 and 6, respectively. An increase
in overall training accuracy is observed in all models. Regarding overall test accuracy,
the Keras_30, Keras_150, and Keras_cnn_40 models show improvements, Kera_cnn_450
remains unchanged, and Neuralnet_100 experiences a 2-point decline. However, upon
analyzing the record from Columns 8 to 16, an improvement in some classes is reflected,
although it is noted that overall accuracy in testing does not truly reflect the model’s
performance in relation to the individual classes present.

This is confirmed in Table 3, where metrics per class obtained from the testing data
after completing the 1000 training epochs are presented. These metrics are derived from
the confusion matrix introduced in Section 2.5 using the Caret package in R. In Table 3,
from Columns 8 to 15, sensitivity, specificity, and precision metrics are shown for each class
normal (N), virus (V), and bacteria (B), respectively.

Table 3. Summary of the metrics obtained for 1000 training epochs with one layer and the tests of
the different R packages.
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keras_30 10–100 No_bal 30 1000 0.79 0.75 0.77 0.72 0.66 0.97 0.84 0.88 0.99 0.19 0.58
keras_150 00–500 No_bal 150 1000 0.89 0.77 0.93 0.62 0.55 0.83 0.87 0.94 0.87 0.37 0.82
keras_cnn_40 10–100 No_bal 40 1000 0.95 0.81 0.89 0.63 0.72 0.94 0.90 0.89 0.96 0.57 0.63
keras_cnn_450 100–500 No_bal 450 1000 0.96 0.80 0.86 0.63 0.73 0.95 0.89 0.90 0.97 0.48 0.64
Neuralnet_100 100–500 No_bal 100 1000 0.77 0.58 0.83 0.27 0.64 0.63 0.87 0.83 0.65 0.56 0.29
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The analysis of these metrics reveals a bias in the models’ prediction towards the nor-
mal class, demonstrated by higher sensitivity and precision for this class, while specificity
is more conservative.

A deeper analysis of the overall accuracy in tests reveals its limitation in reflecting
the performance of class-specific predictions for each model, as demonstrated by cross-
referencing data from Tables 1 and 2, which are detailed in Table 4. This table includes, in
its first two Columns, the evaluated models and their respective training epochs, while the
third column displays the overall accuracy in tests for each model. Columns 4, 7, and 10
detail the actual quantities of labels per class, and Columns 5, 8, and 11 present the class
label estimates derived from the overall test accuracy. Considering the keras_30 model
(see Row 1 of Table 4), with an overall accuracy of 71%, one would expect approximately
264, 83, and 103 samples for the classes of normal (N), virus (V), and bacteria (B) samples,
respectively. However, Columns 6 and 9 reveal that this model predicted 450 and 187
samples for the N and V classes, respectively, and made no predictions for the B class,
as shown in Column 12. The percentages contrasting overall test accuracy against class-
specific accuracy are examined in Columns 13 to 18, providing a detailed perspective on
the observed discrepancies.

Table 4. Comparison of model performance with actual vs. expected quantities for 1000 training
epochs.
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keras_30 85 0.71 373 264 450 118 83 187 146 103 – 70.78 120.64 70.34 158.47 70.55 -
0 keras_3 1000 0.75 373 279 368 118 88 23 146 109 84 74.80 98.66 74.58 19.49 74.66 57.53
keras_150 77 0.68 373 253 373 118 80 264 146 99 - 67.83 100.00 67.80 223.73 67.81 -
keras_150 1000 0.77 373 287 325 118 90 44 146 112 120 76.94 87.13 76.27 37.29 76.71 82.19
keras_cnn_40 88 0.78 373 290 462 118 92 60 146 113 115 77.75 123.86 77.97 50.85 77.40 78.77
keras_cnn_40 1000 0.81 373 302 359 118 95 67 146 118 92 80.97 96.25 80.51 56.78 80.82 63.01
keras_cnn_450 53 0.80 373 298 380 118 94 90 146 116 167 79.89 101.88 79.66 76.27 79.45 114.3
keras_cnn_450 1000 0.80 373 298 362 118 94 57 146 116 93 79.89 97.05 79.66 48.31 79.45 63.70
neuralnet_100 62 0.60 373 223 317 118 70 243 146 87 66 59.79 84.99 59.32 205.93 59.59 45.21
neuralnet_100 1000 0.58 373 216 241 118 68 66 146 84 43 57.91 64.61 57.63 55.93 57.53 29.45

An additional example highlighting the limited capability of overall test accuracy to
reflect class-specific performance is observed in the keras_cnn_40 model (see Row 7 of
Table 4). Upon analyzing this model, which achieves an overall accuracy of 81% in tests,
Table 4 provides estimates of 302, 95, and 118 samples for the examined classes based
on their respective quantities. However, the actual predictions per class are 359, 67, and
92. Therefore, it would be inaccurate to claim that this model achieves an 81% accuracy
in class prediction, as the actual class-specific prediction percentages are 96.25%, 56.78%,
and 63.01%, thus demonstrating the limitations of using a global metric as an indicator of
detailed class performance.

This analysis concludes by highlighting a significant discrepancy between the overall
accuracy in tests and the class-specific accuracy within models. It is emphasized that a
high level of overall accuracy does not necessarily ensure equitable performance across
all classes. Models exhibit considerable variability in predicting labels for specific classes,
suggesting that overall accuracy might mask significant shortcomings in class-specific
accuracy. Additionally, phenomena such as overfitting and targeted improvements in
the prediction of particular classes are not necessarily reflected in the overall accuracy.
This underscores the importance of conducting a detailed evaluation of class-specific
performance to gain a comprehensive understanding of a model’s effectiveness, particularly
in situations where maintaining a balance among classes is crucial.
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3.2. Results and Analysis for Two Layers

In this exploratory experiment, an additional layer is introduced to create a two-
layer structure within the topology. Unlike the previous experiments detailed in Section
3.1, Deepnet is excluded here due to its inability to produce results comparable to other
packages. This limitation stems from its incapacity to handle the 900 features (dimensions)
remaining after image preprocessing. Consequently, the evaluation is narrowed down to
the Neuralnet, RSNNS, and Keras packages. The aim is to achieve high accuracy values
in both training and testing, which requires determining the optimal combination of the
number of neurons per layer, ranging from 50 to 300 in increments of 50 neurons. A total of
100 training epochs are maintained for each combination of neurons in the layers, and then
the collected information is analyzed.

In contrast to the first experiment, the search is restricted to 36 cases per R package for
both balanced and unbalanced data. Table 5 provides a summary of the best results found
over 100 training epochs, including an additional column for the neurons in the second
layer for each model. A slight improvement in overall accuracy is observed in the training
set for some models, but it remains consistently higher when the data are unbalanced.

Table 5. Summary of the data obtained for 100 training epochs with two layers and the tests of the
different R packages.
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keras 50–300 No_bal 250 300 100 0.74 0.73 637 373 437 118 4 146 196 –
keras 50–300 Bal 200 50 100 0.59 0.61 354 118 168 118 87 118 99 –
keras-cnn 50–300 No_bal 100 150 100 0.95 0.83 637 373 394 118 109 146 134 –
keras-cnn 50–300 Bal 200 200 100 0.93 0.71 354 118 125 118 92 118 137 –
neuralnet 50–300 No_bal 300 50 100 0.79 0.61 637 373 354 118 212 146 64 7
neuralnet 50–300 Bal 200 150 100 0.61 0.49 354 118 81 118 189 118 72 12
rsnns 50–300 No_bal 150 150 100 0.69 0.70 637 373 447 118 40 146 150 –
rsnns 50–300 Bal 300 50 100 0.50 0.47 354 118 80 118 272 118 2 –

Regarding the accuracy in the test set, it does not reveal a significant improvement
compared to the previous scenario, except for some models. For this reason, the best models
undergo an additional 1000 epochs of training. A summary of the information obtained,
including the metrics of interest, is presented in Table 6.

Table 6. Summary of the metrics obtained for 1000 training epochs with two layers and the tests of
the different R packages.
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keras_250_300 50–300 No_bal 250 300 1000 0.94 0.78 0.89 0.50 0.67 0.91 0.89 0.88 0.94 0.49 0.58
keras_200_50 50–300 Bal 200 50 1000 0.69 0.60 0.83 0.64 0.48 0.86 0.73 0.86 0.69 0.31 0.81
keras_cnn_100_150 50–300 No_bal 100 150 1000 0.95 0.79 0.87 0.55 0.72 0.93 0.89 0.88 0.96 0.52 0.58
keras_cnn_200_200 50–300 Bal 200 200 1000 0.94 0.68 0.80 0.65 0.61 0.89 0.78 0.86 0.78 0.51 0.75
neuralnet_300_50 50–300 No_bal 300 50 only_200 0.85 0.60 0.85 0.31 0.68 0.65 0.90 0.83 0.68 0.68 0.37
rsnns_150_150 50–300 No_bal 150 150 only_100 0.69 0.70 0.77 0.35 0.57 0.85 0.83 0.87 0.92 0.12 0.58

Again, the overall accuracy in training after 1000 epochs corresponds to models
implemented with unbalanced data, with those implemented using the Keras package,
including its two models with convolutional layers being better (see Column 7, Rows



Appl. Sci. 2024, 1, 0 18 of 27

2, 4, and 5 of Table 6). As for the test accuracy, the best model achieves 79%, which is
keras_cnn_100_150 implemented with convolutional layers.

For this overall accuracy value in tests or any other reported in Table 6, it is feasible to
apply an analysis similar to the one conducted in Section 3.1. This analysis demonstrates the
limited informative capacity of this global metric to reflect class-specific sample predictions.
For instance, based on the expectation generated by a 79% accuracy in tests, one would
anticipate 294, 93, and 115 samples, respectively, for each assessed class. However, as
detailed class accuracy in Row 4, Columns 15, 16, and 17 of Table 6 indicates, the actual
predictions reach 96%, 52%, and 58%, corresponding to 358, 61, and 84 predicted samples,
respectively, for the involved classes. This discrepancy from the estimates provided by
the global accuracy underscores, once again, that global metrics do not provide a faithful
overview of class-specific predictions of a trained model.

The analysis of overall accuracy versus class-specific accuracy in models such as
keras_250_300 and keras_cnn_100_150 reveals a significant contrast, with high success
rates in training that do not directly translate into effective generalization during testing,
where accuracy notably decreases. This phenomenon is accentuated when examining
class-specific accuracy, where despite high percentages being achieved in class N, classes
V and B display considerably lower accuracies, highlighting inequalities in the model’s
predictive capability. Furthermore, the comparison between models trained with balanced
and unbalanced data indicates that although data balancing may not optimize overall
accuracy, it promotes a fairer distribution in the detection of all classes, improving equity in
classification. Sensitivity and specificity by class complement this picture, showing that a
high ability to identify true negatives does not necessarily ensure equitable detection of all
positive classes, underscoring the need for strategies that promote balanced and effective
performance in class-specific classification of the developed models.

3.3. Results and Analysis of Layers Three and Four

In these experiments, a comprehensive exploration of the Neuralnet, RSNNS, and
Keras packages is conducted to identify the most effective model in terms of 3 and 4-
layer topologies, focusing exclusively on the unbalanced dataset. In accordance with the
methodology of prior experiments, the aim is to achieve the optimal neuron configuration
in each layer to attain high accuracy in both training and testing phases by adjusting this
parameter across a range from 50 to 300, with increments of 50 neurons. These experiments
examine 216 and 1296 possible cases for 3 and 4 layers, respectively.

After completing 100 training epochs for each combination of neurons in the 3 and
4-layer topologies, meticulous data collection was carried out for subsequent analysis. The
best models were selected at the end of the 100 epochs and subjected to additional training
of 1000 and 3000 epochs. A summary of the metrics obtained is shown in Tables 7 and 8,
along with the results of the 2-layer topology for comprehensive comparison. It is important
to mention that the Neuralnet and RSNNS packages only completed 100 and 200 training
epochs, respectively, so they are labeled as only_100 and only_200 in the epoch column in
the tables because they did not show significant improvements with an additional 1000
epochs.

A comprehensive evaluation of models trained with 1000 and 3000 epochs reveals
crucial insights into the balance between fitting to training data and generalizing to unseen
data sets. Primarily, it is observed that increasing the number of epochs improves accuracy
during training; however, this improvement is not proportionally reflected in the accuracy
of tests, indicating a tendency towards overfitting in extensively trained models. Specifi-
cally, sensitivity by class tends to increase slightly with more training epochs for class N,
although classes V and B continue to experience relatively low sensitivities, highlighting
persistent challenges in impartial classification across all categories.

Furthermore, the high specificity in all models, regardless of the number of epochs,
suggests a robust competence in correctly identifying true negatives. However, accuracy
by class does not show significant improvements with the increase in epochs, underlining
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that effective detection of true negatives does not directly translate into an enhanced ability
to accurately classify all classes.

Table 7. Summary of the metrics obtained for 1000 training epochs with 2, 3, and 4 layers and tests
in different R packages.
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keras 50–300 No_bal – – 250 300 1000 0.94 0.78 0.89 0.50 0.67 0.91 0.89 0.88 0.94 0.49 0.58
keras 50–300 No_bal – 300 100 100 1000 0.92 0.78 0.86 0.64 0.65 0.89 0.89 0.89 0.93 0.47 0.64
keras 50–300 No_bal 200 200 150 250 1000 0.89 0.73 0.87 0.43 0.62 0.85 0.89 0.84 0.90 0.56 0.42

keras_cnn 50–300 No_bal – – 100 150 1000 0.95 0.79 0.87 0.55 0.72 0.93 0.89 0.88 0.96 0.52 0.58
keras_cnn 50–300 No_bal – 200 100 250 1000 0.95 0.78 0.87 0.57 0.69 0.93 0.89 0.88 0.96 0.51 0.56
keras_cnn 50–300 No_bal 300 100 50 50 1000 0.95 0.81 0.90 0.57 0.76 0.93 0.91 0.89 0.95 0.59 0.62

neuralnet 50–300 No_bal – – 300 50.00 only_200 0.85 0.60 0.85 0.31 0.68 0.65 0.90 0.83 0.68 0.68 0.37
neuralnet 50–300 No_bal – 150 250 50.00 only_100 0.78 0.66 0.82 0.30 0.66 0.76 0.86 0.84 0.83 0.42 0.42
neuralnet 50–300 No_bal 50.00 100 200 50.00 only_100 0.62 0.62 0.82 0.30 0.73 0.72 0.88 0.81 0.79 0.57 0.24

rsnns 50–300 No_bal – – 150 150 only_200 0.69 0.70 0.77 0.35 0.57 0.85 0.83 0.87 0.92 0.12 0.58
rsnns 50–300 No_bal – 250 300 50 only_100 0.80 0.74 0.89 0.41 0.67 0.88 0.88 0.86 0.92 0.49 0.50
rsnns 50–300 No_bal 300 250 300 50 only_100 0.77 0.75 0.83 0.41 0.67 0.90 0.85 0.89 0.94 0.29 0.61

Table 8. Summary of the metrics obtained for 3000 training epochs with 2, 3, and 4 layers and tests
in different R packages.
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keras 50–300 No_bal – – 250 300 3000 0.90 0.75 0.81 0.53 0.76 0.91 0.89 0.85 0.95 0.53 0.43
keras 50–300 No_bal – 300 100 100 3000 0.95 0.77 0.86 0.53 0.70 0.91 0.89 0.87 0.95 0.50 0.53
keras 50–300 No_bal 200 200 150 250 3000 0.89 0.73 0.89 0.52 0.56 0.80 0.90 0.87 0.85 0.55 0.58

keras_cnn 50–300 No_bal – – 100 150 3000 0.96 0.80 0.87 0.59 0.77 0.95 0.90 0.88 0.97 0.58 0.55
keras_cnn 50–300 No_bal – 200 100 250 3000 0.96 0.81 0.88 0.63 0.71 0.93 0.90 0.89 0.96 0.53 0.63
keras_cnn 50–300 No_bal 300 100 50 50 3000 0.96 0.80 0.87 0.58 0.75 0.95 0.89 0.89 0.97 0.51 0.60

Crucially, the model architecture, especially the inclusion of convolutional layers and
a balanced distribution of neurons in the keras_cnn models, stands out as a determinant
factor in effective generalization. This finding highlights the importance of optimal model
architecture and suggests that appropriate neuronal configuration strategies are essential
for enhancing the overall performance of the model.

The analysis also underscores that a greater number of training epochs does not
necessarily guarantee an improvement in the capacity for generalization, highlighting the
challenge of overfitting, especially in models trained for 3000 epochs. This emphasizes the
need to adopt a nuanced approach in model design and in the implementation of effective
strategies to combat overfitting.

Finally, the importance of meticulously balancing the fit to training data with the ability
to effectively generalize to new data is highlighted. Optimizing the model architecture,
including the strategic selection of convolutional layers and neuronal configuration, along
with a careful approach to training duration, emerges as crucial for achieving optimal
performance. This synthesis of findings emphasizes the relevance of a detailed and holistic
evaluation of model performance, which goes beyond overall accuracy to include sensitivity,
specificity, and accuracy by class, thus ensuring robust and equitable classification systems.
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3.4. Additional Results and Analysis

In Sections 3.2 and 3.3, a comprehensive analysis of the Neuralnet, RSNNS, and
Keras packages was conducted to determine the most effective model for 2, 3, and 4-layer
topologies, with a specific focus on imbalanced datasets. The optimal combination of
neurons in each layer was sought, varying this parameter between 50 and 300. Neuron
combinations in the range of 10 to 40 were excluded from these experiments, although some
results in Table 1 for the Keras and Neuralnet packages showed models with 30, 40, and
even 10 neurons (see rows 6, 10, and 14 in Table 1). For this reason, additional experiments
were conducted within this range to determine if superior models to those previously
discussed could be obtained. These experiments were carried out using the Neuralnet,
Keras, and RSNNS packages. Despite RSNNS initially not producing models with few
neurons, it was included in the analysis. The results of these additional experiments are
detailed in Table 9, from which the following conclusions are drawn.

Table 9. Summary of additional the metrics obtained for 1000 training epochs with 2, 3, and 4 layers
and tests in different R packages.
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keras 10–40 No_bal – – 40 30 1000 0.75 0.71 0.73 0.74 0.62 0.96 0.83 0.86 0.99 0.12 0.50
keras 10–40 No_bal – 40 30 20 1000 0.79 0.73 0.91 0.42 0.66 0.83 0.92 0.84 0.87 0.69 0.40
keras 10–40 No_bal 30 10 40 30 1000 0.77 0.72 0.77 0.54 0.60 0.94 0.84 0.86 0.98 0.19 0.50

keras_cnn 10–40 No_bal – – 40 20 1000 0.95 0.82 0.91 0.62 0.71 0.92 0.91 0.91 0.94 0.58 0.70
keras_cnn 10–40 No_bal – 40 30 30 1000 0.96 0.82 0.89 0.66 0.73 0.96 0.89 0.91 0.98 0.51 0.69
keras_cnn 10–40 No_bal 40 30 30 30 1000 0.95 0.81 0.89 0.61 0.71 0.95 0.90 0.89 0.97 0.53 0.62

neuralnet 10–40 No_bal – – 20 10 only_200 0.56 0.54 0.81 0.26 0.76 0.63 0.88 0.79 0.67 0.65 0.13
neuralnet 10–40 No_bal – 40 40 10 only_100 0.66 0.61 0.82 0.26 0.66 0.71 0.85 0.82 0.77 0.49 0.27
neuralnet 10–40 No_bal 30 30 30 10 only_100 0.67 0.65 0.81 0.29 0.67 0.74 0.85 0.84 0.82 0.42 0.40

rsnns 10–40 No_bal – – 10 20 only_200 0.74 0.72 0.85 0.21 0.54 0.86 0.82 0.93 0.91 0.03 0.81
rsnns 10–40 No_bal – 40 40 30 only_100 0.70 0.70 0.75 0.36 0.63 0.90 0.83 0.86 0.96 0.12 0.52
rsnns 10–40 No_bal 20 20 30 30 only_100 0.65 0.66 0.85 0.22 0.51 0.73 0.82 0.92 0.79 0.13 0.77

The analysis of the data suggests a disparity between training accuracy and test accu-
racy, yet it shows a strong inclination to corroborate previous findings. This is highlighted
by the wide variability in training accuracy, ranging from 56% to 96%, as opposed to
the narrower test accuracy range of 54% to 82%. This pattern underscores a tendency
towards overfitting in certain configurations, where excessive optimization on training
data undermines the model’s effectiveness with new samples.

The detailed examination of the overall accuracy in tests once again confirms the
limitation of this global metric in accurately projecting class-specific prediction estimates.
This is demonstrated by observing the accuracy per class, highlighting the challenges that
models face in achieving a uniform classification across all categories. In Tables 3 and 6–9,
it is observed that a high overall test accuracy does not necessarily translate into high test
accuracy across all classes. Table 10 provides a contrast between the overall test accuracy
and the test accuracy per class for the most outstanding models that employ keras with
convolutional layers (keras_cnn). The data in Columns 1, 2, and 3 allow for the verification
of information corresponding to the table, row, and column. It is reported that the overall
test accuracy for these selected models ranges from 79% to 82%.

However, a detailed inspection of accuracy per class (N, V, and B) reveals more
pronounced variations. Class N proves to be robust across all models, which could indicate
adequate representation or clearer distinction of its characteristics within the dataset. In
contrast, classes V and B exhibit lower and more erratic performance, with class V achieving
accuracies ranging from 51% to 59%, and class B from 58% to 70%, suggesting potential
challenges related to data representativeness or the keras_cnn model’s ability to capture
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the specific features of these classes. Despite the prior knowledge of the number of samples
per class, these results reflect the existing imbalance in the training data. The consistency
of high accuracy for class N, as opposed to the variability for classes V and B, points to a
potential model bias toward class N. Given the stability of the overall accuracy, it could
be inferred that class N is predominant in the datasets, which could lead to misguided
conclusions about the model’s overall effectiveness.

Table 10. Contrast of overall and class-specific test accuracies for top-performing keras models with
convolutional layers as demonstrated in Tables 3 and 6–9.

Table Column Row Accuracy Test
Accuracy per Class

N V B

3 7 4 0.81 0.96 0.57 0.63
6 8 4 0.79 0.96 0.52 0.58
7 10 7 0.81 0.95 0.59 0.62
8 10 6 0.81 0.96 0.53 0.63
9 10 5 0.82 0.98 0.51 0.69
9 10 6 0.82 0.94 0.58 0.70

Class sensitivity highlights significant differences, consistently demonstrating superior
effectiveness in identifying positive cases, especially for class N, in models that incorporate
convolutional layers (keras_cnn). On the other hand, specificity remains high across all
models, showcasing an efficient ability to correctly recognize true negatives.

Regarding neuron configuration, models based on artificial neural network algorithms
typically exhibit lower accuracy with fewer neurons. However, the four-layer Neuralnet
model achieves a slight edge in precision over its counterparts. For deep-learning models
subjected to 1000 epochs of training, the resulting accuracy remains consistent, unaffected
by the number of neurons deployed.

Concluding with the number of training epochs, it is observed that models trained
for 1000 epochs generally exhibit a better balance between accuracy in training and testing
than those trained for only 100 or 200 epochs.

4. Discussion

The presented research comprehensively addresses the impact of sample imbalance
and the configuration of neural network-based models on the reporting capability of
metrics used in the classification of pulmonary pathologies. In this regard, experiments
were conducted to evaluate classification models under various neuronal configurations
and data balance conditions. The central premise was to examine how these variables affect
the global accuracy and class-specific performance of the models in detecting pulmonary
pathologies from images.

In the initial exploration for a single layer, selecting the optimal number of neurons
emerged as a critical challenge to achieve high accuracy in training and testing. The find-
ings highlight the complexity of adjusting the network topology to optimize performance,
suggesting there is no single rule for neuron configuration that guarantees success. In-
terestingly, results indicate that models with unbalanced datasets tend to show higher
accuracy in training, though this phenomenon does not necessarily translate into improved
generalization capability on new data.

When analyzing performance on test datasets, it was revealed that global accuracy
does not adequately reflect the model’s performance with respect to individual classes.
Particularly in high-performing models, such as those implemented with the Keras package
and its variants with convolutional layers, significant discrepancies were observed in class-
specific accuracy. This underscores the importance of looking beyond global metrics to
understand the model’s behavior in classifying different types of pathologies.

The inclusion of additional layers in subsequent experiments provided an oppor-
tunity to investigate the influence of more complex topologies on model effectiveness.
While marginal improvements in accuracy were observed with the addition of layers, the
persistence of data imbalance as a critical factor in evaluating global and class-specific
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accuracy remained. Models trained with 1000 or more epochs showed improvements in
training accuracy, highlighting the need for a holistic approach to training and evaluating
the models’ generalization capabilities.

The discussion on the informative capacity of global metrics highlights an inherent
limitation in capturing the true performance of models in classifying different categories.
This aspect is critical, especially in medical applications where accuracy in detecting specific
pathologies is paramount.

With the proposed data preprocessing techniques, the implemented models are close
to the results reported in many previous studies for the same dataset. Assuming the
results presented in [26] are associated with test sets, they report an accuracy of 85%
with a sensitivity of 84.1%. While these results are very close to this study, they do not
address the problems demonstrated in this study. Nor do they detail the effect of classes
individually. The work of [26] rather merges the virus and bacteria classes, which can be
counterproductive as it may hide potential biases in the final results [51].

It is crucial to prevent the spread of errors among classes. Thus, a class-specific
analysis, as conducted in this study, is recommended, demonstrating that individual classes
impact model performance. Indeed, the sensitivity value indicates that the model correctly
identifies the positive class, typically pneumonia cases, 84.1% of the time, suggesting that
84.1% may correspond to a viral or bacterial pathology. However, this value is not truly
representative of either class because the original dataset is imbalanced, with a significantly
larger number of samples in the normal class, leading to bias if the training is not carefully
managed. Notably, in many instances, sensitivity may appear high, as in the work of [26]
where classes are merged, but taking the best model implemented with the Keras package
using convolutional layers, a much lower combined sensitivity of approximately 70% is
observed than shown in this work. This calculated measure of combined sensitivity is
not standard but draws attention to the results presented in many studies when classes
are merged, and the impact of the involved classes is not detailed, especially if they are
imbalanced.

This research is also compared to the analysis conducted by [14], which examines lung
images affected by tuberculosis and pneumonia, as well as those of healthy individuals,
focusing on the equitable use of 306 samples per category, data augmentation techniques,
and the application of deep neural networks through transfer learning. Although the
[14] study reports high AUC scores of 90%, 93%, and 99% for the respective categories, a
potential bias is identified from grouping all pneumonia cases into a single class without
considering their distinct viral or bacterial causes. This approach could limit the accuracy
of the training by overlooking specific patterns during feature extraction, as suggested
by [26]. In contrast, the current study favors metrics derived from the confusion matrix,
which offers greater sensitivity to class imbalance. Furthermore, it is highlighted that
models trained with balanced data show significantly lower performance compared to
those obtained with imbalanced data, suggesting that the impressive AUC values reported
by [14] might not adequately reflect effective discrimination between classes.

In the study [9], significant progress is highlighted in the field of medical image
retrieval, particularly focusing on the identification of pulmonary pathologies through
common image signs found in computed tomographies. The research underscores how the
inclusion of contextual and semantic analysis, along with visual characteristics, significantly
contributes to improved precision in finding relevant images. This is demonstrated by an
increase in the MAP from 60% to 70% and an improvement in the AUC from 0.48 to 0.58.
The findings emphasize the drawback of relying solely on visual characteristics. Delving
deeper into the details of this study, it is evident that grouping distinctive features of
the examined pathologies can decrease the precision of training by overlooking specific
patterns during the feature extraction process.

The comparison between preprocessing methodologies implemented in previous stud-
ies and the research presented illustrates significant variations in approaches and technical
procedures, especially in the context of analyzing X-ray images for the detection of pul-
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monary diseases. The referenced studies, including [9,14,26], establish a methodological
basis for the preprocessing of medical images, while the research under discussion intro-
duces detailed techniques aimed at overcoming specific challenges, such as the dimensional
variability of the images and class balance.

Regarding selection and resizing, the adoption of selection criteria based on specific
dimensions (>1000 pixels) is emphasized to prevent deformations during resizing, a step
not mentioned in previous studies. This method ensures the preservation of relevant
information through standardized cropping to 1000 × 1000 pixels and further reduction to
30 × 30 pixels, therefore optimizing the uniformity and quality of the images for subsequent
analysis.

Regarding the application of statistical analysis and class balance, the research incor-
porates statistical analysis to guide image selection, in contrast to the more generalized
methodologies of previous studies. This analysis enables informed selection, enhancing the
representativeness of the dataset. The formation of balanced and imbalanced sets directly
addresses the impact of class balance on the effectiveness of the classification model, an
aspect not always explicitly dealt with in the compared studies.

The review of studies highlights significant deficiencies in considering the differential
impact of classes and specific patterns during the feature extraction phases, underscoring
the lack of detailed analysis on the influence of classes and common image signs. This
omission points to a critical need for more detailed classificatory evaluations to ensure
precise and balanced interpretations in the classification of pulmonary diseases. The im-
portance of a holistic approach that prioritizes the optimization of architectures and the
calibration of the training period for improved generalization becomes evident. Further-
more, the need for adaptive and meticulous preprocessing of medical images to address
challenges such as dimensional variability and class imbalance is emphasized. The current
research underlines the relevance of customizing preprocessing techniques and conducting
a model performance analysis that includes sensitivity, specificity, and class precision. This
directs towards the development of more robust and equitable classification models, urging
future research to establish clear guidelines for hyperparameter tuning and neural network
architectures, therefore facilitating significant advances in the application of deep-learning
technologies for medical diagnosis.

5. Conclusions

In this study, the development of classification models using both artificial neural
networks and deep neural networks for categorizing clinically related pathology images
was explored. The implementation of these models was carried out using R packages,
specifically Keras, Neuralnet, RSNNS, Deepnet, and nnet.

The main objective of the study was to demonstrate how sample imbalance in lung
pathology-related images can significantly affect the informativeness of metrics derived
from the confusion matrix for all implemented classification models.

According to the results obtained from the explored models, it is observed that the
overall prediction-related metric, both in training and testing, can be high but lacks infor-
mativeness. This is demonstrated in the class-specific metrics, where substantially higher
sensitivity and precision are observed for the normal class compared to the virus and
bacteria classes, reflecting the impact of class imbalance in the dataset on the implemented
models. Although the specificity metric is high in all implemented classification mod-
els, this value is not sufficient to claim that the models in question are accurate in their
predictions.

These results raise questions about the procedures used to group classes in many stud-
ies, aiming to achieve class balance in imbalanced data and open new avenues for future
research to investigate the impact of class separation in datasets with clinical pathologies.
The purpose is to better understand how to extract specific features from each category
with greater precision and, thus, improve the efficiency of these models.
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