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Abstract：The cobalt, earth abundant transition metal, embedded in nitrogen doped 

carbon material as single atom site (Co-N-C) has been manifested as promising 

electrochemical oxygen reduction reaction (ORR) catalyst, however the unsatisfying 

production selectivity has hampered its widespread applications. Herein, the H2O2 

selectivity of Co-N-C catalyst has been tailored with Co axial functional groups.. 

Thermodynamically, the selectivity is regulated due to the fine-tunning of the 

adsorption of the key reaction intermediates (ΔG*OOH), and five functional groups, 

including -O, -OH, -CN, CH3 and -SO3, endow the Co-N-C catalyst with superior 

H2O2 selectivity. Importantly, we unravel a new water medicated recombination of 

solute OH• reaction pathway for H2O2 production, which was the result of 

dissociation of *HOOH in explicit water environment That is two ·OH species 

reaction in the liquid environment which originated from the creaking of *OOH 

intermediates due to the weakened O-O bond by the interaction with surrounding 

water. This study provides foundational understanding for the ORR catalytic 

mechanism at the electrochemical interface and open up new avenues for rational 
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design of targeted high efficiency electrocatalysts. 

 

1. Introduction 

The oxygen reduction reaction (ORR) involves multiple electron and and proton 

transferring, which proceeds either by two electrons (2e) to H2O2 or by four electrons 

(4e) to H2O[1]. The 4e process is a key half-cell reaction in many renewable energy 

conversion and utilization techniques, such as polymer electrolyte membrane fuel 

cells and metal-air battery [2-5], while the 2e ORR has recently emerged as an 

alternative sustainable and environmental friendliness scheme to commercial H2O2 

production. H2O2 is a versatile oxidant and is widely applied in a large range of 

chemical processes including paper manufacturing, wastewater treatment and medical 

industry, the demanding of which has ever been growing globally[6-8]. The 

electrochemical 2e ORR for H2O2 production operates in ambient condition, is safe 

and avoids complex procedures, huge energy consuming.[9-11]. Nevertheless, high 

overpotential and sluggish kinetics of the ORR have severely hampered the energy 

efficiency of the electrosynthesis of H2O2[12-18], Moreover, the competing 4e and 2e 

reaction pathway, intrinsically requires the development of active and selective 

catalyst[19] toward H2O2. Currently, noble-metals and their alloys manifest 

satisfactory performance, yet their high toxicity and reservation scarcity impedes 

large-scale commercial applications[20-22]. 

Dedicated efforts have been devoted to designing noble-metal-free 

electrocatalysts, among which isolated metal site embedded in nitrogen doped carbon 

materials (M-N-C) represent one of the most promising ORR electrocatalysts[23-30]. 

Benefiting from the merit of carbon materials such as high electronic conductivity, 

mechanical stability and structure versatility, the catalytic performance of M-N-C, 

(M=XXX) catalysts outperform most counterparts. Most importantly, the simple and 

tunable metal reaction center, which is well-accepted as MN4 moiety, provides a 

representative platform to study the cooperative of metal site and its surrounding 

coordination atoms[31-37]. Various approaches have been established to achieve 

excellent catalytic performance, including heteroatom doping[31], dual/triple metal 



sites[32], strain engineering[33], defect/edge modulation[34], surface 

modification[35-37] etc. For instance, the Co-N-C material has attracted wide 

attention because it has been proven to be promising in many scenarios and it is 

elusive from Fenton reaction. To further improve its ORR catalyst performance, 

various functional groups have been introduced at the metal site to optimize the free 

energy change of the *OOH reaction intermediates (ΔG*OOH)[6]. It is found that 

electron-rich groups, i.e., *O and *OH, increase the value of ΔG*OOH, populating it to 

the optimal 4.22 eV. By contrast, with electron-poor species, such as *H, the ΔG*OOH 

is decreased and moves away from the optimal value. As far as the realistic condition 

is concerned, the underlying elementary steps occur at the solid-liquid interface 

whereby the reactants and intermediates not only interact with the catalyst substrate 

but also dynamically communicate with the solvent molecules[38-41]. Myriads of 

literature have demonstrated the significant influence of solvent environment. For 

instance, the rate determining step (PDS) of 2e ORR on Fe-N-C catalyst was reported 

to be the replacement of the preadsorbed H2O molecule by the O2 molecule on the Fe 

atom under an explicit water environment through a new reaction pathway, rather than 

the thermodynamically limiting step of *O2 hydrogenation or *OH desorption within 

a vacuum model [42]. Therefore, a systematic studies on how solution environment 

affect the reaction product and pathways are highly required to uncover the full 

reaction pathways for the electrochemical synthesis H2O2. 

Hereafter, the water effect on the selectivity for 2e reaction pathways toward 

H2O2 on Co-N-C catalyst with different axial functional groups on the Co atom was 

explored using DFT and Ab initio molecular dynamics (AIMD) simulations. (Fig. 1). 

5 functional groups among the 22 candidates, including -OH, -O, -SO3, -CN and -CH3, 

is robust to regulate the reaction pathways and optimize the ΔG*OOH approaching the 

optimal point for the formation of H2O2. Explicit water molecules were added to the 

catalysts in AIMD simulations to exploit the reaction within the interface of the 

catalyst surface and the liquid environment. Importantly, we observed that the *OOH 

intermediate is not stable under water environment (*OOH → *O + ·OH). it is thus 

proposed that the H2O2 can be formed via two ·OH reacting in the solvent, a novel 



reaction pathways that has never been reported in literature. This study provides 

fundamental insights into the 2e reaction pathway for ORR at atomic level, which 

leads to new research direction for rational design of high performance catalyst.  

       
Fig. 1. Schematic of the axial functional group modification strategy to 

improve the production selectivity for Co-N-C catalyst with/without water 

environment. 

 

2. Computation methods  

The density functional theory (DFT) calculations were conducted using the 

Vienna Ab initio Simulation Package (VASP) software[43]. A 6 × 6 monolayer 

graphene supercell is utilized as the supported layer with a vacuum of 20 Å applied 

above the slab to avoid interlayer interactions. The effect of implicit solvation is 

considered via a self-consistent polarizable continuum model as implemented in 

VASPsol[44,45]. VASPKIT is applied for post computational data processing [46]. 

The equilibrium potential (U0) of the 2e pathway is 0.70 V [Ref]. The thermodynamic 

overpotential η
22OH
 = |4.22 - ΔG*OOH| V for a given electrocatalyst and the limiting 

potential UL = U0 - η
22OH
. Other calculation details can be found from our previous 

work[47].  

The AIMD simulations were performed using the CP2K package. PBE 

functional and a hybrid Gaussian/Plane-Wave (GPW) scheme were adopted[48,49]. 

The cutoff energy for the plane waves expanded is 400 Rydberg. Dispersion 

correction was applied with the DFT-D3 method[50-52]. The canonical (NVT) 

ensemble AIMD are performed at 300K by employing Nose-Hoover thermostats. A 

time step of 1.0 fs is used [53,54] and the simulation lasts for more than 20 ps. The 

GTH pseudopotentials[55,56] were chosen for describing the core electrons.  

 



3. Results and discussion  

The ORR activity of Co-N-C catalyst is revisited in our study to validate our 

methods[37, 40]. The structures of these Co-N_C catalyst with key interaction 

mediates are provided in Fig. S1 and the free energy changes are displayed in Fig. S2. 

The free energy diagram (Fig. S2) reveals that the 4e ORR is limited by the formation 

of the second H2O molecular, which is the step of *OH desorption. As shown in (Fig. 

2a) and (Fig. S1), compared with the ideal value, the dark blue of ΔG*OH ( <. 1.0 eV) 

for Co-N-C suggests stronger binding energy which gives rise to an overpotential 

(η
OH2

) of 0.54 V to produce H2O. By contrast, the 2e pathway is restricted by the 

formation/dissociation of *OOH intermediate, i.e., the step of ΔG*OOH is 3.90 eV and 

the deviation from the ideal value generates the overpotential (η
22OH
) of 0.30 eV. The 

small 0.24 eV difference in the overpotential of 4e and 2e pathways demonstrates 

inferior selectivity between H2O and H2O2 production for Co-N-C catalyst, consistent 

with previous studies[40].  

   

Fig. 2. (a) Free energy hotmap for key reaction intermediates with/without 

different axial functional group modification for Co-N-C, Free energy diagram 

for (b) -O (c) -OH (d) -CN (e) -COOH (f) -NH2 (g) -SO3 (h) -NO (i) -SH 

modified Co-N-C. 



22 functional groups, including -Br, -CH3, -CI, -ClO, -ClO2, -COOH, -H, -HCO3, 

-HSO4, -I, -NH2, -NO, -CN, -F, -NO2, -O, -SCN, -SH, -SO3, -CH3COO, -OH, -SO4, 

-ClO4 were introduced axially at the Co site to tune the activity and selectivity 

Co-N-C catalysts. The heatmap of the free energy changes for the key reaction 

intermediates, i.e., *OOH, *O, *OH and *HOOH for all the modified catalysts are 

depicted in (Fig. 2a, Fig. S1 & S2). Compared with that for Co-N-C catalyst with no 

axial functional groups, the color of ΔG*O tends to be white or pink for the 

functionlized counterparts, indicating weakened interaction between the *O and the 

catalyst surface. A close inspection to the other two key intermediates (*OOH and 

*OH) for the 4e reaction pathway found similar trend. Benefiting from the alleviated 

interaction of *OH, the 4e activity of -Br and -HSO4 is improved, that is, the ΔG*OH 

for the -Br modification is 0.97 eV, corresponding to a smaller overpotential of 0.26 V, 

and the ΔG*OH of 0.92 eV for the -HSO4 functionlization gives rise to an overpotential 

of 0.31 eV (Fig. S2). For other functionalized catalysts, the potential determining 

steps are all changed to the first protonation step, i.e., *O2 → *OOH, due to the weak 

binding strength of XX (Fig. S2). Since activity of 2e is also dependent on the 

strength of ΔG*OOH, the *OOH intermediate is thus the key factor for the production 

selectivity. The introduction of different axial functional groups resulted in the change 

of charge states of Co as indicated from the Bader charge analysis results. (Fig. 3a), 

Consequently, these Co site modified catalysts show a various range of adsorbing 

strength toward the *OOH intermediates with different 2e over potentials. The 

reaction activity of the 2e and 4e pathways of the Co site modified catalysts are 

summarized in (Fig. 3b-c). It is found that, with the adding of -Br, -Cl, -I, -F, -ClO, 

-ClO2, -HSO4, -SCN, -CH3COO, and -OH groups, the ΔG*OOH fails in 3.91 ~ 4.14 eV 

which boost the 4e reaction pathway. In contrast, with the -CH3, -COOH, -HCO3, -CN, 

-NO2, -O, -SH, and -SO3 groups, ΔG*OOH further increase to 4.05 ~ 4.42 eV, the 2e 

pathway become favorite reaction pathways. It is noticed that in the region with 

ΔG*OOH 4.05 ~ 4.14 eV, both 2e and 4e reaction pathways are active but lacking 

selectivity. By contract, the 4e selectivity is dominate when ΔG*OOH is in the range of 

3.91 ~ 4.05 eV, yet the 2e overwhelms with ΔG*OOH 4.14 ~ 4.42 eV. Specifically, eight 



functionalized catalysts are found with promising 2e selectivity (Fig. 2b-i). 

To provide a general trend of the regulations, the limiting potential (UL) of the 2e 

and 4e reactions has been depicted in (Fig. 4a). The pink line demonstrates the same 

UL for 2e and 4e pathways, and thus the left upper triangle suggests better 2e activity 

while the other one on the right bottom manifests 4e pathways. Further, taking the UL 

(0.78 V) of commercial Pt/C for 4e pathway and UL = 0.5 V for 2e pathways as the 

benchmark, the purple rectangle circled on the left upper shows superior 2e selectivity 

and activity, which exhibits small 2e overpotential but large 4e overpotential. The 

eight candidates found in these region are those mentioned above that with improved 

2e activity but depressed 4e efficiency. On the contrary, the pink trapezoid on the right 

bottom reveals 4e selectivity and activity; however, unfortunately, no point is 

witnessed there. In the light blue and dark blue regions, although the catalysts show 

both 2e and 4e activities, the lack of selectivity hinders its real application. 

 
Fig. 3. (a) Bader charge for the metal in the catalyst and the *OOH intermediate. 

Volcano plot for (b) 4e activity and (c) 2e activity related to ΔG*OOH. 

 

The above calculations had been done in vacuum model, which doesn’t include 

water environment effect. The solvent effect was thus implicitly considered for both 

accurate and efficient concerns. As depicted in (Fig. 4b), clear discrepancies can be 



found between the vacuum model to the implicit solvation model. For example, -NO 

and -NH2 groups functionalized catalysts are found in the left upper purple region in 

the solvation model, which are located in the left corner in the vacuum model, yet the 

-COOH, -HCO3, -NO2 and -SH containing cases are moved out from the purple 

region. That is, six functional groups are beneficial for Co-N-C to show desirable 2e 

selectivity in solvation model, and among them the promising of -OH, -O, -SO3, -CN 

and -CH3 modified cases are robust in both models. Moreover, one point can be found 

in the pink region, which is the -SCN functionalized catalyst, demonstrating excellent 

4e activity and selectivity. 

 

Fig. 4. Two-dimensional map for the 2e and 4e selectivity for axial functional groups 

modified Co-N-C catalyst. (a) vacuum model, (b) implicit solvation model. 

 

The large discrepancy of the vacuum and implicit solvation models demonstrate 

that the impact of the solvation on the selectivity is significant. Moreover, the ORR 

activity of Co-N-C is inferior in the solvation model, which sites at the left bottom of 

(Fig. 3b), inconsistent with the previous experimental studies[1]. These facts 

underline the complex behaviour in the vicinity of the solid/liquid interface and 

stimulate us to perform AIMD simulations with explicit solvation via exposing the 

catalyst to finite water molecules, with/without axial functional groups. The 

representative snapshots from AIMD simulation for each key intermediate are shown 

in (Fig. 5) (corresponding movies can be found in Movie I file). For the bare Co-N-C, 

the *OOH and *OH intermediates stay stable during the 10 ps simulation without any 



desorption, suggesting strong chemisorption for the binding. The *O intermediate is 

prone to capture a proton from the water molecule nearby, and quickly transforms into 

an adsorbed hydroxyl and a free OH in the liquid water. This is consistent with 

previous reported results[39]. Importantly, the *HOOH intermediate is found to be 

unstable in the explicit water environment, whereby the O-O bond is weakened by the 

surrounded water molecules through hydrogen bonds, and quickly dissociates into 

*OH species and a OH• species. This is contradicted to the formation of H2O2, while 

H2O2 was observed the product in experiments. This controversy inspires us to 

explore the mechanism for the formation of H2O2 under aqueous medium.  

An in-depth check of the chemical status for the generated OH species suggest 

that the OH species is extremely active which can uptake a proton from the 

neighboring water molecular, and then the newly formed OH tends to trap another 

proton from water molecular, triggering a chain reaction and forming a long-distance 

interaction (Movie II file). It is thus speculated that the OH species is a radical. 

Consequently, the H2O2 can be formed when the two OH radicals encounter each 

other in the aqueous medium. That is, a new electrocatalytic mechanism is proposed 

as follows, (i) * + O2 → *O2, (ii) *O2 + H+ + e → *OOH, (iii) *OOH + H+ + e → *O 

+H2O, (iv) *O + H2O → *OH + ·OH, (v) 2·OH → H2O2. To give more evidence for 

the supposed mechanism, we further conduct the AIMD simulation for the -OH 

functionalized Co-N-C (Fig. 5b & Movie II file), and it is found that the *HOOH 

intermediate also decompose into *OH and OH species, similar to the bare 

counterpart. This further demonstrates that the H2O2 can be generated from the 

solvent via two ·OH reaction.  

Encouraged by the proposed reaction pathways, the AIMD simulations are 

extended to Co-N-C catalyst with -O, -CN, -SO3, -NO, -CH3 and -NH2 groups, which 

show excellent 2e activity and selectivity in implicit solvation model. It is found that 

the *HOOH intermediate is not stable for the catalyst with -O, -CN, -SO3 and -NO 

groups (Fig. 5c & Movie III file), which desorbs from the metal site and form free 

H2O2 as in most reported catalysts[36]. By contrary, the *HOOH dissociates into *OH 

and OH species for Co-N-C with -NH2, another case that the H2O2 is formed from 



the ·OH radicals in the water, alike the bare and -OH modified catalysts. 

      

Fig. 5. MD Snapshots of the creaking/desorption of the *HOOH 

reaction intermediates for (a) bare (b) -OH modified (c) -CN 

modified Co-N-C catalyst. 

 

4. Conclusion  

In conclusion, the activity and selectivity of the model catalyst Co-N-C have 

been regulated systematically via axial coordinators binding at the Co site, through 

the combination of density functional theory and ab initio molecular dynamic 

simulations. It is found that all the utilized functional groups tend to alleviate the 

binding of the key reaction intermediates, and with elaborate selection of suitable 

candidates, the free energy of the key reaction intermediate, say ΔG*OOH, can be 

tailored to promote the 2e selectivity, which suppresses the 4e reaction pathway with 

small 2e overpotential. Dynamic simulations reveal that the *OOH is unstable for 

Co-N-C catalyst under the interaction of neighboring water molecular, and the H2O2 

can be generated through the ·OH species in the aqueous media. This study displays 

fundamental importance of solid-liquid interfacial microenvironment in governing the 

electrocatalytic reaction mechanism, opening up unique avenues for rational design of 

high performance catalysts from the full concern of the reaction environment. 
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