
ACML 2023

Learning to Terminate in Object Navigation

Yuhang Song ∗ sgyson10@liverpool.ac.uk
Department of Computer Science
University of Liverpool

Anh Nguyen anh.nguyen@liverpool.ac.uk
Department of Computer Science
University of Liverpool

Chun-Yi Lee cylee@cs.nthu.edu.tw

Department of Computer Science

National Tsing Hua University

Editors: Berrin Yanıkoğlu and Wray Buntine

Abstract

This paper tackles the critical challenge of object navigation in autonomous navigation
systems, particularly focusing on the problem of target approach and episode termina-
tion in environments with long optimal episode length in Deep Reinforcement Learning
(DRL) based methods. While effective in environment exploration and object localization,
conventional DRL methods often struggle with optimal path planning and termination
recognition due to a lack of depth information. To overcome these limitations, we propose
a novel approach, namely the Depth-Inference Termination Agent (DITA), which incor-
porates a supervised model called the Judge Model to implicitly infer object-wise depth
and decide termination jointly with reinforcement learning. We train our judge model
along with reinforcement learning in parallel and supervise the former efficiently by re-
ward signal. Our evaluation shows the method is demonstrating superior performance, we
achieve a 9.3% gain on success rate than our baseline method across all room types and
gain 51.2% improvements on long episodes environment while maintaining slightly better
Success Weighted by Path Length (SPL). Code and resources, visualization are available
at: https://github.com/HuskyKingdom/DITA_acml2023

Keywords: Visual navigation, Supervised learning, Deep Reinforcement learning

1. Introduction

Object navigation represents a critical challenge within the realm of autonomous navigation
(Bagnell et al., 2010), it necessitates the ability of robotic agents to navigate proficiently
within environments that have not been previously encountered. The primary goal is to
reach a specified target object, and the successful completion of this task is contingent upon
the agent’s ability to self-declare the successful attainment of the target object, thereby
concluding the episode. Such tasks may seem straightforward from a human perspective
given our inherent knowledge and comprehension of the essential conditions required for
successful navigation (Wang et al., 2022). Humans, for example, possess an intuitive sense

∗ The author is affiliated with the Department of Computer Science, National Tsing Hua University as
well in a duel Ph.D. program.

© 2023 Y. Song, A. Nguyen & C.-Y. Lee.

https://github.com/HuskyKingdom/DITA_acml2023

Song Nguyen Lee

of where to begin exploring, as certain objects have a higher likelihood of being found in
specific areas. Moreover, upon visually spotting the desired object, we instinctively plan
an optimal route toward the target. Drawing inspiration from human problem-solving
strategies, we could break down the task into two phases: (i) Explore the environment and
locate the target object. (ii) Navigate to the target object until it is reached, then declare
episode termination.

The underlying principle of Deep Reinforcement Learning methods (DRL) of maximiz-
ing the cumulative reward, inherently aligned with the goal of effective exploration and
object localization, led to their extensive use within the field. Mirowski et al. (2016); Zhu
et al. (2017) trained agents to perform navigation behaviors by encoding visual observa-
tion of the agent with its relevant states as embedding and passing that to A3C (Mnih
et al., 2016) Reinforcement Learning model with the recurrent neural network. Wortsman
et al. (2019) adopts a meta-learning approach with reinforcement learning, where it learns
a self-supervised interaction loss during the inference process, to help prevent collisions.
Moreover, By considering semantic context, just like how pre-knowledge of human beings
take part, Yang et al. (2018); Pal et al. (2021); Druon et al. (2020); Du et al. (2020) pro-
pose to incorporate scene prior of the object relations with Graph Neural Network (GCN)
embedded to the network for the agent to better explores the environment. Despite the
promising outcomes demonstrated by Deep Reinforcement Learning (DRL) based methods
in exploration and object localization, their application in environments characterized by
extended optimal episode lengths presents distinct challenges. They often struggle to ad-
dress optimal path planning to the object and termination recolonization (Kartal et al.,
2019). In these scenarios, our observations indicate that after the agent has seen the tar-
get object, it often still fails to keep approaching the target. These limitations become
even more pronounced in object navigation, where the agents are expected to declare the
termination of the episode on its own in unseen environments with the absence of depth
information. Given that objects of varying types often exhibit different sizes, it becomes
challenging for DRL agents to discern the dependencies between their actions and the task
at hand without explicit depth information pertaining to the object, resulting in the nav-
igation agent falling into local maximums (Jaakkola et al., 1994), in which it avoids step
penalty by terminating the episode in the early stage in environments (Ren et al., 2022).

Building on these insights, we introduce an innovative approach to object navigation
that harnesses the power of Deep Reinforcement Learning (DRL) rewards to guide a model
in inferring depth implicitly. Our method introduces a model called the Judge Model, a
supervised classification model trained in conjunction with the DRL agent and guided by
the DRL reward signal. The Judge Model’s role is to assess the appropriate termination
time for the DRL agent by implicitly estimating object depth based on the results of object
detection. We integrate our judge model as part of the agent, enabling the DRL agent to
explore the unseen environment while searching for the target. Once the target appears in
the observation frame, the judge model provides a termination confidence level. The agent
then decides whether to terminate the episode based on the outputs from both models as
shown in Figure 1. We evaluate our proposed DITA model in AI2-THOR framework (Kolve
et al., 2017), a platform that furnishes highly customizable environments, and permits the
agent to enact navigation actions within these environments, subsequently observing the
changes induced by those actions.

Learning to Terminate in Object Navigation

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛!

……

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛"

……

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛#

Target: ArmChar

DRL Model

Judge Model

DITA
Rotate
Right

NONE

Rotate
Right

Target: ArmChar

DRL Model

Judge Model

DITA
Move
Forward

Move
Forward

[0.3,0.7]

Target: ArmChar

DRL Model

Judge Model

DITA
Done

[0.8,0.2]

Done!

Explore &
Searching

Approaching
Target

Depth Inference &
Termination Recongnization

Figure 1: Depth-Inference Termination Agent (DITA) Model Overview. Upon sense ob-
servation from time step t, the DRL model embeds the observation into StateEmbt, this
embedding is then sent to the judge model to classify whether to sample termination action,
based on both output from DRL and the judge model, our DITA model outputs the final
action at.

Our contributions are summarized as follows: (1) We build a supervised model called
judge model to recognize termination by implicitly inference object depth. (2) The inte-
gration of the judge model with a backbone DRL, training them simultaneously. (3) Our
experiment result demonstrates the generalizability of implicit depth inference to unseen
environments, DITA outperforms previous pure reinforcement learning-based methods.

The remaining of the paper is organized as the following, section 2 introduces related
works in the field, then we demonstrate our main approach and discuss the definition of
object navigation task in 3. In section 4 we will go through the dataset we used, with
experiment designs and results, then end by section 5 where we will summarize our work
and discuss possible future works.

2. Related Work

Map-based Navigation. Visual Navigation refers to the tasks that with visual input for
an agent to navigate. Traditional methodologies primarily focused on solving navigation
problems by building explicit models of the environment in the agent’s memory through
interaction, enabling inference from the obtained knowledge (Oriolo et al., 1995; Milani
et al., 2023; Chaplot et al., 2020a,b; Ramakrishnan et al., 2022). This knowledge usually
consists of environmental maps and additional prior knowledge. With the advent of Si-
multaneous Localization and Mapping (SLAM) (Fuentes-Pacheco et al., 2015), a modular
and hierarchical approach was proposed to construct explicit environment maps for both
exploration and inference (Chaplot et al., 2020a). Subsequent studies include Chaplot et al.

Song Nguyen Lee

Target：Vase

E

S

E

S

E

R

Target: VaseTarget: Vase

R

Target: Vase

S

S

E

EE

RR

DITA Baseline

Figure 2: Trajectories of DITA and MJOLNIR-o baseline in FloorPlan 225. Point S is where
the agent is initialized, E is where the agent samples termination action, R is where the
agent rotates around to find the target. The baseline model rotates and ends the episode
before it finds the target, whereas our DITA agent does not end the episode until it is
confident enough.

(2020b) integrated semantic priors into the environment model, resulting in maps with se-
mantic priors. Inferences were made on learned semantic knowledge, and a pre-trained
potential function network was used to predict target potential areas from the generated
top-down semantic maps (Ramakrishnan et al., 2022). Our work deviates from these con-
ventional approaches as our navigation model is not based on any maps, our model learns
the exploration policy and target recognition simultaneously. Recently, a proposal to main-
tain a topological map-like Hierarchical Object-to-Zoo (HOZ) graph during navigation was
made (Zhang et al., 2021), allowing agents to perform optimal path planning. However,
the HOZ graph requires significant manual design and configuration, limiting its flexibility
and adaptability in varied or unpredictable environments. Our approach differs by learning
more generalizable implicit depth information.

Map-less Navigation. Due to the computational complexity and memory consump-
tion of map-based methods, especially when constructing maps in complex environments,
more attention has been directed towards map-less deep reinforcement learning models
(Khandelwal et al., 2022; Zhu et al., 2021; Dinh Vuong et al., 2023; Ye et al., 2021; Fukushima
et al., 2022). These models usually encode the current states of the agent into an embedding
and feed it into deep reinforcement learning models. These can be broadly classified into
those that use more informative encoders or those based on Recurrent Neural Networks
(RNN) (Mirowski et al., 2016; Zhu et al., 2017; Savva et al., 2017; Yang et al., 2018; Pal
et al., 2021; Ramrakhya et al., 2022; Wijmans et al., 2023). Our work belongs to this lat-
ter category, but unlike the others, we consider estimating depth on an object-wise basis.
Additionally, an alternative approach in the literature combines imitation learning with re-
inforcement learning frameworks (Du et al., 2020, 2021). While the fusion of imitation and
reinforcement learning presents an interesting approach, our work aims to maximize the
efficiency and effectiveness of a combination of reinforcement learning and self-supervised
signals. Our approach is applicable to both exploration and exploitation, even in the absence
of suitable expert demonstrations.

Learning to Terminate in Object Navigation

Problem of Local Maxima. The issue of local maxima is a significant challenge in
Reinforcement Learning. This problem, which arises from sparse rewards, hinders agents
from achieving the optimal solution in complex environments with extensive action spaces.
Current solutions to these problems include either leveraging existing data of the agent itself,
for example, encouraging the agent to explore more on new states (Ostrovski et al., 2017;
Pathak et al., 2017; Stadie et al., 2015; Haarnoja et al., 2018), or learning from states with no
reward (Andrychowicz et al., 2017). Alternatively by making use of external guidance, either
through Reward Shaping (Hu et al., 2020; Devlin and Kudenko, 2012), Imitation Learning
(Ho and Ermon, 2016; Ramrakhya et al., 2022) or Curriculum Learning (Soviany et al.,
2022). However, these methods essentially presuppose the agent’s incapacity to terminate
the episode independently, which aids the exploration of diverse state possibilities in complex
environments. In our context, the diverse representations of different room types and the
agent’s capability to enact termination action make these traditional methods less applicable
or insufficiently effective. Additionally, existing exploration encouragement methods such
as curiosity-driven exploration (Pathak et al., 2017) might need to be adapted to ensure
the agent explores not only the states but also the potential termination points effectively.
Instead, we directly train a judge model alongside Reinforcement Learning to only allow
the agent to actively terminate when it is confident enough.

Depth Inference. Depth Inference refers to the prediction of depth maps using RGB
images. This area is well-established within the field of Computer Vision, as demonstrated
by a plethora of studies (Laina et al., 2016; Zhou et al., 2017; Zheng et al., 2018; Ranjan
et al., 2019). Nonetheless, directly translating these depth estimation methodologies into
our context introduces several complications. These models were initially designed either
to estimate precise depth maps over the whole frame or require labeled training data in
certain scenarios, direct application of these depth estimation methods into our scenarios
can lead to high computational overhead or inefficiency. Conversely, our proposed method
capitalizes on the results of object detection. By directly learning from the reward signal
of the environment, our model implicitly infers depth information solely on specific objects
of interest to determine whether to terminate the episode, making it more suitable for the
task.

3. Learning to Terminate in Object Navigation

3.1. Definition of Object Navigation

Consider an environment set that has object types C = {c1, c2, ..., cn}, the aim of object
navigation is to navigate to a specified object type ctarget ∈ C, e.g., an ”ArmChair” or
”Pillow”. The agent is initially placed randomly in state t0. At each time step t, it takes
observation ot and acts in the environment. ot ∈ O is a visual input of RGB image cap-
tured by the agent’s camera, whereas the agent has the action space of six discrete actions
at ∈ A = {MoveAhead,RotateLeft,RotateRight, LookUp, LookDown,Done}. The action
MoveAhead propels the agent forward 0.25m, rotational actions turn the agent 45◦ to the
left or right, and look actions adjust the camera by 30◦ upwards or downwards. The action
Done enables the agent to declare success and terminate the episode. Episode termination
can occur due to various conditions, including the agent’s active decision to terminate or
when the episode reaches its maximum predefined length. An episode is deemed successful

Song Nguyen Lee

𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛!

Object
Detector 𝒃 𝒙𝒄 𝒚𝒄 𝑩𝒃𝒙 𝑪𝑺

1 0.31 0.24 0.12 -0.2

1 … … … …

0 … … … …

A3C

Reinforcement Learning Branch

𝒃 𝒙𝒄 𝐲𝒄 𝑩𝒃𝒙 𝑪𝑺

1 0.26 0.51 0.30 1.0

TagVec

Judge Model Branch

ResNet18
Encoder ImgEmb GloveEmb

𝑟!

Batch Buffer

Context Matrix

Node Feature Matrix
GCN

LSTM

Reward

Ground Truth
Input Sample

Learning

𝐴𝑐𝑡𝑖𝑜𝑛, = RotateLeft

StateEmb

𝑪𝟏 𝑪𝟐 𝑪𝟑 … 𝑾𝑬

1 0 1 … ”TV”

… … … … …

… … … … …

Node
Embedding

Flatten

Flatten

Judge Model

Action
Control

𝑃-./ ∈ 𝐴

𝑃.0,10,

Figure 3: DITA Architecture. Observationt is passed into both the reinforcement learning
branch and judge model branch, where the reinforcement learning branch outputs control
action distributions Pcon, and judge model outputs termination action distribution defined
as Poutput = [pd, pn], action control receives these two distributions and decides the final
output action at

if the agent actively terminates with the target object within the observation frame and the
distance between the agent and the target object is less than 1.5m.

3.2. Method

Deep Reinforcement Learning Branch. Given the impressive capabilities of enriched
environment exploration ability of MJOLNIR-o (Pal et al., 2021), we use it as our backbone
reinforcement learning model. Upon receiving the observation, the model builds a 2D array
in shape (NC , NC+300) called Node Feature Matrix by processing the result from a ground-
truth object detector, where NC = |C| is the number of object types across all rooms. Each
row of the Node Feature Matrix would be passed as an individual input node feature pass
to the corresponding GCN node, with its first NC columns standing for a binary vector
indicating the object detection result for all object types C, and the last 300 elements is
a GloVe word embedding (Pennington et al., 2014) vector of the current object. Node
embedding is learned through a graph neural network that was made by object relation
labels provided by Visual Genome (VG) dataset (Krishna et al., 2017) and pruned some
relations off for AI2-THOR objects. On the other hand, the model also constructs Context
Matrix from object detection, with each row representing a vector containing the object
detection state of an object type c ∈ C with rowc = {b, xc, yc, Bbx,CS}, b is a binary
indicator represents whether an object with type c is visible in the current frame, xc and yc
is the coordinates of object detection bounding box center, Bbx is the bounding box area,
and the CS is the cosine similarity of word embedding vectors between object type c and
the target object type, defined as: CS(Gc, Gtarget) =

Gc·Gtarget

||Gc||·||Gtarget|| . Gc and Gtarget are

GloVe vectors for the current object and target object respectively.

Learning to Terminate in Object Navigation

TagVec
5

ImgEmb
512*7*7

Glove
Emb
300

Squeeze
ImgEmb

64

Glove
Emb
64

TagVec
64

Joint
Embedding
(64*3) 𝑃!"#

Linear + LeakyReLU

Squeeze

Linear + LeakyReLU

Expand

Linear + LeakyReLU

Linear + LeakyReLU

= [𝑝$, 𝑝%]
Integrating

SoftMax

Figure 4: Judge Model. Adapt each component within StateEmb to the same dimension,
then fuse them as a joint embedding to learn termination classification.

Our evaluation of the environment points out that occasionally more than one instance
of object type c could be visible, Pal et al. (2021) deals with this by averaging their bounding
box center and area by default, but if two instances with the identical object type of large
size show in one frame, the averaged bounding box might cover a lot of irrelevant smaller
objects with other types. Moreover, since our judge model will receive information from
the context matrix as input, such an approach leads to the problem of providing dirty data.
In contrast, when multiple instances of type c occur in the same frame, we take the one
with the largest Bbx to represent the class. The learned node embedding and the flattened
context matrix are concatenated as joint embedding, passed to an LSTM cell, and sent to
the A3C model to learn the control action distribution Pcon.

Judge Model Branch. At each time step t, if Done is sampled by the DRL branch,
the judge model branch processes the flattened image feature ImgEmbt of the observation,
extracted via a pre-trained ResNet-18 (He et al., 2016) encoder. This encoder is pre-trained
on ImageNet (Deng et al., 2009), encompassing 1000 object classes. By evaluating the con-
text matrix obtained from the reinforcement learning branch, the judge model branch selects
the target row with CS = 1.0 as the target state vector. The image features ImgEmbt,
target state vector TagV ect from the context matrix, and glove word embedding of the tar-
get GloveEmbt are concatenated to form a state embedding StateEmbt. The judge model
is trained only on Effective States — states where the target is visible in the observation.
If the target is not visible in the current frame (as indicated by b = 0 in StateEmbt), the
current time step is ignored by the judge model, yielding no output. If the target is visible,
StateEmbt is passed to the judge model. The output is then forwarded to the action control
module. The agent acts on the final output action decided by the action control model and
receives the reward signal. Analysis of the reward range reveals that successful episodes
yield rewards in the range Rt ∈ [4.05, 4.90]. If Rt >= 4.0, the ground truth for time step t
is set as positive; otherwise, it’s set as negative. The ground truth of time step t and the
StateEmb are stored as learning data in a ”Batch Buffer” with a capacity of 64 samples.
Upon reaching the maximum batch size, these samples serve as a training batch for the
judge model to update the weights. This progress is illustrated in Figure 3.

Song Nguyen Lee

Judge model is a supervised binary classification neural network with expanding and
squeezing layers, as shown in Figure 4, these layers map the input StateEmb into the same
dimension by several stacked linear layers, since GloveEmb might contain negative floating
numbers, we observe that applying ReLU activation after linear layers causes the gradient of
large partition of neurons to be zero, therefore we use Leaky ReLU (Xu et al., 2015) activa-
tion following the linear layers to prevent dead ReLU problem (Lu et al., 2019). Eventually,
concatenate ImgEmb, GloveEmb, and TecV ec together to form a joint embedding, and
output the classification result with probabilities for whether to sample termination. In
addition, because our data is collected online by reinforcement learning, during an episode,
as mentioned in section 3.1, since the success condition requires the agent to terminate
within a certain range of the target, most of the Effective States comes with ground truth
of the negative class, where the agent should not terminate, this imbalance of training data
causes long tail problem (Zhang et al., 2023). In our method, we use Focal Loss proposed
by Lin et al. (2017) as our loss function as an alternative to Cross Entropy Loss:

FL(pt) = −(1− pt)
γlog(pt) (1)

Focal loss dynamically adjusts the weight of each instance in the loss function, focusing
more on hard-to-classify instances and less on easy ones. We set γ = 0.7 in our experiments.

at =

Done, if pd + pλ >= 1.5
Pcon, if pd is sampled
Psub, if pn is sampled

(2)

Action Control. Action control directly samples the action from the output of rein-
forcement learning branch Pcon in training. However, in the testing phase, the action model
relies on probability distributions generated by two models Pcon and Pout, and the action
model outputs the final action at = Done if both models express sufficient confidence in
terminating the episode.

Specifically, note the probability output of action Done from Pcon as pλ, and the prob-
ability of sample termination action in Pout as pd, output at = Done when the sum of the
confidence for termination action in two distributions satisfies pd + pλ >= 1.5. Otherwise,
according to the output of the judge model, while pd is sampled from the output of the
judge model, indicating that termination is advisable at the current time step, action con-
trol outputs final action at ∈ Pcon. On the other hand, if pn is sampled by the judge model,
suggesting that termination should be delayed, action control outputs final action at ∈ Psub

with Psub being a subset of Pcon without Done action. This decision process is formally
represented in Equation 2.

4. Experiment Results

Environment & Dataset. We use AI2-THOR (Kolve et al., 2017) as our environment
simulator to evaluate our method for object navigation. AI2-THOR contains 120 different
rooms with 30 rooms per room type Kitchen, Bedroom, Living room, and Bathroom. The
rooms were split as training data and testing data, in our experiments, we use 80 rooms as
training data, with 20 rooms from each room type. The remaining 40 rooms were used for
testing. Amount all object categories in AI2-THOR environment |Ctotal| = 101.

Learning to Terminate in Object Navigation

All L >= 5
SR(%) SPL(%) SR(%) SPL(%)

Random 10.4 3.2 0.6 0.4
Target-driven VN (Zhu et al., 2017) 35.0 10.3 25.0 10.5
Scene Prior (Yang et al., 2018) 35.4 10.9 23.8 10.7
SAVN (Wortsman et al., 2019) 35.7 9.3 23.9 9.4
MJOLNIR-r (Pal et al., 2021) 54.8 19.2 41.7 18.9
MJOLNIR-o (Pal et al., 2021) 65.3 21.1 50.0 20.9

DITA (Ours) 71.4 21.6 57.9 22.2

Table 1: Experiment results with comparisons to other methods in AI2-THOR.

Evaluation Metrics. The comparison of models was conducted using two metrics,
in line with previous research (Zhu et al., 2017; Wortsman et al., 2019). Success Rate
(SR) measures the probability of agent success in the environment, computed by SR =
1
N

∑N
n=0 Sn, N is the number of total episodes in evaluation, and Sn is a binary indicator

with Sn = 1 represents agent succeed in episode n. In addition, we use Success Weighted
by Path Length (SPL), which measures the navigation efficiency of the agent, defined as
SPL = 1

N

∑N
n=0 Sn

On
max(Ln,On)

Where On is the length of the optimal path to the target
that agent could take in episode n, Ln is the actual path length agent has taken.

4.1. Compared Methods

We compare our method with other end-to-end reinforcement learning-based methods: -
Random In a random model, the agent navigates in the environment by randomly sampled
action. - Target-driven VN (Zhu et al., 2017) Only fusions the observation of agent
and the target embedding as input states to the model. - Scene Prior (Yang et al.,
2018) This model incorporates semantic object relations as knowledge graph to the agent,
learning from a joint embedding consisting of knowledge graph node embedding, image-wise
observation features from pre-trained ResNet-18 and target word embedding. - SAVN
(Wortsman et al., 2019) This model leverages meta-learning for the agent to learn the
environment in both training and inferring. - MJOLNIR-o (Pal et al., 2021) This model
integrates hierarchical object relationships to the agent by reward shaping, and learning
object-wise observation features by constructing a context matrix from an object detector.
- MJOLNIR-r (Pal et al., 2021) MJOLNIR-r is an alternative version of the MJOLNIR-o
model, which passes image-wise observation features to the agent rather than object-wise
observation.

4.2. Results

By constructing StateEmb and passing it as input data, together with the reward signal,
we have successfully trained a model to effectively recognize termination and handle ter-
mination action jointly with reinforcement learning, Figure 5 illustrates the convergence of
training loss of the judge model.

Song Nguyen Lee

0 2000 4000 6000 8000 10000
Step

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

Figure 5: Training Loss of Judge Model
with Smooth Factor β = 0.8.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Episodes 1e6

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

bl-SR(all)
bl-SR(>=5)
bl-SPL

ours-SR(all)
ours-SR(>=5)
ours-SPL

Figure 6: Test Accuracy of DITA and Baseline
Model over 3 random seeds.

Compared with other map-less end-to-end models in Table 1 and Figure 6, it is evident
that DITA demonstrates superior performance, particularly when compared to MJOLNIR-
o. DITA exhibits a remarkable improvement of 9.3% across all room types. Furthermore,
DITA showcases a remarkable 15.8% increase in episodes with optimal lengths (L >= 5).
The significant improvements can be attributed to the novel architecture of DITA and its
ability to implicitly infer object-wise depth information. This critical component helps to
solve the problem of termination recognition in long episodes which other models struggle
to handle effectively. By inferring depth information, DITA can better understand when the
agent is close enough to the target object to end the episode successfully. This mechanism
improves the success rate, especially in environments with long optimal episode lengths,
Table 2 offers a detailed performance breakdown of DITA and other models by room types.
In environments with large size (hence larger episode length) and complex layouts like
living rooms, which make navigation more challenging our DITA significantly surpasses all
the other models in both metrics, achieving a success rate of 75.6% and an SRL of 22.2%.
Our results demonstrate the effectiveness of considering episode termination separately for
the deep reinforcement learning model. It is noticeable that in the case of the Bathroom
environment of our result, MJOLNIR-o achieves the highest success rate (SR). Indicates that
DITA is capable of effectively navigating more confined and object-dense environments. We
observed modest improvements in Success Weighted by Path Length (SRL). These results
underscore the challenges involved in path planning and termination recognition in such
scenarios.

5. Discussions

5.1. Limitations and Future Work

We have conducted failure cases analysis for DITA model, mainly the agent fails in the
following cases: (1) Target object needs a precise path to navigate to. For example, a
pillow of a double bed in a narrow room, where an agent needs to navigate precisely to the
front corner of the bed, indicates the agent might still need an explicit planning component.
(2) We observe that the training time required for training DITA is dominating all other

Learning to Terminate in Object Navigation

Model
Bath Room Bedroom Kitchen Living Room Avg.

SR(%) SRL(%) SR(%) SRL(%) SR(%) SRL(%) SR(%) SRL(%) SR(%) SRL(%)

Target-driven VN (Zhu et al., 2017) 53.2 13.4 28.8 9.0 32.4 10.9 35.2 10.0 37.4 10.8

Scene Prior (Yang et al., 2018) 41.6 13.3 33.6 10.4 26.4 9.1 36.0 9.9 34.4 10.7

SAVN (Wortsman et al., 2019) 47.6 14.6 21.6 6.7 34.8 8.3 40.0 9.0 36.9 9.7

MJOLNIR-r (Pal et al., 2021) 72.8 24.3 41.2 16.9 56.4 21.2 50.8 15.9 55.3 19.6

MJOLNIR-o (Pal et al., 2021) 82.4 25.1 43.2 14.4 74.8 22.9 50.0 17.9 62.6 20.1

DITA (Ours) 63.2 20.1 61.5 18.6 73.0 23.0 75.6 22.2 68.3 21.0

Table 2: Experiment results by room types.

tested models, involving some efficient methods to the architecture might even boost the
performance.

5.2. Conclusion

This paper presents the Depth-Inference Termination Agent (DITA), a novel approach de-
signed to tackle the challenge of object navigation in autonomous navigation systems. Fo-
cusing specifically on the issues of target approach and episode termination in environments
with lengthy optimal episode length, our approach has shown promising results in overcom-
ing limitations faced by conventional Deep Reinforcement Learning (DRL) methods. Our
experimental results, conducted within the AI2-THOR framework, clearly illustrate the su-
perior performance of DITA. Our experiment results also highlight opportunities for further
enhancements, possibly through the refinement of depth estimation, exploration strategies,
or incorporation of additional environmental cues.

References

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welin-
der, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight
experience replay. Advances in neural information processing systems, 30, 2017.

James Andrew Bagnell, David Bradley, David Silver, Boris Sofman, and Anthony Stentz.
Learning for autonomous navigation. IEEE Robotics & Automation Magazine, 17(2):
74–84, 2010.

Devendra Singh Chaplot, Dhiraj Gandhi, Saurabh Gupta, Abhinav Gupta, and Rus-
lan Salakhutdinov. Learning to explore using active neural slam. arXiv preprint
arXiv:2004.05155, 2020a.

Devendra Singh Chaplot, Dhiraj Prakashchand Gandhi, Abhinav Gupta, and Russ R
Salakhutdinov. Object goal navigation using goal-oriented semantic exploration. Ad-
vances in Neural Information Processing Systems, 33:4247–4258, 2020b.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Song Nguyen Lee

Sam Michael Devlin and Daniel Kudenko. Dynamic potential-based reward shaping. In
Proceedings of the 11th international conference on autonomous agents and multiagent
systems, pages 433–440. IFAAMAS, 2012.

An Dinh Vuong, Toan Tien Nguyen, Minh Nhat VU, Baoru Huang, Dzung Nguyen,
Huynh Thi Thanh Binh, Thieu Vo, and Anh Nguyen. Habicrowd: A high performance
simulator for crowd-aware visual navigation. arXiv e-prints, pages arXiv–2306, 2023.

Raphael Druon, Yusuke Yoshiyasu, Asako Kanezaki, and Alassane Watt. Visual object
search by learning spatial context. IEEE Robotics and Automation Letters, 5(2):1279–
1286, 2020.

Heming Du, Xin Yu, and Liang Zheng. Learning object relation graph and tentative policy
for visual navigation. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part VII 16, pages 19–34. Springer,
2020.

Heming Du, Xin Yu, and Liang Zheng. Vtnet: Visual transformer network for object goal
navigation. arXiv preprint arXiv:2105.09447, 2021.

Jorge Fuentes-Pacheco, José Ruiz-Ascencio, and Juan Manuel Rendón-Mancha. Visual
simultaneous localization and mapping: a survey. Artificial intelligence review, 43:55–81,
2015.

Rui Fukushima, Kei Ota, Asako Kanezaki, Yoko Sasaki, and Yusuke Yoshiyasu. Object
memory transformer for object goal navigation. In 2022 International Conference on
Robotics and Automation (ICRA), pages 11288–11294, 2022. doi: 10.1109/ICRA46639.
2022.9812027.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In Inter-
national conference on machine learning, pages 1861–1870. PMLR, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 2016. doi: 10.1109/CVPR.2016.90.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in
neural information processing systems, 29, 2016.

Yujing Hu, Weixun Wang, Hangtian Jia, Yixiang Wang, Yingfeng Chen, Jianye Hao, Feng
Wu, and Changjie Fan. Learning to utilize shaping rewards: A new approach of reward
shaping. Advances in Neural Information Processing Systems, 33:15931–15941, 2020.

Tommi Jaakkola, Satinder Singh, and Michael Jordan. Reinforcement learning algorithm for
partially observable markov decision problems. Advances in neural information processing
systems, 7, 1994.

Learning to Terminate in Object Navigation

Bilal Kartal, Pablo Hernandez-Leal, and Matthew E Taylor. Terminal prediction as an
auxiliary task for deep reinforcement learning. In Proceedings of the AAAI Conference
on Artificial Intelligence and Interactive Digital Entertainment, volume 15, pages 38–44,
2019.

Apoorv Khandelwal, LucaWeihs, Roozbeh Mottaghi, and Aniruddha Kembhavi. Simple but
effective: Clip embeddings for embodied ai. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 14829–14838, 2022.

Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt, Luca Weihs, Alvaro Herrasti,
Matt Deitke, Kiana Ehsani, Daniel Gordon, Yuke Zhu, et al. Ai2-thor: An interactive 3d
environment for visual ai. arXiv preprint arXiv:1712.05474, 2017.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz,
Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A Shamma, et al. Visual genome:
Connecting language and vision using crowdsourced dense image annotations. Interna-
tional journal of computer vision, 123:32–73, 2017.

Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Federico Tombari, and Nassir Navab.
Deeper depth prediction with fully convolutional residual networks. In 2016 Fourth in-
ternational conference on 3D vision (3DV), pages 239–248. IEEE, 2016.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for
dense object detection. In Proceedings of the IEEE international conference on computer
vision, pages 2980–2988, 2017.

Lu Lu, Yeonjong Shin, Yanhui Su, and George Em Karniadakis. Dying relu and initializa-
tion: Theory and numerical examples. arXiv preprint arXiv:1903.06733, 2019.

Stephanie Milani, Arthur Juliani, Ida Momennejad, Raluca Georgescu, Jaroslaw Rzepecki,
Alison Shaw, Gavin Costello, Fei Fang, Sam Devlin, and Katja Hofmann. Navigates like
me: Understanding how people evaluate human-like ai in video games. In Proceedings of
the 2023 CHI Conference on Human Factors in Computing Systems, pages 1–18, 2023.

Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, Andrew J Ballard, Andrea
Banino, Misha Denil, Ross Goroshin, Laurent Sifre, Koray Kavukcuoglu, et al. Learning
to navigate in complex environments. arXiv preprint arXiv:1611.03673, 2016.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lill-
icrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for
deep reinforcement learning. In International conference on machine learning, pages
1928–1937. PMLR, 2016.

Giuseppe Oriolo, Marilena Vendittelli, and Giovanni Ulivi. On-line map building and navi-
gation for autonomous mobile robots. In Proceedings of 1995 IEEE international confer-
ence on robotics and automation, volume 3, pages 2900–2906. IEEE, 1995.

Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. Count-based explo-
ration with neural density models. In International conference on machine learning, pages
2721–2730. PMLR, 2017.

Song Nguyen Lee

Anwesan Pal, Yiding Qiu, and Henrik Christensen. Learning hierarchical relationships for
object-goal navigation. In Conference on Robot Learning, pages 517–528. PMLR, 2021.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven ex-
ploration by self-supervised prediction. In International conference on machine learning,
pages 2778–2787. PMLR, 2017.

Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors for
word representation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1532–1543, Doha, Qatar, October 2014.
Association for Computational Linguistics. doi: 10.3115/v1/D14-1162. URL https:

//aclanthology.org/D14-1162.

Santhosh Kumar Ramakrishnan, Devendra Singh Chaplot, Ziad Al-Halah, Jitendra Ma-
lik, and Kristen Grauman. Poni: Potential functions for objectgoal navigation with
interaction-free learning. In Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 18890–18900, 2022.

Ram Ramrakhya, Eric Undersander, Dhruv Batra, and Abhishek Das. Habitat-web: Learn-
ing embodied object-search strategies from human demonstrations at scale. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
5173–5183, 2022.

Anurag Ranjan, Varun Jampani, Lukas Balles, Kihwan Kim, Deqing Sun, Jonas Wulff,
and Michael J Black. Competitive collaboration: Joint unsupervised learning of depth,
camera motion, optical flow and motion segmentation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 12240–12249, 2019.

Jing Ren, Xishi Huang, and Raymond N. Huang. Efficient deep reinforcement learning
for optimal path planning. Electronics, 11(21), 2022. ISSN 2079-9292. doi: 10.3390/
electronics11213628. URL https://www.mdpi.com/2079-9292/11/21/3628.

Manolis Savva, Angel X Chang, Alexey Dosovitskiy, Thomas Funkhouser, and Vladlen
Koltun. Minos: Multimodal indoor simulator for navigation in complex environments.
arXiv preprint arXiv:1712.03931, 2017.

Petru Soviany, Radu Tudor Ionescu, Paolo Rota, and Nicu Sebe. Curriculum learning: A
survey. International Journal of Computer Vision, 130(6):1526–1565, 2022.

Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforce-
ment learning with deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

Fan Wang, Chaofan Zhang, Wen Zhang, Cuiyun Fang, Yingwei Xia, Yong Liu, and Hao
Dong. Object-based reliable visual navigation for mobile robot. Sensors, 22(6), 2022.
ISSN 1424-8220. doi: 10.3390/s22062387. URL https://www.mdpi.com/1424-8220/22/

6/2387.

Erik Wijmans, Manolis Savva, Irfan Essa, Stefan Lee, Ari S Morcos, and Dhruv Ba-
tra. Emergence of maps in the memories of blind navigation agents. arXiv preprint
arXiv:2301.13261, 2023.

https://aclanthology.org/D14-1162
https://aclanthology.org/D14-1162
https://www.mdpi.com/2079-9292/11/21/3628
https://www.mdpi.com/1424-8220/22/6/2387
https://www.mdpi.com/1424-8220/22/6/2387

Learning to Terminate in Object Navigation

Mitchell Wortsman, Kiana Ehsani, Mohammad Rastegari, Ali Farhadi, and Roozbeh Mot-
taghi. Learning to learn how to learn: Self-adaptive visual navigation using meta-learning.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 6750–6759, 2019.

Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified activa-
tions in convolutional network. arXiv preprint arXiv:1505.00853, 2015.

Wei Yang, Xiaolong Wang, Ali Farhadi, Abhinav Gupta, and Roozbeh Mottaghi. Visual
semantic navigation using scene priors. arXiv preprint arXiv:1810.06543, 2018.

Joel Ye, Dhruv Batra, Abhishek Das, and Erik Wijmans. Auxiliary tasks and exploration
enable objectnav. arXiv preprint arXiv:2104.04112, 2021.

Sixian Zhang, Xinhang Song, Yubing Bai, Weijie Li, Yakui Chu, and Shuqiang Jiang. Hi-
erarchical object-to-zone graph for object navigation. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 15130–15140, 2021.

Yifan Zhang, Bingyi Kang, Bryan Hooi, Shuicheng Yan, and Jiashi Feng. Deep long-tailed
learning: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2023.

Chuanxia Zheng, Tat-Jen Cham, and Jianfei Cai. T2net: Synthetic-to-realistic translation
for solving single-image depth estimation tasks. In Proceedings of the European conference
on computer vision (ECCV), pages 767–783, 2018.

Tinghui Zhou, Matthew Brown, Noah Snavely, and David G Lowe. Unsupervised learning
of depth and ego-motion from video. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1851–1858, 2017.

Fengda Zhu, Xiwen Liang, Yi Zhu, Qizhi Yu, Xiaojun Chang, and Xiaodan Liang. Soon:
Scenario oriented object navigation with graph-based exploration. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12689–
12699, 2021.

Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim, Abhinav Gupta, Li Fei-Fei, and
Ali Farhadi. Target-driven visual navigation in indoor scenes using deep reinforcement
learning. In 2017 IEEE international conference on robotics and automation (ICRA),
pages 3357–3364. IEEE, 2017.

Appendix A. Reward Supervised Parallel Training

We train our reinforcement learning model and judge model in parallel, at time step t,
the reinforcement learning model outputs control action distribution Pcon, and the judge
model outputs termination action distribution Pout given StateEmbt from Context Matrix.
Action control receives two outputs and decides the final action at, then in time step t+1, the
reinforcement learning agent learns by the reward Rewardt returned from the environment,
whereas judge model transfers Rewardt into ground truth supervision signal SupSignt and

Song Nguyen Lee

store it with StateEmbt as a sample data in Batch Buffer, and updates itself once every 64
sample were collected. Figure 7 demonstrates this progress.

Time step 𝑡

Deep Reinforcement Learning

Judge Model

Environment

Simulator
𝑃!"# × 𝑃"$%&$%

𝑆𝑡𝑎𝑡𝑒𝐸𝑚𝑏!

DITA

𝐴𝑐𝑡𝑖𝑜𝑛%

Time step 𝑡 + 1

Deep Reinforcement Learning

Judge Model

Environment

Simulator
𝑆𝑡𝑎𝑡𝑒%'(, 𝑅𝑒𝑤𝑎𝑟𝑑%

𝑆𝑢𝑝𝑆𝑖𝑔𝑛!

DITA

𝑃!"# ∈ 𝐴

𝑃"$%&$%

𝐶𝑜𝑛𝑡𝑒𝑥𝑡 𝑀𝑎𝑡𝑟𝑖𝑥

𝑅𝑒𝑤𝑎𝑟𝑑!

Figure 7: Reward Supervised Parallel Training.

Appendix B. Target Object List

Room Possible Target Object

Kitchen Toaster, Spatula, Bread, Mug, CoffeeMachine, Apple

Living room Painting, Laptop, Television, RemoteControl, Vase, ArmChair

Bedroom Blinds, DeskLamp, Pillow, AlarmClock, CD

Bathroom Mirror, ToiletPaper, SoapBar, Towel, SprayBottle

Table 3: List of Target Objects

Appendix C. Implementation Details

We concurrently trained our judge model branch and the reinforcement learning branch with
initially 1.6M episodes until we empirically observed that the judge model’s accuracy had
saturated, we then froze the judge model branch and continued to train the reinforcement
learning branch with in total of 3.0M episodes for all models. Our training/testing division
is consistent with Pal et al. (2021); Wortsman et al. (2019). Models were trained on offline
data collected from AI2-THOR v1.0.1. The A3C algorithm used in models was trained on
8 workers.

	Introduction
	Related Work
	Learning to Terminate in Object Navigation
	Definition of Object Navigation
	Method

	Experiment Results
	Compared Methods
	Results

	Discussions
	Limitations and Future Work
	Conclusion

	Reward Supervised Parallel Training
	Target Object List
	Implementation Details

