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Abstract

In this work, we focus on open vocabulary instance
segmentation to expand a segmentation model to classify
and segment instance-level novel categories. Previous ap-
proaches have relied on massive caption datasets and com-
plex pipelines to establish one-to-one mappings between
image regions and words in captions. However, such meth-
ods build noisy supervision by matching non-visible words
to image regions, such as adjectives and verbs. Meanwhile,
context words are also important for inferring the existence
of novel objects as they show high inter-correlations with
novel categories. To overcome these limitations, we devise
a joint Caption Grounding and Generation (CGG) frame-
work, which incorporates a novel grounding loss that only
focuses on matching object nouns to improve learning effi-
ciency. We also introduce a caption generation head that
enables additional supervision and contextual modeling as
a complementation to the grounding loss. Our analysis and
results demonstrate that grounding and generation compo-
nents complement each other, significantly enhancing the
segmentation performance for novel classes. Experiments
on the COCO dataset with two settings: Open Vocabulary
Instance Segmentation (OVIS) and Open Set Panoptic Seg-
mentation (OSPS) demonstrate the superiority of the CGG.
Specifically, CGG achieves a substantial improvement of
6.8% mAP for novel classes without extra data on the OVIS
task and 15% PQ improvements for novel classes on the
OSPS benchmark.

1. Introduction
Instance Segmentation [39] is a core vision task that goes

beyond object detection [38, 37, 49] via segmenting and

*The first two authors contributed equally to this work. † Corre-
sponding Author and Leader. Code and model are available at https:
//github.com/jianzongwu/betrayed-by-captions.
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Figure 1: (a) VLMs learn image-level visual-linguistic
alignment using caption data. (b) Previous open vocabu-
lary detection/segmentation methods extract all words [63]
or nouns + adjectives [20] for caption grounding. (c) The
proposed CGG extracts object nouns for a finer alignment
between objects in the caption and visible entities in the im-
age and then combines a caption generation loss to utilize
the contextual knowledge in the caption fully.

classifying each object. Despite it continues to attract sig-
nificant research effort [25, 53, 12, 2, 56, 72, 13, 8, 4, 5,
7, 36, 35, 34, 66, 67], current solutions mainly focus on
a closed-set problem that assumes a pre-defined set of ob-
ject categories [39, 31, 23]. In practice, many applications
need to detect and segment new categories. To save the
need of annotating new object categories, zero-shot object
detection/segmentation [47, 3] is proposed, where models
are trained on base classes and equipped with the ability to
segment new classes. However, the zero-shot setting per-
forms poorly on novel classes, as high-level word embed-
dings cannot effectively encode fine-grained visual infor-
mation.

To address this issue, recent work [63] proposes an
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Figure 2: A comparison analysis of caption grounding using different types of words. The color maps are normalized
similarities between multi-modal embeddings and word features extracted by the language encoder. Both (a) [63] and (b) [20]
suffer from the problem that invisible nouns (room in the example) are learned to be aligned by the multi-modal embeddings
while using object nouns avoids the question. We adopt top-10 object queries according to their object scores. (d) We sample
2500 images from the COCO validation set and test the average rate of multi-modal embeddings attending on object nouns
under different thresholds.

open vocabulary setting by pre-training a visual back-
bone on captioned images for learning rich visual fea-
tures. With the success of pre-trained Vision Language
Models (VLMs) [45, 30], several approaches, e.g., ViLD
[22], propose effective methods to distill knowledge from
VLMs into detectors or segmentation methods. Meanwhile,
several works decouple the learning of open vocabulary
classification and detection/segmentation into a two-stage
pipeline [20, 16]. Recently, state-of-the-art solutions [73,
18, 28, 33, 65] for open vocabulary detection/segmentation
try to adopt larger-scale dataset pre-training with the help
of VLMs. For example, Detic [73] adopts the ImageNet-
21k [50] dataset to enlarge the detector in a weakly super-
vised manner, while PromptDet [18] augments the detection
dataset with image-caption pairs scraped from the Internet.
Recent XPM [28] also pre-trains their model on caption
datasets [51]. These approaches typically require a complex
architecture design to leverage extra datasets [50, 31]. De-
spite the performance improvement, these methods are not
cost-effective in terms of data utilization. In this paper, we
explore the use of caption data with more effective designs.

Caption-related vision tasks can be broadly divided into
grounding and generation. The former [61, 14, 15, 40, 12,
21] requires a model to align the text and corresponding re-
gion features, e.g., OVR-CNN [63] and OpenSeg [20] in
Fig. 1 (a) and (b). However, these methods expose a core
issue in that they adopt the grounding loss between words
and mask regions, implicitly assuming each word (or noun)
should correspond to a region in the image. As shown in
Fig. 2 (a) and (b), ‘messy’ and ‘room’ are forced to ground
to meaningless masks. This motivates us to reformulate the
ground loss by only focusing on object nouns as Fig. 2 (c).
On the other hand, the latter [55, 60, 68] learns a model
that outputs a caption for a given imagery input. It naturally
captures the auxiliary and surrounding information to gen-
erate context words, which is crucial to building the bridge
between image and text. Given the above observation, we
argue that caption generation can naturally complement the

grounding loss for context capturing.
Therefore, we propose a unified framework based on

Mask2Former [8] performing each task jointly to exploit the
knowledge from caption data better. It contains a caption
grounding loss and an extra caption decoder for the genera-
tion loss, as shown in Fig. 1 (c). Motivated by the correla-
tion analysis of object query and caption data (Sec. 3.2), we
first extract object nouns for grounding loss. In particular,
we transform the object queries into multi-modal embed-
dings using a linear layer at the input stage. Then we adopt
separated object nouns to ground each multi-modal embed-
ding, providing us with the grounding loss. Since extracted
object nouns miss the structure information of caption data,
we append a caption generation loss in the output stage to
recover language data. We add a lightweight Transformer
decoder with multi-modal embeddings as inputs to generate
captions. Experiments demonstrate that the two losses are
well coupled and mutually affect novel class segmentation,
with only 0.8% GFlops added during training. Our method
drops the caption generation module for inference with no
extra computation cost.

Our contributions can be summarized as follows:

• We propose a joint Caption Grounding and Generation
(CGG) framework for open vocabulary instance seg-
mentation, which incorporates grounding with object
nouns and caption generating.

• Experimental results demonstrate our method achieves
a significant improvement of 6.8% mAP over previous
XPM [28] on OVIS and 15% PQ improvements over
previous method [58] on OSPS.

2. Related Work
Zero-Shot Detection and Segmentation. Collecting and
annotating data on a large scale is laborious and expensive
for detecting and segmenting in an extensive vocabulary.
Zero-Shot Detection [47] and Segmentation [3, 27, 26] aim
to detect and segment novel categories that the annotations



are not accessible during training. To address this problem,
many studies align region features with fixed text embed-
dings [19, 1, 46, 64, 74]. However, due to the limited capac-
ity of word embeddings and the emergence of large Vision-
Language-Models (VLMs), recent studies [63, 22, 62] have
shifted towards the open vocabulary setting.
Open Vocabulary Object Detection (OVOD). Recent
studies [17, 63, 22, 73, 62, 57] focus on the open vocabulary
setting, where models are trained additionally on image-text
pairs such as captions and text prompts. For example, OVR-
CNN [63] pre-trains on image-caption data to recognize
novel objects, then fine-tunes the model for zero-shot de-
tection. Recently, many works on image classification suc-
cessfully expand their vocabulary sizes by pre-training on
large-scale image-text pairs datasets. ViLD [22] distills the
rich representation of pre-trained CLIP [45] into the detec-
tor, while DetPro [17] adds a fine-grained automatic prompt
learning. Meanwhile, several works extract pseudo-region
annotations from the pre-trained VLMs and use them as ad-
ditional training data for detectors. Detic [73] improves
the performance of the novel classes with image classifi-
cation datasets by supervising the max-size proposal with
various image labels. These methods above share a com-
mon idea of enlarging the capacity of training data to find
rare classes, but they require more computation/annotation
costs and complex pipelines. In contrast, we design a way
to discover novel classes from caption data in one unified
framework without pre-training on extra datasets nor dis-
tilling knowledge from pre-trained VLMs.
Open Vocabulary Segmentation (OVS). Beyond OVOD,
OVS further requires the model to segment the novel
classes. Current solutions for OVS usually decouple
mask generation and mask classification into two different
steps. The former generates mask regions, while the lat-
ter performs classification with pre-trained VLMs [20, 32].
DenseCLIP [71] proposes a similar pipeline to OVOD by
distilling CLIP knowledge through generating pseudo mask
labels. Our method proposes an end-to-end pipeline that
jointly performs caption learning (grounding/generation)
and segmentation learning. XPM [28] proposes a cross-
modal pseudo-labeling framework by aligning word fea-
tures in captions with visual features in images.
Image Captioning. This task requires the model to gener-
ate captions that describe the content of images [55]. State-
of-the-art methods use multi-modal attention designs, treat-
ing the task as a multi-modal translation problem [60, 68,
69]. Our focus in this work is not on designing a new cap-
tioning model, but on exploring image captioning as a sub-
task for open vocabulary learning to enhance the novel class
discovery ability. Using caption generation as an auxiliary
loss is also adopted in vision language pre-training [9, 42].
However, to our knowledge, this is the first study exploring
caption generation for OVS.

3. Methodology
In this section, we first review the background of OVIS

and the baseline as preliminary. Then, we carry out the anal-
ysis on the correlation of caption data and query-based seg-
menter. Next, we present our Caption Grounding and Gen-
eration framework, which aims to exploit caption data via
joint caption grounding and generation.

3.1. Preliminary

Problem Setting. We first describe the open-vocabulary
problem setting. Let DB = {(Im,Mm)}NB

m=1 be the set
of training images and instance annotations for a limited
set of base classes VB . Among these images, there are
also novel classes VN , whose annotations cannot be ac-
cessed during the training. Each image Im is associated
with a set of ground-truth (GT) annotations Mm, which
comprises instance masks and their corresponding object
classes. To detect and segment novel classes, following pre-
vious works [63], we leverage additional image-level anno-
tations, i.e., image captions. Let DC = {(Ic, Cc)}NC

c=1 be
another set of training images with image caption annota-
tions. Each image Ic is annotated with a caption Cc. Com-
pared to pixel-level annotations, captions are easier to col-
lect, and its vocabulary VC is much larger than base classes,
i.e., |VC | ≫ |VB |. Therefore, exploiting the additional in-
formation from the image caption dataset would be bene-
ficial. OVIS aims to train a model to segment both base
classes VB and novel classes VN . Following previous meth-
ods [63, 28, 20], our model uses high-level semantic em-
beddings from a pre-trained text Transformer (BERT [11])
as the weights of the linear classifier. We focus on distilling
knowledge in the captions to the target classes via represen-
tation similarities. In the following sections, we will neglect
the image index for simplicity.
Baseline Method. We adopt the recent Mask2Former [8]
model as our baseline since the query-based Transformer
architecture can be readily extended into multi-modal train-
ing with captions. Given an image I , during the inference,
Mask2Former directly outputs a set of M object queries
Q = {qj |j = 1, ..,M}, where each object query qj rep-
resents one entity. Then, two different Multiple Layer Per-
ceptrons (MLPs) project the queries into two embeddings
for mask classification and prediction. During training, a
bipartite matching algorithm matches each object query to
the ground truth mask, following [8]. The loss function is
Lmask = λclsLcls + λceLce + λdiceLdice, where Lcls is
the Cross-Entropy (CE) loss for mask classification, and
Lce and Ldice are the Cross-Entropy (CE) loss and Dice
loss [43] for segmentation, respectively. In particular, fol-
lowing [63], we use pre-trained embeddings to replace the
learnable classifier for training and inference, as shown in
Fig. 3. However, the original Mask2Former can only detect
and segment closed-set objects and cannot handle the novel
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Figure 3: The illustration of CGG framework. The input image I is first provided to Mask2Former. The output of the
Transformer decoder is then fed into an MLP, which generates M mask predictions together with the output of the pixel
decoder in one hand. On the other hand, the object queries are transferred into M multi-modal embeddings, denoted as
{ej |j ∈ {1, 2, · · · ,M}}. The similarities of these embeddings with class embeddings are then computed to produce classi-
fication predictions. {ej} are also involved with grounding loss and generation loss with text features extracted by word and
sentence encoder.

classes. Our method extends it to perform open-vocabulary
segmentation in a new framework.

3.2. CGG Framework for OVS

Overview. Fig. 3 presents the overall pipeline of the CGG
framework. Following [63], we set the pre-trained text em-
beddings as the weights of the linear classifier. Then we
add two losses: the caption grounding loss and the caption
generation loss. A caption generator is appended at the end
of the output queries, producing the image caption. Dur-
ing training, we adopt a pre-trained sentence encoder and
word encoder to encode both captions and object nouns ex-
tracted from captions into sentence and word features. The
former is used for caption generation, while the latter is for
caption grounding. We discard all newly-introduced mod-
ules during inference and perform a lightweight inference
procedure.
Analysis on Grounding Target with Object Query. Previ-
ous works like OVR-CNN [63] pre-train their models with
caption data. However, there are two potential issues with
the previous design. Firstly, training caption and segmen-
tation separately cannot fully explore caption data and de-
tection/segmentation annotations. The training of the seg-
menter is isolated, so the connection between the two mod-
els is broken. Secondly, there is a weakened region-word
alignment in the traditional grounding process by calculat-
ing similarities between multi-modal embeddings and all

words in caption data, because object-unrelated words may
encounter the vision-language implicit matching.

For the first problem, we adopt a query-based detec-
tor [8] for end-to-end co-training. For the second problem,
we argue that object nouns in caption data should be well
aligned with query features in a more fine-grained manner
since the novel class categories are always nouns. In Fig. 2
(a)-(c), we visualize the attention map of multi-modal em-
beddings and extracted word features, where we find sev-
eral background items like rooms also have a high similarity
with multi-modal embeddings, which brings the noise in su-
pervision. In Fig. 2 (d), we perform a statistical analysis on
the ratio of attended nouns, finding a significant drop with
the increase of thresholds. Since object queries with higher
scores always play as the output of instance segmentation,
we argue this may hurt the performance of final segmenta-
tion results. Combining the above analysis and findings, we
propose adopting object nouns as grounding targets.

Caption Grounding with Object Nouns. For the image-
caption pair (I, C), we first extract object nouns from the
caption C and feed it to the word encoder. Here, we ne-
glect the image index for simplicity. We get word features
{fk| k ∈ {1, 2, ...,K}}, where K is the number of tokens
from object nouns. For the image input I , we adopt an MLP
layer to project the output of the Transformer decoder to
a set of multi-modal embeddings {ej | j ∈ {1, 2, ...,M}},
where M is the number of object queries in Mask2Former.



table bathroom kitchen grass black white hold lay man woman snow walk room
knife 5.11 0.01 2.42 0.01 0.24 1.29 0.74 0.14 1.79 1.94 0 0.01 0.26
cake 4.21 0 0.37 0.03 0.17 1.46 1.03 0.06 1.85 2.26 0 0.02 0.17
sink 0.68 8.2 5.6 0 0.69 3.07 0.32 0.09 0.96 0.99 0 0.12 1.26
cow 0.33 0 0 2.97 1.3 1.7 0.23 0.91 1.43 0.59 0.14 1.52 0.02
umbrella 0.87 0.02 0.02 0.25 0.63 0.78 3.13 0.22 2.47 3.08 0.14 2.47 0.14
keyboard 1.93 0 0.11 0 0.83 0.82 0.57 0.58 1.33 0.61 0 0.03 1.35
cat 0.99 0.56 0.26 0.14 3.11 2.8 0.43 3.24 0.63 0.6 0.03 0.21 0.77
cup 4.51 0.58 1.69 0.03 0.34 1.12 0.87 0.17 1.87 1.78 0.01 0.08 1
skateboard 0.04 0 0.01 0.06 0.53 0.47 0.72 0.07 7.06 0.32 0.05 0.33 0.06
elephant 0.02 0 0.02 1.49 0.16 0.27 0.34 0.13 1.93 0.68 0 3.32 0.04
dog 0.44 0.07 0.26 0.67 1.7 1.83 1.08 1.77 2.24 1.53 0.32 0.94 0.65
bus 0.03 0 0 0.1 0.36 1.27 0.26 0.02 1.13 0.6 0.13 0.81 0.01
airplane 0.04 0 0 0.27 0.31 1.7 0.07 0.01 0.48 0.15 0.12 0.19 0.04
tie 0.88 0.04 0.08 0.09 1 1.12 1.51 0.09 7.62 2.01 0.02 0.52 0.41
snowboard 0.03 0 0 0 0.31 0.26 0.99 0.13 4.38 0.65 8.19 0.35 0.03
couch 2.03 0.04 0.39 0 0.65 0.93 1.27 0.84 2.08 1.8 0 0.04 6.61
scissors 2.6 0.12 1.3 0.04 0.58 0.82 1.81 0.53 1.9 1.66 0 0.02 0.5
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Figure 4: We often observe certain pairs of words co-
occurrence while others do not. We calculate the co-
occurrence matrix between novel classes and frequent
words in the caption. Different classes have various dis-
tributions on co-occurrence words.

The similarity between image I and caption C is calcu-
lated as:

SC(I, C) =
1

M

M∑
j=1

K∑
k=1

aIj,k⟨ej , fk⟩, (1)

where ⟨·, ·⟩ is a dot production operation. SC(I, C)
is normalized along the text dimension. aCj,k =

exp⟨ej , fk⟩/
∑K

l=1 exp⟨ej , fl⟩ is the normalization term.
Similarly, we can also get SI(I, C) by normalizing along
the image dimension.

During training, the similarities between matching
image-caption pairs should be maximized. For a mini-batch
of image-caption pairs input (I,C), the objective function
is:

LCC
gro(I) = − log

expSC(I, C)∑
C′∈C expSC(I, C ′)

, (2)

and by normalizing along the image dimension, there is

LCI
gro(I) = − log

expSC(I, C)∑
I′∈I expS

C(I ′, C)
. (3)

Similarly, we can get LIC
gro(I) and LII

gro(C) using SI(I, C).
The final grounding loss for the batch is the summation of
the four losses,

Lgro =
1

|I|
∑
I

(LCC
gro(I) + LIC

gro(I)) +

1

|C|
∑
C

(LCI
gro(C) + LII

gro(C)).

(4)

Grounding Object Nouns Misses the Structure Informa-
tion of Caption Data. Despite grounding nouns forces
to push the nouns embeddings and object queries closer,
the structure information, including the relation of differ-
ent objects is missing. As shown in Fig. 4, we perform
co-occurrence relationship analysis on object nouns and

a couple of dogs
standing next 
to each other.

CGGw/o generationInput Image

Figure 5: The effectiveness of caption generation. The
generated caption depicts rich information beyond object
nouns.

find that novel classes have various distributions on co-
occurrence words, which may help identify novel objects.
This means only adopting grounding loss misses the rela-
tionship between these words. To fill such a gap, we ar-
gue that caption data can also be employed as a generative
supervision signal for a more fine-grained multi-modal un-
derstanding. The key insight is that we force the model to
predict the occurring instances and their relationships in the
image to identify novel classes. Unlike grounding loss that
aims to push nouns and query embeddings as close as pos-
sible, generative loss decodes the visual features into the
semantic embeddings, which are complementary to ground-
ing loss. As shown in Fig. 5, the caption generation module
can help the model learn the specific status and relationships
of objects in the scene.
End-to-End Caption Generation Loss. Specifically, since
the multi-modal embeddings encode the region-wise infor-
mation, we transform these embeddings using a linear layer
(MLPg in Fig. 3) to fit the feature dimension of the cap-
tion generator, then we directly take the transformed em-
beddings as the input of the lightweight caption generator,
which includes a stack of Transformer decoder layers. We
adopt a Cross Entropy Loss on the predicted distribution of
text vocabularies. It is the commonly used objective func-
tion in the research field of caption generation.

Lgen = −
Ns∑
t=1

log(pθ(ŵt|w1, ..., wt−1)), (5)

where pθ(ŵt|w1, . . . , wt−1) is the predicted probability of
t-th right word over the whole vocabulary, θ denotes the pa-
rameters of the generation network. Hence, this loss func-
tion enforces the predicted sentence to be consistent with
the input caption C, making the multi-modal embeddings
{ej |j ∈ {1, 2, · · · ,M}} capable of representing various
words and their potential relations in the image.
Overall Loss Design. The overall training loss contains
four items, i.e., the classification loss Lcls, the segmen-
tation loss Lmask, the caption grounding loss Lgro, and
the caption generation loss Lgen. Following the previous
method [63], the classification loss is selected as the Cross-



Table 1: Results on Open Vocabulary Instance Segmenta-
tion.

Method Constrained Generalized
Base Novel Base Novel All

OVR [63] 42.0 20.9 41.6 17.1 35.2
SB [1] 41.6 20.8 41.0 16.0 34.5
BA-RPN [70] 41.8 20.1 41.3 15.4 34.5
XPM [28] 42.4 24.0 41.5 21.6 36.3
CGG (Ours) 46.8 29.5 46.0 28.4 41.4

Table 2: Results on COCO Open Vocabulary Object Detec-
tion (OVOD). IN-21K indicates ImageNet-21K [10]. CC
indicates Conceptual Captions [52]

Method Epochs Extra Data AP50box
novel AP50box

all
DLWL [48] 96 YFCC100M 19.6 42.9
Cap2Det [59] 8.5 None 20.3 20.1
OVR-CNN [63] 12 None 22.8 39.9
Detic [73] 96 IN-21K & CC 24.1 44.7
PromptDet [18] 24 LAION-novel 26.6 50.6
CGG (Ours) 12 None 29.3 42.8

Entropy Loss that takes the dot product of multi-modal em-
beddings eMi and base class embeddings as its logit inputs.
The final loss function L is the weighted summation of the
four losses: L = λclsLcls + λmaskLmask + λgroLgro +
λgenLgen. We follow the default setting in the MMDetec-
tion framework, where the weights are set to 2.0, 5.0, 2.0,
and 2.0 in all our experiments.
Training and Inference. Compared to the baseline model,
CGG only introduces extra losses and a caption genera-
tion head during the training. Following previous works
[20, 63, 28], we first pre-train our framework using only
base data annotations in a class-agnostic manner. The goal
of pretraining is to encode instance-wised information into
object queries. Then we load the pre-trained model for joint
training with caption data. During the inference, follow-
ing [63], we use the pre-trained embeddings of all classes
to perform open vocabulary segmentation via dot product,
including base classes and novel classes.

4. Experiments
4.1. Experimental Setup

Dataset Settings. We conduct experiments on COCO
dataset [39] for OVIS and OSPS. For OVIS, following pre-
vious works [63, 28], we split 48 base classes with anno-
tations and 17 target classes without annotations. For cap-
tioned images, we use the entire COCO-captions training
set with 118,287 images and five captions per image. Un-
like previous works [73, 18, 48] that adopt extra caption
datasets, like Conceptual Captions [52] for pre-training, we
do not use extra caption or detection datasets. We follow the

Table 3: We compare our method CGG with previous meth-
ods EOPSN [29] and Dual [58] on Open Set Panoptic Seg-
mentation (OSPS). Unlike EOPSN and Dual that group all
unknown things into one class without identifying them,
CGG performs Open Vocabulary Panoptic Segmentation
and assigns a specific category to each unknown thing. We
show the mean PQ and SQ for all unknown categories and
indicate the scores averaged from each unknown class with
“*”.

Method K(%)
Known Unknown

PQTh SQTh PQSt SQSt PQTh SQTh

EOPSN [29]
5

44.8 80.5 28.3 73.1 23.1 74.7
Dual [58] 45.1 80.9 28.1 73.1 30.2 80.0
CGG (Ours) 50.2 83.1 34.3 81.5 45.0* 85.2*
EOPSN [29]

10
44.5 80.6 28.4 71.8 17.9 76.8

Dual [58] 45.0 80.7 27.8 72.2 24.5 79.9
CGG (Ours) 49.2 82.8 34.6 81.2 41.6* 82.6*
EOPSN [29]

20
45.0 80.3 28.2 71.2 11.3 73.8

Dual [58] 45.0 80.6 27.6 70.1 21.4 79.1
CGG (Ours) 48.4 82.3 34.4 81.1 36.5* 78.0*

origin OVR-CNN [63] setting by only exploring a limited
caption dataset within COCO. For OSPS [29], we follow
the previous works [29, 58], splitting part of thing classes
into unknown classes. We obtain three different splits by
varying the numbers of unknown classes (K% ratios, 5%,
10%, 20%).
Metric. For OVIS, we report the mask-based mean Av-
erage Precision (mAP) at intersection-over-union (IoU) of
0.5. Following previous works [63, 28], we evaluate the
model performance on base and target classes in two set-
tings: constrained setting, where the model is only tested
on images that belong to either base or target classes; gen-
eralized setting, where the model is tested on both base and
target classes. The latter is more challenging, as it requires
the model to avoid class bias from base classes. We also
report open vocabulary detection with box-based mAP. For
OSPS setting, we use panoptic segmentation metrics, in-
cluding Panoptic Quality (PQ) and Segmentation Quality
(SQ). We report known classes and unknown classes sepa-
rately for reference. More details about the data preparation
can be found in the appendix.
Implementation Details. We implement our models in Py-
Torch [44] with MMDetection framework [6]. We use 8
GPUs for distributed training. Each mini-batch has two im-
ages per GPU. The optimizer is AdamW [41] with a weight
decay of 0.0001. We adopt full image size for a random
crop in the pre-training and training process following [8].
We use BERT embeddings [11] for the classification head,
word encoder, and sentence encoder. We use an LVIS class
name parser to extract object nouns from caption data. For
OVIS, we keep the top 100 queries as the model outputs.
For OSPS, we follow previous works [29, 58], which put
thing mask predictions first, then fill the remaining back-



Table 4: Ablation studies and analysis on COCO OVIS.

(a) The Effectiveness of Each Components.

baseline Gro. Gen. Base Novel

Class Emb. 48.6 0.2
w. Gro. ✓ 49.1 22.2
w. Gen. ✓ 49.4 0.3

Both (CGG) ✓ ✓ 48.0 28.4

(b) Training Pipeline Comparison

Settings Base Novel All

emb-segm 49.2 20.3 41.6
segm-emb-segm 50.2 24.3 43.4

segm-emb (CGG) 46.0 28.4 41.4

(c) Nouns Extraction in Caption Grounding

Method Base Novel All

All Words 44.7 7.6 35.0
Nouns + Adj 46.2 16.2 39.2

Object Nouns + Adj 45.6 27.2 40.2
Object Nouns 46.0 28.4 41.4

(d) Caption Generator Design

#layers Base Novel All

2 46.7 23.4 40.6
4 46.0 28.4 41.4
6 48.2 26.9 42.6

(e) Effect of Class-Agnostic Pretraining

Settings Base Novel All

No class-agnostic 46.2 22.7 40.0
Freeze class-agnostic 47.6 26.4 42.1

CGG 46.0 28.4 41.4

(f) GFlops and Parameters

Schedule Parameters GFLOPs

baseline 35.65M 227.48
Ours: Inference 35.65M 227.48
Ours: Training 81.19M 229.33

Table 5: Ablation on the ability of caption generation.

#layers BLUE-1 ↑ BLUE-2 ↑ BLUE-3 ↑ BLUE-4 ↑ CIDEr ↑ ROUGE ↑
2 0.473 0.311 0.206 0.141 0.307 0.360
4 0.418 0.258 0.166 0.111 0.239 0.320
6 0.387 0.226 0.138 0.088 0.171 0.289

ground with stuff mask predictions. We use the ResNet-50
backbone for all experiments for a fair comparison.

4.2. Main Results

Results on OVIS. We first compare CGG and other meth-
ods for the OVIS task. Tab. 1 shows that our model out-
performs XPM, the best baseline, by 5.5% mAP in the con-
strained setting and 6.8% mAP in the generalized setting
where both base and novel categories are employed as in-
put. The generalized setting is more challenging because
the model must distinguish novel categories from base cat-
egories, where the training data bias is for base categories.
CGG has improved more in generalized than constrained
settings, demonstrating its effectiveness in identifying and
distinguishing novel classes from base classes.
Results on OVOD. We further evaluate our model on the
Open Vocabulary Object Detection task, which requires
matching ground truth with predicted bounding boxes at test
time. Tab. 2 shows that CGG outperforms several previ-
ous works [18, 73] on novel classes in terms of AP50 score
while using only COCO-Captions as the image-text data
source and a shorter training schedule. Previous methods
such as PromptDet [18] and Detic [73] rely on large-scale
image-text datasets, which incur a longer training time and
higher computational cost. However, CGG performs worse
on all classes cases: AP50boxall . It may be due to the lim-
ited exposure to base classes and shorter training schedules
compared with other methods.
Results on OSPS. We test CGG on the Open Set Panop-
tic Segmentation task by expanding the base classes from

Table 6: Comparison between only training caption gen-
eration and joint training with segmentation. “only-gen”
means the model is trained purely with caption generation
supervision.

Method BLUE-1 ↑ BLUE-2 ↑ BLUE-3 ↑ BLUE-4 ↑ CIDEr ↑ ROUGE ↑
only gen. 0.394 0.237 0.150 0.100 0.177 0.305

CGG 0.418 0.258 0.166 0.111 0.239 0.320

base thing classes to including stuff classes without chang-
ing the training pipeline of CGG. Tab. 3 indicates that our
model performs better than previous methods EOPSN [29]
and Dual [58] by 14.9% PQ on unknown things in 20% un-
known things setting, and 16.9%, 14.8% in 10% and 5%
settings, respectively. Compared with the standard Open
Set Panoptic Segmentation task, CGG classifies each un-
known class and still outperforms previous methods.

4.3. Ablation Study and Analysis

To evaluate the effectiveness of each component of our
model, we conduct ablation studies on the COCO 48/17
split [63] using mAP as the metric.
Effectiveness of Modules. We first verify the effectiveness
of each proposed module in CGG. Tab. 4a shows that the
baseline Class Emb., which maps class labels to text embed-
dings, achieves a low AP score of 0.2 for the novel class. By
contrast, adding Caption Grounding boosts the Novel AP
to 22.2, demonstrating the importance of Caption Ground-
ing for aligning multi-modal embeddings to object nouns.
The final score reaches 28.4. This improvement comes
from Caption Generation, which supervises object nouns
and other meaningful words. Without Caption Ground-
ing, Caption Generation alone performs poorly with 0.3 AP.
This observation demonstrates that Caption Grounding is
the crucial module.
Training Pipeline. We compare different training pipelines



a person standing next to a large group of cows a couple of people that are standing next to a tablea herd of zebras grazing in the grass a group of cows standing next to each other on the grass

there is a lot of food on this table a black and white photo of a large brown doga couple of elephants that are standing in the dirt a man riding a snowboarding down the side of a hill

Figure 6: Visualization results on Instance Segmentation (Top) and Panoptic Segmentation (Bottom). The categories with
“*” are novel. We also generate captions for each image-prediction pair and highlight the novel categories in the captions, if
any.

for our model. Previous methods like OVR-CNN [63] use
an “emb-segm” pipeline, which trains with captions first
and then fine-tunes the segmentor. In contrast, we adopt
a “segm-emb” pipeline, which pre-trains a class-agnostic
segmentor and then trains the multi-modal embeddings eMi
on image-text data. Tab. 4b compares these pipelines over
CGG. We also include “segm-emb-segm” as a candidate.
The results indicate that although “segm-emb” performs
worse than others for base classes, it achieves much higher
scores for novel classes. The lower performance for base
classes is because CGG is first pre-trained on only base
classes and then fine-tuned jointly with captions. Thus,
the performance increases for novel classes while drops for
base classes since the segmenter overfits the base classes
during the first stage. A possible solution is to balance the
ratio of base and novel classes during fine-tuning. Training
the segmentor in the last stage causes overfitting on the base
classes and reduces recall for novel classes.
Grounding Nouns Extraction. We investigate different
word selection strategies for CGG as discussed in Sec. 3.2.
Instead of extracting only object nouns from the sentences,
we extract all words [63], nouns + adj[20], and object nouns
+ adj. Tab. 4c shows the results of these strategies. Extract-
ing all words leads to a 20.8 drop in novel class AP, and
extracting nouns + adj leads to a 12.2 drop in novel class
AP. When extracting object nouns + adj, the performance
is close to ours. These results indicate that selecting suit-
able words is crucial for our model’s performance, where
we find object nouns perform the best.
Layers of Caption Generator. We examine the effect of
numbers in the Transformer decoder layers in the caption
generator. Tab. 4d shows the results for 2, 4, and 6 layers.
Adding more layers cannot always boost the performance
of novel class AP. However, the AP score for all classes
increases when the caption generator becomes larger. It is
because base categories occur more frequently than novel
categories, and benefit more from model enlargement.
Ability of Caption Generation. We also explore the gener-

CGGclass-agnostic pretrain

Figure 7: The multi-modal embeddings eMi in a 2D space
using t-SNE [54]. The colors indicate the class labels of the
17 novel COCO classes. The dots represent the embeddings
with the masks that match the ground truth annotations.

ated caption quality, despite this is not our goal for OVIS. In
Tab. 5, we observe that adding more Transformer layers in
the caption generator cannot improve the model’s ability of
caption generation. However, in Tab. 6, we train the model
with only caption generation supervision and get lower gen-
eration scores than the joint training. These results indicate
that multitask training may also improve the effectiveness
of the generation task.
Ablation on Class-Agnostic Pretraining. We investigate
the effect of class-agnostic pre-training on our model. The
class-agnostic model is trained to segment base and poten-
tial novel objects before training the multi-modal embed-
dings and caption generator. Tab. 4e reports the results of
different pre-training strategies. Without class-agnostic pre-
training, the mAP on novel classes drops by 5.7%. If fix-
ing Mask2Former in pre-training and only training multi-
modal embeddings and caption generator, the mAP on novel
classes drops by 2.0%. This indicates end-to-end training
plays an important role for query-based segmenter.
GFLOPs and Parameter Analysis. CGG introduces a
lightweight Transformer decoder as the caption generator
during training. As shown in Tab. 4f, this increases the
number of parameters by 127.7% in training, while the total
GFLOPs increase only by 0.8%. Since text data is much



smaller than images under the same batch size, the addi-
tional computational cost brought by the caption generator
can be ignored. The GFLOPs and Parameters during infer-
ence are the same as the Mask2Former baseline.
Segmentation Results Visualization. We present some
qualitative results of CGG in Fig. 6. The first row shows
panoptic results, and the second shows instance results.
Novel classes are marked with “*” and highlighted in the
caption. The result demonstrates that our framework can
segment and identify base and novel classes. We also show
the generated comprehensive captions above.
Embeddings Space Visualization. We visualize the multi-
modal embeddings learned by CGG and a class-agnostic
pretraining baseline using t-SNE in Fig. 7. We extract the
predicted embeddings for each image in the COCO valida-
tion set and match them with ground truth labels by mask
similarity. The baseline model fails to cluster the embed-
dings by their categories due to the lack of class-specific
knowledge. In contrast, CGG leverages caption ground-
ing and generation to learn discriminative embeddings that
align with their semantic classes.

5. Conclusion

This paper presents a joint Caption Grounding and Gen-
eration (CGG) framework for instance-level open vocabu-
lary segmentation. The main contributions are: (1) using
fine-grained object nouns in captions to improve ground-
ing with object queries. (2) using captions as supervision
signals to extract rich information from other words helps
identify novel categories. To our knowledge, this paper is
the first to unify segmentation and caption generation for
open vocabulary learning. The proposed framework signifi-
cantly improves OVIS and OSPS and comparable results on
OVOD without pre-training on large-scale datasets.
Limitation and Future Work. Due to the limited com-
putation resources, we do not pre-train our framework on
extra caption datasets. Moreover, we do not use VLMs
such as CLIP for distillation or supervision, and we do not
experiment on larger scale datasets, like LVIS and Open-
Image [24, 31]. We will put these as future work.
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