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Abstract

We present REGLO, a novel methodology for repairing pre-
trained neural networks to satisfy global robustness and in-
dividual fairness properties. A neural network is said to be
globally robust with respect to a given input region if and
only if all the input points in the region are locally robust.
This notion of global robustness also captures the notion of
individual fairness as a special case. We prove that any coun-
terexample to a global robustness property must exhibit a cor-
responding large gradient. For ReLU networks, this result al-
lows us to efficiently identify the linear regions that violate a
given global robustness property. By formulating and solving
a suitable robust convex optimization problem, REGLO then
computes a minimal weight change that will provably repair
these violating linear regions.

Introduction
Motivated by the fragility of deep neural networks (DNNs)
to small input perturbations known as adversarial exam-
ples (Goodfellow, Shlens, and Szegedy 2014), there is a
large, growing body of research on measuring, verifying,
and improving the robustness of DNNs against those per-
turbations (Tramèr et al. 2017; Madry et al. 2018; Shafahi
et al. 2019; Wang et al. 2019; Wong, Rice, and Kolter 2020;
Mirman, Gehr, and Vechev 2018; Zhang et al. 2020; Fan
and Li 2021; Huang et al. 2020). Various notions of robust-
ness have been considered (Casadio et al. 2022; Seshia et al.
2018; Chen et al. 2021; Katz et al. 2017; Carlini et al. 2019),
and can be largely categorized into two groups: local robust-
ness and global robustness. Local robustness is about the
robustness of individual input points. Intuitively, it means
that for an input x, a small change of the input (e.g., any p-
norm-bounded ∆x) would not result in a significant change
in the output (e.g., change of a classification result). On the
other hand, global robustness requires local robustness on
all (infinitely many) points within some given input region
X . Global robustness is thus strictly stronger than local ro-
bustness, and has the advantage of also enforcing robustness
on any unseen input within the given input region.

The existing approaches for improving the global robust-
ness of neural networks focus on altering their training pro-
cess (Leino, Wang, and Fredrikson 2021; Chen et al. 2021;
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Wadsworth, Vera, and Piech 2018; Celis and Keswani 2019;
Adel et al. 2019; Tao et al. 2022; Khedr and Shoukry 2022).
These approaches mainly involve introducing a loss func-
tion related to global robustness such that global robust-
ness is taken into account during gradient descent. How-
ever, training-based methods that use such a loss term can-
not guarantee the satisfaction of global robustness proper-
ties as there is no way to guarantee that the loss term will
be minimized to 0 via training. Moreover, applying training-
based methods to fine-tune pre-trained networks can be pro-
hibitively expensive. The application of these methods to
pre-trained networks can also be hampered by the unavail-
ability of training data, e.g., when the neural network is ob-
tained from a third party or the training data is private.

In this paper, we consider the problem of repairing a pre-
trained DNN to satisfy a given global robustness property.
At a high level, neural network repair is the class of tech-
niques that involves directly modifying a pre-trained neural
network so that the resulting network satisfies some given
property. A repair method is considered sound if it can guar-
antee the removal of the discovered violations or the satis-
faction of the given property. In contrast to training-based
methods that requires many iterations, repair can be ap-
plied once as a post-hoc modification. Existing DNN re-
pair methods mainly consist of weight modification (Dong
et al. 2020; Goldberger et al. 2020; Chen, Li, and Zhang
2022; Refaeli and Katz 2022), either via constraint solving
or fine-tuning, and DNN architecture extension (Sotoudeh
and Thakur 2021; Fu and Li 2021; Mitchell et al. 2021;
Leino et al. 2022). However, these repair methods cannot
handle global robustness or individual fairness properties.
The technique proposed in this paper fills precisely this gap.
We summarize our contributions below.

1. We propose REGLO, the first DNN repair technique
with provable guarantees on satisfying global robustness
properties.

2. We show that any input that is a counterexample to a
global robustness property must have a corresponding large
gradient that indicates the violation.

3. For piecewise linear DNNs, our approach is both
sound and complete – the resulting network is guaranteed
to satisfy the given global robustness property, and a repair
is guaranteed to be found if one exists.

4. Across a variety of benchmarks, we show that



Figure 1: An illustration of REGLO’s verification-guided al-
gorithm: (1) identify repair areas that violate the global ro-
bustness property, (2) compute the global robustness bound
for each repair area (in green with the light coral area show-
ing the desired bound according to the global robustness
property), and (3) solve a robust convex optimization prob-
lem to modify certain weights of the target DNN so that the
modified DNN is guaranteed to satisfy the global robustness
property on those repair areas.

REGLO can significantly enhance global robustness while
maintaining performance.

Related Works
Global Robustness Training
Current methods aimed at improving the overall resilience
of neural networks primarily concentrate on modifying their
training procedures. Leino, Wang, and Fredrikson (2021)
present a method for training globally-robust classifica-
tion networks by using an additional output class that la-
bels inputs as “non-locally-robust”. Chen et al. (2021) em-
ploy a counterexample-guided framework, referred to as the
booster-fixer training framework, to iteratively train and fix
a decision tree-like classifier until it satisfies the specified
global robustness properties.

Existing works also leverage adversarial-training schemes
by using a discriminator to force the classifier to be unbi-
ased towards the sensitive features (Wadsworth, Vera, and
Piech 2018; Celis and Keswani 2019; Adel et al. 2019;
Tao et al. 2022). Khedr and Shoukry (2022) propose to use
output bounds obtained from global robustness verification
as a regularizer during training. Compared with REGLO,
training-based methods with robustness-related loss terms
cannot ensure global robustness, as there is no guarantee
that the loss will reach 0 during training. Additionally, ap-
plying training-based methods to fine-tune pre-trained net-
works can be costly and hindered by unavailable training
data, such as when the network is from a third party or pri-
vate sources.

Individual Fairness
The notion of individual fairness (IF), which requires two
inputs that differ only on some sensitive features to have
similar outputs, can be viewed as a global robustness prop-
erty (John, Vijaykeerthy, and Saha 2020). Benussi et al.

(2022) present an MILP formulation whose solution can be
used to verify IF properties and guide the training process
by modifying the training loss. Yeom and Fredrikson (2020)
employs randomized smoothing to modify the inference pro-
cess of neural networks and achieve provably individual fair-
ness.

Similar to most papers on global robustness, training-
based methods (Benussi et al. 2022) for individual fairness
with related loss terms cannot guarantee satisfaction. This
often leads to safety issues when deploying such trained neu-
ral networks. The major issue with the randomized smooth-
ing method (Yeom and Fredrikson 2020) is that it can lead
to increased computational costs during the inference pro-
cess of a neural network, which can be unacceptable in many
applications. Our proposed REGLO method, however, com-
pletely avoids these issues.

Neural Network Repair

Neural Network Repair refers to the process of modifying
a trained neural network so that the resulting network sat-
isfies some given input-output property. Existing techniques
include weight modification (Dong et al. 2020; Goldberger
et al. 2020; Chen, Li, and Zhang 2022; Refaeli and Katz
2022), either via constraint solving or fine-tuning, and ar-
chitecture extension (Sotoudeh and Thakur 2021; Fu and Li
2021; Mitchell et al. 2021; Leino et al. 2022). For instance,
in (Sotoudeh and Thakur 2021), a decoupling technique is
employed to separate the activation functions of a neural net-
work, thereby achieving provable modifications for specific
inputs. In (Fu and Li 2021), a sub-network is constructed by
targeting specific linear regions of a ReLU neural network.
The output of this sub-network is used as a modification to
the original neural network, ultimately enabling it to satisfy
the desired input-output constraints.

To the best of our knowledge, existing repair techniques
are currently designed to fix errors in neural network out-
puts. In comparison to these methods, REGLO is the first
DNN repair technique that can handle global robustness
properties. It is important to note that in this context, “global
robustness properties” pertain to the consideration of two re-
lated inputs and outputs, rather than individual ones.

Verification for Global Robustness Property

A standard way to verify global robustness is to reduce it
to verifying local robustness by constructing a twin-network
such that the input to one copy of the DNN represents the
original input x and the input to the other copy represents
an adversarial perturbation of x (Singh et al. 2019; Katz
et al. 2017). ITNE (Wang, Huang, and Zhu 2022; Wang et al.
2022) is the state-of-the-art global robustness verification
technique. It adds interleaving dependencies in the twin-
network encoding and leverages bound propagation tech-
niques (Zhang et al. 2018; Wang et al. 2018; Huang et al.
2020; Wang et al. 2021) to compute the output bound for
a given input area on the twin-network. In REGLO, we use
global robustness verification to guide the repair process,
which we will describe in detail in the next section.
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Figure 2: The solid green line and the dashed green line are the unknown, ground-truth decision boundary for the input data
distribution and the decision boundary of the trained DNN respectively. The deviation of DNN’s decision boundary leads to
a violation of the global robustness property. Our key observation is that if (x, x + ∆x) is a counterexample pair of a global
robustness property for DNN f , then there exists x′ with a large gradient.

Background
Deep Neural Networks (DNNs). An R-layer feed-
forward DNN f : X → Y is a composition of linear func-
tions and activation function σ, where X ⊆ Rm is a bounded
input domain and Y ⊆ Rn is the output domain. The weights
and biases of the linear function are parameters of the DNN.
We call the first R−1 layers hidden layers and the R-th layer
the output layer. We use zij to denote the i-th neuron (before
activation) in the j-th hidden layer.

For DNNs that use only the ReLU activation function
σ(x) = max(x, 0), we call them ReLU DNNs. For any neu-
ron zij , we say the neuron is activated for an input if and
only if the neuron’s value σ(zij) = zij . We use a binary
variable αi

j to represent the activation status of zij (where
αi
j = 1 means the neuron is activated). The set of activation

statuses {αi
j} of all the neurons is called an activation pat-

tern. It is known that an Rm → R function is representable
by a ReLU DNN if and only if it is a continuous piecewise
linear (CPWL) function (Arora et al. 2016).

Linear Regions. A linear region is the set of inputs
that are subject to the same activation pattern in a ReLU
DNN (Serra, Tjandraatmadja, and Ramalingam 2017).

Lemma 1 (Lee, Alvarez-Melis, and Jaakkola 2019) Con-
sider a ReLU DNN f and an input x ∈ Rm. For every neu-
ron zij , it induces a feasible set

Ai
j(x) =


{x̄ ∈ Rm|(▽xz

i
j)

T x̄+ zij − (▽xz
i
j)

Tx ≥ 0}
if zij ≥ 0 or αi

j = 1

{x̄ ∈ Rm|(▽xz
i
j)

T x̄+ zij − (▽xz
i
j)

Tx ≤ 0}
if zij < 0 or αi

j = 0

where the symbol ▽xz represents the gradient vector of z
with respect to x and the intersection A(x) =

⋂
i,j Ai

j(x) is
the linear region that includes x.

Global Robustness and Individual Fairness. We con-
sider a global robustness property P on X ⊆ X that is de-
fined as follows.
Definition 1 (Global Robustness) A DNN f satisfies a
global robustness property P(X,Ω, ϵ) on an input set X ⊆
X along with a perturbation set Ω ⊆ Rm if and only if for
any x ∈ X and ∆x ∈ Ω, ∥f(x)− f(x+∆x)∥ ≤ ϵ holds.
In essence, a global robustness property P(X,Ω, ϵ) requires
every point in X to be locally robust with respect to Ω
and ϵ. We can also obtain the common norm-bounded no-
tion of robustness by instantiating the defintion above with
Ω = {∆x | ∥∆x∥ ≤ δ}.

Definition 2 (Norm-Bounded Global Robustness)
A DNN f is (δ, ϵ)-globally robust on an input set
X ⊆ X if and only if for any x ∈ X , we have that
∥∆x∥ ≤ δ ⇒ ∥f(x)− f(x+∆x)∥ ≤ ϵ. 1

It is worth noting that this definition of global robust-
ness captures the notion of individual fairness (Dwork et al.
2012; John, Vijaykeerthy, and Saha 2020) as a special case,
by taking Ω = {∆x |∆xSF = 0} where SF indicates sensi-
tive features and NF indicates the remaining, non-sensitive
features, as follows.
Definition 3 (Individual Fairness) A DNN f is ϵ-fair with
respect to some sensitive input features SF if and only if for
any x ∈ X , if xSF = (x+∆x)SF, then ∥f(x)−f(x+∆x)∥ ≤
ϵ.

Based on the definitions above, we define the repair prob-
lem for global robustness as follows.

Definition 4 (Repair for Global Robustness Property)
Given a global robustness property P(X,Ω, ϵ) and a target
DNN f ̸|= P(X,Ω, ϵ), the repair problem is to find a
modified DNN f̂ such that f̂ |= P(X,Ω, ϵ). 2

1The norm in this definition can be any p norm.
2We consider the case where f and f̂ share the same structure,



The REGLO Approach
We present REGLO’s approach below, starting with an obser-
vation that allows us to identify repair regions that violate
a given global robustness property. A preview of the high-
level approach in REGLO is also given in Figure 1.

Key Observation. A counterexample to a global robust-
ness property P(X,Ω, ϵ) is a pair of inputs (x,∆x) that
violates the property P, i.e., x ∈ X and ∆x ∈ Ω but
∥f(x)− f(x+∆x)∥ ≥ ϵ.

Lemma 2 (Mean Value Inequality (Hörmander 2015))
For a continuous function f : [a, b](⊆ R) → Rn, if f is
differentiable on (a, b), then

∥f(b)− f(a)∥ ≤ (b− a) sup
x∈(a,b)

∥f ′(x)∥ (1)

Inspired by Lemma 2, we derive the following theorem3,
which enables us to convert the search of a potential viola-
tion region (a region that contains a counterexample pair) for
a global robustness property to the search of a single point
with a large gradient, as illustrated in Figure 2.
Theorem 1 (Gradients of Any Counterexamples) For a
DNN f and a global robustness property P(X,Ω, ϵ), if
there is a counterexample (x,∆x) such that ∆x ∈ Ω and
∥f(x +∆x) − f(x)∥ ≥ ϵ, then there exists a differentiable
point x′ between x and x+∆x, such that ∥x−x′∥ ≤ dia(Ω)

2

and ∥∂f
∂x (x

′)∥ > ϵ
dia(Ω) , where dia(Ω) is the diameter of Ω4.

Proof: Consider g : [0, 1] → Rn defined as g(t) =
f(x+ t∆x) and g is piecewise differentiable on [0, 1]. Since
ϵ < ∥g(1)− g(0)∥, there must exist a differentiable interval
(ti, ti+1), such that

(ti+1 − ti)ϵ < ∥g(ti+1)− g(ti)∥

Then by Inequality 2, we have,

(ti+1 − ti)ϵ < ∥g(ti+1)− g(ti)∥
≤ (ti+1 − ti) sup

t∈(ti,ti+1)

∥g′(t)∥

= (ti+1 − ti) sup
t∈(0,1)

∥∂f
∂x

(x+ t∆x)∆x∥

Thus, there exists a x′ = x + t′∆x, ∥x − x′∥ ≤ dia(Ω)
2

(we can simply switch x and x+∆x if ∥x− x′∥ > dia(Ω)
2 ),

and

∥∂f
∂x

(x′)∆x∥ > ϵ ⇒ ∥∂f
∂x

(x′)∥ >
ϵ

dia(Ω)

□

i.e. the same number of layers and the same number of neurons.
3The Mean Value Inequality requires differentiability of the

function f on (a, b). For non-differentiable DNNs, the non-
differentiability comes from its activation functions, e.g., ReLU,
LeakReLU, Heaviside, or Maxpooling. Since the measure of the
non-differentiable area is zero for those operations, we can still ap-
ply the Mean Value Inequality in a piecewise manner to obtain the
same result.

4Here we take the operator norm of a matrix.

Instead of sampling a pair of points, Theorem 1 states
that sampling a single point can be used to check for coun-
terexamples to a given global robustness property. For ReLU
DNNs, as all the points within the same linear region have
the same gradient, we can use this result to efficiently iden-
tify violating linear regions.

Remark: 1. Note that this theorem specifies a necessary
but not sufficient condition. In other words, the presence of a
counterexample must exhibit a large corresponding gradient
but the reverse is not necessarily true.

2. For individual fairness, we can define the norm
∥x∥ = ∥xSF ∥ if xNF = 0 and else ∥x∥ = +∞, and only
consider the gradient with respect to the sensitive features
∥∂f
∂x (x

′)∥ = ∥ ∂f
∂xSF

(x′)∥.

Repair Areas. By leveraging Theorem 1, the search for
counterexamples is transformed into searching for linear re-
gions with gradients larger than ϵ

dia(Ω) . A mixed-integer
programming (MILP) problem can be used to encode the
search for the maximum gradient in a ReLU DNN (Fischetti
and Jo 2017; Runje and Shankaranarayana 2022). Since the
number of linear regions on X is finite, we can find all the
linear regions with gradient greater than ϵ

dia(Ω) by iteratively
solving MILPs and accumulating exclusion constraints (to
exclude the same activation pattern α̂ that we have already
found) until the optimal solution c∗ is smaller than ϵ

dia(Ω) .
Note that while the total number of linear regions can be
very large, the number of violating regions is typically much
smaller.

For non-CPWL DNNs, we can use random sampling to
search for input x′ that satisfies the violation constraint
∥∂f
∂x (x

′)∥ > ϵ
dia(Ω) . If the target DNN f is twice differ-

entiable, we can apply a projected gradient descent method
to improve the sample efficiency. For CPWL DNNs, we can
also start with random sampling and then pivot to the more
expensive MILP-based method for better search efficiency.

We now define the repair area A as follows. A =
{x|Ax ≤ b} by solving MILP or A = {x|∥x−x′∥ ≤ δ

2} via
random sampling. We use {Ai}i∈I to denote all the repair
areas found via the aforementioned procedure.

Verification-Guided Constraints. For each repair area
Ai, ITNE (Wang et al. 2022) uses the following optimiza-
tion problem to estimate the global robustness bound on Ai,{

max[∆x,∆zi]∈Ω×Zi
∥θ ·∆zi∥

Zi = {∆z |Dl
i∆x+ eli ≤ ∆z ≤ Du

i ∆x+ eui }
(2)

where θ is the weight in the last hidden layer of the DNN,
Dl

i, e
l
i, D

u
i and eui are parameters for the linear bounds of

∆z, and ∆z is the neurons value difference of the last hidden
layer between x and x+∆x.

Remark: We consider weight modification in the last hid-
den layer because it does not change the activation pattern of
any input and in turn preserves the boundaries of the linear
regions. Thus, by repairing the violating linear regions iter-
atively, we can guarantee satisfaction of the given global ro-
bustness property. In theory, we can also consider modifying



Algorithm 1: Iterative Repair for ReLU DNN
Input: The target ReLU DNN f and the global robustness
property P(X,Ω, ϵ).
Parameter: Maximum iteration T and maximum number of
repair areas M .
Output: The repaired DNN.

1: Let t = 0.
2: Let Areas = ∅
3: while t < T do
4: while |Areas| < M do
5: Let c∗ and x∗ be the optimal value and solution of

MILP, respectively.
6: if c∗ ≤ ϵ

dia(Ω) then
7: Break
8: end if
9: Let Ai be the linear region containing x∗ computed

using Lemma 1.
10: Areas.add(Ai).
11: Add a new exclusion constraint to MILP.
12: end while
13: Formulate the constraints on Areas as a robust opti-

mization problem (3), solve it via Algorithm 2, and
obtain an optimal solution ∆θ.

14: Update f ’s last-layer weight θ = θ +∆θ.
15: end while
16: return f with updated last-layer weight.

the weights of an intermediate layer. However, the objective
function of optimization problem (2) will include the subse-
quent layers and the optimization problem will no longer be
convex.

Repair as Robust Optimization. We use ∆θ to denote
the weight change to the DNN’s last hidden layer. In order
to preserve the functionality (e.g., accuracy) of the network,
we aim to find a minimal weight change ∆θ that can guaran-
tee the satisfaction of global robustness property on all the
repair areas {Ai}i∈I . Formally, ∆θ is the solution to the fol-
lowing optimization problem.

min ∥∆θ∥
max[∆x,∆zi]∈Ω×Zi

∥(θ +∆θ)∆zi∥ ≤ ϵ

Zi = {∆z |Dl
i∆x+ eli ≤ ∆z ≤ Du

i ∆x+ eui }
(3)

Property 1 Optimization problem (3) is convex and thus
any local minimum also achieves the global minimum.

Proof: By the definition of a norm, we have any norm ∥.∥
is a convex function.

For any ∆θ1, ∆θ2, λ ∈ [0, 1] and any ∆zi, we have

max
[∆x,∆zi]

∥(θ + λ∆θ1 + (1− λ)∆θ2)∆zi∥

= max
[∆x,∆zi]

∥λ(θ +∆θ1)∆zi + (1− λ)(θ +∆θ2)∆zi∥

≤ max
[∆x,∆zi]

[∥λ(θ +∆θ1)∆zi∥+ ∥(1− λ)(θ +∆θ2)∆zi∥]

≤λϵ+ (1− λ)ϵ = ϵ

Both the objective and the constraints are convex. Therefore,
we have that optimization programming (3) is convex. Thus,
any local minimum achieves the global minimum. □

This minimization problem with inner maximal con-
straints is a form of robust optimization (Ben-Tal, El Ghaoui,
and Nemirovski 2009). For minimizing the L1 or L∞ norm
of ∆θ, such robust optimization problems can be solved by
taking the robust counterpart of the inner constraints and
converting it to a linear programming (LP) problem.

Repair via Barrier Method. For general Lp norm of ∆θ,
we apply the barrier method from (Boyd and Vandenberghe
2004) and formulate it as an unconstrained convex optimiza-
tion problem. We use [∆x∗

i (∆θ),∆z∗i (∆θ)] and ϵ∗i (θ+∆θ)
to denote the optimal solution and the optimal value respec-
tively for optimization problem (2). We have, for a suffi-
ciently large t, the solution of the following barrier problem
converges to the solution of the optimization problem (3).

min
∆θ

∥∆θ∥ − 1

t

∑
i∈I

log(ϵ− ϵ∗i (θ +∆θ)) (4)

To solve the optimization problem (4), we compute the gra-
dient of ϵ∗i (θ +∆θ) by

∂ϵ∗i (θ +∆θ)

∂∆θ
=

∂∥(θ +∆θ)T∆zi∥
∂∆θ

|∆zi=∆z∗
i (∆θ) (5)

Iterative Repair. In the previous sections, we enumerate
all the repair areas {Ai}i∈I that violate P(X,Ω, ϵ) and re-
pair these areas via weight modification. However, it is pos-
sible that the repair increases the gradient ∥∂f

∂x (x
′)∥ for x′ ∈

X \ ∪i∈IAi and results in a new violation to P(X,Ω, ϵ). To
ensure a sound repair, we iteratively search for repair areas
to repair. When solving the optimization problem, we con-
sider both the previously repaired areas and the new repair
areas.

We call one iteration, including the search of repair areas
and the repair itself, a Single Iteration Repair. Algorithm 1
presents the Iterative Repair procedure.

Theoretical Guarantees
In this section, we present the theoretical guarantees that
REGLO provides.

Theorem 2 (Completeness Guarantees) We have the fol-
lowing completeness guarantees for REGLO:

1. For a Single Iteration Repair, REGLO can always
find a solution to optimization problem (3).

2. For an Iterative Repair on a piecewise linear DNN,
REGLO always terminates with no more repair areas to be
found by solving MILP.

Proof: For a Single Iteration Repair, the optimization
problem (3) is convex over a close domain. Since ∆θ = −θ
is a feasible solution, the domain where ∆θ is in is always
feasible. Therefore, optimization problem (3) has an opti-
mal solution. Since the optimization problem is convex, the
optimal solution is unique and REGLO can always find the
optimal solution to the optimization problem (3).

For an Iterative Repair on a CPWL DNN, REGLO can
always find an optimal solution for every Single Iteration



ST AT ST+Finetune AT+Finetune ST+REGLO AT+REGLO

All age

VB 12.5 4.69 9.0 4.52 0.29 0.26
PGD-B 1.31 0.135 0.7 0.11 0.028 0.008
PGD-R 75.5% 26.9% 57.4% 1.5% 0.0% 0.0%
ACC 76.6% 69% 68.3% 69% 75.6% 69%
T(s) 25.5 38.3 25.5+18.4 38.3+17.9 25.5+51.8 38.3+50.3

Age below 24

VB 1.11 0.42 1.04 0.4 0.08 0.12
PGD-B 0.15 0.015 0.058 0.008 0.009 0.006
PGD-R 7.8% 0.5% 0.3% 0.0% 0.0% 0.0%
ACC 76.6% 69% 68.3% 69% 76.3% 69%
T(s) 25.5 38.3 25.5+18.1 38.3+17.6 25.5+71.3 38.3+80.1

Age from 25 to 54

VB 6.46 2.43 6.04 2.34 0.039 0.045
PGD-B 0.68 0.084 0.28 0.044 0.0053 0.0015
PGD-R 58% 3.3% 39.1% 0.0% 0.0% 0.0%
ACC 76.6% 69% 69.7% 69% 69.3% 69%
T(s) 25.5 38.3 25.5+17.3 38.3+18.2 25.5+55.5 38.3+47.9

Age from 55 to 64

VB 2 0.75 1.88 0.73 0.057 0.11
PGD-B 0.24 0.0265 0.11 0.016 0.0065 0.004
PGD-R 23.4% 0.0% 5.2% 0.0% 0.0% 0.0%
ACC 76.6% 69% 71.7% 69% 75.7% 69%
T(s) 25.5 38.3 25.5+18.5 38.3+17.6 25.5+47.9 38.3+39.4

Age above 65

VB 2.23 0.84 2.1 0.81 0.065 0.094
PGD-B 0.33 0.029 0.144 0.0192 0.0101 0.0033
PGD-R 33.6% 0.0% 7.4% 0.0% 0.0% 0.0%
ACC 76.6% 69% 72.7% 69% 75.7% 69%
T(s) 25.5 38.3 25.5+18.6 38.3+18.3 25.5+55.4 38.3+45.2

Table 1: Individual Fairness repair on German Credit for different age groups. Observe that after using REGLO, global
robustness-related metrics such as VB, PGD-B, and PGD-R were significantly reduced by up to 99.3% with less than 0.9%
accuracy drop.

Repair. Given that the number of linear regions for a CPWL
DNN is finite, REGLO always terminates with no more repair
areas to be found by solving the MILP. □

Ideally, if the target DNN is a ReLU DNN, we can enu-
merate all the linear regions that violate the global robust-
ness property P(X,Ω, ϵ) by solving multiple MILPs and
applying REGLO. By Iterative Repair, REGLO will termi-
nate when no more repair area can be found. Thus, we have
the soundness guarantee for the resulting DNN.

Specifically, for a Single Iteration Repair, the weight
change ∆θ ensures the satisfaction of P(X,Ω, ϵ) on all the
repair areas {Ai}i∈I . As we discussed in the Iterative Re-
pair Section, the repair may increase the gradient ∥∂f

∂x (x
′)∥

for x′ ∈ X \∪i∈IAi and causes it to violate P(X,Ω, ϵ). We
call any such violation in X \∪i∈IAi a side effect of our re-
pair. The following theorem shows that we have guarantees
on limiting the side effects of a Single Iteration Repair.

Theorem 3 (Limited Side Effect) Given a global robust-
ness property P(X,Ω, ϵ), a target DNN f , and weight
change ∆θ from a Single Iteration Repair, we have

1. For any area B ⊂ ∪i∈IAi ⊂ X , f̂ |= P(B,Ω, ϵ);
2. For any area C ⊂ X which is not a subset of ∪i∈IAi,

f̂ |= P(C,Ω, ϵ + 2L∥∆θ∥∥X∥), where L is the Lipschitz
constant of f from the input layer to the last hidden layer.

Proof: The constraints of optimization problem (3) ask the
resulting DNN must satisfy the global robustness property
on B ⊂ ∪i∈IAi ⊂ X , a subset of the repair areas.

The difference between the resulting DNN f̂ and the tar-
get DNN f on any input x can be bounded by the norm of
∆θ: ∥f̂(x) − f(x)∥ = ∥(θ +∆θ)fn−1(x) − θfn−1(x)∥ =
∥∆θfn−1(x)∥ ≤ ∥∆θ∥ · ∥fn−1∥ · ∥x∥ = L∥∆θ∥ · ∥x∥,
where fn−1 is the DNN function from the input layer to the
last hidden layer.

For any x ∈ C ⊂ X , which is not in a subset of ∪i∈IAi,
and any ∆x ∈ Ω:

∥f̂(x+∆x)− f̂(x)∥ = ∥f̂(x+∆x)− f(x+∆x)+

f(x+∆x)− f(x) + f(x)− f̂(x)∥ ≤ ϵ+ 2L∥∆θ∥∥X∥
□

Corollary 1 (Soundness Guarantees for CPWL DNNs)
Given a global robustness property P(X,Ω, ϵ), a piecewise
linear DNN f , and weight change from Iterative Repair,
REGLO will terminate with no more repair areas to be found
and the resulting DNN f̂ |= P(X,Ω, ϵ).

Proof: For Iterative Repair on a CPWL DNN f , by The-
orem 2, REGLO will terminate with no more repair areas to
be found. Therefore, the resulting DNN satisfies P(X,Ω, ϵ)
outside the repair areas. In addition, by Theorem 3, we have
that the resulting DNN satisfies P(C,Ω, ϵ) for any C ⊂ X .
Combining these results, we have that REGLOwill terminate
with no more repair areas to be found and the resulting DNN
f̂ |= P(X,Ω, ϵ). □

For DNNs that are not piecewise linear, we have the fol-
lowing weaker soundness guarantee.
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Figure 3: Comparing REGLO with CertiFair on the German Credit dataset. The left figure tracks the changes in accuracy of
the REGLO repaired DNN over repair iterations. The three horizontal lines represent the accuracies of ST, CertiFair[1], and
CertiFair[2] respectively. The results clearly demonstrate that REGLO outperforms both CertiFair[1] and CertiFair[2] in terms
of test accuracy. The figure on the right shows the reduction of PGD-B for the REGLO-repaired DNN over repair iterations.

Algorithm 2: Repair via Barrier Method
Input: Current last-layer weight θ, repair areas {Ai}i∈I , and
Ω.
Parameter: Initial step size α, initial weight of barrier func-
tion t, an early stop threshold δ, and maximal steps K.
Output: ∆θ

1: Let k = 0.
2: Let ∆θ = −θ (start from a feasible solution).
3: while k < K do
4: Let ϵ∗i and ∆z∗i be the optimal value and optimal so-

lution of optimization problem (2), respectively.
5: Compute the gradient g =

∂ϵ∗i (θ+∆θ)
∂∆θ according to

Equation (5).
6: if ∥g∥ < δ then
7: Break
8: end if
9: Update ∆θ = ∆θ − α · g

10: Update α and t.
11: end while
12: return ∆θ.

Corollary 2 (Soundness Guarantee for General DNNs)
Given a global robustness property P(X,Ω, ϵ), a DNN
f , and weight change ∆θ from Iterative Repair, REGLO
returns a DNN f̂ |= P(C,Ω, ϵ + 2L∥∆θ∥∥X∥) for any
repair area C.

Proof: Since Iterative Repair collects both the previously
repaired areas and the new repair areas found at one iter-
ation, the last Single Iteration Repair will repair all those
collected repair areas. Therefore, by Theorem 3, the last
Single Iteration Repair will return a DNN f̂ that satisfies
P(C,Ω, ϵ+ 2L∥∆θ∥∥X∥). □

Experiments
The goal of the experiments is to validate the effectiveness
of REGLO in enhancing the global robustness of trained

neural networks while preserving their performance. We
compare REGLO against six other methods, including four
baseline methods, CertiFair (Khedr and Shoukry 2022), a
well-known method for training provably fair DNN, and
VGRP (Chen et al. 2021), a training procedure to train clas-
sifiers with verified global robustness properties.

Experimental Setup
Our prototype tool is implemented in Python. We use
Gurobi (Gurobi Optimization, LLC 2021) to solve MILP
and use CVXPY (Diamond and Boyd 2016) to solve opti-
mization problem (2). The global robustness bounds used in
the optimization problem (2) are derived by ITNE (Wang
et al. 2022) with a bound propagation technique similar to
β-CROWN (Wang et al. 2021) (without bound refinements
for efficiency). The verification bounds (VBs) in the exper-
iments are evaluated using ITNE with bound refinements
for tighter estimations. All the experiments were run on ma-
chines with CPUs similar to ten-core Intel Xeon E5-2660v3
@ 2.6 GHz with a single GeForce GTX 1080 Graphics Card.
Our code is available on GitHub: https://github.com/BU-
DEPEND-Lab/REGLO/tree/main/net repair.

Baseline Methods. To the best of our knowledge, REGLO
is the first study on DNN repair to satisfy a global robustness
property. We consider the following four baseline methods
for comparison with REGLO: ST is standard training. AT is
adversarial training using PGD (Madry et al. 2018) on the
training data. ST+Finetune is standard training followed by
fine-tuning for the global robustness property. Specifically,
Finetune is to fine-tune (train with a smaller learning rate)
a pre-trained DNN with additional counterexamples gener-
ated by applying PGD on randomly sampled points in X .
AT+Finetune is adversarial training followed by fine-tuning
for the global robustness property.

For REGLO, we consider two settings where the repair
is applied after standard training and after adversarial train-
ing, respectively: ST+REGLO is standard training followed
by REGLO. AT+REGLO is adversarial training followed by



Method TPR(%) FPR(%) Acc(%) F1 Global Robustness Property Running Time
Cryptojacking

REGLO 98.51 2.19 98.19 0.9816 Satisfy 3.11 seconds
VGRP 98.40 2.20 98.10 0.9810 Satisfy 138.9 mins

Twitter Spam Accounts
REGLO 94.64 9.19 93.08 0.9277 Satisfy 3.5 mins
VGRP 87.1 2.3 92.20 0.9200 Not Satisfy Timed Out

Twitter Spam URLs
REGLO 98.95 1.4 98.60 0.9875 Satisfy 8.7 mins
VGRP 99.40 5.80 96.50 0.9620 Satisfy 129.5 mins

Table 2: Comparing REGLO (ST+REGLO) with VGRP. We used the code (https://github.com/surrealyz/verified-global-
properties) from the VGRP paper and ran it on our machine. The VGRP results for this benchmark are from the last epoch
before the tool timed out after 24 hours. On average, REGLO surpasses VGRP in terms of accuracy, F1, and running time across
all three datasets. Specifically, REGLO demonstrates up to 0.88% higher accuracy than VGRP. Furthermore, REGLO is much
more efficient than VGRP. The running time for REGLO is up to 99.96% less compared to that of VGRP.

REGLO.

Remark: It has been shown that AT can result in a drop
in test accuracy (Tsipras et al. 2018). We refer the readers
to Zhang et al. (2019) for a detailed theoretical analysis of
the trade-off between robustness and accuracy in neural net-
work training. As our experiments will show, similar to the
findings in these studies, AT+REGLO can produce higher
improvements in global robustness, but at the cost of lower
performance compared with ST+REGLO.

Evaluation Metrics. Given that there is no efficient
method for exact verification of a global robustness property,
we use ITNE (Wang, Huang, and Zhu 2022) to compute an
upper-bound of the true global robustness ϵ∗. In addition, we
use PGD to evaluate the empirical robustness of randomly
sampled inputs in X , as a lower-bound of ϵ∗. We also re-
port accuracy on testing data and runtime. Specifically, we
consider the following metrics: VB is the verification bound
given by ITNE for the global robustness property. PGD-B is
the maximum norm difference on outputs between sampled
input pairs (x, x+∆x) as computed by PGD. PGD-R is the
ratio of sampled input pairs that violate the global robust-
ness property as computed by PGD. ACC is the accuracy on
testing data (for classification problems). T(s) is the runtime
in seconds.

Remark: Note that PGD-B ≤ ϵ∗ ≤ VB, where ϵ∗ is the
unknown, true global robustness of the target DNN for X
and Ω. Note that Finetune essentially aims at reducing PGD-
B as PGD-B is used as a regularizer in its loss function dur-
ing fine-tuning.

Repair for Individual Fairness. We train a ReLU DNN
on the German Credit dataset (Dua and Graff 2017) to pre-
dict the credit risks (good or bad) for a person based on cer-
tain input features. An ideal DNN predictor should be fair
with respect to the sensitive input feature ‘age’, that is the
resulting DNN should satisfy a global robustness property
5 P(X,Ω, ϵ) for Ω = {∆x | ∆xSF = 0} with ϵ = 0.01,

5We define any individual fairness property as a global robust-
ness property in Definition

where SF are all input features other than ‘age’. We con-
sider the global robustness properties on input domain X as
well as regions based on age groups: X0 = {x |xage ≤ 24},
X1 = {x | 25 ≤ xage ≤ 54}, X2 = {x | 55 ≤ xage ≤ 64},
or X3 = {x | 65 ≤ xage} according to (Wikipedia contrib-
utors 2022). For REGLO, we search for repair areas by ran-
dom sampling on X and randomly choose 30 of them to re-
pair. The results are shown in Table 1. REGLO enhances the
global robustness-related metrics (VB, PGD-B and PGD-R)
by up to 99.3% with a minor drop of 0.9% in accuracy.

Comparing REGLO with CertiFair. In this study, we
compare REGLO with CertiFair (Khedr and Shoukry 2022)
on the German Credit dataset (for the sensitive input fea-
ture ‘age’). CertiFair employs two different fairness regu-
larizers: CertiFair[1] is based on the standard binary cross-
entropy loss, while CertiFair[2] is based on the output dif-
ference of the twin-network. The results, as shown in Fig-
ure 3, show that the reduction in accuracy with REGLO is
significantly smaller than those with CertiFair. Moreover,
the CertiFair-trained DNN still contains a substantial num-
ber of counterexamples (found through random sampling of
pairs of input points): 4.94% for CertiFair[1] and 13.59%
for CertiFair[2] (Khedr and Shoukry 2022). In contrast, even
random sampling with PGD attacks is unable to find any
counterexample for the REGLO-repaired network (PGD-R
of ST+REGLO is 0.0%). Furthermore, REGLO does not re-
quire access to the original training data which CertiFair
does. This makes REGLO a more practical and desirable op-
tion for applications where data access may be restricted or
limited.

Comparing REGLO with VGRP. In this experiment, we
compare REGLO with VGRP (Chen et al. 2021) on three
datasets, Cryptojacking (Kharraz et al. 2019), Twitter Spam
Accounts (Lee, Eoff, and Caverlee 2011), and Twitter Spam
URLs (Kwon, Baig, and Akoglu 2017) (the same dataset
used in VGRP paper). VGRP uses a so-called booster-fixer
scheme to train classifiers that can guarantee the satisfac-
tion of global robustness properties. Table 4 gives statistics
about these datasets in terms of the sizes of training and test



ST AT ST+Finetune AT+Finetune ST+REGLO AT+REGLO

X=X0

VB 232.3 59.4 229.5 58.7 7.6 9.2
PGD-B 5.6 0.7 3.8 0.4 0.2 0.08
PGD-R 100.0% 94.4% 100.0% 18.7% 0.0% 0.0%
ACC 98.1% 91.5% 96.5% 85.9% 97.4% 86.5%
T(s) 163.8 2787.2 163.8+238.3 2787.2+229.7 163.8+916.3 2787.2+612.8

X=X20

VB 240.2 54.3 236.2 49.8 2.3 4.5
PGD-B 8.3 0.4 5.2 0.3 0.08 0.06
PGD-R 100.0% 37.4% 100.0% 0.3% 0.0% 0.0%
ACC 98.1% 91.5% 95.8% 86.7% 90.9% 79.9%
T(s) 163.8 2787.2 163.8+235.3 2787.2+222.7 163.8+941.6 2787.2+607.2

X=X40

VB 246.4 63.8 240.8 61.1 4.1 5.8
PGD-B 6.4 0.7 4.5 0.5 0.1 0.09
PGD-R 100.0% 99.9% 100% 36.8% 0.0% 0.0%
ACC 98.1% 91.5% 97.0% 86.3% 96.0% 79.5%
T(s) 163.8 2787.2 163.8+221.3 2787.2+222.9 163.8+956.7 2787.2+865.3

Table 3: It can be observed that after using REGLO, global robustness-related metrics such as VB, PGD-B, and PGD-R were
significantly reduced by up to 99%, 99% and 100% while keeping the accuracy above 90%. Furthermore, in most cases, after
using REGLO, VB of the trained networks becomes less than 5 which is lower than PGD-B of ST (note that PGD-B is a lower
bound of the unknown, true global robustness whereas VB is an upper bound). Although the DNNs trained via AT has already
achieved a PGD-B of less than 1.0 as well as PGD-R lower than that of ST, AT+REGLO could further reduce PGD-B to less
than 0.1 and PGD-R to 0%. In contrast, Finetune only produced in minor improvements on these metrics.

Dataset # Training # Test # Features
Cryptojacking 2,800 1,200 7

Twitter Spam Accounts 36,000 4,000 15
Twitter Spam URLs 295,870 63,401 25

Table 4: The three datasets that we use to evaluate REGLO
against VGRP (Chen et al. 2021).

sets and the number of input features. The global robustness
property is defined as P(X, {∆x | ∥∆x∥ ≤ δ}, ϵ), where
δ = 0.2, ϵ = 0.1 for Cryptojacking, δ = 0.1, ϵ = 5 for Twit-
ter Spam Accounts, and δ = 1.5, ϵ = 10 for Twitter Spam
URLs (the same setting as those in (Chen et al. 2021)). The
VGRP’s booster-fixer training procedure requires a costly
verification in each epoch, and the results in Table 2 indi-
cate that while VGRP can train classifiers that satisfy the
specified global robustness properties (when it finishes be-
fore timing out after 24 hours), it results in a sizeable drop
in accuracy (up to 7.54%). In comparison, REGLO is much
more efficient (reduce the running time by up to 99.86%)
and does not compromise accuracy.

Repair for Norm-bounded Global Robustness. We train
a convolutional DNN with ReLU units on the GTSRB
dataset (Stallkamp et al. 2011). We consider a norm-
bounded global robustness property P(X,Ω, ϵ), where Ω =
{∆x | ∥∆x∥ ≤ δ}, δ = 1/255, ϵ = 0.5, X is a hyper-
rectangle obtained from the training inputs with the same
class label, i.e., Xk = {x | xlk ≤ x ≤ xuk}, where xlk

i and
xuk
i are the 30th and 70th percentile of the data in the input

space for every dimension i and a fixed class k. For REGLO,
we randomly choose 30 areas to repair. We train the models
with the data of all 42 classes in GTSRB and present re-

sults on 3 of those classes (due to limited space) in Table 3.
REGLO reduces VB and PGD-B of the classifiers by up to
99% while Finetune reduces those by no more than 10%.
Furthermore, REGLO is able to reduce PGD-R of ST from
100% to 0% while Finetune only reduces PGD-R slightly
and also causes a considerable drop in accuracy.

Conclusion and Future Work
REGLO is the first work that enables provable repair of neu-
ral networks for global robustness properties. Experimental
results demonstrate the effectiveness of the approach against
multiple baselines. Achieving such deterministic guarantees,
however, can be challenging when we apply the technique
to larger networks. Current state-of-the-art global robustness
verification tools such as ITNE (which we use as a subrou-
tine in REGLO) only scale to moderate-size networks. An-
other challenge to scalability lies in finding the violating lin-
ear regions. As the size of the network increases, solving the
MILP problem can become very expensive. In addition, the
number of linear regions of a ReLU network grows expo-
nentially in the number of layers and polynomially in the
number of neurons (or layer width) (Montúfar et al. 2014).
Thus, for large DNNs we have to resort to random sampling
for finding the violating regions as described in Repair Areas
Section. One future direction is to consider statistical tech-
niques to sidestep the inherent complexity of aiming for such
deterministic guarantees. Another direction is to investigate
alternative repair strategies other than weight modifications
as weight changes can result in compromise in performance.
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