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Abstract  

Background: Alzheimer's disease (AD) is a prevalent neurodegenerative disease with no effective 

treatment. Efficient and rapid detection plays a crucial role in mitigating and managing AD 

progression. Deep learning-assisted smartphone-based microfluidic paper analysis devices (μPADs) 

offer the advantages of low cost, high sensitivity, and rapid detection, providing a strategic pathway 

to address large-scale disease screening in resource-limited areas. However, existing smartphone-

based detection platforms usually rely on large devices or cloud servers for data transfer and 

processing. Additionally, the implementation of automated colorimetric enzyme-linked immunoassay 

(c-ELISA) on μPADs can further facilitate the realization of smartphone μPADs platforms for efficient 

disease detection. Results: This paper introduces a novel deep learning-assisted offline smartphone 

platform for early AD screening, offering real-time monitoring and rapid detection in low-resource 

areas. The proposed platform features a simple mechanical rotating structure controlled by a 



smartphone, enabling fully automated c-ELISA on μPADs. Our platform successfully applied sandwich 

c-ELISA for detecting the β-amyloid peptide 1-42 (Aβ 1-42, a crucial AD biomarker) and demonstrated 

its efficacy in 38 artificial plasma samples (healthy: 19, unhealthy: 19, N=6). Moreover, we employed 

the YOLOv5 deep learning model and achieved an impressive 97% accuracy on a dataset of 1824 

images, which is 10.16% higher than the traditional method of analyzing curve-fitting results. The 

trained YOLOv5 model was seamlessly integrated into the smartphone using the Ncnn convolutional 

neural network (NCNN) framework, enabling deep learning-assisted offline detection. A user-friendly 

smartphone application was developed to control the entire process, realizing a streamlined 

"samples in, answers out" approach. Significance: This deep learning-assisted, low-cost, user-friendly, 

highly stable, and rapid-response automated offline smartphone-based detection platform 

represents a significant advancement in point-of-care testing (POCT). Moreover, our platform  

provides a feasible approach for efficient AD detection, particularly in areas with low resources and 

limited communication infrastructure.  

Keywords: Smartphone-based; Offline; Microfluidic paper analysis devices (μPADs); Deep learning; 

Colorimetric enzyme-linked immunoassay (c-ELISA); Alzheimer’s disease.  

Introduction  

Alzheimer's disease (AD) is an irreversible neurodegenerative disease without effective therapeutic 

drugs or treatments to date [1, 2]. Efficient and rapid detection emerges as crucial strategies to 

impede and manage AD progression [3-5]. Conventional methods such as magnetic resonance 

imaging (MRI) and positron emission computed tomography (PET) are not suitable for large-scale 

applications, especially in resource-limited areas [6-8]. Cerebrospinal fluid biomarker tests are not 

widely used due to their technical expertise and invasive nature [9-11]. Therefore, blood biomarker 

testing has received widespread attention thanks to its advantages of low cost and ease of detection 

[12-14]. Recent studies have demonstrated that the detection of plasma biomarkers of β-amyloid 1-

42 (Aβ 1-42) is highly effective in AD detection [15-17]. This breakthrough highlights the potential for 

blood biomarker testing in efficient and rapid AD detection as a key solution for resource-limited 

settings.  

Point-of-care testing (POCT), celebrated for its high sensitivity, rapid detection, and cost-

effectiveness, provides a strategic avenue to address healthcare challenges in resource-limited 

settings [18-20]. This approach allows for effective real-time screening and detection of diseases 

directly at patient sites, outperforming traditional lab-based methods in terms of speed and 

accessibility. Provides a new method for screening AD. Microfluidic paper-based analytical devices 

(μPADs) have gained prominence as a promising platform for POCT due to their low cost, ease of 



operation, and independence from external power requirements [21-23]. While various 

immunoassays, including electrochemical, chemiluminescent, and fluorescent immunoassays, have 

been successfully developed on μPADs, colorimetric enzymelinked immunosorbent assays (c-ELISA) 

stand out as the gold standard for detecting protein biomarkers in disease-related clinical samples, 

and its results can be easily and directly analyzed through color change [24-28]. However, 

conventional c-ELISA requires complex manual operations, including repetitive addition of reagents 

and analysis of results. At the same time, professionals need to wait for the previous reaction to 

complete before manually performing the next step, ultimately leading to lower reproducibility and 

efficiency. These limitations have hindered the widespread use of c-ELISA methods in the POCT 

setting. Therefore, to solve complex manual operations, we propose the μPAD with a simple 

mechanical rotary structure, where the reagents required for testing are stored in the μPAD, and only 

a mechanical control structure is required to automate the testing.  

The popularity and portability of smartphones have led to their widespread use in various sensing 

techniques, especially for colorimetric detection. Smartphones incorporate the essential capabilities 

necessary for typical biosensing, such as cameras for signal capture, screens for signal display, and 

operating systems for creating graphical user interfaces to analyze the acquired data [29, 30]. 

Especially when combined with deep learning, it is expected to increase its sensitivity as a biosensor 

and simplify the detection process [31-35]. In recent years, deep learning has played a crucial role in 

POCT detection, analysis, and diagnosis thanks to its ability to directly, automatically, accurately, and 

quickly assist biosensor readings. Particularly in the classification problem of image results for 

biosensors, the deep learning model can remove the influence of external adverse conditions and 

can automatically extract useful features from the number of noisy and low-resolution raw images 

that overlap each other severely and obtain reasonable analysis results [36, 37]. Devices commonly 

used for deep learning result prediction include 1) large computing devices. 2) cloud server. and 3) 

sensor detection devices. The first two methods need to transmit the detection data to the large-

scale equipment or the cloud, and then return the prediction results to the sensor detection 

equipment. The third method can directly port the trained model to the sensor detection device for 

direct result prediction. This approach is necessary in regions or remote mountainous areas that lack 

large computing devices and underdeveloped network connections [38]. However, most of the 

existing deep learning-assisted smartphone detection uses the first two prediction devices [29-35]. 

Therefore, to meet the requirements of resource-poor regions and achieve fast, sensitive, and low-

cost detection, we port the trained deep model to the smartphone side to achieve offline 

smartphone local detection. Meanwhile, our development of the fully automated μPAD c-ELISA 

platform further promotes the smartphone as a biosensor.  



In this paper, we present a deep learning-assisted smartphone platform for fully automated μPAD c-

ELISA detection. The platform has two notable features: 1) It enables offline smartphone detection 

without the requirement of large computing devices or cloud data transfer. This feature facilitates 

real-time monitoring and rapid detection, which is particularly beneficial in areas with limited 

communication infrastructure. It promotes the development of smartphones as biosensors. 2) A 

simple mechanical rotary structure is used to achieve a highly stable and rapid fully automated 

immunoassay, reducing the complexity of manual operation. The platform we developed has been 

successfully applied to complex sandwich c-ELISA for the detection of artificial plasma Aβ 1-42 

samples, enabling efficient AD detection. In addition, to train the deep learning YOLOv5 model, we 

used different smartphones to capture the resulting images, generating a final image dataset. The 

YOLOv5 model provides a higher accuracy than traditional curve-fitting result analysis methods. 

Finally, a user-friendly smartphone APP was developed to control the whole process, and the YOLOv5 

model will deploy using the Ncnn convolutional neural network (NCNN) framework, realizing offline 

"samples in, answer out". Our platform provides a feasible approach for effective large-scale 

detection of disease, furthering the development of smartphones as biosensors in the POCT field. 

Experimental section  

Material and reagent preparation  

The supplementary information contains a detailed list of the reagents and materials used in the 

experiment. To simulate real AD samples, we referred to the research work by Shieh-Yueh Yang et al. 

from 2017, which utilized the high-Tc superconducting-quantum-interference-device based 

immunomagnetic reduction (IMR) quantification to detect the Aβ 1-42 protein in human plasma 

samples and provided a cut-off value of 16.42 pg mL-1 [16]. Based on the defined cut-off value, our 

experiment comprised the creation of 38 artificial plasma samples, divided into 19 healthy and 19 

unhealthy samples. Aβ 1-42 peptide solution at a concentration of 16.42 pg mL-1 was first prepared 

in artificial plasma at 380 ul and distributed evenly into 38 microcentrifuge tubes. Following this, to 

simulate unhealthy samples, a random volume of Aβ 1-42 peptide was added to 19 tubes. In 

contrast, the remaining 19 tubes were augmented with a comparable volume of artificial plasma, 

representing healthy samples. This approach produced 38 samples with unspecified concentrations, 

effectively mirroring the complexity and variability of clinical samples. Artificial samples have been 

used in several studies to verify the feasibility of their experimental methods [39, 40]. In this work, 

we validated the feasibility of an offline fully automated detection on a smartphone μPADs platform 

using artificial plasma samples as a c-ELISA sensing target with the assistance of deep learning. In 

future work, we will apply this platform to clinical samples.  



Development of offline smartphone-based detection  

 

Fig. 2. The schematic diagram of the process for implementing offline smartphone-based platform 

detection.  

Offline detection on smartphones can eliminate the requirement for large-scale computing devices 

during each testing session and address the issue of privacy leakage in cloud data transmission. It 

further facilitates the development of POCT in resource-limited areas and extreme environmental 

conditions. For this purpose, we first selected a small deep learning model (YOLOv5) which is suitable 

for analyzing the c-ELISA image dataset, and then we converted the trained deep learning network 

into a format adapted to smartphones and deployed it on the smartphone platform using the NCNN 

framework. The schematic diagram of the process for implementing offline smartphone-based 

platform detection is shown in Fig. 2.  

Specifically, for training the deep learning model to recognize the detection results of c-ELISA, we 

first performed the construction of the dataset. The details of the specific dataset construction are 



mentioned in the following section. Furthermore, for the deep learning model to directly localize the 

detection region, we labeled the constructed dataset with the help of the annotation tool LabelImg. 

Then, 70% of the data is used for deep learning model training, 20% of the data is used as a test 

dataset for the deep learning model, and the remaining 10% is used to validate the generalizability of 

the deep learning model, tune the hyper-parameters, and prevent the occurrence of overfitting 

events. In addition, the YOLOv5 model is highly popular in image detection thanks to its efficiency, 

real-time, adaptability, and ease of use [41, 42]. Therefore, we select the YOLOv5 deep learning 

model to train the dataset. The structure of the YOLOv5 model is described in the following section. 

After the YOLOv5 model is well-trained, it needs to be converted to an open neural network 

exchange (ONNX) format to port this model to a smartphone. After that, it is implanted into a 

developed Android application using the NCNN framework [43]. Hence, the YOLOv5 deep learning 

model can achieve efficient and accurate detection on the smartphone, even in the absence of a 

network connection.  

Fabrication of smartphone-based μPAD platform  

Fig. 3. The photograph of the smartphone-based µPAD platform. (a) The photograph of µPAD with 

rotary valve. (b) The platform for integrating the µPAD with a smartphone.  

To realize the automated detection of sandwich c-ELISA, we achieved a rapid and easily assembled 

fully automated µPAD platform through a single, straightforward mechanical rotation structure. 

Additionally, we employed a smartphone to control the entire experimental process and analyze the 

experimental results. Fig. 3(a) illustrates the physical design of the μPAD. The details of the 

fabrication of μPAD with a rotary valve can be found in supplementary information. Specifically, to 

detect the Aβ 1-42 protein in artificial plasma samples. All reagents required for the sandwich c-ELISA 

Aβ 1-42 protein detection are pre-stored in the storage area (TMB substrate, HRP-conjugated Aβ 1-42 

antibody) and the test area (Aβ 1-42 antibodies), which are connected via paper rotary valves. 



Furthermore, our μPAD features a region designated for buffer solution addition, channels facilitating 

reagent transport, and a compartment for waste storage.  

To address the problem of reagent leakage, we optimized the parameters of the µPAD in our previous 

work [44]. The width of the overlap between the rotary valve and the paper sheet determines the 

success rate of the fluid to flow smoothly through. If the width is too small, the fluid will not be able 

to cross the boundary; if it is too large, leakage will occur. We tested different overlap widths and 

finally chose a 2 mm overlap width, which resulted in a 100% success rate of fluid passage. 

Meanwhile, to address the problem of reagent contamination, we designed the µPAD to have a 

separate storage area for each reagent. At the start of the assay, PBS buffer will sequentially 

transport pre-stored reagents from the storage zone to the test zone along the flow path on the 

µPAD. Excess reagents are stored in a pre-designed waste reagent storage channel.  

Additionally, for the comprehensive control of the experiment and subsequent result analysis, we 

formulated a portable smartphone-based platform, complemented by a deep learning model. The 

platform encompasses three key constituents: (i) a μPAD employed for performing sandwich c-ELISA 

detection (The structure of μPAD can be found in Fig. S1.); (ii) a microcontroller comprising a servo, 

microcontroller unit, Bluetooth capability, and a power supply unit, dedicated to controlling the 

μPAD; and (iii) a smartphone engaged in overseeing the Bluetooth interface of the platform, 

facilitating automated sandwich c-ELISA execution and result analysis assisted by deep learning. A 

visual representation of the smartphone-based automatic µPAD platform is depicted in Fig. 3(b). And 

to make the platform design more aesthetic and ergonomic structure. We added some angles and 

bevels to the platform design. Further information regarding the fabrication process of the 

smartphone-based platform is available in the supplementary materials.  

Working principle of the smartphone-based platform  



 

Fig. 4. Schematic of the workflow for detecting Alzheimer's disease (AD) via the offline smartphone 

platform.  

To perform the AD detection by the automated smartphone-based platform, all reagents required for 

the sandwich c-ELISA Aβ 1-42 protein detection are pre-stored in the storage zone. Before we start 

the test, we first click on the Bluetooth button on the smartphone, which is used to connect the 

Arduino to control the servo motor to drive the paper-based rotary valve. Then, we open the 

platform add 3 µl artificial plasma sample to the µPAD test zone, and then drop the prepared 250 µl 

of 1× PBS buffer into the inlet zone. After completing the addition of the sample and PBS buffer, close 

the platform and place the phone on top of the platform.  

By clicking the Start button on the smartphone, the paper-based rotary valve will execute in a pre-set 

sequence (according to the sandwich c-ELISA protocol) and the PBS buffer will follow the flow path 

on the µPAD, sequentially transporting the prestored reagents from the storage zone to the test 

zone. Specifically, the HRPconjugated Aβ 1-42 antibody is first transferred by PBS buffer to the test 

zone for binding to the Aβ1-42 peptide in the sample. Then, the first storage zone is disconnected 

from the test zone by a rotary valve control for incubation and drying. The washing channel is 

connected to the test zone and unbound HRP-conjugated Aβ 1-42 antibody is removed using PBS 

buffer. The rotary valve control channel is disconnected, incubated, and dried. Rotate the rotary valve 

to transfer the TMB substrate through the PBS buffer to the test zone, which reacts with the HRP-

bound Aβ 1-42 antibody to form a blue precipitate. Here, we refer to previously published papers for 

the volume of reagents and incubation times used [18, 27, 44].  



After the test, click the Take Image button on the smartphone screen and the image of the detection 

result will be displayed on the smartphone screen. Finally, by clicking on the Detect button, the 

results of the assay analysis will be automatically analyzed by a trained model and displayed on the 

smartphone screen. Fig. S2 illustrates the smartphone app interface operation flow. We also 

provided a video demonstration of the experiment in the supporting materials to further illustrate 

the working principle of the smartphone-based platform.  

Constructing datasets for training the deep learning model  

Under fixed lighting conditions, the image capture results are affected by smartphone camera 

resolution, aperture, focal length, etc. To improve the generalization of the deep learning model to 

different smartphone cameras, we used eight smartphones with different models from popular 

brands to capture the images (the properties of the smartphones as shown in Table S1). When 

acquiring the resultant image, the smartphone was taken at an angle parallel to the µPAD, and it was 

set to the default mode, which further minimized user intervention. In addition, the distance 

between the µPAD and the camera is 7 cm.  

In this paper, 38 artificial plasma samples were prepared, including 19 healthy and 19 non-healthy 

samples. Each sample concentration was tested six times (N=6), subsequently, the results of the 

testing area were image captured using each smartphone, and a total of 48 images were generated 

for each sample. We standardized the image results for all samples into JPEG format, resulting in a 

training dataset with 1824 result images. The details of the construction of the training dataset 

results for different smartphones are shown in Table S2.  

After constructing the dataset, labeling data is an important step in performing the training of the 

deep learning model.[45, 46] Specifically, labeling is the association of input data with corresponding 

labels (healthy, and unhealthy labels in this work), which are used to indicate which features should 

be learned by the deep learning model during the training process. In this study, we used the 

commonly used labeling software to draw bounding boxes for the detected regions in the resultant 

images and labeled their categories to form the dataset. And we defined the results of healthy 

samples as class 0 and unhealthy samples as class 1. After that, 70% of the labeled dataset is used for 

training, 20% for testing, and the rest for validation.  

The structure of the YOLOv5 model  

For achieving image classification of healthy and unhealthy samples, we selected the YOLOv5 deep 

learning model to train the dataset. YOLOv5 deep learning model is widely used in mobile devices 

with limited memory and computational resources (e.g., smartphones) thanks to its efficient and 

lightweight features. Therefore, this work applied the YOLOv5 model to train the dataset. The 



YOLOv5 model mainly consists of four parts: Input, Backbone, Neck, and Head. Here, the size of the 

input image is 640640 pixels. To avoid overfitting the model and to improve the robustness of the 

model, a data argumentation is added to the input module. Data augmentation can increase the 

amount of data for deep learning model training and improve the generalization ability and 

robustness of the model. Commonly used data augmentation for the YOLOv5 model includes HSV 

augmentation, geometric transformation (translation, scaling, rotation, shear, perspective), mosaic, 

and Mixup [47, 48]. In this work, we applied HSV argumentation, geometric transformation, and 

mosaic data augmentation. Among them, HSV (Hue, Saturation, Value) is a commonly used color 

representation, HSV augmentation is the maximum percentage of an image's hue, saturation, and 

value that can be increased or decreased from the original values. The parameters used in our model 

structure are 0.015, 0.7, and 0.4. In addition, translation and scaling data argumentation are also 

used in our model. In our work, the translation value of 0.1 indicates that the maximum translation 

ratio allowed is 10% of the image width or height. In addition, the translation transformation 

prevents the model from being affected by changes in the position of the detection target. The value 

of scale in our model is 0.5, which indicates that the maximum allowable scale is 50% of the original 

size of the image, and this scaling method can avoid over-learning of the image size by the model. 

Mosaic data augmentation is performed by randomly selecting 4 images from the training dataset, 

then randomly scaling, cropping, and arrangement, and finally, normalization is performed. In our 

model, the mosaic parameter is 1.0, which indicates that mosaic data augmentation will always be 

applied during data augmentation.  

Moreover, further enhancement of the dataset improves the generalization ability of the model and 

further avoids sample imbalance. The main role of the Backbone part is to extract the features of the 

image and continuously reduce the feature images. The Neck structure is mainly designed to achieve 

the fusion of shallow features of the image and deep semantic features. In the shallow layer of the 

convolutional neural network, the network extracts some simple features such as color, contour, 

texture, and shape, which belong to features of the image. As the network continues to deepen, the 

neural network will continuously fuse and up-dimension these features to produce new features, 

that belong to semantic features. Moreover, YOLOv5 prediction output is 255x19x19, 255x38x38 and 

255x76x76 feature images. Among them, the smallest size 255x19x19 is responsible for detecting 

large targets, 255x38x38 is suitable for detecting medium targets, and the largest size 255x76x76 is 

relevant for detecting small targets.  

Results and discussion  

The results of artificial plasma sample detection by the platform  



Fig. 5. Automatic sandwich c-ELISA results of Aβ 1-42 peptide in artificial plasma. (a) Calibration curve 

of the mean grayscale intensity versus the Aβ 1-42 concentration (N=6). (b) The results of the 

traditional analytical method (manual analysis using ImageJ) for 38 random Aβ 1-42 peptide 

concentration samples. 

 In this paper, we first carried out automatic sandwich c-ELISA for the detection of Aβ 1-42 peptide in 

artificial plasma on our platform. We prepared four different concentrations (N = 6 for each 

concentration) in 10-fold dilutions (1 pg mL -1 – 1000 pg mL-1 ) of Aβ 1-42 peptide as the sensing 

target for c-ELISA, and the artificial plasma without Aβ 1-42 peptide (0 pg mL-1 ) was used as a 

negative control. After each test, we captured an image of the test zone after each assay with a 

smartphone (iPhone 11). We measured the average grayscale intensity of all test zones by ImageJ. 

Then, the intensity data were fitted using the Hill equation (Fig. 5(a)) for the sigmoidal curve (s-

curve), and the limit of detection (LOD) and coefficient of determination (COD, denoted as R2 ) were 

calculated [18]. The LOD is determined by using the 3𝜎 of the lowest concentration sample (0 pg mL-

1 ) with a value of 10.07 pg mL-1 and the COD (COD = 0.994) represents the strength of a curve 

fitting, and the better the curve fit, the closer the value of COD is to 1.  

In addition, we tested 38 artificial plasma samples, including 19 healthy samples and 19 non-healthy 

samples. We uniformly used an iPhone 11 smartphone to capture the images of the test results and 

measured the average gray intensity of all the tested areas using ImageJ. Then, the detection 

concentration of each sample was obtained based on Hill's equation previously fitted. The detection 

concentration values for each sample are listed in Table S3. Among them, 4 out of 19 healthy 

samples were detected as unhealthy samples, implying that the concentrations of their test results 

were higher than the cut-off value of plasma Aβ 1-42 concentration (16.42 pg mL-1 [16]). Meanwhile, 

1 out of 19 unhealthy samples was detected as a healthy sample. The results are shown in Fig. 5b. 

Thus, we obtained an accuracy of 86.84% ((15 detected healthy samples + 18 detected unhealthy 

samples)/38 total samples) using the conventional analysis method.  



The training results of the YOLOv5 model (The performance of YOLOv5 model)  

 

Fig. 6. The training results of the YOLOv5 model. (a) The target detection accuracy (Precision), and (b) 

Target detection recall. (c) The mean average precision at 0.5 (mAP@0.5). (d) The objectless loss. (e) 

The confusion matrix. (f) The model performance.  



In this work, the performance of the YOLOv5 model is comprehensively evaluated in terms of 

precision, recall, mean average precision (mAP), objectless loss, accuracy, specificity, and sensitivity. 

Before describing the individual performance specifically, it is necessary to realize that the true 

positive (TP) means the sensor (smartphone-based platform) correctly predicts a positive (healthy) 

classification of the sample. The false positive (FP) is defined as the sensor incorrectly determining 

the negative sample (unhealthy sample) to be the positive (healthy) one. The true negative (TN) and 

false negative (FN) follow the same. Typically, the training results of the YOLOv5 model can also be 

evaluated by visualizing the training results. The main observation is the fluctuation of precision and 

recall, and the fluctuation is not large means the training result is relatively satisfactory. Fig. 6(a) 

shows that the precision stabilizes after the 150th epoch (training round). Higher precision means a 

lower probability that an unhealthy sample is predicted to be a healthy sample, which can be 

expressed by Eq. 1. Further, a precision-confidence curve (as shown in Fig. S3) represents the 

recognition precision of each class when the confidence is set to a certain value. As the confidence 

increases, the classes are detected more precisely.  

Recall is used to describe how many real healthy samples are predicted, which is equivalent to the 

sensitivity of the YOLOv5 model and can be expressed by Eq. 2. Fig. 6(b) illustrates that the recall 

produces a substantial boost at the 10th epoch, and then gradually stabilizes. Higher recall means 

fewer healthy samples are predicted to be unhealthy. The recall-confidence curve indicates that the 

high recall rate confirms the effectiveness of the model in real detection tasks (as shown in Fig. S4). 

In addition, the precision-recall curve (as shown in Fig. S5) is a comprehensive evaluation tool that 

illustrates the balance between precision and recall for various confidence thresholds set for model 

predictions. An equilibrium model with high precision and recall ensures accurate identification of 

detections. When the precision-recall curves show consistently high precision and recall values at 

different confidence thresholds, it indicates that the YOLOv5 model performs well in the detection 

task.  

Moreover, the F1-confidence curve (as shown in Fig. S6) is a useful metric for evaluating the overall 

performance of the YOLOv5 model by combining precision and recall into a single metric (as shown 

in Eq. 3). The F1 score is a balanced metric for evaluating the performance of the model because it 

considers both precision and recall.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/( 𝑇𝑃 + 𝐹𝑃 ) (1)  

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃/( 𝑇𝑃 + 𝐹𝑁)  (2)  

𝐹1 𝑠𝑐𝑜𝑟𝑒 = (2 ∗ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙))/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)  (3)  



Fig. 6(c) shows the gradual stabilization of mean Average Precision at IoU 0.5 (mAP@0.5) after the 

75th epoch. mAP@0.5 is a commonly used target detection evaluation metric to measure the 

average accuracy of a model over different categories. It is calculated involving Precision and Recall. 

mAP@0.5 specifically refers to the mAP value at an Intersection over the Union (IoU) threshold of 

0.5. IoU is used to measure the degree of overlap between the predicted bounding box and the true 

target bounding box. The prediction is considered correct when the IoU between the predicted 

bounding box and the true target bounding box is greater than or equal to 0.5. Therefore, mAP@0.5 

represents the average accuracy of the model under an IoU threshold of 0.5. It considers the 

Precision and Recall of the model on different categories and takes their average as the final 

evaluation result. Meanwhile, higher mAP@0.5 values indicate that the model performs better in the 

target detection task, detects the target more accurately, and obtains a lower false detection rate. 

Objective loss (Fig. 6 (d)) is the loss function used to train the deep learning model and is used to 

measure the difference between the model predictions and the true labels. The objective loss 

function is designed to minimize the prediction error of the model so that the model can better fit 

the training data and gradually optimize the parameters of the model during the training process. By 

optimizing the target loss, the model can gradually improve its performance in the target detection 

task and increase the accuracy and precision of target detection. The above four values are the 

commonly used evaluation parameters for the YOLOv5 model.  

In addition, to further evaluate the YOLOv5 model, we analyzed its corresponding confusion matrix 

image (as shown in Fig. 6(e)). From the confusion matrix we can get the value of TP is 0.96, the FN is 

0.04, the FP is 0.02, and the TN is 0.98. Accuracy is a measurement used to indicate the accuracy of a 

classification model in the prediction process. It represents the ratio between the number of samples 

correctly predicted by the model and the total number of samples (as shown in Eq. 3). A higher 

accuracy rate indicates that the model has better classification ability and can assign samples to the 

correct category more accurately. Moreover, accuracy is usually widely used in the context of 

classification balance. Here, the value of accuracy can be calculated as 97%.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑇𝑃 + 𝑇𝑁)/( 𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁)  (3)  

Specificity is the ability of a classification model to correctly predict negative class samples (true 

negative samples). It is a measure of the accuracy of the model in identifying negative class samples. 

Specifically, the specificity can be calculated by Eq. 4 (The value is 98%). A model with high specificity 

means that it is effective in classifying negative class samples correctly and reduces the probability of 

misclassifying negative class samples as positive classes. It is important to note that specificity and 

sensitivity (recall) are complementary metrics. Sensitivity measures the ability of a model to correctly 



predict in a positive class of samples, while specificity focuses on correct prediction in a negative 

class of samples. When evaluating model performance, we usually need to consider the results of 

specificity, sensitivity, and other metrics together to get a full picture of the classification of model 

ability. Based on the results of the parameters we obtained (as in Fig. 6(f)), the YOLOv5 model 

provides promising training results for our dataset.  

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁/(𝑇𝑁+𝐹𝑃)  (4)  

Although there are many metrics for evaluating models, the evaluation of models must consider 

multiple metrics for thorough testing to verify the validity of the model in real-world situations. The 

training environment configuration and the training parameter setting of detection model 

information can be found in Table S4 and S5.  

Android application  

An NCNN framework provided by Tencent as a high-performance neural network forward computing 

framework can port the deep learning models generated on the computer to the smartphone. 

Therefore, in this work, we transfer the YOLOv5 model to the smartphone using the NCNN 

framework to achieve offline detection. Moreover, the Android system smartphone has the 

advantages of low development cost and high versatility (>70% market share worldwide) [49]. 

Therefore, we developed an Android application with simple and user-friendly interfaces capable of 

controlling servo motor rotation via Bluetooth, and automatically performing image processing and 

result analysis, further providing a more convenient platform for data analysis. Specifically, the user 

logs into the interface and selects the project to be tested. After clicking the start button, the user 

connects to the Arduino control board via Bluetooth, if the connection is successful, the user 

continues to click the start button, and the sandwich c-ELISA test will be performed according to the 

pre-programmed protocol. At the end of the test, the sandwich c-ELISA results will be obtained 

through the smartphone camera and analyzed. The result (healthy/unhealthy) will be displayed on 

the screen.  

Conclusion  

This paper presents a smartphone-based automatic μPAD platform featuring a highly integrated 

rotary valve with deep learning-assisted highly accurate offline detection for AD. We utilize a simple 

mechanical rotary structure with signal transmission between a smartphone and a Bluetooth module 

to achieve a simple, highly integrated, and highly stable fully automated c-ELISA assay. The key is that 

this paper realizes offline detection of smartphones, avoiding the need for large-scale computing 

devices and data transmission in the cloud, and can implement real-time monitoring and rapid 

detection even in areas with poorly developed communications. Specifically, to construct the deep 



learning model training dataset, we first simulated 38 artificial plasma Aβ 1-42 samples with 19 

healthy samples and 19 unhealthy samples. After performing the sandwich c-ELISA detection six 

times (N=6) for each sample using a smartphone-based automatic μPAD platform, we used eight 

different smartphones to capture the detection results (to improve the robustness and adaptability 

of the deep learning algorithms) and ultimately collected 1824 results images (38 samples  6 times 

 8 smartphones=1824 images). Then, the YOLOv5 deep learning model was used to train the 

dataset, obtaining an accuracy of 97%, which is 10.16% higher than the conventional curve-fitting 

results analysis method, and it also provides an average accuracy (mAP) of 99.45%. Finally, we utilize 

the NCNN framework provided by Tencent to deploy YOLOv5 deep learning model directly to 

smartphones for offline local detection. Furthermore, we developed a userfriendly smartphone APP 

to control the whole assay process. The unique capabilities of our platform further enhance the 

advantages of μPAD for universal use in lowresource settings and offer great potential and 

opportunities for the development of POCT. At the same time, it provides a feasible approach for 

effective AD detection on a large scale.  
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