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Abstract: To reduce reliance on fossil fuels and promote sustainable energy production, a hybrid 

photovoltaic-thermoelectric generator (PV-TEG) system is devised in this study to realize efficient and 

cyclic utilization of green energy. Nevertheless, the real-world operational environment inevitably results 

in partial shading condition (PSC) and non-uniform temperature distribution (NTD) across PV and TEG 

modules, which adversely distorts their operational characteristics and then compromises efficiency for 

available captured power. To address this, a highly efficient maximum power extraction strategy based 

on a chaotic rime optimization algorithm (c-RIME) is developed to dynamically realize maximum power 

point tracking (MPPT) under diverse operation scenarios. Despite several studies on MPPT for hybrid 

PV-TEG systems, all have only focused on technical performance such as power enhancement, while 

neglecting critical environmental analysis which is actually the motivation for developing these 

renewable technologies. Therefore, to address this gap, this work aims to undertake a systematic analysis 

covering both technical and sustainability assessment. Meanwhile, compared with existing research, 

more complex and realistic operational scenarios are considered in case studies, especially utilizing the 

real-world field-measured datasets from Hong Kong and Ningxia for technical and environmental 

evaluation, respectively. Simulation results demonstrate that c-RIME based MPPT technique can achieve 

the highest output energy (up to 126.67%) compared with prior studies under all testing scenarios while 

contributing to considerable carbon emissions reduction. 

Keywords: Hybrid PV-TEG system, Techno-environmental assessment, Maximum power point tracking, 

Partial shading conditions, Non-uniform temperature distribution, Rime optimization algorithm 

Nomenclature 

Variables 𝑻𝐨𝐩 Operating temperature of TEG, °C 

VPV PV output voltage, V GT Solar irradiance intensity, W/m2 

IPV PV output current, A Tam Ambient temperature, ℃ 

𝑰𝐛 PV cell’s photocurrent, A Ws Wind speed, m/s 

𝑰𝐬 PV cell’s reverse saturation current, A 𝑺𝐏𝐕 PV board area, m2 

𝑻𝐜𝐚 PV cell’s absolute working temperature, ℃ Abbreviations 

𝑵𝐩 Quantity of PV modules arranged in parallel AOA Arithmetic optimization algorithm 

𝑵𝐬 Quantity of PV modules arranged in series AOS Atomic orbital search optimization 

𝑽reverse Shaded cell’s reverse voltage, V CCUS Carbon capture, utilization, and storage 

𝑽𝐁𝐝𝐢𝐨𝐝𝐞 Bypass diode’s voltage drop, V c-RIME Chaotic rime optimization algorithm 

PTEG TEG system output power, W CS Cuckoo search 

PPV PV system output power, W GMPP Global maximum power points 

Voc Open-circuit voltage, V GWO Grey wolf optimizer 



 

 
2 

 

RTEG Internal resistance of TEG, Ω IGBT Insulated gate bipolar transistor 

RL Resistance of load of TEG, Ω INC Incremental conductance method 

Voci Open-circuit voltage of the ith TEG module, V LCA Life cycle assessment 

Isci Short-circuit current of the ith TEG module, A LMPP Local maximum power point 

VLi Terminal voltage of the ith TEG module, V MFO Moth-flame optimization 

RTEGi Internal resistance of the ith TEG module, Ω MPPT Maximum power point tracking 

PTEGi Output power of the ith TEG, W MVO Multi-verse optimization 

PTEG∑ Overall power output produced by the TEG system, W NTD Non-uniform temperature distribution 

PPV-TEG Output power of the PV-TEG hybrid system, W P&O Perturb and observe  

𝜼𝐩𝐯−𝐭𝐞𝐠 Energy generation efficiency of hybrid PV-TEG 

systems 
PSC Partial shading condition 

PV-TEG hybrid system parameters P-T Power-temperature  

q Electron charge, 1.60217733 × 10−19 Cb PV Photovoltaic 

A Ideality factor of p-n junction  PV-TEG Photovoltaic-thermoelectric generator 

K Boltzman’s constant, 1.380658 × 10-23 J/K P-V Power-voltage 

𝜶 Seebeck coefficient, μV/K RIME Rime optimization algorithm 

𝑻𝐡 Hot side temperature, °C RSA Reptile search algorithm 

𝑻𝐜 Cold side temperature, °C SCA Sine cosine algorithm 

∆𝑻 Temperature difference between hot and cold sides, °C SP Series-parallel 

𝑻𝐚𝐯 Average temperature of hot and cold sides, °C SSA Salp swarm algorithm 

𝜶𝟎 Essential element of Seebeck coefficient, μV/K TCT Total-cross-tied 

𝜶𝟏 Seebeck coefficient variation rate, μV/K TEG Thermoelectric generator 

1. Introduction 

A broad consensus has been reached on global action to address climate change, and most countries 

around the world have set clear targets for carbon neutrality [1]. The target of the Net Zero emissions by 

2050 scenario contributes to promoting the optimization and upgrading of the economic, energy, and 

industrial structures, and accelerating the promotion of energy transformation [2]. In this context, the 

renewable energy industry, as a major measure to optimize the industrial structure, needs to promote its 

innovative development and establish the efficient utilization of resources as well as the green low-

carbon development path [3]. A variety of renewable resources such as solar, wind, ocean, and thermal 

energy have achieved breakthrough development in recent years [4], entering a new stage of high-quality 

development. In particular, the photovoltaic (PV) system witnesses a large variety of applications thanks 

to its prominent advantages of abundant resources, pollution-free, and low cost [5]. However, there are 

also two distinctive shortcomings regarding its power generation, (a) relatively low solar energy density 

and (b) vulnerability to varying meteorological factors (e.g., season, location, climate).  

During the photo-electric conversion, a large proportion of absorbed solar energy is dissipated as 

thermal waste [6]. According to the investigation in literature [7], roughly 83% of the incident solar 

irradiance is transformed into heat within the cells. Taking silicon PV cells as an example, although the 

theoretical limit of photoelectric conversion efficiency can reach approximately 25% , the real conversion 

efficiency for standard industrial cells falls within the range of 15 to 18% [7]. This means that PV cells 

convert only a fraction of the absorbed irradiance into electrical energy, with the remainder being 
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transformed into heat energy and wasted. This excess heat cannot be fully dissipated, increasing the PV 

cells' temperature. Such underutilized heat not only reduces modules' operational efficiency but also 

poses a threat to the structural integrity of the PV modules through gradual wear and tear. Research [8] 

has shown that crystalline silicon PV modules experience a reduction in power output of about 15% with 

a 20 °C rise in temperature. During hot summer days, the surface of solar panels can reach a temperature 

of around 66 ℃ or even higher. Therefore, it's critical to devise a strategy that captures this abundant 

solar thermal energy to boost the efficiency of PV power production while protecting PV modules from 

damage [9]. In this work, an effective solution is employed to combine PV and TEG systems as a 

hybridized system, commonly referred to as a hybrid PV-TEG system. This combined system optimally 

facilitates the use of extra heat, both the residual waste heat derived from solar radiation and the part 

generated by PV cells [10]. The collaborative interaction within this hybrid structure not only boosts 

power generation efficiency but also strengthens the operational reliability of PV modules through the 

integration of a cooling mechanism provided by TEG modules [11]. TEG modules, operating on the 

Seebeck effect, i.e., the temperature differential between two distinct metals or semiconductors, can 

convert thermal energy into electrical energy. This ability positions them as an ideal solution for 

electricity generation from excess heat [13]. Thus far, a couple of hybrid PV-TEG configurations have 

been proposed [14], indicating an increase in overall power output ranging from 3% to 16% over 

traditional PV systems. Therefore, integrating TEG modules with PV modules in this manner not only 

elevates the performance of the PV system but also capitalizes on the available waste heat, thus boosting 

overall power output [15].  

Researchers primarily utilize the method of directly affixing TEG modules underneath PV panels 

to construct a hybrid PV-TEG system [16]. Before delving into the electrical dynamics and the interplay 

between PV and TEG modules, it's crucial to define the thermal interaction model. A detailed analysis of 

the connections between the operating temperature of PV components and their output efficiency is 

presented in literature [17]. This examination confirms how the temperature of PV cells/modules is 

influenced by key climatic factors such as solar irradiance, wind speed, and ambient temperature, whose 

insights are also applied in this work to illustrate the thermal energy transfer from PV to TEG modules. 

However, it is pivotal to acknowledge that the environmental conditions during actual operations 

fluctuate dynamically. Obstructions such as verdant trees, physical structures, and transient clouds 

invariably cause partial shading conditions (PSCs) on the PV arrays [18], which is critically linked with 

an escalation in PV cell temperatures called the hotspot effect. The severe increase in temperature not 

only reduces the efficiency of energy production but also can cause permanent damage to the PV cells' 

structure in cases of excessive heat [19]. Meanwhile, the alignment of positioning TEG modules 

underneath PV panels will further spread the adverse effect of PSCs to TEG modules, leading to uneven 

temperature distribution across TEG modules, known as non-uniform thermal distribution (NTD) [20]. 

As PSCs give rise to multiple local maximum power points (LMPPs) on the power-voltage (P-V) curves 

of PV cells, NTD similarly induces LMPPs on the power-temperature (P-T) curves of TEG modules [21]. 

In this context, the exploitation of a robust and reliable maximum power point tracking (MPPT) 

technology to search for the optimal global maximum power point (GMPP) is challenging but also critical 

for optimizing the system's output power, especially in a dynamic environment with irradiation or 

temperature variations [22]. 

To optimize power harvesting by adjusting the operation point under variable operating conditions, 

particularly in the presence of multiple LMPPs under the PSC and NTD, various MPPT strategies have 

been devised for both standalone PV/TEG systems and integrated PV-TEG systems [9]. These strategies 



 

 
4 

 

fall into two broad groups: conventional methods and intelligence-based approaches. Regarding 

traditional MPPT techniques that are designed based on only one LMMP, such as perturb and observe 

(P&O) [24] and incremental conductance (INC) [25], they are struggling to jump out of the complexity 

of multiple LMPPs, resulting in low-energy harvesting. Thus, more advanced approaches are needed. 

Model-free meta-heuristic algorithms are highly effective at reducing the complexity of solutions and 

boosting their self-learning capabilities, making them ideally suited for addressing the aforementioned 

challenges. For instance, in references [26] and [27], horse herd optimization and improved moth flame 

optimization are designed to extract optimal power of PV and TEG systems under rapidly changing 

climatic conditions, respectively. Literature [28] combines grey wolf optimizer (GWO) with cuckoo 

search (CS) to improve steady-state oscillations and conversion time, thus boosting the MPPT 

performance. To outline a comprehensive review, reference [29] summarizes the performance, 

applications, merits, and shortcomings of existing MPPT algorithms in PV systems. Additionally, 

innovative strategies like dynamical surrogate model-based optimization have been proposed for TEG 

system output optimization [30], employing a greedy search to promote convergence and efficiently 

manage heterogeneous temperature variations. Regarding the MPPT for hybrid PV-TEG systems, there 

are only a few studies proposed to solve this problem, but some noteworthy contributions are achieved, 

including the application of an arithmetic optimization algorithm (AOA) for optimal power management 

under dynamic conditions [31] and the use of atomic orbital search optimization (AOS) for stable MPPT 

performance [32]. In particular, literature [33] incorporates salp swarm algorithm (SSA) into MPPT 

designs, showing promising results and proving its effectiveness against a variety of established 

algorithms. 

Nevertheless, the investigation on optimal power harvesting of hybrid PV-TEG systems is still in 

its initial stage and lacks in-depth research and comprehensive discussion. Considering prior studies in 

this field, three main aspects need to be improved. First, existing studies on MPPT of PV-TEG systems 

are limited to analyzing technical performance, such as the enhanced power output after MPPT, while 

overlooking the crucial aspects of sustainability and environmental feasibility, especially the lack of 

analysis and discussion on carbon emissions. This oversight is significant because the motivation behind 

the development of green energy technologies, like PV and hybrid PV-TEG systems, is rooted in their 

potential to reduce carbon emissions, making it an essential criterion for evaluation. This substantial gap 

in the literature hinders the in-depth investigation of the ecological benefits of these technologies and 

fails to adequately evaluate their potential as sustainable energy solutions. Second, the lack of diversity 

in operational scenarios and the absence of real-world data for testing in current research constrain the 

practical applicability of MPPT methods for PV-TEG systems. The utilization of real-world data is 

crucial for bridging the gap between theoretical models and practical implementation. Finally, although 

several MPPT methods are currently proposed for PV-TEG systems and some results have been achieved, 

there is still a lot of room and necessity for further improvements in maximizing power extraction under 

different PSCs. Specifically, developing more efficient MPPT strategies for PV-TEG systems can further 

mitigate the adverse impacts of PSCs on system performance, thereby improving the reliability and 

economic feasibility of PV-TEG system operations. 

To fill up these gaps, this work develops a powerful MPPT technique to harvest the optimal energy 

output of hybrid PV-TEG systems under PSCs. Meanwhile, a more comprehensive validation and 

discussion framework regarding MPPT application in hybrid PV-TEG systems is employed, whose main 

contributions are outlined as follows: 

⚫ To boost the conversion rate of captured solar energy, realize the cyclic utilization of waste heat, 
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boost output energy density, and prolong the service life of PV modules, a PV-TEG hybrid system is 

devised to combine the benefits of both individual systems; 

⚫ For an efficient MPPT performance, a chaotic rime optimization algorithm (c-RIME) based MPPT 

strategy is developed for the proposed PV-TEG hybrid system to realize optimal energy extraction under 

diverse operational scenarios, which can further improve the MPPT performance in global convergence 

rate and extracted energy compared with existing studies; 

⚫ Four case studies involving various temperature and irradiance patterns are employed to simulate 

diverse operational scenarios. Meanwhile, on-site measured datasets collected from four typical days in 

four different seasons in Hong Kong are applied to verify the applicability of the devised MPPT scheme 

in real-world settings, offering a comprehensive and realistic assessment. Simulation results indicate that 

the proposed MPPT strategy for PV-TEG systems outperforms existing studies in output energy; 

⚫ A more balanced evaluation framework that equally prioritizes technical advancements and 

environmental considerations is proposed for the first time to bridge the identified research gap in prior 

work, which involves real-world datasets and benchmark categories for electricity generation to evaluate 

carbon emission reduction benefits. This holds significant real-world relevance as it would contribute 

valuable insights into the optimization of these systems not just for maximum energy output but also for 

minimal environmental impact like carbon emissions, thus truly reflecting the dual objectives of 

renewable energy technologies: energy efficiency and environmental sustainability. 

The remaining of this work is outlined as: Section 2 introduces the modeling of PV, TEG, and hybrid 

PV-TEG systems. In Section 3, the MPPT methodology design and implementation framework are 

elaborated. Section 4 carries out case studies under four testing scenarios. In Section 5, a comprehensive 

techno-environmental assessment regarding the results is undertaken. Section 6 outlines the main 

contributions and some future outlooks. 

2. Mathematical Modelling 

Thus far, the configuration of the hybrid PV-TEG system has been studied by worldwide scholars 

and engineers using different methodologies, such as thermodynamic methodology. For instance, 

literature [12] involves a theoretical exploration of the hybrid system using diverse analytical approaches. 

Literature [34] allocates PV and TEG systems in parallel with the concurrent architectural development 

of two MPPT controllers aiming to elevate the efficiency of energy harvesting. Additionally, reference 

[35] provides a comprehensive review of various integration techniques for hybrid systems, accompanied 

by experimental and numerical analyses aimed at augmenting the output of PV-TEG hybrid 

configurations.  

2.1 PV modeling  

Theoretically, an ideal PV cell generates current through the photovoltaic effect occurring at P-N 

semiconductor junctions, with its equivalent circuit model featuring a source of photogenerated current, 

diodes arranged in parallel, and resistances in both parallel and series configurations [36]. For practical 

use, PV modules are configured in series or parallel arrangements as PV arrays to fulfill specific power 

and voltage requirements [37]. As investigated in literature [21], the dynamics of the output current and 

voltage of a PV array are related as 
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𝐼PV = 𝑁p𝐼b − 𝑁p𝐼s(exp[
𝑞

𝐴𝐾𝑇ca
(
𝑉PV

𝑁s
+

𝑅s𝐼PV

𝑁p
)] − 1)               (1)                                   

where the definition of all variables can be referred to Nomenclature.   

However, in real-world scenarios, partial shading on PV systems, caused by fluctuating weather or 

obstructions, not only diminishes their power output but can also cause permanent damage to the modules 

in extreme cases. Once the PV module or array is shaded, the solar radiation received by the shaded part 

will be reduced, and correspondingly, the output power generated by the shaded part will be decreased. 

The shaded PV cells will serve as energy-consuming devices to consume the excess energy generated by 

other unshaded solar cell strings, leading to decreased energy conversion efficiency. Long-term 

shadowing on PV components can lead to hotspot effects, which can not only affect the performance of 

the individual cell but can also damage the entire solar panel component. To avoid this unfavorable result, 

bypass diodes are usually anti-parallel connected to both ends of the cell string [38]. When a cell group 

is connected in parallel with a bypass diode and encounters a cell malfunction, the entire circuit's current 

is determined by the cell with the least current, which is influenced by the shaded area of the cell. If the 

reverse bias voltage across the malfunctioning cell surpasses its minimum threshold, the bypass diode 

activates, effectively short-circuiting the malfunctioning cell, as shown in Fig. 1 (a). When the cells are 

working normally, the bypass diode cuts off in reverse and does not affect the circuit, as shown in Fig. 1 

(b). However, the introduction of bypass diodes also leads to multi-peak characteristics in the P-V curve 

of PV arrays under PSCs. The incidence of LMPPs is directly proportional to the number of partially 

shaded cells, as delineated in Figs. 1 (c) and (d). Additionally, the voltage of a shaded PV cell operates 

within a set of predefined boundaries, which can be described as follows [10]: 

𝑉reverse = 𝑛𝑉oc + 𝑉Bdiode                            (2) 

where Voc represents the open circuit voltage, while n signifies the number of PV cells that are exposed 

without shielding. Additionally, 𝑉Bdiode is the variable indicating the voltage drop across the diode.  

Currently, the topology configurations commonly utilized for PV arrays include series-parallel (SP) 

and total-cross-tied (TCT) arrangements [38,39]. The TCT connection, in particular, is noted for its 

efficiency in minimizing power loss when faced with PSCs, making it a preferred and widely researched 

connection structure for PV power generation applications. 

2.2 TEG modeling  

A TEG module operates through the assembly of thermoelectric units that incorporate both P-type 

and N-type semiconductors, with high and low temperatures at opposite ends to generate electricity based 

on the Seebeck effect [40]. Figure 2 offers a schematic of a TEG module, in which the mathematical 

relationship between voltage output and the temperature differential across the module is described by 

𝑉oc = 𝛼𝛥𝑇 = 𝛼(𝑇h − 𝑇c)                            (3) 

where 𝑇h  and 𝑇c  indicate TEG's hot and cold ends temperature, respectively, and 𝛼  denotes the 

Seebeck coefficient. 
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Fig. 1. Output characteristics of PV modules under PSCs. (a) with shaded PV cells, (b) without shaded PV cells, (c) P-V 

output curve under PSCs, and (d) P-V output curve without PSCs. 
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Fig. 2. Schematic diagram of a TEG module. 

To accurately model TEG characteristics, a non-zero Thomson coefficient is employed here, as 

demonstrated in Eq. (4), yields 

𝛼(𝑇av) = 𝛼0 + 𝛼1(
𝑇av

𝑇0
)                          (4)                                                    

where 𝛼0 and 𝛼1 are denoted by the essential component and variation rate of Seebeck coefficient, 

setting as (210 μV/K) and (120 μV/K), respectively, while the other variables can be referred to 

Nomenclature. 

Further, for a typical TEG module, its output power is described by [13] 

𝑃TEG = (𝛼∆𝑇)2 ∙
𝑅L

(𝑅L+𝑅TEG)2
                       (5) 

where all the variables can be referred to Nomenclature. 

Achieving optimal power output in a TEG system typically involves arranging multiple TEG 

modules in various configurations within an array. Unlike PV cells, which act as current sources, TEG 

units are considered voltage sources. To enhance their output in terms of both current and power, TEG 

modules are strategically interconnected in series or parallel formations, a practice referred to as SP 

topology. This method not only facilitates efficient power generation but also allows for the refinement 

and optimization of power production [13]: 
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𝐼𝑖 = {
(𝑉oc𝑖 − 𝑉L𝑖) ⋅

𝐼sc𝑖

Voc𝑖
= 𝐼sc𝑖 −

𝑉L𝑖

𝑅TEG𝑖
, if 0 ≤ 𝑉L𝑖 ≤

𝐼sc𝑖

𝑉oc𝑖
, 𝑖 = 1,2, … , 𝑁

0, otherwise 
         (6) 

where all the aforementioned variables are specified in Nomenclature. 

The power output from an individual TEG unit i is expressed by 

𝑃TEG𝑖 = {
𝑉Li𝑖 ⋅ 𝐼𝑖 = 𝐼sci𝑉Li −

𝐼SCi

𝑅TEG𝑖
𝑉L𝑖

2 , if 0 ≤ 𝑉L𝑖 ≤
𝐼sc𝑖

𝑉oc𝑖
, 𝑖 = 1,2, … , 𝑁

0, otherwise 
                 

(7) 

where PTEGi represents the power output from the ith TEG module. 

The overall power produced by a TEG array, which is essentially the aggregate of the power outputs 

of each module within the array, can be expressed as follows: 

 

𝑃TEGΣ = ∑  𝑁
𝑖=1 𝑃TEG𝑖                                                                        (8) 

2.3 Hybrid PV-TEG system modelling 

Since PV and TEG modules are physically integrated, the thermal interaction between PV and TEG 

modules is directly transferred via their physical connection, as shown in Fig. 3. 
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Fig. 3. Integration structure of a hybrid PV-TEG module. 

In the practice and exploration of actual engineering applications, although the SP connection has 

achieved a wide range of applications but shows obvious limitations when applied to the array layout of 

PV power generation, especially under PSCs. In contrast, TEG arrays based on this SP connection mode 

still maintain adaptability and suitability under NTD. Therefore, in this work, PV arrays and TEG arrays 

respectively employ TCT and SP connection pattern, as shown in Fig. 4. 
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Fig. 4. Configurations of PV and TEG arrays. (a) TCT connection structure of PV array with (M×N) modules and (b) SP 

connection structure of TEG array with (M×N) modules. 

 Moreover, dual MPPT controllers and boosting circuits are respectively employed for PV and TEG 

systems for power aggregation, as illustrated in Fig. 5. 
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Fig. 5. Schematic of MPPT structure for hybrid PV-TEG system. 
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Based on this hybrid energy generation pattern, the waste heat produced by PV systems can be 

sufficiently re-utilized by TEG modules while TEG systems also, in turn, enhance PV power production 

efficiency by providing a passive cooling mechanism to lower the operational temperature of PV modules. 

This synergistic relationship, as elaborated in reference [17], is defined through a heat transfer equation, 

which calculates the temperature of the TEG module’s hot side using variables such as ambient 

temperature (Tam), wind speed (Ws), and the intensity of solar irradiance (GT), as follows [17]: 

𝑇op = 0.943𝑇am + 0.028𝐺T − 1.528𝑊s + 4.3                                             (9) 

As shown in Fig. 3, TEG modules are directly configured with their hot sides attached beneath PV 

modules, and their cold side’s temperature equals 𝑇am.  

The overall power generation of this combined system is presented as 

𝑃PV−TEG = 𝑃PV + 𝑃TEG                                            (10) 

Moreover, the efficiency of converting power within the PV-TEG hybrid setup is directly linked to 

the operational efficiencies of the individual PV and TEG units, as follows [29]: 

𝜂pv−teg =
𝑃PV+𝑃TEG

𝐺T×𝑆PV
                                                                      (11) 

where SPV denotes the PV board area. 

3. Methodology and MPPT design 

This section introduces the optimization principles of the proposed c-RIME and its relevant MPPT 

design for the hybrid PV-TEG system. 

3.1   Rime optimization algorithm  

RIME optimization algorithm draws inspiration from the natural phenomenon of rime ice formation 

[41], which is influenced by specific environmental parameters including temperature, wind speed, and 

humidity levels. The algorithm mimics the formation patterns of rime ice, categorized into soft and hard 

rime based on wind conditions. Soft rime grows slowly under light wind conditions with changing wind 

directions, while hard rime forms quickly under strong wind conditions with consistent wind direction. 

RIME algorithm integrates these growth behaviors into exploitation and exploration strategies, 

enhancing its performance in solving optimization problems. For an explicit illustration, the specific soft 

rime and hard rime formation based searching movements are illustrated in Fig. 6 (a) and (b), respectively. 

RIME optimization algorithm draws inspiration from the natural process of rime ice formation, 

which is influenced by specific environmental parameters including temperature, wind speed, and 

humidity levels. Mimicking the formation patterns of rime ice, categorized into soft and hard rime based 

on wind conditions, the algorithm adopts this biological principle to enhance computational and system 

optimization strategies. 

3.1.1  Rime population initialization 

Drawing inspiration from natural processes, each rime represents as an exploratory agent within the 

algorithm and the group of all such agents is considered the algorithm's population. Initially, the entire 

rime population, denoted as R is established, which is comprised of n distinct rime agents, symbolized 
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as 𝐴𝑖 , where each agent further consists of d rime-particles, indicated as 𝑥𝑖𝑗 . Consequently, the 

population of rime agents R is mathematically characterized by the rime-particles 𝑥𝑖𝑗, defined by [41] 

𝑅 = [

𝐴1

𝐴2

⋮
𝐴𝑖

] ; 𝐴𝑖 = [𝑥𝑖1, 𝑥𝑖2 ,⋯ , 𝑥𝑖𝑗]                       (12) 

𝑅 =

[
 
 
 
𝑥11

𝑥21

⋮
𝑥𝑖1

𝑥12

𝑥22

⋮
𝑥𝑖2

⋯
⋯
⋱
⋯

𝑥1𝑗

𝑥2𝑗

⋮
𝑥𝑖𝑗 ]

 
 
 

                          (13) 

3.1.2 Soft rime searching strategy 

Under low wind speed conditions, the growth of soft rime is highly unpredictable, causing rime 

particles to become widely dispersed over the surface, although growing slowly in a uniform direction. 

This study introduces a soft-rime searching method based on this randomness and broad coverage, 

allowing it to quickly explore the entire searching region initially and avoid premature convergence to a 

local optimum. In total of five motions are adopted to simulate particle condensation and calculate the 

positions of rime particles, as summarized in Fig. 6 (a), and the position of each particle is calculated by 

Eq. (14), as follows [41]: 

𝑅𝑖𝑗
new = 𝑅best,𝑗 + 𝑟1 ⋅ cos 𝜃 ⋅ 𝛽 ⋅ (ℎ ⋅ (𝑈𝑏𝑖𝑗 − 𝐿𝑏𝑖𝑗) + 𝐿𝑏𝑖𝑗), 𝑟2＜𝐸        (14)   

where 𝑅𝑖𝑗
new represents the updated position of particle j within rime-agent i, 𝑅best,𝑗  corresponds to 

particle j within the best rime-agent thus far, 𝑟1 means a random factor ranging between -1 and 1 that, 

together with cos𝜃 , determines the particle's movement direction and varies with the iterations, as 

detailed in Eq. (15). The environmental influence 𝛽 changes with the iteration number to mimic external 

conditions and ensures the algorithm's convergence, as described in Eq. (16). Finally, the adhesion degree 

h, denotes a random value between 0 and 1.  

𝜃 = 𝜋 ⋅
𝑡

10⋅𝑇
                                (15) 

𝛽 = 1 − [
𝑤⋅𝑡

𝑇
] /𝑤                            (16) 

𝐸 = √(𝑡/𝑇)                                (17) 

where t and T denote the current and maximum iteration number, respectively, and w is set as 5. 
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Fig. 6. Schematic of rime searching movements. (a) soft rime searching and (b) hard rime puncturing. 

3.1.3 Hard rime puncture mechanism 

In the context of intense wind conditions, hard rime develops in a straightforward, consistent manner. 

Inspired by this puncturing behavior, a hard-rime puncture pattern is designed to refine the algorithm's 

effectiveness. This allows for the exchange of particles between agents, a critical feature designed to 

improve the algorithm's ability to converge towards optimal solutions and avoid local optimums 

effectively. The puncturing process is illustrated in Fig. 6 (b), with the particle exchange described in Eq. 

(18), as follows [41]: 

𝑅𝑖𝑗
new = 𝑅best,𝑗

, 𝑟3 < 𝐹normr(𝑆𝑖)                       (18) 

where 𝐹normr signifies the normalized fitness value of current agent and 𝑟3 denotes a random number 

within the range of (-1, 1). 

3.1.4  Positive greedy selection mechanism 

To further augment the algorithm's capacity for global search, an advanced greedy selection method 

is introduced. This involves comparing the fitness value of an agent post-update with its pre-update value. 

If the new value shows improvement, both the fitness value and the agent's solution are updated. This 

not only ensures the continuous presence of high-quality agents within the population, enhancing the 

overall solution quality but also introduces significant changes in agent positions across iterations. Such 

dynamic changes can lead to some agents performing worse than before the update, potentially hindering 

progress in subsequent iterations. However, this mechanism is designed to steer the population towards 

more optimal outcomes with each iteration, ensuring a more effective evolutionary process.  

Overall, the execution framework for RIME is tabulated in Table 1. 

Table 1. Pseudo-code of RIME for solving optimization problems 

Initialization of rime population R 

Determine the best agent at the current iteration and its fitness value 

While t ≤T 

Determine the coefficient of adherence E via Eq. (17) 

     If r2 <E 

       Update rime positions employing soft-rime searching via Eq. (14) 

     End If 

     If r3 >Normalize fitness of Si 

      Undertake hard-rime puncturing operation via Eq. (18) 

     End If 

If F(𝑅𝑖
new) ＜ F(Ri) 

       Solution evaluation and update based on positive greedy selection 

     End If 

     t = t+1 

End while 
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  Chaotic rime optimization algorithm  

The initialization of a population algorithm significantly influences its subsequent searching 

efficiency. In the absence of prior information, initial solutions in RIME are often generated through 

random initialization, resulting in an uneven distribution of individuals within the initial population. This 

uneven distribution can lead to reduced diversity and lower quality of population, consequently affecting 

the convergence process. Chaos mapping [42], characterized by randomness and sensitivity, can 

simultaneously improve the solution diversity and contribute to jumping out of the local optimums. 

Commonly used chaos mappings include Logistic mapping, Tent mapping, and Circle chaos mapping. 

Among these, Circle mapping is noted for its stability and high coverage of chaotic values. However, 

considering that the Circle mapping has a denser value distribution between 0.2 and 0.6, leading to an 

uneven distribution, improvements to the Circle mapping formula have been proposed to achieve a more 

uniform distribution. The original expression for Circle chaos mapping is [43]: 

𝑥𝑛+1 = mod(𝑥𝑛 + 0.2 −
0.5

2𝜋
sin(2π𝑥𝑛),1)                 (19) 

𝑥𝑛+1 = mod(𝑥𝑛 + 0.2 −
0.5

2𝜋
sin(2π𝑥𝑛),1)                 (20) 

The expression for the improved Circle chaos mapping is as follows: 

𝑥𝑛+1 = mod(3.85𝑥𝑛 + 0.4 −
0.7

3.85𝜋
sin(3.85π𝑥𝑛),1)            (21)                                    

where n represents the dimension of the solution. 

Figure 7 illustrates an explicit comparison of the improved Circle mapping for initialization with 

Tent chaos mapping and Logistic chaos mapping. The results show that the Logistic mapping has a 

relatively uniform probability distribution in the middle range, but probabilities are significantly higher 

at both ends. This characteristic is disadvantageous for locating the global optimum when it does not 

reside at the extremes of the design variable space. Secondly, although the Tent mapping exhibits 

relatively good ergodicity, its iteration sequences contain short cycles and unstable periodic points, 

leading to potential stability in the sequences and algorithm failure. Lastly, the improved Circle mapping 

is more stable and exhibits better uniformity in distribution. Therefore, this work employs the improved 

Circle mapping to initialize the RIME population, aiming to enhance and improve the initial population's 

distribution quality in the search space, thereby strengthening its global searching capability. 

 

Fig. 7. Population initialization distribution of three chaos mapping methods. 
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3.2 MPPT design for PV-TEG system under PSC 

3.2.1 Objective function design 

According to the practical operational requirements, the voltage outputs derived from both PV and 

TEG systems are considered as adjustable variables open to optimization. The fitness function at each 

control iteration can be precisely articulated by real-world voltage and current data, as follows:  

min𝑓(𝑉PV) = −𝑃out(𝑉PV) = −𝑉PV ∗ 𝐼PV(𝑉PV)               (22)                                          

s. t. 𝑉PV
min ≤ 𝑉PV ≤ 𝑉PV

max                                                             (23) 

where 𝑃out represents the power produced by PV system. Simultaneously, 𝑉PV
min and 𝑉PV

max denote the 

minimal and maximal constraints of its output voltage, defining the boundary conditions within which 

the output voltage operates. 

The establishment of the fitness function for TEG systems resembles the approach employed for 

PV systems, as outlined below 

min𝑓(𝑉TEG) = −𝑃out(𝑉TEG) = −𝑉TEG ∗ 𝐼TEG(𝑉TEG)            (24)                                   

s. t. 𝑉TEG
min ≤ 𝑉TEG ≤ 𝑉TEG

max                                                  (25) 

where 𝑃out indicates the power generated by TEG system, 𝑉TEG
minand 𝑉TEG

max indicate the minimal and 

maximal constraints of TEG system's output voltage, defining the allowable operational range for power 

output. 

3.2.2 Boost converter model 

To implement MPPT control to optimize the power output, the essential execution basis is by 

adjusting the power converter’s duty cycle. By fine-tuning the duty ratio, MPPT techniques seek to 

identify the optimal operating point that yields the highest power output. The boost circuit is often 

characterized as a non-isolated DC-DC converter designed to increase the voltage from its input power 

source to a desired level [44]. For a more intuitive demonstration, Fig. 8 shows how the proposed c-

RIME based MPPT algorithm and boost converter work together to optimize energy conversion in a PV-

TEG hybrid system under PSCs. 

c-RIME based MPPT controller

Eqs.(12)-(21)
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Fig. 8. c-RIME based MPPT controller for hybrid PV-TEG system under PSCs. 

In Fig. 8, VPV-TEG indicates the output voltage from this configuration. Meanwhile, 𝑉out signifies 

the voltage associated with the improvement of the boost circuit. Further exploration reveals that 

parameter f denotes the switching frequency related to the IGBT and its subsequent control cycle. 𝐼L 
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and 𝐼Lmax are used to represent the standard and maximum currents flowing through inductor L. In detail, 

𝑉out, the inductor L, and the filter capacitance 𝐶1, are determined as  

𝑉out =
𝑉PV-TEG

1−𝐷c
                                                                               (26) 

𝐿 =
𝑉out

4𝐼Lmax×𝑓
                                                                               (27) 

𝐶1 = 𝐿 ×
(𝐼L+𝐼pmax/2)

2
−(𝐼L−𝐼pmax/2)

2

(𝑉in+0.005𝑉in)2−(𝑉in−0.005𝑉in)2
                     (28) 

A detailed presentation of parameters associated with the boost circuit, specifically tailored for the 

dual subsystems present in the PV-TEG hybrid setup, is tabulated in Table 2. Generally, DC-DC 

converters inherently encounter power dissipation, consequently, the efficiency of tracking associated 

with MPPT technology can be expressed in the following manner: 

𝜂MPPT =
𝑃PV−TEG(𝑡)

𝑃max(𝑡)
× 100                                                              (29) 

At a specific time point, labeled as t, the hybrid system reaches a particular power output denoted 

as PPV-TEG(t).  

Table 2. Critical parameters of boost circuits 

Parameter PV system TEG system 

Capacitor C1=C2=1 μF C1=66 μF, C2=200 μF 

Inductor(L) 500 mH 250 mH 

Resistive load(R) 200 Ω 10 Ω 

Switching frequency 100 kHz fs=20 kHz 

3.2.3 MPPT implementation procedure 

In the realm of integrated PV-TEG setups, MPPT operation seamlessly incorporates distinct 

techniques inherent to each subsystem. Highlighting the non-model-based MPPT strategy, it relies on the 

accurate measurement of two essential parameters: voltage and current. Based on the aforementioned 

introduction, the MPPT implementation procedures of the proposed c-RIME based MPPT control 

strategy are demonstrated in Fig. 9, which aims to maximize the power output and mitigate the 

undesirable impacts of PSCs.  

4. Case Studies 

This section verifies the effectiveness of the proposed c-RIME based MPPT controller for the 

designed PV-TEG hybrid system under various operational conditions of PSCs and NTD. In detail, four 

different scenarios are employed, namely, startup test, stepwise solar irradiation variations, random solar 

irradiation fluctuations, and real-world scenarios based on field atmospheric data collected from Hong 

Kong. At the same time, to simulate the PSCs and NTD under extreme conditions, the partial shading 

factors of the three PV-TEG modules are respectively set as 1, 0.6, and 0.3. This design is particularly 

challenging for random fluctuations in solar irradiation and Hong Kong tests, which heavily rely on the 

algorithm’s global optimization capabilities. 
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Fig. 9. MPPT implementation framework for hybrid PV-TEG system using c-RIME under PSCs. 

For a comprehensive comparative analysis, conventional P&O, and eight additional well-known 

meta-heuristic algorithms, including reptile search algorithm (RSA) [45], multi-verse optimization 

(MVO) [46], moth-flame optimization (MFO) [47], sine cosine algorithm (SCA) [48], as well as three 

algorithms that have been utilized to solve this problem in prior work, i.e., AOA [31], AOS [32], and 

SSA are employed. To maintain consistency and fairness in the comparison, the population size (Np) has 

been identically set as 10, while the maximum iteration number (kmax) is designed as 5. Furthermore, for 

INC and P&O, their step sizes are set as 10-7. Meanwhile, the critical component parameters of the 

designed PV-TEG hybrid system are tabulated in Table 3.  

Table 3. Critical parameters of PV-TEG hybrid system 

PV module TEG module 

Type User-defined Type TGM199-1.4-2.0 

Typical peak power 213.15 W Parameter measurement conditions Tc=30 ℃, Th=200 ℃ 

MPP Voltage 29.00 V Component dimensions 40 mm×40 mm×4.4 mm 

MPP current 7.35 A Typical peak power 7.3 W 

Short-circuit current(Isc) 7.84 A Isc 2.65 A 

Open-circuit voltage(Voc) 36.30 V Voc 11 V 

Temperature coefficient of Isc(k1) 3 mA/℃ Number of thermoelectric units 200 

4.1 Startup test 

Startup test aims to assess the capability of MPPT techniques to adapt to uneven solar irradiance 

across PV arrays, which mimics real-world conditions where shadows from nearby objects or static 

clouds create non-uniform irradiance distribution. This test simultaneously validates the MPPT 

algorithm’s responsiveness and the stability of its convergence from an initial zero point, focusing on 

how quickly and reliably the system can reach and maintain the maximum power point during the initial 

phase under PSCs. To simulate PSCs and NTD on hybrid PV-TEG modules, the solar irradiation levels 
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for three PV arrays are respectively set at varied intensities: 800W/m2, 600W/m2, 700W/m2, while the 

ambient temperature is maintained at 25 ℃. Regarding the calculation of hot side input temperature for 

TEG modules, it can be determined using Eq. (9) with the assumption that the cold side temperatures are 

consistently maintained at 25 ℃. This setup allows for the analysis of the TEG modules' performance 

under controlled temperature differences, which is crucial for optimizing energy conversion efficiency. 

Figure 10 demonstrates the power and energy output obtained by ten various MPPT algorithms under 

startup test, which indicates that c-RIME outperforms other algorithms in terms of both power and energy 

output under PSCs and NTD.  

 

(a) 

 

(b) 

Fig. 10. Start-up test results of ten MPPT techniques for hybrid PV-TEG system. (a) power output and (b) energy output. 

Figure 10(b) indicates that c-RIME reaches a higher energy output level quicker than its competitors, 

such responsiveness is critical for PV-TEG systems to maximize energy harvest under PSC. Meanwhile, 

Figure 10(a) suggests a stable convergence of c-RIME to the maximum power point, which is essential 

for ensuring reliable energy output in fluctuating environmental conditions. 
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4.2 Stepwise variations in solar irradiation  

This section investigates the scenario where clouds move at a high speed while the environmental 

temperature remains at 25℃, and its influence on the energy output of PV-TEG hybrid modules. From 

Fig. 11, it can be observed that every individual PV panel witnesses different step changes in solar 

irradiation, such that the input temperature of each TEG module’s hot side is correspondingly calculated 

and changed according to Eq. (9). 

 
Fig. 11. Step changed solar irradiation under PSCs. 

For this case, to ensure the consistency of atmospheric conditions, the Ws persists at a constant 1.5 

m/s. Figure 12 depicts the optimal simulation results obtained by different methods under stepwise solar 

irradiation variations. 

 
(a) 
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    (b) 

Fig. 12. Stepwise variations in solar irradiation test results of ten MPPT techniques for hybrid PV-TEG system. (a) power output 

and (b) energy output.  

Figure 12 (b) indicates that c-RIME not only adapts quickly but also maximizes energy output more 

efficiently than its competitors within the test duration. For instance, during the narrow time window 

between 1.95 and 2.25 seconds, c-RIME shows a remarkable ability to enhance energy accumulation, 

which is pivotal during transient weather conditions. Consistent with its energy output superiority, c-

RIME also demonstrates outstanding adaptability in power output under stepwise changes in solar 

irradiance. It can be seen from Fig. 12(a) that c-RIME shows a more pronounced ability to sustain higher 

power levels immediately and stably following the step changes, which suggests that c-RIME can better 

maintain optimal operation points and minimize performance drops due to environmental fluctuations. 

4.3 Stochastic change in solar irradiation 

To more realistically reflect the operating dynamics of PV systems during the peak summer season, 

where sunlight can cover up to 12 hours, continuous and random fluctuations in irradiance conditions 

over a 12-hour daylight cycle is employed here, as shown in Fig. 13. 

 
Fig. 13. Stochastic irradiation change of hybrid PV-TEG system. 

In this scenario, the hot side of TEG modules undergoes both consistent and random thermal 
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fluctuations over 12 hours. It is crucial to highlight that, to more accurately mirror actual environmental 

conditions, the wind speed, denoted as Ws, is specified within a range spanning 1 to 10 m/s in this case. 

This simulation provides a rigorous test of the MPPT algorithms' ability to adapt to highly variable and 

unpredictable environmental conditions. It underscores the importance of algorithm responsiveness, 

adaptability, and efficiency in managing the unpredictable nature of solar energy availability, thermal 

fluctuations, and the impact of wind speed on system performance. MPPT outcomes obtained by ten 

distinct methods are illustrated in Fig. 14.  

 

(a) 

 

(b) 

Fig. 14. Stochastic change in solar irradiation test results of ten MPPT techniques for hybrid PV-TEG system. (a) power output 

and (b) energy output.  

Figure 14 (a) demonstrates that c-RIME shows remarkable adaptability, maintaining higher power 
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levels compared to other algorithms such as AOS, AOA, SSA, MFO, MVO, RSA, SCA, P&O, and INC, 

particularly during peak irradiance hours such as time from 13:00 to 15:00. This indicates superior 

algorithm efficiency in converting available solar energy into electrical power during periods of 

maximum irradiance. The energy output in Fig. 14 (b) further evidences the superiority of c-RIME 

algorithm in efficiently accumulating energy over time, outpacing competitors throughout the day. For 

instance, the detailed energy output during the midday hours (e.g., between 10:00 and 11:00) emphasizes 

c-RIME's consistent performance even as conditions rapidly change. This highlights the algorithm's 

robustness and reliability in optimizing energy harvest under stochastic environmental variability. 

4.4 Field-measured temperature and solar irradiation data in Hong Kong 

In this section, to validate the performance of these MPPT algorithms under real-world conditions, 

real solar irradiance and temperature datasets collected from four distinct days representing the seasons 

in Hong Kong in 2022 are utilized, which are recorded at ten-minute intervals. Simulation and theoretical 

models provide a controlled simulation environment for the feasibility and initial testing of MPPT 

algorithms. However, incorporating real-world data introduces the complexity and unpredictability of 

natural conditions, thus providing a robust validation framework. By analyzing algorithm performance 

with actual temperature and solar irradiation variations, the adaptability and robustness of MPPT 

algorithms to environmental changes can be more practically assessed. Hong Kong is situated in the 

southern coastal region of China, characterized by a subtropical climate. This climate type is marked by 

hot, humid summers and mild, with temperatures frequently ranging from 26 °C to 33 °C. Winters are 

mild and relatively dry, and temperatures during this season typically range from 10 °C to 20 °C. Due to 

its geographical location and climatic conditions, Hong Kong experiences significant seasonal variations 

in solar irradiation and ambient temperatures, making it an ideal case study for evaluating MPPT 

algorithm performance in real-world operation conditions. Figure 15(a) shows the locations where the 

data are sampled, at 22.3°N and 114.2°E, respectively. Figure 15(b) demonstrates the specific instruments 

used for measurements within this study. To mimic PSCs, the solar irradiances of three PV panels are set 

as 100%, 60%, and 30% of the measured data in Hong Kong to symbolize the long-term, continuous 

graded changes. In this case, the wind speed Ws is designed within a range of 1-10m/s. 

 

(a)                                                      (b)                                                                                                  

Fig. 15. Solar radiation and temperature measurement device and its location. (a) measurement location and (b) measurement 

device. 

On-site collected irradiance data is illustrated in Fig. 16 (a), representing four distinct days across 

the four seasons in Hong Kong, meanwhile, Fig. 16 (b) demonstrates the corresponding changes in 

Measurement 
device
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ambient temperature. 

 

(a)  

 

  (b)                                                                                              

Fig. 16. Temperature and irradiation distribution of four typical days in Hong Kong. (a) Solar irradiation and (b) Temperature. 

Figures 17 and 18 show optimal output power and energy obtained by ten methods using on-site 

measurement data from Hong Kong across four typical days representative of spring, summer, autumn, and 

winter. Simulation results verify its consistent outperformance across all seasons, suggesting that c-RIME is 

highly adaptable, efficient, and reliable regardless of the seasonal variability in solar irradiance and 

temperature. For instance, in spring, the power output for all MPPT techniques appears relatively moderate, 

where c-RIME algorithm, however, demonstrates a slightly higher power output compared to other algorithms, 

indicating its efficient adaptability to the mild and variable spring conditions in Hong Kong. The summer data 

shows a significant increase in power output for all techniques, which corresponds with the higher solar 

irradiance levels characteristic of Hong Kong's summers. Again, c-RIME algorithm stands out, achieving the 

highest power output among the techniques tested. Regarding the energy output in Fig. 18, across all seasons, 

c-RIME consistently achieves the highest energy output, underscoring its adaptability and efficiency in a wide 

range of environmental conditions, which highlights the algorithm's superior optimization capabilities for 

maximizing energy harvest. 



 

 
23 

 

 

(a)  

 
(b) 

 

(c) 
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(d) 

Fig. 17. Power obtained under four different typical days in Hong Kong. (a) Spring, (b) Summer, (c) Autumn, and (d) Winter. 

 
(a)  

 

(b) 
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(c) 

 

(d)                

Fig. 18. Energy obtained by ten MPPT techniques under four different typical days in Hong Kong. (a) Spring, (b) Summer, (c) 

Autumn, and (d) Winter. 

5. Techno-environmental assessment 

This section presents a systematic techno-environmental analysis, aiming to not only evaluate the 

energy enhancement performance of the PV-TEG system after MPPT, but also discuss its environmental 

benefits, emphasizing the importance of incorporating carbon emission analysis into the research and 

assessment of renewable energy technologies. 
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5.1 Technical assessment 

In this section, the performance analysis tends to focus on the technical aspects of the simulation 

results, which are crucial to understanding the performance dynamics of various MPPT strategies under 

various operating conditions and thus gaining insights into their efficiency and stability. The focus of this 

analysis is the energy output under different operating scenarios, which is the most critical indicator to 

measure the MPPT scheme's ability to improve energy conversion under adverse operating conditions. 

In addition, the maximum and average fluctuations of power output, represented by Δ𝑣max and Δ𝑣avg, 

are employed as evaluation indicators representing the system's operational stability, defined by 

Δ𝑣avg =
1

𝑇−1
∑  𝑇

𝑡=2
|𝑃out(𝑡)−𝑃out(𝑡−1)|

𝑃out
avg                                                (30) 

Δ𝑣max = max
𝑡=2,3,⋯,𝑇

 
|𝑃out(𝑡)−𝑃out(𝑡−1)|

𝑃out
avg                                                  (31) 

where T and t respectively indicate the total and current operation time and 𝑃out
avg

 represents the average 

power output of the PV-TEG system throughout the entire operational period. 

Table 4 shows the statistical outcomes derived from the application of various MPPT strategies on 

PV-TEG hybrid systems, covering nine distinctive approaches within four afore-discussed testing 

environments. It is noteworthy that P&O is excluded from this comparison, which is due to the methods' 

tendency to quickly fall into local optimum during the initial phase of seeking the maximum power point. 

As a result, it exhibits minimal fluctuations, but this is attributed to its premature convergence, which is 

evident from Figs. 10, 12, 14, 17, and 18, where the energy extracted by P&O is among the lowest under 

various testing conditions. Consequently, the power fluctuation metrics for P&O do not provide 

meaningful reference value and are therefore excluded from the comparison to avoid misleading readers. 

Here, the output energy output of P&O under various scenarios is listed separately: 149.99 and 786.09 

W·s for startup test and stepwise variations in irradiation, respectively; 2.0679, 0.6128, 2.1135, 2.2351, 

1.2263 10-3kW·h for stochastic change in irradiation, spring, summer, autumn, and winter day in Hong 

Kong, respectively. From Table 4, it can be seen that across all testing scenarios, c-RIME consistently 

shows the highest energy output, indicating its superior ability to optimize energy conversion under 

varying operational conditions. For instance, in the startup test, the output energy of c-RIME is 146.49%, 

119.58%, 106.90%, 104.12%, 102.76%, 101.99%, 126.67%, and 103.16% to that of P&O, SCA, RSA, 

MVO, MFO, SSA, AOA, and AOS, respectively. In particular, this trend is consistent across the seasonal 

data collected in Hong Kong, verifying its effectiveness in real-world environmental conditions. For 

instance, the output energy obtained by c-RIME under the winter day is 135.25%, 112.46%, 116.16%, 

106.54%, 103.81%, 103.59%, 114.85%, and 106.53% to that of P&O, SCA, RSA, MVO, MFO, SSA, 

AOA, and AOS, respectively. Meanwhile, c-RIME generally exhibits lower fluctuation metrics 

compared to other methods, signifying better operational stability. For example, during the start-up test, 

c-RIME’s Δ𝑣max is 12.99% while Δ𝑣avg following a similar pattern, which is significantly lower than 

other methods, reflecting its capacity to maintain stable operation under uneven distribution in solar 

irradiation conditions. While c-RIME consistently delivers the highest energy output, its fluctuation 

indicators are not always the lowest since c-RIME prioritizes energy capture over absolute stability. 

However, its fluctuations remain within a reasonable range, suggesting a balanced approach to 

maximizing energy yield while maintaining system stability.
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Table 4. Statistical results of various methods under four case studies  

Testing scenarios Indicators SCA RSA MVO MFO SSA AOA AOS c-RIME 

Start-up test Energy(W·s) 183.74 205.54 211.03 213.82 215.44 173.47 212.99 219.72 

Δ𝑣max(%) 30.0100 34.6369 35.1643 21.1106 32.3056 39.4998 26.7512 12.9878 

Δ𝑣avg(%) 0.2310 0.4550 0.4580 0.3053 0.1757 0.2004 0.3527 0.1513 

Stepwise variations in solar irradiation  

 

Energy(W·s) 830.83 906.44 928.42 900.4781 943.98 918.03 939.64 957.72 

Δ𝑣max(%) 34.6273 34.4243 23.4959 26.7158 26.3940 33.0741 28.9016 20.2471 

Δ𝑣avg(%) 0.5496 0.5682 0.3419 0.4774 0.4927 0.7601 0.5893 0.3203 

Stochastic change in solar irradiation Energy(10-3kW·h) 2.2945 2.2459 2.3969 2.4881 2.5257 2.1886 2.4194 2.5834 

Δ𝑣max(%) 35.5567 37.4670 30.1188 26.8605 24.9954 31.0313 29.6441 22.5967 

Δ𝑣avg(%) 1.4053 1.4129 0.9026 0.4280 0.3557 0.3973 0.6630 0.3383 

Field measured temperature and solar 

irradiation data in Hong Kong 

 

Spring 

Energy(10-3kW·h) 0.7373  0.7646  0.8099  0.8357  0.8476 0.7506  0.7891  0.8672  

Δ𝑣max 7.9207 6.2128 6.9227 10.9795 8.3556 5.3814 11.5727 9.7217 

Δ𝑣avg 0.0480 0.0776 0.0431 0.0548 0.0397 0.0214 0.0735 0.0382 

 

Summer 

Energy(10-3kW·h) 2.4708  2.3860  2.5637  2.6361  2.6537  2.4150  2.5750  2.7287  

Δ𝑣max 7.1022 4.9077 5.5565 6.8977 6.5836 4.8425 9.5050 9.2736 

Δ𝑣avg 0.0459 0.0699 0.0324 0.0354 0.0421 0.0285 0.0618 0.0485 

 

Autumn 

Energy(10-3kW·h) 2.5415  2.4456  2.7005  2.7045  2.7481  2.4499  2.4869  2.7826  

Δ𝑣max 9.7391 6.7597 7.4047 9.1448 9.0798 5.8054 6.9300 8.9688 

Δ𝑣avg 0.0571 0.0917 0.0492 0.0435 0.0404 0.0440 0.0888 0.0397 

 

Winter 

Energy(10-3kW·h) 1.4748  1.4279  1.5568  1.5977  1.6011  1.4441  1.5569  1.6586 

Δ𝑣max 10.5568 7.3548 8.1969 11.3000 8.1821 6.8893 13.5449 9.1496 

Δ𝑣avg 0.0628 0.0949 0.0524 0.0499 0.0397 0.0369 0.0872 0.0340 
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5.2 Environmental assessment 

The essence and motivation behind developing various renewable energy technologies lie in 

transitioning from traditional energy structures to reduce environmental impact, foster sustainable 

development, and accelerate progress towards Net Zero goals. However, a substantial gap exists in 

previous research regarding comprehensive environmental analysis of these systems. The energy sector 

stands as the world's largest carbon emitter, with traditional power plants, predominantly coal-fired and 

gas-fired units, significantly contributing to atmospheric pollution and extensive emissions of greenhouse 

gases. While the carbon capture, utilization, and storage (CCUS) technique has been implemented in 

coal-fired and gas-fired units to reduce CO2 emissions, their carbon footprint remains significantly larger 

compared to purely renewable energy systems. 

Meanwhile, the application for PV-TEG hybrid systems is still under the research and development 

stage without large-scale commercial application, thus specific data on their combined carbon emissions 

are still blank. In this context, this research chooses to base its environmental analysis on the available 

data from standalone PV systems. Additionally, given that the contribution of the TEG part to the whole 

system's power production is relatively minor (e.g., only one-thirtieth of the PV system's power 

generation capacity), the inclusion of TEG, while it does impact the system's overall energy efficiency 

and carbon emissions, is anticipated to have a marginal effect when considering the scale of its 

contribution. Thus, given the constraints of current data and research, utilizing data from standalone PV 

systems for environmental analysis is a reasonable and practical approach. This method can provide 

valuable insights into the potential contributions of the PV component of the hybrid system toward 

reducing carbon emissions. To this end, a comprehensive comparative assessment framework is designed 

incorporating the carbon emission factors of different fuel types for electricity generation, which include 

PV power generation, coal-fired, coal-fired with CCUS, gas-fired with CCUS, and general power grid 

emission factors. The method for calculating carbon reduction benefits is detailed as: Based on the 

optimized PV energy output, the carbon reduction benefits are derived by comparing the carbon emission 

factors of various types of electricity generation with the carbon emission factor of PV power generation 

[49], as follows:  

𝑅𝐶𝐸 =  𝐸gen  × 𝐸𝐹pv − 𝐸gen  × 𝐸𝐹other                  (32) 

where 𝑅𝐶𝐸 denotes the reduced carbon emissions, 𝐸gen denotes the energy output, 𝐸𝐹pv signifies the 

PV system’s carbon emission factor, and 𝐸𝐹other denotes the carbon emission factor of other fuel types 

for electricity generation.  

This work employs the real yearly output power data from a PV station located in Ningxia Hui 

Autonomous Region in China for calculation, whose installation capacity is 130 kW. The PV power 

generation curve of this PV station throughout the whole year of 2022 is demonstrated in Fig. 19, with a 

data sampling interval of 15 minutes. Besides, according to the technical results, the proposed c-RIME 

can considerably improve the output energy compared with the traditional P&O method which serves as 

the most commonly used MPPT strategy in China’s real-life PV stations across different regions and 

system scales. Considering the differences in location and the corresponding atmospheric conditions, this 

section employs the average energy enhancement ratio of c-RIME to P&O. According to the PV output 

data, the total output energy of this PV station can be further calculated, with the result of 210336.30 and 

277818.36 kWh using P&O and c-RIME MPPT strategy, respectively. Additionally, it should be noted 
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that since the MPPT algorithm proposed is suitable for black-box scenarios, it can be generalized as a 

universal MPPT strategy for the system studied.  

 

Fig. 19. Power output of a PV station in China with a capacity of 130 kW in 2022. 

Based on the reported carbon emission data in literature [50-53], Table 5 presents a detailed analysis 

of carbon emissions based on various benchmark categories for electricity generation in China, all 

compared under the same condition of generating 277818.36 kWh of electricity. Table 5 clearly illustrates 

that compared to traditional and even some modernized fossil fuel-based technologies, optimized PV 

technology can significantly reduce carbon emissions. In detail, compared with coal-fired, coal-fired with 

CCUS, gas-fired with CCUS, and China national grid’s average emission factors, PV power generation 

equipped with efficient MPPT technique can achieve a significant RCE of 278373.998 kg, 243646.702 

kg, 108904.797 kg, and 158356.465 kg. This emphasizes the environmental benefits of developing and 

implementing PV technologies, which are crucial for promoting net-zero initiatives and mitigating 

climate change impacts.  

Table 5. Carbon emission evaluation results 

Benchmark 

category 

Technology type CO2 emission factor for 

electricity generation  

(kg CO2/kWh) 

Total CO2 emission 

(kg) 

Coal-fired 

units 

Conventional high-pressure coal-fired units 1.063 295320.917 

Coal with CCUS 0.877 243646.702 

Gas-fired units Gas with CCUS 0.392 108904.797 

Power grid  Average emissions of China’s national power grid 0.570 158356.465 

PV system PV system with c-RIME MPPT 0.061 16946.919 

To summarize, considering both technical and environmental results, it can be concluded that the 

developed MPPT technology continuously maintains the system's operation at its optimal power point, 

regardless of changing environmental circumstances. This means that more electricity can be generated 

from the same area of PV panels compared to systems without MPPT technology or less effective MPPT 

technologies, lowering the carbon intensity of electricity production. Meanwhile, the environmental 

benefits of PV power generation have been evidenced in Table 5. In general, proper MPPT technology 
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can further enhance the performance and reliability of PV systems, facilitating the incorporation of a 

larger share of renewable energy sources into the power grid to replace traditional fossil fuel generation. 

The reduction in fossil fuel use and associated carbon emissions, coupled with an increase in green 

energy's share, promotes the energy structure's optimization and transition towards lower carbon 

footprints. 

6. Conclusions 

This work designs a hybrid PV-TEG system as a viable approach for improving the energy 

conversion efficiency and operational reliability of standalone PV systems. To address the 

operational challenges posed by PSCs and NTD, a c-RIME based MPPT technique is developed 

specifically for the hybrid system, aiming at dynamically extracting the optimal output energy while 

reducing system carbon emissions under diverse operation scenarios. The core contributions and 

novelties of this work are summarized below: 

(1) To more efficiently utilize captured solar energy and realize waste heat cyclic utilization, this 

work combines individual PV and TEG systems for a mutually beneficial power generation 

configuration. The waste heat produced during PV power generation can be transferred to TEG 

modules for its electricity generation, meanwhile, this heat dissipation process supported by the 

passive cooling from TEG modules can in turn lower the operating temperature of PV systems, thus 

improving energy conversion efficiency and slow down its degradation; 

(2) A powerful MPPT control scheme is developed based on c-RIME to mitigate the unfavorable 

effects of PSCs, ensuring that the system can always generate maximum power under various 

adverse operating conditions, enhancing operational reliability and economic efficiency; 

(3) To comprehensively verify the performance of the proposed MPPT strategy, four different case 

studies are designed involving various irradiance and temperature variation patterns. In particular, 

tests using real-world atmospheric data collected from Hong Kong validate the robustness and 

applicability of the devised MPPT strategy under real-life environmental conditions; 

(4) To fill up the gap, this work not only focuses on the technical performance of the MPPT 

implementation but also carries out a critical environmental benefits analysis by employing the LCA 

and real-world carbon emission factors across various benchmarks for electricity production. Based 

on this, the carbon reduction performance can be comprehensively and qualitatively evaluated, 

which is crucial for understanding and minimizing the carbon footprint of these renewable energy 

technologies. In general, simulation results indicate that from the technical perspective, the proposed 

c-RIME based MPPT technique allows for the highest energy yield among tested MPPT strategies 

under all testing scenarios. For instance, the output energy of c-RIME is 124.93%, 112.59%, 

115.03%, 107.78%, 103.83%, 102.28%, 118.04%, and 106.78% to that of P&O, SCA, RSA, MVO, 

MFO, SSA, AOA, and AOS, respectively. Further, the environmental assessment reveals that c-

RIME not only leads to an increase in energy efficiency but also plays a crucial role in reducing the 

carbon emissions caused by electricity generation, contributing to broader goals of mitigating 

climate change and promoting environmental sustainability.   

Considering the current deficiencies in this work, future study tends to move toward the 

following two aspects: 

(a) Refined system configuration and reduced control complexity: At the current stage, this work 
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still needs to employ two DC-DC converters with two separate controllers to realize control 

purposes and boost harvested output power, which can ensure high control reliability but also 

increase the cost and complexity. To improve this, future work will further investigate how to more 

efficiently and cost-effectively realize hybrid PV-TEG coupling configuration, thus reducing the 

costs and complexity of the control part; 

(b) When calculating carbon reduction benefits, a simplified analysis approach is employed.  

Although this approach is sufficient to support and reflect the real characteristics and trends of 

results, future research will keep focusing on collecting and analyzing actual operational data from 

PV-TEG hybrid systems by integrating real-world hardware platforms or even operational pilots, 

thus offering a more authentic reflection of carbon footprints. This would enable a more precise 

evaluation of the environmental performance of this emerging technology and further explore its 

potential applications in the sustainable energy field.  
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