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Abstract

Graph convolutional networks (GCNs) have attracted great 
attention and achieved remarkable performance in skeleton-
based action recognition. However, most of the previous 
works are designed to refine skeleton topology without con-
sidering the types of different joints and edges, making them 
infeasible to represent the semantic information. In this pa-
per, we proposed a dynamic semantic-based graph convo-
lution network (DS-GCN) for skeleton-based human action 
recognition, where the joints and edge types were encoded in 
the skeleton topology in an implicit way. Specifically, two se-
mantic modules, the joints type-aware adaptive topology and 
the edge type-aware adaptive topology, were proposed. Com-
bining proposed semantics modules with temporal convolu-
tion, a powerful framework named DS-GCN was developed 
for skeleton-based action recognition. Extensive experiments 
in two datasets, NTU-RGB+D and Kinetics-400 show that 
the proposed semantic modules were generalized enough to 
be utilized in various backbones for boosting recognition ac-
curacy. Meanwhile, the proposed DS-GCN notably outper-
formed state-of-the-art methods. The code is released here 
https://github.com/davelailai/DS-GCN.

Introduction
Human action recognition (HAR) is an essential topic in 
computer vision and has a wide range of applications in 
video understanding (Gaur et al. 2011; Gui et al. 2018). 
Especially, skeleton-based action recognition has attracted 
much attention in the research community. Compared with 
RGB image squeeze (Carreira and Zisserman 2017; Bilen 
et al. 2017; Tran et al. 2015) or optical flows (Simonyan 
and Zisserman 2014; Wang and Schmid 2013), skeleton 
data (Yan, Xiong, and Lin 2018; Vemulapalli, Arrate, and 
Chellappa 2014) provided body pose and movement infor-
mation directly, making it more robust to variations of cam-
era viewpoint and video appearance. Meanwhile, low-cost 
depth sensors (Liu et al. 2019) (e.g., Kinect) and availabil-
ity of pose estimation algorithms (Sun et al. 2019) make the 
skeleton-based HAR can be extensively studied.
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Figure 1: Illustration of node and edge type-aware adaptive
graph generation. (a) represents the general adaptive graph
generation, where the joint is considered as the same type,
ϕ, and ξ is 1× 1 convolution kernel. general adaptive graph
Ag

D ∈ RN×N was generated based on the matrix multipli-
cation. (b) represent node type-aware adaptive generation,
human body is split into five parts with different colours,
and node-type specific transform function τ1 and τ2 was de-
signed, where the color is corresponding to the node type.
For each part, the joints were projected into correspond-
ing feature space, then the node type-aware adaptive graph
An

D ∈ RN×N can be obtained based on the matrix multi-
plication. (c) represent the edge type-aware adaptive graph
generation, the edge type is represented as the type pair of
its end nodes. There are fifteen types of edges, and an edge-
type specific transform function ϕ was designed and was uti-
lized to transfer edge representations to their corresponding
distribution space, thus the edge type-aware adaptive graph
Ae

D ∈ RN×N can be obtained.

Early methods focus on extracting handcrafted features
from skeleton sequences (Vemulapalli, Arrate, and Chel-
lappa 2014; Wang et al. 2014). Recently, deep learning has
become the mainstream research due to its strong feature
learning ability, and various network structures have been in-
vestigated. For instance, recurrent neural networks (RNNs)
(Du, Wang, and Wang 2015; Zhang, Liu, and Xiao 2017;
Liu et al. 2017) have been applied to model the temporal in-
formation within the skeleton sequences, convolution neu-



ral networks (CNNs) also have been adapted for HAR by
representing the skeleton sequence as pseudo-images (Ke
et al. 2017; Caetano et al. 2019; Duan et al. 2022c). Spatial-
temporal graph convolution networks (ST-GCNs) have been
proposed for working on the skeleton graph (Yan, Xiong,
and Lin 2018; Si et al. 2018; Chen et al. 2021; Cheng et al.
2020b; Liu et al. 2020; Zhang et al. 2020; Shi et al. 2019b).
Among these approaches, ST-GCNs have been the most
popular one since they can capture inherent interaction be-
tween body joints through node aggregation scheme.

Yan (Yan, Xiong, and Lin 2018) first proposed the ST-
GCN on predefined skeleton graphs. However, the fixed
graph limited the representation of GCN and is inefficient
in capturing the changeable human movement. In order to
boost the flexibility of the model, some dynamic graph gen-
eration methods were proposed (Chen et al. 2021; Shi et al.
2019b; Cheng et al. 2020a) to learn an adaptive adjacent ma-
trix. However, these works ignored the semantic information
of the skeleton. They simply assumed all joints/edges as the
same type, As shown in Figure. 1 (a), making them insuf-
ficient to capture the semantic properties of actions. Intu-
itively, human actions involve movements of different body
parts. For example, pointing to something mainly depend on
swinging the arms but kicking forward indicates swinging
legs. In this case, the types of moving nodes will be useful
information for action recognition.

Zhang (Zhang et al. 2020) noticed this limitation and pro-
posed a semantics-guided neural network to enrich the input
joint feature by explicitly adding one-hot vectors of differ-
ent node types. Although this method proved that the se-
mantic information of joints type can boost performance, it
faces several issues: Firstly, the explicit encoding in the in-
put step is not flexible and cannot incorporate the high-order
semantic information when GCNs go deeper. Secondly, the
edge types were not considered. Because the connection in
different types of joints might be various, even between the
same type of joints but in different directions, the connection
weight value might be different. Taking legs and arms as an
example, the information passing from legs to arms should
be different from that passing within arm joints. Meanwhile,
within the arm, the information passing from elbow to wrist
might be different and vice versa.

In light of these limitations, a dynamic semantic-based
graph neural convolutions network (DS-GCN) was proposed
in this paper. The main idea of the proposed work is to
encode the dynamical semantic information of joints and
edges in GCNs aggregation process implicitly. Specifically,
a dynamic adaptive topology with semantic information on
joints/edges types was generated. Instead of adding the pre-
defined type encoding into the joint feature, the joint/edge
type was encoded with different transform functions, each of
which represents a specific distribution. Thus the feature of
joint/edge in different types can be represented in their indi-
vidual feature space. In other words, the types of joint/edge
were encoded in an implicit way. Compared with the pre-
defined encoding, there are two advantages of our proposed
DS-GCN. On the one hand, since the semantic information
of joints/edges was learned from the sample itself, the dy-
namic nature of each skeleton can be maintained. On the

other hand, the joints/edges types were represented by the
transform functions, and can be encoded in each ST-GCN
layer. Thus, the semantic information can be reserved with-
out over-smoothing even if the model goes deeper.

As shown in Figure. 1 (b), the joints and edges were split
into different types in advance. For the joint/edge type def-
inition, the human body was decomposed into several parts
(five parts in this paper, including left/right arms, left/right
legs, and the trunk with the head) according to the natural
human body structure, then the edge type can be obtained
according to the type of its two end nodes, As shown in
Figure. 1 (c). For instance, the link between the left arm
and trunk is different from the link within the trunk. Then
two semantic-aware modules were proposed to encode the
joint/edge types respectively, the node type-aware adaptive
graph module and the edge type-aware adaptive graph mod-
ule. In the node type-aware module, As shown in Figure. 1
(b), a non-local mechanism was applied, but separate trans-
form functions were designed for each body part to project
the node representation in their specific type distribution,
thus the adaptive graph can be generated with considera-
tion of the node types. In the edge type-aware module, As
shown in Figure. 1 (c), similar to the node type encoding,
the edge type-specific transform functions were designed,
which were then applied to the adaptive skeleton graph to
encode semantic information over each edge type.

Based on the two semantic modules and combining
the temporal modeling modules proposed in (Duan et al.
2022a), the dynamic semantic-based graph neural networks
(DS-GCN) was developed for skeleton-based human ac-
tion recognition. The framework of the proposed method
is as shown in Figure. 2. The extensive experiments on
NTU-RGB+D (Shahroudy et al. 2016; Liu et al. 2019) and
Kinetics-400 (Carreira and Zisserman 2017) show that: (1)
the proposed two semantics modules are efficient and gener-
alized to be adaptive to various ST-GCNs structure to boost
the performance. (2) the generated DS-GCN outperforms
state-of-the-art methods notably on all two datasets.

The main contributions are summarized as follows:

• We proposed to implicitly encode the joints and edge
types for skeleton-based human action recognition. Two
dynamical semantic-based adaptive graphs including a
node type-aware adaptive graph, and an edge type-aware
adaptive graph were generated. Extensive experiments
show that the proposed semantic graph is very general-
izable that can be easily adapted to various ST-GCNs.

• Generated a dynamic semantic-based graph neural net-
work for skeleton-based human action recognition, and
extensive experiments highlight that the proposed DS-
GCN outperforms SOTA methods notably on both NTU-
RGB+D and Kinetics-400.

Related Work
GCNs for Skeleton-Based Action Recognition
Graph convolution networks have attracted increasing at-
tention in skeleton-based human action recognition (Yan,
Xiong, and Lin 2018; Si et al. 2018; Chen et al. 2021; Cheng
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Figure 2: The framework of the proposed DS-GCN. The spatial graph convolution structure was decomposed into three
branches, the node-type aware branch, the edge-type aware branch, and the general branch. C is the input channel, is the output
channel. In each branch, the corresponding semantic self-adaptive graph and a shared correction matrix PAi ∈ RN×N , i =
1, 2, 3 were applied to represent the skeleton. The mixed output Xmix can then be obtained by concatenating the outputs of
the three branches along the feature channel dimension. The final output Xout can be calculated by a 1 × 1 Conv function on
Xmix.

et al. 2020b; Liu et al. 2020; Zhang et al. 2020; Shi et al.
2019b; Duan et al. 2022a). Yan . (Yan, Xiong, and Lin 2018)
introduced a pre-defined skeleton graph according to the hu-
man body’s natural link and proposed the ST-GCN to cap-
ture the spatial and temporal patterns from the graph struc-
ture. Upon this baseline, some spatial adaptive graph gener-
ation methods based on no-local mechanisms were proposed
to increase the flexibility of the skeleton graph structure (Shi
et al. 2019b; Chen et al. 2021; Cheng et al. 2020b; Zhang
et al. 2020; Duan et al. 2022a). Instead of only applying the
fixed graph structure, these methods learned another adap-
tive graph to boost the GCNs’ representation ability. For
instance, the 2S-AGCN (Shi et al. 2019b) learned a data-
driven graph for all feature channels, and CTR-GCN (Chen
et al. 2021) learned an adaptive graph for each individual
feature channel. Meanwhile, the multi-scale and shift GCN
were proposed (Cheng et al. 2020b; Liu et al. 2020) to re-
lease the over-smooth problem in graph long-distance trans-
fer. In the temporal pattern, multi-scale temporal convolu-
tion was proposed in (Chen et al. 2021; Duan et al. 2022a)
to boost the information aggregation in temporal space.

Semantic Information Exploration
The semantic information has been exploited in RNNs for
skeleton-based human action recognition (Du, Wang, and
Wang 2015; Wang and Wang 2017; Si et al. 2018). In these
methods, the skeleton structure is manually partitioned into
different functional parts, and processed by the individual
RNN. As the network goes deeper, the feature of differ-
ent components is concatenated and progressed in a hier-
archical way. Even though such information is important,
in most GCNs for skeleton-based human action recogni-
tion, the semantic information is overlooked. Inspired by
this, Zhang (Zhang et al. 2020) proposed the SGN to en-

code the information of joint types in the initial feature by
explicitly adding one-hot vectors for node types represen-
tation. However, this pre-defined semantics encoding in the
input layer is not flexible and cannot represent such infor-
mation in high-dimension space when networks go deeper.
To tackle the above limitations, we proposed a more elegant
method to encode the semantics implicitly.

Methods
In this section, The notation of ST-GCN will be introduced
first, and then the ST-GCN with its variants are formulated
and discussed. Finally, the proposed DS-GCN will be de-
scribed in detail.

Preliminaries
Notation. A skeleton data is denoted as a spatial-temporal
graph G = (V,Es, Et, X) where V = {vti|t = 1, ..., T, i =
1, ..., N} as the N body joints in T frames, Es and Et as the
spatial and temporal link respectively. X ∈ RN×T×d repre-
sents the joint coordinates as the node feature, where d is the
feature dimension. For the spatial graph Gs = (V,Es, X),
Es is formulated as an adjacent matrix A ∈ RN×N to rep-
resent the intro-body connection. For the temporal graph
Gt = (V,Et, X), Et is constructed by connecting the same
joints along consecutive frames. Then the ST-GCNs can be
divided into two parts: the Spatial-GCN (S-GCN) with regu-
lar GCN and the Temporal-GCN (T-GCN) with 1D temporal
convolution. The proposed method is adapted to the S-GCN.

Topology-Fixed Graph Convolution Network. The
main operation of GCN is to update the node represen-
tation by aggregating information from its neighborhood.
In ST-GCN (Yan, Xiong, and Lin 2018) A is defined as
three partitions and represented as A ∈ RN×N×3. Denot-
ing X = {Xt ∈ RN×d|t = 1, ...T} as input feature, the



output X
′
= {X ′

t ∈ RN×C |t = 1, ...T} of S-GCN can be
formulated as Eq. 1.

X
′
=

3∑
i=1

f(AiX, θ), (1)

where f is the updating function, which is a 2D convolution
network with kernel size 1 normally, θ is the learnable pa-
rameters of the updating function, and C is the number of
the output feature channel.

Topology-Adaptive Graph Convolution Network. In
most ST-GCN variants (Yan, Xiong, and Lin 2018; Si et al.
2018; Chen et al. 2021; Cheng et al. 2020b; Liu et al. 2020;
Zhang et al. 2020; Shi et al. 2019b; Duan et al. 2022a),
the adaptive matrix AD was dynamically learned with self-
attention mechanism. As shown in Figure 3 (a), supposing
two transformation functions φ(·) and ξ(·), the correlation
between two joints can be modeled as Eq. 2.

AD = σ(φ(X)− ξ(X)), (2)

where σ(·) represents the activate function in use, such as
Relu. The adaptive S-GCN can be represented as Eq. 3.

X
′
=

3∑
i=1

f((Ai + λAi
D)X, θ), (3)

where λ is the predefined or learnable weight to refine the
effect of the adaptive graph. The adaptive graph has proved
to be an advantageous topology for skeleton-based human
action recognition (Shi et al. 2019b; Chen et al. 2021).

Semantic-Guided Graph Convolution Network. In ex-
plicit semantic encoding method (Zhang et al. 2020), the in-
put feature was refined by adding a one-hot vector of joint
types, which can be formulated as Eq. 4

X = {[Xt, Xt,k] ∈ RN×c|t = 1, ...T, k = 1, ...,m} (4)

where m is the joint type number, c is the modified fea-
ture channels, Xt,k is the corresponding type encoding.
The topology-adaptive graph convolution network is then
worked on this input.

Dynamic Semantic-Based GCN
The general frame of the proposed DS-GCN origins from
the topology-adaptive GCN, however, different to the above
methods, the joint and edge types in the skeleton graph
were introduced and encoded dynamically when calculating
the adaptive graph. Specifically, the DS-GCN contains two
modules: the node type-aware topology and the edge type-
aware topology. As shown in Figure 3, when modeling the
node type-aware adaptive graph, different conversion func-
tions were defined for different types of nodes, and then the
node type-aware topology can be obtained by capturing pair-
wise joint correlations. In this paper, the non-local mech-
anism was applied in a channel-wise manner (Chen et al.
2021). In the edge type-aware correction graph, different up-
date functions for edges of different types were applied to
the adaptive graph. In this case, the graph in our work can
be defined as a directed graph G = (V,E,A,R,X), where

A and R denote the type mapping function for each node:
τ(v) = {τ1(v), τ2(v)} : V → A and edge ϕ(e) : E → R
respectively. Supposing the input feature X ∈ RN×d, the
semantic-based adaptive graph is calculated as Eq. 5

An
D = σ(τ1(X)− τ2(X)),

Ae
D = ϕ(AD),

(5)

where An
D represents the node type-aware graph and Ae

D
represents the edge type-aware graph. The details of each of
them are introduced as follows.

Node Type-Aware Adaptive Topology. As shown in Fig-
ure. 3 (b), the node features were first projected into their
individual feature space with a node type mapping function:
τ(v), then the node type-aware adaptive graph can calcu-
late according to the non-local mechanism. Specifically, de-
noting s and t as two nodes of different types, xs ∈ R1×d

and xt ∈ R1×d as the corresponding feature, then the node-
aware feature representation was formulated as Eq. 6

x
′

s1 = τs1 (xs), x
′

s2 = τs2 (xs)

x
′

t1 = τ t1(xt), x
′

t2 = τ t2(xt)
(6)

where x
′

∗ ∈ R1×C , C is the output feature channels. Suppos-
ing τ1(v) as the source feature projection, τ2(v) as the target
feature projection, the directed correction between node s
and t along channel dimension can be calculated as Eq. 7

As→t
D = σ(x

′

s1 − x
′

t2), A
t→s
D = σ(x

′

t1 − x
′

s2) (7)

where σ is the activation function. A∗
D ∈ R1×C . For the

whole skeleton structure, the node aware-adaptive graph
An

D ∈ RN×N×C can be represented as the set of A∗
D.

Edge Type-Aware Adaptive Topology. As shown in Fig-
ure. 3 (c), the edge type was encoded by applying separate
convolution kernel ϕ(e) on the adaptive graph. Specifically,
Given three nodes s, t and u of different types, the edge-type
link between these nodes can be represented as ⟨s, t⟩, ⟨s, u⟩
and ⟨t, u⟩ with the feature e⟨s,t⟩, e⟨s,u⟩ and e⟨t,u⟩. Thus, the
edge type-aware adaptive correlation can be refined as Eq. 8

A
⟨s,t⟩
D = ϕ⟨s,t⟩(e⟨s,t⟩)

A
⟨s,u⟩
D = ϕ⟨s,u⟩(e⟨s,u⟩)

A
⟨t,u⟩
D = ϕ⟨t,u⟩(e⟨t,u⟩)

(8)

where ϕ⟨∗,∗⟩(e) represent separate transform functions. Here
the 2D convolution kernels with kernel size equal to 1 were
applied. The edge type-aware topology can be represented
as Ae

D = {A⟨s,t⟩
Dij

|i, j = 1, ..., N, s, t = 1, ...,M}, where s

and t is the node type index respectively, M is the number
of types.

Dynamic Semantic-Based GCN: As shown in Figure.2,
Different from the previous ST-GCNs which utilized the
same spatial graph convolution structure on three pre-
generated skeleton graphs, in DS-GCN, the spatial graph
convolution structure was decomposed into three branches,
the node-type aware branch, the edge-type aware branch,



Figure 3: Illustration of the joint correlation calculation. (a) represents the standard non-local mechanism, for each transform
function φ(·) and ξ(·), the node features are updated by sharing the same parameters. (b) represents the node type-aware
correction. In each transform function, the convolution kernels are divided into several parts, each of which corresponds to a
specific node type, and then the node characteristics in different types were updated by their individual parameters set. The
colored circles denote different node types and the colored squares denote different convolution kernels. (c) illustrates the edge
type-aware correlation. For each type of edge, specific convolution kernels were designed and utilized for updating the edge
feature. The colored circles denote node types; mix-colored squares denote corresponding edges with node pairs.

and the general branch. A branch-wise weight is set as learn-
able and utilized for the combination of a shared correction
matrix and the corresponding self-adaptive graph. Specifi-
cally, the input was first projected into a high dimension,
which was split into three parts corresponding to different
branched. For each branch, the combination of a shared cor-
rection matrix and a self-adaptive graph was utilized for spa-
tial graph convolution operation. To balance the influence
of the shared skeleton for each branch for action recogni-
tion, the pre-defined skeleton graph was replaced by a to-
tally learnable correction matrix. Finally, the three branches
were concatenated along the feature channel dimension and
followed by a 1 × 1 convolution kernel, so that combines
the information of the three branches and projects it into the
output dimension. The process of the DS-GCN can be for-
mulated as Eq. 9.

X
′
= f(x, θ)

x = [xn, xe, xg] ∈ RN×3c

xn = (A1 + λ1A
n
D)f1

pre(X)

xe = (A2 + λ2A
e
D)f2

pre(X)

xg = (A3 + λ3AD)f3
pre(X)

(9)

where X ∈ RN×C , f∗
pre is the projection function to reduce

the feature channels; c is the output channels of the f∗
pre.

xn, xe, xg are the output of the node type-aware, edge type-
aware, and general branch respectively. A∗ is the learnable
correlation matrix of each branch. λ∗ is the learnable weight
to refine the effect of each semantic-based topology-adaptive
graph, which is different between branches.

Model Architecture
Based on the DS-GCN, a new spatial-temporal graph convo-
lution network was introduced. Similar to ST-GCN (Si et al.
2018), ten basic blocks were connected in series, followed
by a global average pooling and a softmax classifier for ac-
tion classification. The number of basic feature channels is

set as 64 and was doubled at 5th and 8th blocks. In each
basic block, one DS-GCN and a multi-scale temporal mod-
eling module proposed in (Chen et al. 2021) were contained.

Experiments
Datasets
To demonstrate the advantage of the proposed DS-GCN,
two datasets were utilized in this paper: NTU RGB+D and
Kinetics-400. The brief introduction is as follows and more
details of these 2 datasets are in Supplementary 1.

NTU RGB+D. NTU RGB+D (Shahroudy et al. 2016;
Liu et al. 2019) is a large-scale action recognition dataset.
Here, four benchmarks recommended by the official are uti-
lized: (1) NTU60 cross-subject (NTU60-Xsub), (2) NTU60
cross-view (NTU60-Xview), (3) NTU120 cross-subject
(NTU120-Xsub), NTU120 cross-setup (NTU120-Xset).

Kinetics-400 (Carreira and Zisserman 2017). Kinetics-
400 is a large-scale action recognition dataset with 400 ac-
tions. The skeletons utilized in this paper were provided
by (Duan et al. 2022b), where the OpenPose algorithm (Cao
et al. 2017) was applied for joint estimation.

Implementations Details
All experiments are conducted on one A100 GPU with the
PyTorch deep learning framework. All models are trained
with the SGD optimizer with momentum 0.9 and weight de-
cay 5e−4. The initial learning rate was set to 0.1, and the
model is trained for 100 epochs with the Cosine Annealing
learning rate scheduler. The batch size was set to 128. To
accelerate the training process, the input of temporal length
was set to 64 in the ablation study. For a fair comparison,
the input of temporal length was set to 100 when compared
with SOTAs. The pre-processing approach follows the set-
tings detailed in (Duan et al. 2022b).

Ablation Study
In this section, the proposed two semantic-based adaptive
graph modules were analyzed on two benchmarks: NTU60-



Method NTU60-XSub NTU120-XSet
2s-GCN (Shi et al. 2019b) 89.5 86.0

2s-GCN+NE 90.1 86.1
CTR-GCN (Chen et al. 2021) 89.6 86.0

CTR-GCN+NE 90.4 86.5

Table 1: Generalization of the proposed semantic module.
+NE represents that the adaptive graph utilized in spatial-
GCN is replaced by the semantic-based adaptive graph.

Method NTU60-XSub NTU120-XSet
ST-GCN (Si et al. 2018) 87.8 85.5

2s-GCN (Shi et al. 2019b) 89.5 86.0
CTR-GCN (Chen et al. 2021) 89.6 86.0

DS-GCN 90.8 87.2

Table 2: Effectiveness of DS-GCN. The proposed DS-GCN
can achieve the best performance.

Method NTU60-XSub NTU120-XSet
DS-GCNshared 90.1 86.8
DS-GCNB-wise 90.8 87.2

Table 3: Comparison DS-GCN in different learnable weight
manners. DS-GCNshared represents the DS-GCN with
shared λ for all the branches, DS-GCNB-wise represent the
DS-GCN with individual λ for different branches.

Method NTU60-XSub
DS-GCN w/o N&E 90.0

DS-GCN w/o N 90.5
DS-GCN w/o E 90.4

DS-GCN 90.8

Table 4: Ablation On the edge/node type encoding. N rep-
resents the node type-aware encoding, and E represents the
edge type-aware encoding. w/o means without, representing
that the corresponding semantic encoding is replaced with
the general branch.

Module Encode stage NTU60-XSub
DS-GCN w/o N&E - 90.0

DS-GCNini [1-4] 90.2
DS-GCNmid [5-7] 90.7
DS-GCNend [8-10] 90.5

DS-GCN [1-10] 90.8

Table 5: Exploration on the semantic encoding stage. DS-
GCN w/o N&E represents no semantic module is utilized,
DS-GCNini represents just utilized DS-GCN in layer [1-4],
DS-GCNmid represents just utilized DS-GCN in layer [5-
7], DS-GCNend represents just utilized DS-GCN in layer
[8-10], DS-GCN represents DS-GCN is utilized in all the
layers.

(a) (b)
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Figure 4: Visualization of classification. The action index is
as follows: taking on shoes (16), taking off shoes (17), and
kicking something (24). (a) the confusion matrix for CTR-
GCN, (b) the confusion matrix for CTR-GCN+NE. It can
be observed that, after encoding the semantic information,
CTR-GCN+NE can distinguish kicking something from tak-
ing on/off shoes more accurately (e.g., errors reduce from
3% and 9% to 1% and 5% respectively).

XSub and NTU120-XSet. The joints coordinate were uti-
lized as input and three learnable correlation matrices were
randomly initialized for skeleton topology modeling.

Generalization Of The Semantic Encoding Modules:
In order to justify the generalization and efficiency of pro-
posed node/edge type-aware adaptive graph modules, sev-
eral famous topology-adaptive topology ST-GCNs struc-
tures were utilized as the backbone, and the node/edge type-
aware adaptive graph modules were adapted and utilized to
replace the Spatial-GCN in these backbones. Here the 2s-
GCN (Shi et al. 2019b), CTR-GCN (Chen et al. 2021) were
utilized. For a fair comparison, the characteristic of the ini-
tial backbone was kept where three branches share the same
structure. The node/edge type-aware adaptive graph mod-
ules were combined in series and then utilized as the Spatial-
GCN in these backbones. The detail of structure is intro-
duced in Supplementary 2. The results are shown in Ta-
ble 1, It can be observed that, after encoding the node/edge
types in these backbones, the accuracy of action recognition
can have a stable increase.

To analyze the classification performance in more detail.
The confusion metrics of CTR-GCN and CTR-GCN+NE on
NTU60-XSub were generated as shown in Figure 4. Tak-
ing the action of kicking something (index 24 in the con-
fusion matrix) and the action of taking on /off shoes (index
16/17 in the confusion matrix) for example, these actions
can be described as the relative movement between two parts
of the body, the Taking on/off shoes can be interpreted as
the relative movement between arms and legs, but kicking
something is the relative movement between two legs. It can
be observed that after encoding the semantic information,
CTR-GCN+NE can distinguish the action of kicking some-
thing from the action of taking on/off shoes more accurately.

Effectiveness of DS-GCN: In order to validate the ef-
fectiveness of the proposed dynamic semantic-based graph
convolution, we compared the performance of the DS-GCN
with several ST-GCN variants. Vanilla ST-GCN (Si et al.
2018), 2s-GCN (Shi et al. 2019b) and CTR-GCN (Chen
et al. 2021) were utilized as the backbones in this experi-



Module NTU60-Xsub NTU60-Xview NTU120-Xsub NTU120-Xset Kinetics-400
ST-GCN (Si et al. 2018) 81.5 88.3 70.7 73.2 30.7
SGN (Zhang et al. 2020) 86.6 93.4 - - -
AS-GCN (Li et al. 2019) 86.8 94.2 78.3 79.8 34.8

RA-GCN (Song et al. 2020) 87.3 93.6 78.3 79.8 34.8
2s-GCN (Shi et al. 2019b) 88.5 95.1 - - -
DGNN (Shi et al. 2019a) 89.9 96.1 - - -
FGCN (Yang et al. 2021) 90.2 96.3 85.4 87.4 -

ShiftGCN (Cheng et al. 2020b) 90.7 96.5 85.9 87.6 -
DSTA-Net (Shi et al. 2020a) 91.5 96.4 86.6 89.0 -
MS-G3D (Liu et al. 2020) 91.5 96.2 86.9 88.4 38.0

CTR-GCN (Chen et al. 2021) 92.4 96.8 88.9 90.6 -
ST-GCN++ (Duan et al. 2022b) 92.6 97.4 88.6 90.8 49.1

PoseConv3D (Duan et al. 2022c)* 94.1 97.1 86.9 90.3 47.7
DS-GCN 93.1 97.5 89.2 91.1 50.6

Table 6: Classification accuracy comparison against state-of-the-art methods. ∗ represents the SOTA CNN-based method.

ment. For all the models, the joints coordinate was set as
the input, and the pre-defined graph was set as the totally
trainable adjacency matrix. The results in Table 2 show that
the topology-adaptive graph convolution network (2s-GCN,
CTR-GCN, and DS-GCN) achieves better performance than
the topology-fixed graph convolution network (ST-GCN).
Compared with the CTR-GCN (Chen et al. 2021), the pro-
posed DS-GCN has a smaller number of parameters but
achieved a 1.2% Top1-acc increase in NTU60 Xsub and
NTU120 Xset. The comparison of model size can be seen in
Supplementary 3. This proves that the proposed DS-GCN
is more effective in modeling the skeleton topology.

Configuration Exploration. In this section, the learn-
able weight λ is analyzed. Different to utilize one shared
λ in other topology-adaptive graph learning, the individual
refinement weight is learned for each branch in DS-GCN.
To justify the branch-wise λ, we trained the DS-GCN in
two ways: with the shared λ and with the individual λ in a
branch-wise manner. The result is shown in Table 3, where
it can be seen that the DS-GCN learned in a branch-wise
weight manner has a stable improvement.

Ablation On The Edge/Node Type Encoding: In this
section, the effectiveness of different configurations of DS-
GCN was explored. In practice, to test the effects of node-
type encoding, we replaced the node type-aware adaptive
branch with the general branch, in this case, two branches
were utilized to model the general adaptive graph, and one
branch was utilized to model the edge type-aware adaptive
graph. Similarly, the edge-type adaptive branch was replaced
by the general branch to validate the effect of edge-type en-
coding. In Table 4, we can observe that the node/edge type-
aware adaptive graph has a positive effect on the recognition
performance, and combining both semantic branches can
achieve the best performance. Top1-acc of the DS-GC out-
performs the backbone with no semantic encoding by 0.8%.

Exploration Of The Semantic Encoding Stage. In prac-
tice, there are ten basic blocks in ST-GCN, as we described
above that the proposed semantic encoding module is flex-
ible that can be applied in different depths of the ST-GCN.

Thus in order to explore the importance of semantic infor-
mation encoding in various depths, the DS-GCN was uti-
lized in different stages alone for comparison. Specifically,
we split the whole DS-GCN into three stages: the initial
stage represented as DS-GCNini, which contains the layer
from 1st to 4th, the middle stage DS-GCNmid with layer
5th-7th, and the end stage DS-GCNend with 8th-10th, then
the DS-GCN was applied in each stage respectively. For in-
stance, to justify the effect of semantic information on the
initial stage, the DS-GCN is only utilized in layer 1st to 4th,
in the rest block, all semantic-based modules are replaced
by the general adaptive branch. The results in Table. 5 show
that semantic encoding has a positive effect on human action
recognition irrespective of the stage where the DS-GCN was
used. When utilizing the DS-GCN in all layers, the model
shows the best performance. Comparing within three stages,
the middle stage outperforms the others, which can be ex-
plained as the over-smoothing problems. When the layer
goes deeper, the semantic information encoded in the initial
stage might be over-smoothed during the aggregation pro-
cess. If only encoding the semantic information in the end
stage, the feature of the node was already over-smoothed af-
ter the former stages’ aggregation. Thus the correlation ma-
trix plays weakly effect on feature updating, which limits the
ability of the semantic encoding module.

Comparisons With the State-of-the-Art
Multi-stream fusion proposed in (Shi et al. 2020b) has been
proven to be advanced for skeleton-based action recogni-
tion and has been adapted in many state-of-the-art meth-
ods (Chen et al. 2021; Duan et al. 2022a; Shi et al. 2019b).
Thus, for a fair comparison, the DS-GCN was trained on
four modalities respectively, the result for each modality
was reported in Supplementary 4, and the final result was
obtained by summering the probability from each stream.
The performance of the DS-GCN was compared with SOTA
methods on NTURGB+D 60 (120) and Kinetics 400 in Ta-
ble 6. It can be observed that the proposed DS-GCN outper-
forms all existing methods.
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