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Generative AI for Physical Layer Communications:
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Abstract—The recent evolution of generative artificial in-
telligence (GAI) leads to the emergence of groundbreaking
applications such as ChatGPT, which not only enhances the
efficiency of digital content production, such as text, audio, video,
or even network traffic data, but also enriches its diversity.
Beyond digital content creation, GAI’s capability in analyzing
complex data distributions offers great potential for wireless
communications, particularly amidst a rapid expansion of new
physical layer communication technologies. For example, the
diffusion model can learn input signal distributions and use them
to improve the channel estimation accuracy, while the variational
autoencoder can model channel distribution and infer latent
variables for blind channel equalization. Therefore, this paper
presents a comprehensive investigation of GAI’s applications for
communications at the physical layer, ranging from traditional
issues, including signal classification, channel estimation, and
equalization, to emerging topics, such as intelligent reflecting
surfaces and joint source channel coding. We also compare GAI-
enabled physical layer communications with those supported
by traditional AI, highlighting GAI’s inherent capabilities and
unique contributions in these areas. Finally, the paper discusses
open issues and proposes several future research directions,
laying a foundation for further exploration and advancement
of GAI in physical layer communications.

Index Terms—Generative AI, physical layer communications,
channel estimation and equalization, physical layer security, IRS,
beamforming, joint source channel coding.
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I. INTRODUCTION

The recent surge in various large-scale datasets, combined
with the ongoing progress in artificial intelligence (AI) tech-
nologies, has accelerated the development of generative AI
(GAI) and led to the creation of GAI-based innovative ap-
plications such as DALL.E and ChatGPT [1]. The emer-
gence of these killer applications has significantly enhanced
the efficiency of digital content generation and enriched the
variety of the produced content, signifying the arrival of
the AI-generated content (AIGC) era [2]. Unlike traditional
AI models, which focus mainly on analyzing, interpreting,
and classifying data to solve specific problems, GAI excels
in analyzing the distribution characteristics of complex data
across different spaces and dimensions, uncovering data pat-
terns [3]. On this basis, GAI can fully utilize the obtained
features to generate outputs similar to its input data and
present them to users in various forms. A representative
example is stableDiffusion [4], which achieves state-of-the-
art scores in class-conditional image synthesis and text-to-
image conversion. Different from existing studies focusing on
image classification or segmentation, stableDiffusion focuses
on the generative, demonstrating greater flexibility and effi-
ciency compared to traditional content creation techniques [5].
Through the fundamental working principles of GAI models
and the representative examples, we can see that GAI pos-
sesses two core capabilities. The first is the ability to analyze
and capture various features of complex data distributions.
The second is the utilization of these captured features to
generate new data that is similar to, but distinct from, the real
data. Therefore, not only does GAI facilitate the generation of
digital content, but its potent capability for data distribution
analysis also supports research in various domains, including
physical layer communications [6].

In wireless communications, a fundamental role of the phys-
ical layer communications involves converting digital data,
generated by higher layers of the protocol stack, into a format
suitable for transmitting over communication channels [7].
This process encompasses the steps of encoding the data into
a bit sequence, modulating these bits onto a carrier wave, and
then propagating the modulated signal through the channel.
Correspondingly, at the receiver, this layer undertakes the
inverse functions, i.e., demodulating the received signal, de-
coding the bit sequence, and forwarding the data to the higher
layers for processing [8]. Beyond these core tasks, the physical
layer is entrusted with several other key functions, such as
channel access, channel equalization, and multiplexing [9].
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Here, the channel access pertains to the process of determining
which device is authorized to transmit data over the channel
at any particular moment. Equalization involves compensating
for the distortion and interference that can occur during
transmission over a communication channel. Multiplexing, on
the other hand, is the technique of amalgamating multiple
data streams into a unified signal for channel transmission.
Therefore, the physical layer is integral in shaping the overall
reliability, effectiveness, and performance metrics of a wireless
communication system [10].

Given its importance, researchers have conducted in-depth
studies on the physical layer, including techniques such as
beamforming [11], modulation and demodulation [12], signal
detection [13], channel estimation [14], and channel state
information (CSI) compression [15]. These techniques are
directly linked to the analysis, compression, as well as the
feature extraction of complex physical layer data. Conven-
tional research relies on mathematically expressed models.
However, in practical applications, the systems could include
unknown effects that are almost impossible to be expressed
analytically. Therefore, AI models have been introduced to
support the physical layer functions of wireless communica-
tions. For instance, deep neural networks (DNNs) can learn the
relationship between channel inputs and outputs to enhance the
accuracy of channel estimation, thereby supporting the phys-
ical layer from various perspectives, such as signal detection,
channel equalization, and synchronization [16]. In addition,
deep learning (DL) models were also applied to support the
physical layer communications. For example, recurrent neural
networks (RNNs) can assist decoding [17], autoencoders can
reduce peak-to-average power ratio [18], and Convolutional
Neural Networks (CNNs) can compress the CSI in a massive
multiple-input multiple-output (MIMO) system [19].

Although the traditional AI models are effective, their
performance is limited. For example, DNNs can learn channel
models, but they may struggle or even fail when dealing
with channels that are unknown during training. Therefore,
researchers introduce GAI, which can not only generate more
channel samples to enhance the training data set but also assist
in analyzing the distribution of existing data and extracting
its key features, enhancing the system’s capability to manage

unknown channels [20], [21]. GAI can also improve physical
layer security, beam forming, and other various physical layer
techniques. However, applications of GAI have still not been
well investigated, especially for emerging technologies such as
intelligent reflecting surface (IRS) [22], cell-free, integrated
sensing and communications (ISAC) [23], and extremely
large-scale MIMO [24]. Therefore, further advancement of
GAI applications in the physical layer communications has
been receiving a lot of attention recently.

Facing the emerging challenges in physical layer commu-
nications and considering the potential unique support offered
by GAI, this paper provides a comprehensive survey of GAI’s
applications to address diverse problems in physical layer
communications. We further discuss comparisons between
techniques in the physical layer that are supported by GAI
versus those relying on traditional AI models. We then discuss
the lessons learned from existing studies, emphasizing the key
capabilities of GAI employed in these instances. Lastly, the
paper discusses open issues and future research directions. The
key contributions of this paper are summarized as follows.

• We present the fundamentals of common GAI techniques,
including generative adversarial networks (GANs), varia-
tional autoencoders (VAEs), normalizing flows, diffusion
models, and transformers, as well as highlight their
strengths, weaknesses, and differences. In addition, we
discuss the special data generation properties of these
GAI techniques that are particularly useful in solving
various issues in the physical layer communications.

• We examine the problems of traditional AI-based solu-
tions in the physical layer communications and illustrate
how GAI can effectively address these problems. This
reveals the unique support GAI can offer to the physical
layer, beyond the capabilities of traditional AI, underscor-
ing the importance of integrating GAI into physical layer
techniques, particularly in dealing with various emerging
technologies.

• We provide an in-depth analysis and summary of the
GAI’s applications in the physical layer communications,
finding that these works primarily leverage three core
capabilities of GAI. These include the ability to cap-
ture complex data distributions, the capability for cross-
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TABLE I
LIST OF ABBREVIATIONS

Abbreviation Description Abbreviation Description
AI Artificial Intelligence DL Deep Learning
TAI Traditional Artificial Intelligence GAI Generative Artificial Intelligence
AIGC AI-generated content RNN Recurrent Neural Network
DNN Deep Neural Network CNN Convolutional Neural Network
CSI Channel State Information ML Machine Learning
SNR Signal-to-Noise Ratio GAN Generative Adversarial Network
BER Bit Error Rate PSK Phase-Shift Keying
VAE Variational Autoencoder NF Normalizing Flow
MIMO Multiple-Input Multiple-Output QPSK Quadrature Phase-Shift Keying
mmWave Millimeter Wave UAV Unmanned Aerial Vehicle
NMSE Normalized Mean Square Error PLS Physical Layer Security
DRL Deep Reinforcement Learning RF Radio Frequency
IRS Intelligent Reflecting Surface BS Base Station
UE User Equipment FNN Fully-connected Neural Network
JSCC Joint Source Channel Coding PSNR Peak Signal-to-Noise Ratio
AWGN Additive White Gaussian Noise WGAN Wasserstein GAN
SCMA Sparse Code Multiple Access MMSE Minimum Mean Square Error

dimensional data transformation and processing, and the
potential to repair and enhance data. This summary serves
as vital guidance for further advancing the applications of
GAI in the physical layer.

• We present significant open issues when applying GAI in
the physical layer communications from several perspec-
tives, such as privacy, security, and resource optimization,
and provide some directions for future research.

The structure of this survey is outlined in Fig. 1. Section II
offers a review of related works, while Section III delves into
an in-depth analysis of existing studies. Section IV discusses
open issues and future research directions, and Section V con-
cludes the paper. Additionally, Table I lists the abbreviations
widely used throughout this survey.

II. BACKGROUND AND RELATED WORK

This section discusses the background knowledge about
GAI and some related surveys, and illustrates the differences
between this survey and existing work.

A. Background of Generative AI

1) Generative Adversarial Networks: A GAN consists of
two main elements, including (i) a generator that produces data
mimicking real data and (ii) a discriminator that differentiates
between the real and generated data. The training process
aims for a Nash equilibrium, where the discriminator cannot
differentiate between the two [25]. Trained GANs are capable
of reconstructing high-dimensional data from low-dimensional
input with fewer generator function restrictions compared
to other models, which makes them especially proficient in
various issues in the physical layer communications such as
channel estimation [26], CSI compression [27], and physical
layer security [28]. Despite these advantages, GANs’ training
complexity lies in achieving the Nash equilibrium, which is
more challenging than optimizing an objective function. This
leads to the development of various GAN derivatives, such as
StackGAN [29] and PAN [30], focusing either on architecture
or objective function optimization [31]. These models have the

great potential to effectively address various problems in the
physical layer communications and wireless communications
in general.

2) Variational Autoencoders: VAEs are neural networks
designed for compressing and reconstructing data. They differ
from traditional autoencoders by using probabilistic meth-
ods to model and generate data from a compressed latent
space [32]. The VAE comprises an encoder that translates
input data into a latent representation, and a decoder that
rebuilds the data from this latent space. These components
are typically multi-layer neural networks. VAEs optimize
their parameters by minimizing a loss function that assesses
reconstruction accuracy and aligns the latent space distribution
with a prior distribution. Key advantages of VAEs include their
ease of implementation and training, effectiveness in learning
compressed data representations, and a probabilistic nature that
allows for uncertainty estimation and varied outputs [33]. As a
result, VAEs are particularly effective in capturing the dynam-
ics and uncertainty of wireless communications evidenced by
a wide range of applications in channel estimation, channel
modeling, and signal classification [34], [35]. In addition,
the probabilistic nature of VAEs allows them to quickly
learn robust data representations that are suitable for specific
noisy channel conditions in joint source-channel coding [36].
However, they present challenges in training and parameter
tuning, with the possibility of non-interpretable compressed
representations.

3) Normalizing Flows: NFs are generative models that
transform simple probability distributions into complex ones
using reversible transformations. Unlike VAEs and GANs, they
employ invertible neural networks for these transformations,
which include a deterministic mapping function and an ad-
justable scaling and shifting function [37]. The representative
examples are the Real NVP [38], which uses affine coupling
layers and the Masked autoregressive flow [39], based on
autoregressive models. The advantages of NFs lie in efficiently
sampling complex distributions, managing high-dimensional
data, and learning interpretable latent spaces. This is partic-
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TABLE II

SUMMARY OF COMMON GAI MODELS

GAI Tech-
nique

Principle Strengths Weaknesses

GANs Consist of a generator and a discriminator, training to-
gether through adversarial learning

High-quality and diverse gener-
ated samples

Hard to find Nash equilib-
rium during training

VAEs An autoencoder that can learn the probabilistic distribu-
tion of a latent space and generate new data

Interpretable latent space and
good for data reconstruction

Output of the model may be
difficult to interpret

NFs Transform simple probability distributions into complex
ones using reversible transformations

Efficiently sampling complex
distributions, managing high-
dimensional data, and learning
interpretable latent spaces

Training can be computa-
tionally expensive

Diffusion
Models

Gradually add noise to training samples and then remove
the noise to generate new samples in the inverse process

High-quality samples and learn-
ing stability

Long sampling times,
time-consuming training,
and limited diversity

Transform-
ers

Attention-based architecture for sequence-to-sequence
tasks

Learn long-range dependencies High demands for memory
and computation

ularly useful for various tasks in the physical layer commu-
nications, especially under unknown noise distributions [40].
However, the challenges include high computational demands,
lengthy training for complex distributions, and transformation
function selection. Hence, recent studies have explored opti-
mizing architectures and training efficiency through techniques
such as adversarial training and regularization, demonstrating
NFs’ potential in diverse applications.

4) Diffusion Models: Unlike the aforementioned GAI
models, diffusion models start with adding noise to training
samples, which is known as the forward diffusion process,
and then remove the noise to generate new samples in the
inverse process [41]. They can be trained on incomplete data
in a stable process. This special capability makes them highly
suitable for equalizing and modeling wireless channels with
limited training data and noisy conditions [42], [43]. However,
diffusion models face challenges such as longer sampling
times, complex training architectures, and limitations with
certain data types [44]. To address these issues, researchers
have developed optimization techniques, such as improving
the training speed by reducing variance stochastic gradient
descent, adaptive learning rate, and weight normalization.

5) Transformers: Another popular technique in GAI is
transformers that can effectively learn sequential data, espe-
cially in natural language processing tasks. Unlike conven-

tional sequence-to-sequence models that are based on CNNs
and RNNs, transformers are designed by utilizing the self-
attention mechanism [45]. In particular, the attention mech-
anism allows the model to attend all positions in the input
sequence, learn their relations, and then compute a represen-
tation of the sequence. The transformer model consists of an
encoder and a decoder. They are designed based on multiple
self-attention mechanisms and feedforward neural networks.
The encoder aims to process input sequence and capture
its complex dependencies while the decoder is responsible
for generating the output sequence, corresponding to specific
tasks. With the capability of learning long-range dependen-
cies, transformers have been adopted in various tasks at the
physical layers such as channel estimation, CSI feedback, and
joint source channel coding [46], [47], [48]. Although having
great potential for physical layer communications, the trans-
former architecture is still in its early stage of development
with various challenges to be solved such as computational
efficiency, efficient information injection, and model-driven
integration [46].

In Fig. 2, we present the structures of the aforementioned
GAI models. In addition, the principles, strengths, and weak-
nesses of these GAI models are summarized in Table II.
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B. Relate Work

1) Generative AI: Given the GAI’s growing popularity,
numerous surveys have recently emerged. These surveys fo-
cus primarily on the fundamental architecture [49], [50],
principles [51], implementation methods [52], as well as
applications [3], [53]–[57] of GAI models. For instance,
the authors in [50] provide a review on the GAI’s history,
basic components, and recent advances in AIGC across the
unimodal and multimodal interactions. The authors in [51]
present a survey on various deep GAI models, comparing these
models, elucidating their underlying principles, interrelations,
and reviewing current advancements and applications. For
GAI’s applications, the authors in [3] present a practical guide
on using GAI for network optimization, demonstrating its
effectiveness and contributing to network design. The authors
in [55] examine GAI’s role in the industrial Internet of Things
(IIoT), focusing on the protection of trust-boundary and the
prediction of network traffic, while highlighting challenges
to accelerate its adoption. Differently, the authors in [57]
discuss the applications of GAI in mobile telecommunica-
tions networks with a focus on problems such as spectrum
sensing, channel analysis, network management, and network
planning and deployment. Regarding the emerging Metaverse,
the authors in [56] explore GAI’s facilitative role in its
development, providing a research roadmap and addressing
ethical implications.

2) AI Enabled Physical Layer Communications: AI mod-
els are crucial for advancing physical layer communications,
spurring numerous research surveys. These studies primarily
concentrate on the application of DL in various domains,
including signal detection and compression [58], coding [10],
[59], [60], security [61], [62], and communication delay [63].
For instance, the authors in [60] survey recent advances in
DL-based coding, focusing on enhancing the specific coding
method using DL techniques. The authors in [61] offer a
review of DL-based security techniques for addressing issues
such as attack detection and authentication in 5G and beyond
networks. Given the importance of communication delays, au-
thors in [63] discuss the need for real-time DL in the physical
layer, summarizing the current advancements and limitations
in this area. The aforementioned surveys are summarized in
Table III. The existing surveys about AI-enabled physical
layer technologies and GAI, as discussed, provide two critical
insights.

• From the perspective of GAI, the existing surveys primar-
ily discuss the principles, architectures, implementation
methods, and the strengths and weaknesses of different
mainstream GAI models. Furthermore, researchers ana-
lyze the applications of GAI in general domains such as
IIoT and mobile networks with a variety of applications
and provide future prospects and potential challenges
from various aspects, such as ethical impacts and risks.

• Regarding AI-enabled physical layer communications,
existing surveys review the physical layer technologies
and conventional DL techniques. Besides, they present a
detailed discussion of how these conventional DL tech-
niques can support physical layer technologies, including

signal compression and detection, coding theory, attack
detection, physical layer authentication, and so forth.

Despite the comprehensiveness of these surveys, a gap
remains in exploring GAI’s applications in physical layer
communications. Given the challenges posed by emerging
technologies to the physical layer and the unique potential of
GAI, this paper delves into how GAI can effectively address
emerging issues in the physical layer communications. We
further enhance this exploration by contrasting GAI-assisted
physical layer technologies with those reliant on traditional
AI models, thereby addressing current research gaps and pro-
viding insights into the ongoing evolution of GAI in physical
layer communications.

III. GENERATIVE AI FOR PHYSICAL LAYER
COMMUNICATIONS

In this section, we provide a comprehensive review of
various applications of GAI for emerging issues in physical
layer communications.

A. Modulation and Signal Classification

Signal classification and modulation recognition are always
among the most important components in designing receivers
of wireless communication systems [64]. However, traditional
approaches usually require perfect or highly accurate knowl-
edge of the underlying channel and CSI to obtain good de-
tection performance [20]. Moreover, these approaches appear
to be ineffective in future wireless communication systems
due to the increased complexity of signals, spectrum efficiency
requirements, and the dynamics of UEs’ behaviors and char-
acteristics. To overcome these challenges, DL is emerging
as a prominent solution. Unfortunately, DL-based solutions
require large datasets and long training time to obtain good
detection performance [13], [65], especially when channel
environments change fast due to user mobility. Moreover, a
trained DL model only works well with some specific wireless
environments that have similar characteristics to the trained
environment. In new wireless environments with different
conditions, e.g., channel models, surrounding interference, and
noise distributions, this trained model will need to be retrained
with a huge volume of new training data, which may not
be feasible in practice. In addition, conventional DL-based
solutions are less effective in modeling complex wireless
channels that are time-varying, non-i.i.d distributed, or non-
differentiable [20], [21]. To deal with these limitations, GAI,
with its great capabilities to understand, capture, and generate
the distribution of complex and high-dimensional data [66],
[67], is a promising approach.

Specifically, the authors in [20] point out that traditional
DL-based approaches do not perform well with non-Gaussian
and time-varying channels, especially in the low signal-to-
noise ratio (SNR) regions. For that, they propose a novel
GAN to help the receiver intelligently adapt to the dynamics
of wireless channels without retraining DNNs. In particular,
the proposed GAN is used to efficiently learn the channel
transition probability, i.e., the likelihood function. Then, the
estimated channel transition probability is fed into the Viterbi
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TABLE III
SUMMARY OF THE RELATED WORKS

Ref. Issue Key focus of survey

[49]
Generative
AI

An overview of some GAI models and architectures, training procedures, and limitations of three typical GAI models.

[50]
A summary of the history and fundamental components of GAI, along with recent progress in AIGC involving
unimodal and multimodal interactions.

[51] The principles, interrelations, current advancements, and applications of several GAI models.

[52]
The algorithms and implementation methods of several GAI models, as well as some guidance on selecting GAI
models.

[53] Technological development of various AIGC and application of GAI in education and creativity content.

[54]
An exploration of the advantages and disadvantages of using ChatGPT in educational contexts and some limitations
of the ChatGPT.

[55]
The state of the art of GAI models and their use in IIoT, such as trust-boundary protection, anomaly detection, and
so forth.

[56]
GAI’s applications in Metaverse, such as avatars, non-player characters, and virtual world generation, automatic digital
twin, and so forth.

[57]
An extensive overview of recent challenges and developments in applying GAI within mobile communications
networks.

[3] A tutorial of using generative diffusion model in network optimization.

[58]

AI
Enabled
Physical
Layer
Commu-
nications

A survey of the recent advancements in DL and its application in signal compression and detection.

[10]
An investigation about the DL-based physical layer, including using DL to redesign the modules in the traditional
communication system and replace the communication system with autoencoder-based architecture.

[59]
Discuss some new applications of DL in the physical layer and present an autoencoder-based physical layer
communication system.

[60] An overview of recent advances of DL’s applications in coding by focusing on sequential codes and Turbo codes.

[63]
Examine the necessity of real-time DL in the physical layer and provide a summary of the current developments and
their limitations.

[61]
A detailed examination of different DL and deep reinforcement learning (DRL) methods suited for physical layer
security applications.

[62] The integration of machine learning with the selection of relay nodes, antennas, and authentication processes.

algorithm [68] to derive the maximum-likelihood sequence
detection. Moreover, the authors develop an online adjustment
policy to fine-tune the proposed GAN network by leveraging
the soft output of the model as well as pilot signals, making
it more effective with time-varying wireless channels. The
numerical results then demonstrate that the proposed GAN
network can achieve a bit error rate (BER) of 10−2 at 8 dB
SNR while the ViterbiNet approach [68] can only obtain this
level of BER at 12 dB SNR. Moreover, the authors show that
by using GAN they can obtain near-optimal BER performance
under dynamic channel conditions.

Considering the same GAI method, the authors in [21]
also develop a GAN network to model unknown channels
in end-to-end wireless communication systems. As depicted
in Fig. 3, the authors first consider an end-to-end commu-
nication system in which all the signal processing blocks at
the transceivers are replaced by DNNs to jointly optimize the
performance of the whole system. To do that, traditional DL-
based approaches usually assume the availability of CSI and
prior channel knowledge which are not always available in
practice. To tackle this challenge, the authors design a novel
conditional GAN network to represent the channel between
the transmitter and the receiver to allow the gradient from the
receiver to back-propagate to the transmitter. Moreover, the
pilot signals received at the receiver are used as the conditional
information of the proposed GAN network, as illustrated in

Fig. 3(c). In this way, the GAN network can generate more
realistic coefficients for time-varying channels, and thus the
end-to-end loss can be optimized to minimize the BER of
the system. Interestingly, the authors demonstrate that the
Kullback-Leibler divergence of the proposed GAN network
can be significantly reduced when training the model over a
long period, indicating that the generated data’s distribution
converges to the target distribution.

Besides signal classification, GAN can also be adopted
for modulation recognition. For instance, the authors in [69]
highlight that an application of DL for signal modulation
recognition is often hindered by insufficient training data
and overfitting. As such, the authors propose an auxiliary
classifier GAN to enlarge the training dataset by generating
new data while maintaining high-level features learned from
the original training data. The authors then demonstrate that
the proposed GAN solution can increase the classification
accuracy by up to 6% compared to conventional DL-based
solutions, e.g., AlexNet. Similarly, the authors in [70] propose
a GAN network to restore up to 50% missing samples due to
errors in dynamic spectrum sensing.

Differently, the authors in [71] propose a GAN-based mod-
ulation classification approach that is resilient to adversarial
attacks. Specifically, the authors indicate that conventional DL-
based automatic modulation recognition methods are vulnera-
ble to adversarial attacks with well-designed perturbation in-
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communication systems based on autoencoder, where the transceivers are
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channel GAN [21].

jected into wireless channels. To tackle this practical issue, the
authors propose a novel GAN network to generate plausible
samples that are similar to the received frames. The generated
frames are then compared with the perturbed received signals
to detect the true class of the modulated signals. Simulation
results show that the proposed GAN model can significantly
increase the accuracy of DL-based modulation recognition
methods under adversarial attacks. For example, the recog-
nition accuracy for 8 phase-shift keying (PSK) scenarios can
be increased from 9% to around 70% by using the proposed
GAN model.

While most existing works in the literature adopt GAN,
VAEs and NFs have been gaining attention recently [34],
[40], [74], [76] due to their capabilities in dealing with
signals in the time domain. For instance, the authors in [34]
consider the signal classification problem in MIMO orthogonal
frequency division multiplexing with index modulation sys-
tems. In particular, due to the high complexity of calculating
the posterior probability, the authors estimate the variational
posterior probability by training an encoder to map input data
to a latent distribution and training a decoder to estimate
the inputs, making it more effective than conventional DL
approaches in approximating complex posterior distributions.
Simulation results then reveal that the proposed approach can
obtain near-optimal maximum-likelihood performance.

By using the NF technique, the authors in [40] propose a
novel signal detection framework, which is fully probabilis-
tic, to approximate unknown noise distributions. Specifically,
the authors consider the signal detection problem in MIMO
systems with unknown statistical knowledge of noise which
is very challenging for traditional DL-based approaches. The
authors then utilize the NF technique to design a flexible
detection framework that does not require any noise statistics
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Fig. 4. Architecture of the NF-based detector with (i) a squeeze layer, (ii)
𝐾 flow steps, and (iii) an unsqueeze layer. The noise vector for each signal
vector is calculated and fed into the NF. After that, the NF’s output is mapped
into latent space z𝑖 [40].

as depicted in Fig. 4. The proposed NF is constructed by
three major components, including an unsqueeze layer, 𝐾 flow
steps, and a squeeze layer. To obtain the maximum-likelihood
estimation, the authors first calculate the noise vector w𝑖 =

y−Hx𝑖 , corresponding to signal vector x𝑖 with received signal
y and channel matrix H. The proposed NF then maps w𝑖
into the latent space which consists of latent variable z𝑖 and
the log-determinant. In this way, the corresponding likelihood
𝑝(y|xi) can be calculated, resulting in accurate maximum
log-likelihood estimation. Extensive simulations demonstrate
that the proposed framework outperforms existing DL-based
methods in terms of BER under non-analytical noise settings.
For example, in the quadrature phase-shift keying (QPSK)
modulated 4 × 4 MIMO system, the proposed approach can
reduce the detection error of the DetNet architecture [75] by
39.61% with SNR = 25 dB. However, the performance gap
between the proposed method and the traditional maximum-
likelihood approach is still noticeable. One potential solution is
leveraging the auto-distribution technique to further improve
the convergence of the proposed method in unknown noise
conditions.

As summarized in Table IV, GAN is the most common
GAI technique for modulation and signal classification tasks.
This stems from its capability to effectively generate high-
quality synthetic samples of wireless channels to significantly
improve the training accuracy, especially when collecting real
and labeled samples is difficult or even impossible. Besides
GAN, VAE is also widely adopted due to its effectiveness
in estimating intractable posterior distributions of wireless
channels [74], [77]. Although possessing good detection per-
formance, the dynamics and uncertainty of wireless environ-
ments have not been carefully investigated in existing studies.
As such, designing real-time adaptive GAI models needs to be
taken into account.
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TABLE IV
SUMMARY OF GAI APPROACHES FOR MODULATION RECOGNITION AND SIGNAL CLASSIFICATION

Issue Ref. Drawbacks of TAI Proposed GAI Approach

Modulation
Recogni-
tion

[69]
Poor performance due to insufficient
data and overfitting

Using the auxiliary classifier GANs to enlarge training datasets. GAN solution
can increase the classification accuracy by up to 6% compared to conventional
DL-based solutions.

[71]
Vulnerable to adversarial attacks
with well-designed perturbation

Propose a novel GAN network that consists of four generators to improve
the model’s accuracy and robustness against adversarial attacks

[70],
[72]

Require a large amount of training
data, and the training accuracy can
be greatly affected by the training
data’s quality

Propose a GAN-based method to generate missing wireless signal samples

Signal
Classifica-
tion

[73]

Lack of clean training dataset. Infor-
mation loss during the feature extrac-
tion process.

Use GAN to generate a large training dataset without requiring manual
annotation. Discriminative model can improve the signal classification process

[21]
Poor performance due to the dynam-
ics of wireless channels

Propose a conditional GAN to represent channel effects and bridge transmitter
and receiver for joint optimizations

[34]
Not effective in estimating posterior
distributions Use VAE to approximate intractable posterior distributions

[74] Enormous data labels are required Use VAE to simplify the maximum-likelihood estimation which contains
latent variables

[20]

Require a huge volume of training
data. Not perform well when the
underlying channel models are com-
pletely unknown

Use GAN to directly approximate the transition probability of the underlying
wireless channel. GAN network can achieve a BER of 10−2 at 8 dB SNR
while the ViterbiNet approach [68] only obtains this BER at 12 dB SNR.

[40]
Performance is not guaranteed when
the noise statistics are unknown

Leverage an NF to effectively learn the distribution of unknown noise.
Can reduce the detection error of DetNet architecture [75] by 39.61% with
SNR=25 dB

[76] Require more bandwidth resources Use VAE as a probabilistic model to recover transmitted symbols

[77]

Sub-optimal when separate source
and channel coding for short block
lengths

Use VAE as a probabilistic model to recover transmitted short-packet symbols

B. Channel Equalization, Modeling, and Estimation

In wireless communications, channel equalization, model-
ing, and estimation play essential roles in helping the receiver
detect the received signals more efficiently. Over the past few
years, DL has been widely adopted for channel equalization,
modeling, and estimation both in academia and industry [16],
[78]. Unfortunately, DL-based approaches require a huge
volume of labeled data to learn sufficient characteristics of a
specific channel, and thus limiting their application in dynamic
wireless environments with high levels of randomness and
variability. In addition, standard neural networks can work well
for discriminative tasks but perform poorly when modeling the
full complexity of channel distributions. Finally, conventional
DL-based methods use a general loss function that makes their
predictions less accurate, especially in low SNR regions [79].

For that, GAI has been adopted widely recently for equal-
izing, modeling, and estimating wireless channels, as sum-
marized in Table V. Compared with conventional DL tech-
niques, GAI possesses several advantages. Specifically, GAI
can generate synthetic training data that is similar to the data
it was trained on for ML models of channel estimation. In
addition, it can generate data following specific constraints or
conditions and leverage data from a source system to generate
training data for a target system. All these special features
make GAI an ideal tool for channel modeling. Moreover,
GAI can be used as an equalizer to learn the mapping from
distorted signals to transmitted signals as well as to model the
posterior distribution of transmitted signals and then estimate
clean signals from distorted observations at the receiver.

1) Channel Equalization: In [80], the authors develop a
hybrid GAN and autoencoder approach for channel equal-
ization of underwater wireless communications with one-bit
quantization. Specifically, it is highlighted that underwater
wireless communications are extremely vulnerable to severe
channel fading caused by the scattering and absorption of
underwater environments. Moreover, the strong nonlinearities
of one-bit quantization can greatly affect communication reli-
ability. Given these challenges, using conventional DL-based
approaches, e.g., autoencoder, may not yield good commu-
nication performance. For that, the authors propose to inte-
grate GAN into their autoencoder architecture to significantly
improve the channel equalization performance as illustrated
in Fig. 5. Specifically, input signal s is first encoded by the
encoder and then quantized by the adaptive one-bit analog-
to-digital converter to reduce the energy consumption of the
receiver. The generator of the proposed GAN architecture is
used to approximate the distribution of encoded signal er given
quantized signal q as its input. The discriminator then can
distinguish the real encoded signal er and synthetic encoded
signal ef produced by the generator. Finally, the decoder will
be used to recover the transmitted signal. In this way, the
authors can construct a generalized channel equalization to
equalize the one-bit quantization’s distortion as well as the
severe channel fading of underwater environments.

Due to its capabilities in analyzing signals in the time
domain, VAEs have been widely adopted for channel equal-
ization recently. For example, the authors in [81] and [82]
propose to use VAEs for blind channel equalization which is
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challenging for conventional AI approaches. In particular, an
encoder is used to represent the channel model and noise, and
a decoder is used to approximate the posterior distribution
of transmitted symbols from the received signals. In this way,
the proposed VAE equalizer significantly outperforms baseline
blind equalizers and obtains similar performance to that of a
non-blind equalizer while not requiring prior knowledge of
impulse responses and pilot signals. Differently, the authors
in [43] propose to use a diffusion model to remove channel
noise. In particular, the proposed channel denoising diffusion
model is added as a new physical layer module right after the
channel equalization to learn the input signals’ distributions
and then leverage them to further remove the channel noise.
Experiments demonstrate that the proposed diffusion model
can significantly reduce the mean square error and outperform
existing approaches. For example, at SNR = 20 dB under
Rayleigh fading, the proposed diffusion model can achieve
a 1.06 dB gain compared to the joint source-channel coding
system.

2) Channel Modeling: GAI also finds its applications in
channel modeling [42], [83], [84]. In [83], the authors propose
to use GAN to model millimeter wave (mmWave) channels.
They highlight that accurately modeling mmWave channels
is challenging due to several factors such as multiple high
frequencies and highly directional beams. For that, the authors
design a GAN approach to generate random profiles that
include all information about the channel, including channel
gains, delays, angle of arrival, and angle of departure of all
links between the receiver and the transmitter. Simulation
results then show that by using GAN, the authors can generate
new channel data that have almost the same cumulative
distribution function as real data. With this newly generated
data, the authors then can effectively model mmWave channels
by capturing the joint distribution of all links between the
transmitter and the receiver with multiple frequencies.

In [84], the authors introduce a distributed GAN approach
to model mmWave channels in unmanned aerial vehicle
(UAV) networks. In particular, the authors state that existing
approaches for channel modeling using conventional AI as
well as centralized GAN are limited by the lack of training
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and receive sequence y𝑘 are used as the input data. The generator then
“mimics” receive sequences ŷ𝑘 matching with the distribution of the true
channel [85].

channel samples and environmental measurements. For that,
they propose to use UAVs to collect mmWave channel data
during their aerial services. Each UAV employs GAN to train a
local channel model. After that, the generated channel samples
produced from the local channel model will be shared with
other UAVs in the networks to improve their training process.
Extensive simulations show that the proposed distributed GAN
approach can significantly improve the modeling accuracy as
well as increase the communication rate by 10% under real-
time channel estimation compared to standalone training.

3) Channel Estimation: Besides channel equalization and
channel modeling, GAI has been widely adopted in the liter-
ature for channel estimation. For example, the authors in [86]
propose a GAN architecture for wideband channel estimation
in mmWave and THz communications. The authors highlight
that DL has been widely adopted for channel estimation
in recent years. However, conventional DL-based approaches
require long pilot sequences to achieve good estimation per-
formance. Moreover, they provide poor channel estimation
performance under high channel correlations and high propa-
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weights [87].

gation losses. For that, the authors propose to use GAN to
estimate frequency selective channels at low SNR regions
with short pilot sequences. Specifically, the proposed GAN
approach can learn to generate realistic channel coefficients
based on a real-world but unknown channel distribution during
the offline training phase. After that, the trained GAN network
is used as a prior model for online channel estimation by
optimizing the input vector of the model based on the current
signal received at the receiver. By doing this, the proposed
GAN approach can obtain higher channel estimation accuracy
with 70% fewer pilots compared to the traditional CNN
networks (e.g., ResNet). Interestingly, the proposed solution
can work well when changing the environment’s factors such
as the number of rays and clusters without retraining the GAN
network.

Differently, the authors in [85] adopt GAN during the
online training phase to further improve the channel estimation
performance as illustrated in Fig. 6. Specifically, the receive
sequence y𝑘 and the training sequence p𝑘 are fed into the
proposed GAN architecture as its input data for training. The
generator network then can “mimic” receive sequences ŷ𝑘
matching with the distribution of the true channel. After that, a
newly proposed enhancement algorithm will perform channel
estimation based on these new receive sequences. Simulation
results indicate that the proposed GAN approach can help to
improve the estimation accuracy of traditional training-based
channel estimation approaches, especially at low SNRs.

The aforementioned GAN-based solutions and many others
in the literature are designed in a centralized learning manner
which may not be feasible in large-scale scenarios. To tackle
this practical challenge, the authors in [87] propose a federated
GAN solution for channel estimation in a distributed manner,
as illustrated in Fig. 7. In particular, each client uses the
estimated CSI obtained by the least square estimator as the
input data of GAN to learn the distribution of channels. After
that, the generator parameters are transmitted to the server for
aggregation. To improve federated learning performance, each
client’s discriminator will be dynamically adjusted by using
regularizers based on the global generator’s weights. Extensive
simulations suggest that the proposed federated GAN approach
is superior to conventional estimators as well as state-of-the-

art DL-based channel estimation. For example, at SNR = 5 dB,
GAN can achieve a normalized mean-squared error (NMSE)
of 10−2 while the ChannelNet proposed in [95] can only obtain
an NMSE of around 0.5. To further reduce the communication
overhead, model compression and multiple tasks design can
be considered to make the proposed federated GAN approach
more effective.

Recently, the transformer model has attracted great attention
in channel estimation due to its capability to learn long-range
dependencies in data [93], [47]. For example, the authors
in [47] develop a transformer-based parallel channel prediction
approach to predict wireless channels in the next several
frames simultaneously. In particular, the attention mechanism
within the transformer model is used to establish the paral-
lel mapping between previous CSI and future channels by
performing simple matrix multiplications. In addition, the
attention mechanism can add more weights to the previous
CSI that are more useful in predicting future channels. As
a result, the proposed transformer-based method can obtain
better communication performance compared to conventional
DL-based solutions. For example, with the user’s speed of
60 km/h, the proposed method can obtain a 10 dB NMSE
performance gain compared with LSTM-based schemes.

In conclusion, GAI is particularly useful in channel equal-
ization, modeling, and estimation thanks to its capabilities
in generating synthetic data under constraints, uncertainty
estimation, and variational learning and sampling. While
GAN and VAE are the two most common GAI techniques for
these problems, diffusion models and transformers can be also
adopted as demonstrated in [42] and [47].

C. Physical Layer Security

Physical layer security (PLS) is another important research
area in wireless communication systems. In general, PLS
refers to techniques that enhance the security of wireless
communications at the physical layer by leveraging the in-
herent randomness of wireless communication channels. With
recent advancements in DNNs, DL has been widely adopted to
improve the security at the physical layer of wireless commu-
nication systems. However, conventional DL-based approaches
are usually trained with specific environments, and thus cannot
work well under attackers’ new strategies. In addition, it is
difficult to collect sufficient labeled data from physical layer
attacks due to their randomness and dynamics [28], [96], [97].
More importantly, conventional DL models are vulnerable to
adversarial attacks [98], [99], in which minor perturbations in
the input data can fool DNNs. Finally, they perform poorly
with time-varying channels in low SNR regions and when
prior information about attackers is not readily available [100],
[101].

As discussed, GAI can be used for anomaly detection by
generating data that is defined to be normal and then flagging
input data that deviates significantly from these definitions. In
addition, GAI has been demonstrated to be effective in uncer-
tainty estimation as well as domain adaptation [103] which are
critical capabilities to deal with physical layer security threats.
For example, a GAN-based solution is proposed in [104]
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TABLE V
SUMMARY OF GAI APPROACHES FOR CHANNEL EQUALIZATION, MODELING, AND ESTIMATION

Issue Ref. Drawbacks of TAI Proposed GAI Approach

Channel
Equaliza-
tion

[81]
Poor performance in blind channel equal-
ization Use VAE to efficiently learn from unknown input impulse sequences

[82]
High complexity and not effective without
using pilot symbols

Use VAE to design a blind channel equalization that can model the
unknown nonlinearity

[80]

Low performance under the scattering and
absorption effects of underwater communi-
cations

GAN is used to equalize the one-bit quantization’s distortion as well
as the negative effects of underwater channels.

[43] Not effective in learning signal distributions Use diffusion models to eliminate channel noise and achieve a 1.06
dB gain compared to the joint source-channel coding system

Channel
Modeling

[88] Only effective with simple channel models Use GAN to learn the probability distribution functions of wireless
channels, resulting in better channel response approximation

[35]

Suffer from the curse of dimensionality and
can only be evaluated with a simple AWGN
channel model

Use VAE to learn the distribution of channel impulse responses and
generate synthetic channel response samples with similar properties

[83] Lack of training data
Use GAN to generate random multi-cluster profiles that include all
information of different frequencies

[84]

Propose a distributed GAN architecture to allow UAVs to collabo-
ratively approximate mmWave channel distributions and increase the
communication rate by 10% under real-time channel estimation

[42]
The collection of wireless channel data is
costly and time-consuming

Propose a diffusion model based channel sampling approach to gen-
erate synthetic channel responses based on limited ground truth data

[89]

Focus on estimating mmWave channel mod-
els for specific environments with limited
applications

Use GAN for mmWave channel modeling by effectively extracting
useful CSI features in the spatial-temporal domain

Channel
Estima-
tion

[90]
High complexity and training overhead
needed to obtain channel knowledge

Use GAN to learn functions of channel covariance matrices and
environment factors

[26]
Cannot estimate channels in high-speed
moving scenarios

Use GAN to learn and extract channel time-varying features and then
restore channel information

[86]
Need to know or model the channel distri-
bution

Use GAN to generate synthetic channel samples that have a similar
distribution with a true but unknown channel. Can obtain higher
channel estimation accuracy with 70% fewer pilots compared to the
traditional CNN networks

[85] Poor performance and require and require
large datasets

Use GAN to learn from receive signals and exploit Wasserstein
distance to improve estimation accuracy without transmitting long pilot
sequences.

[91]
Develop a conditional GAN approach to generate channel covariance
matrices for training

[87]
Low privacy due to large CSI dataset ex-
changing

Each client uses the estimated CSI obtained by the least square
estimator as the input data of GAN to approximate the channel’s
distribution.

[92]
Do not focus on the characteristic of
mmWave frequencies or A2G wireless links

Use GAN to learn the distribution of mmWave channels from multiple
distributed datasets

[93] Not effective in high mobility scenarios
Use Transformer to effectively track channel variation characteristics
in highly dynamic environments

[47]
Use Transformer to establish the parallel mapping between previous
CSI and future channels

[94]

Do not adequately account for the dynamics
and uncertainty of channels in large MIMO
systems

Use GAN to generate a more realistic channel image for more effective
training under channel variations
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for abnormality detection at the physical layer in cognitive
radio networks. In particular, the proposed GAN approach is
used to generalize the state vectors extracted from spectrum
representation data to learn the dynamic behavior of wideband
signals. Based on these state vectors, abnormal signals can be
distinguished from legitimate signals.

Similarly, the authors in [105] and [28] aim to prevent jam-
ming attacks as well as interference from secondary users in
cognitive radio networks. They first highlight that conventional
DL-based anti-jamming approaches give poor performance
when spectrum data is not sufficient. Unfortunately, collecting
and labeling spectrum data in the presence of jamming at-
tacks are time-consuming and costly. To address this practical
issue, the authors propose to use GAN to generate synthetic
spectrum data that can help a DRL algorithm to effectively
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learn and obtain the optimal dynamic spectrum anti-jamming
access policy. Extensive simulations then demonstrate that the
proposed GAN can help avoid complex jamming attacks and
outperform conventional DRL-based approaches with incom-
plete spectrum information. The lack of training data problem
of conventional physical layer security approaches is also
discussed and addressed by using GAN in [97], [106], [100],
and [107].

Differently, the work in [102] aims to authenticate radio
frequency (RF) transmitters by using GAN. The authors
first highlight that conventional ML techniques cannot be
straightforwardly applied to RF systems due to the dynamics
and uncertainty of RF signals. More importantly, these ML
techniques may perform poorly in the presence of intelligent
adversaries that can spoof transmitters and inject interference
into the target channels, making it more challenging to capture
the unique properties of the transmitters. For that, the authors
propose a GAN-based approach to efficiently authenticate
RF transmitters as GAN is well known for its capability in
dealing with adversarial situations, as shown in Fig. 8. In
particular, the GAN’s generator will use RF signals generated
from adversaries as its input to generate synthetic data 𝑔(𝑡).
On the other hand, the discriminator learns from signals of
both “trusted” transmitters and the generator to identify the
differences between real and fake RF signals. In this way,
the proposed solution can achieve a detection accuracy of
99% which is much higher than those of CNN and DNN
approaches, i.e., 81.6% and 96.6%, respectively. Similarly,
the authors in [108] also point out that the time-varying
characteristics of wireless channels introduce more difficulties
to conventional DL-based approaches in detecting abnormal
RF signals. In contrast, GAN, with its capabilities of anomaly
detection and uncertainty estimation, can deal with this issue
effectively.

Besides GAN, VAEs can also be adopted for physical layer
security. For instance, the authors in [101] propose a hierar-
chical VAE-based approach for physical layer authentication
in complex scenarios such as industrial IoT systems. The
authors state that ML has been widely adopted for physi-
cal layer authentication to analyze and extract complicated
properties of wireless channels for authenticating wireless
devices. Nevertheless, these methods usually require infor-
mation about attackers available in advance to obtain good
detection performance which is not the case in practice. As
such, the authors develop a new hierarchical VAE architecture
based on autoencoder and VAEs for efficient physical layer
authentication with no prior channel information of attackers,
as illustrated in Fig. 9. In particular, the VAE is used as a
classifier, consisting of two hidden units 𝑍1 and 𝑍2. 𝑍1 is
constructed based on encoder 𝜙1 and decoder 𝜓1 with a Simple
Gaussian Prior for dimension reduction and channel impulse
response reproduction. On the other hand, 𝑍2 is constructed
based on encoder 𝜙2 and decoder 𝜓2 with a revised double-
peak Gaussian Prior for authentication. The conventional au-
toencoder is used to further reduce the dimension of input
data. Finally, a new loss function is designed for the VAE
module considering both the Simple Gaussian Prior and the
double-peak Gaussian Prior distributions for further security
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and robustness enhancement. The authors then show that the
proposed solution can improve the authentication performance
by 17.18% compared to a conventional ML approach in [113].

Due to the ability to generate synthetic data that is similar
to real data, GAI can also be used by adversaries to perform
different types of physical layer attacks [98], [99], [116], [117].
For example, the authors in [116] use a GAN network to
generate synthetic wireless signals that cannot be distinguished
from legitimate signals by conventional approaches. Experi-
ments then show that by using GAN the authors can improve
the attack performance. Similarly, the authors in [99] recruit
GAN to perform adversarial attacks. In particular, GAN is
used to generate crafted imperceptible perturbations to cause
wrong classifications of a DL-based modulation recognition
approach. Through extensive simulations, the authors then
indicate that the proposed GAN-based adversarial attack can
reduce the accuracy of the DL-based modulation classifier
more than jamming and other adversarial attacks. For instance,
at 0 dB perturbation-to-noise ratio, the proposed techniques
can reduce the detection performance by 37% at SNR = 10
dB, by 56% at SNR = 0 dB, and by 7% at SNR = -10 dB.
In addition, the authors in [117] demonstrate that GAN can
help a jammer to effectively jam a target wireless channel by
generating more training data to help the jammer better learn
the defense policy of the legitimate receiver. To deal with these
GAN-based attacks, the authors in [98] propose to use another
GAN network to augment the training dataset of the classifier
with adversarial samples generated from adversaries’ GAN
networks. Simulation results then show that by augmenting the
training data with GAN the authors can effectively improve the
classification accuracy under GAN-based adversarial attacks.

As summarized in Table VI, GAN is mostly adopted to
deal with threads in physical layer security. The reason is
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TABLE VI
SUMMARY OF GAI APPROACHES FOR PHYSICAL LAYER SECURITY

Issue Ref. Drawbacks of TAI Proposed GAI Approach

Abnormality
Detection

[109]
Inaccurate representations for the indi-
vidual emitters

Use GAN to extract hidden information in original signals to improve
identification performance

[102]
Not effective when detecting rogue RF
transmitters and classifying trusted ones

Use a generative model to generate fake signals that are trained
together with real signals by a discriminative model to better identify
trusted ones. Can achieve a detection accuracy of 99% which is much
higher than those of CNN and DNN approaches, i.e., 81.6% and
96.6%, respectively

[104]
Only effective with a specific type of
low dimensional data

Use GAN to effectively learn from high dimensional data of spectrum
representation samples

[106] Lack of training data
Use GAN to learn the data of trusted transmitters to extract RF
fingerprint

[107] Use GAN to learn the distribution of collected signals

[108]

Time-varying characteristics of wire-
less channels make the prediction un-
reliable.

Incorporating an encoder network into the original GAN to reconstruct
the spectrogram

[110]
Not effective in anomaly detection as
GAI

Use GAN to identify unrecognized patterns on the model outputs and
associated sequenced metadata

Authentication
[98]

TAI-based approach can be cracked by
using GAN

Use GAN to augment the training dataset of the classifier with
adversarial samples generated from another GAN network

[111]
Not effective in learning distributions of
received signals

Use GAN to learn the distribution of received channel data to
authenticate a transmitting device

[112]
Not effective in dealing with the dy-
namics of wireless channels Use GAN and LSTM to learn and predict CSI elements’ magnitude

[101] Need attackers’ information for training

Use VAEs to extract valuable features of high-dimensional chan-
nel impulse responses for authentication. Improve the authentication
performance by 17.18% compared to a conventional ML approach
in [113]

Spoofing at-
tack

[114]
Cannot generate high-quality synthetic
spoofing signals

Use GAN to generate spoofing signals that are similar to legitimate
signals

[115]

Most detection methods cannot effec-
tively detect spoofing jamming if spoof-
ing signals are similar to authentic sig-
nals

Design a GAN network that is trained on a large dataset of authentic
satellite signals to accurately learn their distribution

[116]
Cannot effectively use to perform at-
tacks

Use GAN to construct synthetic RF signals that are similar to
legitimate signals

Jamming At-
tacks

[117]
Cannot generate high-quality synthetic
samples

Use GAN to help jammers to generate training data to improve attack
performance

[118]
Cannot generate deceptive jamming
templates under constraints

Use GAN to adaptively generate refined deceptive jamming templates
based on various factors such as azimuth angles, angles, and target
types. This can help to protect a specific area from observation and
detection by adversarial radars

[96] Lack of training data
Use GAN to generate incomplete spectrum data in multiple jamming
patterns

[97]
Use GAN to generate more samples and use VAEs to learn the latent
space of continuous signal samples.

[105]
Poor performance when spectrum data
is not sufficient

Use GAN to generate synthetic spectrum data that can help DRL
to effectively learn and obtain the optimal dynamic spectrum anti-
jamming access policy

that the generator and discriminator networks can be trained
through adversarial training to efficiently distinguish between
real signals/data from trusted devices and fake signals/data
from adversaries. Unfortunately, GAI can also be used by
adversaries to perform attacks at the physical layer as GAI can
effectively generate fake data that is similar to real data from
legitimate activities. However, research on countermeasures
against GAI-based physical layer attacks is still limited, and
more efforts from both academia and industry are required.

D. Intelligent Reflecting Surface (IRS)

Recently, IRS has been emerging as a promising technol-
ogy to significantly improve energy efficiency and spectrum
utilization with low-cost and low-power hardware [119]–[121].

In particular, a typical IRS consists of a large number of
reconfigurable metasurface elements that can be adjusted to
reconfigure wireless channels and obtain high beamforming
gain in a desired direction. However, accurate CSI information
and underlying channel models must be obtained to leverage
these advantages of IRS [79]. Unfortunately, it is challenging
to acquire BS-IRS and IRS-UE channels separately without
the help of RF chains. In addition, the cascaded channel of
BS-IRS and IRS-UE links is very high-dimensional due to the
high number of reflecting elements. To overcome these issues,
various DL-based channel estimation and channel modeling
approaches have been proposed in the literature. Nevertheless,
these approaches cannot accurately estimate IRS channels
since they use a general loss function that is not well designed
for IRS, leading to poor estimation performance [79]. In
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addition, conventional DL-based approaches can only learn
a limited number of channel parameters and one-dimensional
channel impulse responses.

To tackle the above issues of conventional DL-based ap-
proaches, GAI has been adopted in various studies, as summa-
rized in Table VII. For example, the authors in [119] develop a
model-driven framework based on GAN for channel modeling
in IRS-aided wireless communication systems. To make GAN
learn the channel distribution more effectively, the authors
incorporate the structure of the cascaded BS-IRS and IRS-UE
channels into the generator of the proposed GAN architecture.
More specifically, the generative model now has three nodes:
(i) BS-IRS node to learn BS-IRS channel distribution, (ii)
IRS-UE node to learn IRS-UE channel distribution, and (iii)
cascading node to combine the outputs. The discriminative
model is then used to distinguish between the generated
channel samples and the real BS-IRS-UE channel samples.
Moreover, the authors adopt Wasserstein distance [127] to
design a new loss function for the proposed GAN model
for more stable training. In this way, the proposed solution
can achieve much better performance than existing solutions
using CNNs and fully-connected neural networks (FNNs), as
demonstrated in the simulation results.

Differently, the authors in [79] use a conditional GAN archi-
tecture for channel estimation in IRS-aid wireless communi-
cations. In particular, the proposed GAN takes the received
signals as its conditional information to generate channel
responses with certain characteristics. Then, the discriminator
and the generator compete with each other to obtain an
adaptive loss function, making the generated channels similar
to the original channels. With its capability to learn data
distribution effectively, the proposed GAN architecture can
achieve much better channel estimation performance compared
to conventional DL-based methods as demonstrated in exten-
sive simulations. For instance, at 5 dB SNR, the NMSE of
GAN is around ten times less than that of the ChannelNet
architecture proposed in [124]. Applications of GAN for chan-
nel estimation in IRS-aided wireless communications are also
studied in [122] and [123] where GAN-based convolutional
blind denoising and conditional GAN are adopted to obtain
accurate CSI for IRS-aided systems, respectively.

GAN can also be used for the deployment design and
phase shift optimization of IRS. For instance, the authors
in [126] aim to jointly optimize the placement and reflecting
beamforming matrix of an IRS-assisted 6G network. The
authors first develop a deep reinforcement learning (DRL)
framework to interact with the system and gradually learn an
optimal joint policy. However, due to the reward function’s
randomness, the proposed DRL framework cannot learn all
the dynamics and uncertainty of the considered IRS system
effectively. To overcome this issue, the authors propose to use
GAN to identify the action-value that is close to target-action
values, resulting in a more stable learning process. Specifically,
the generator aims to generate actions (e.g., adjusting phase
shift, coordinates, and beamform) for the DRL agent that
are mapped to the original dataset. Then, these generated
experiences and the original dataset are stored in a relay
buffer. After that, the discriminator randomly takes a number

of samples in the relay buffer as its input to learn how to
distinguish the generated experiences from the generator and
real samples from the original datasets. Simulation results
then demonstrate that the proposed GAN architecture can
help to improve the accuracy of DRL by 45%. To allow
multiple IRSs to work collaboratively, the proposed approach
can be extended by considering a multiagent GAN-based DRL
framework.

Unlike the above studies, the authors in [125] propose a
novel channel estimation method for IRS by leveraging the
transformer model. Specifically, the authors first divide the
IRS surface into various groups and use the least square
approach to estimate the channels for some groups. Then, a
graph transformer model is developed to estimate the channel
for the remaining groups. The attention mechanism inside the
transformer model aims to find useful correlations between
different groups based on the channel information obtained
by the least square detector. As such, the authors can estimate
the channels for the remaining groups with lower training
overhead compared to existing methods. Experimental results
demonstrate that the proposed transformer-based method can
outperform a CNN-based approach with a 5 dB less SNR to
achieve an approximate BER of 10−4.

As summarized in Table VII, GAI can be used to deal with
various issues in IRS such as channel modeling, channel esti-
mation, and IRS deployment. Existing studies in the literature
mainly focus on GAN-based solutions. Nevertheless, other GAI
techniques such as VAEs, normalizing flows, and transformers
also have the great potential to further improve the perfor-
mance of IRS as they can efficiently learn the underlying
distribution and capture the complex dependencies of the
IRS cascaded channel. This opens new research directions of
novel GAI-based solutions for IRS.

E. Beamforming

In wireless communications, beamforming is a key tech-
nology to improve signal quality and transmission coverage.
However, it is challenging to obtain optimal beamforming poli-
cies due to the high computational complexity and excessive
feedback overhead, especially in systems with large antenna
arrays such as mmWave and massive MIMO communication
systems [128], [129]. DL can be used to tackle this problem
but it requires a large amount of training data and cannot
efficiently deal with the dynamics and uncertainty of wireless
communications. Several researchers have been adopting GAI
as an alternative approach and achieving promising results, as
summarized in Table VIII.

For example, the authors in [129] propose to use GAN
to reconstruct low-dimensional channel feedback from the
receiver to perform hybrid beamforming at the transmitter,
resulting in low communication overhead. Specifically, the
generator of the proposed GAN architecture is first pretrained
offline with channel samples generated by a geometric channel
model to learn the channel structure and correlations. In
the online phase, the receiver tries to compress the channel
matrix to a low-dimensional vector and feeds it back to the
proposed GAN architecture at the transmitter to recover the
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TABLE VII
SUMMARY OF GAI APPROACHES FOR INTELLIGENT REFLECTING SURFACE (IRS)

Issue Ref. Drawbacks of TAI Proposed GAI Approach

Channel
Modeling [119]

Require in-depth domain knowledge and
lack of training data Use GAN to generate high-dimensional channel samples for training

Channel
Estima-
tion

[122]
Lack of observational dimensions and
modeling capabilities

Combine GAN with a multiple residual dense network structure to
effectively remove noise from estimated channel matrices. Achieve better
NMSE performance and fast convergence compared with the residual
network

[123]
Not effective with high channel dimen-
sions

Use GAN to learn the channel distribution with LS estimation as
conditional input

[79]

Use a general loss function that is diffi-
cult to make the estimated IRS channels
more accurate

Use GAN to approximate cascaded channels by taking received signals
as conditional information. NMSE of GAN is around ten times less than
that of the ChannelNet architecture proposed in [124].

[125]

The sparse cascaded channel assumption
may not be valid in dense multipath prop-
agation and non-line-of-sight settings.

Develop a graph transformer model to find useful correlations between
different groups of IRS elements. Outperform a CNN-based approach
with a 5 dB less SNR to achieve an approximate BER of 10−4

IRS De-
ployment
Design

[126]
Not effective in dealing with the dynam-
ics of 6G networks

Use GAN to support DRL by learning the action-value that is near to
target-action values, resulting in a more stable learning process. GAN
architecture can help to improve the accuracy of DRL by 45%.

channel matrix that will be used for beamforming design. The
proposed GAN solution can help to reduce 2,048 complex
channel elements to just 15 real values while maintaining good
communication performance as demonstrated in simulations.
One possible extension of this work is to extend the con-
sidered model/method to extremely-large massive MIMO or
holographic MIMO.

Differently, the authors in [130] consider the beamforming
design in massive MIMO systems with large antenna arrays
where only rank-deficient CSI can be obtained. This rank-
deficient problem has not been fully solved in the literature
using conventional techniques. For that, the authors propose
a multi-GAN architecture for hybrid beamforming design
under rank-deficient channels. Specifically, the authors em-
ploy three generators in the proposed GAN architecture in
which generator G1 is used to recover rank-deficient channels,
generator G2 is used for analog beamforming, and generator
G3 is used for hybrid beamforming, as illustrated in Fig. 10.
Generator G2 takes the estimated rank-deficient channel H′

as its input to generate analog beamforming A which is the
input of generator G3. Generator G3 then estimates hybrid
beamforming F. After that, H′ and F are fed into the spectrum
efficiency module to calculate the average spectrum efficiency
SE′. The generator then learns from SE′ and the real spectrum
efficiency to improve the training processes of generators G1
and G3. Extensive simulations then demonstrate that the pro-
posed multi-GAN architecture can improve the beamforming
performance by 47.49% compared to a conventional CNN-
based method.

In conclusion, GAI is an effective approach for beamforming
in wireless communications due to its effectiveness in learning
data distributions and generating high-quality samples. GAN
is mainly adopted in existing studies due to its effectiveness
and simple architecture. Recently, VAE has emerged as an
alternative approach for beamforming as it can efficiently
approximate the probabilistic model of beam dynamics. Other
GAI techniques such as normalizing flows and transformers
should be considered in future studies for beamforming.

F. Joint Source Channel Coding (JSCC)

Coding plays a crucial role in wireless communications to
mitigate the negative effects of channel noise, interference, and
fading. Traditionally, the transmitter performs source coding
for compression and channel coding for error correction,
separately, making it difficult to optimize the spectrum usage.
By combining the functions of source coding and channel
coding into a single process, JSCC can leverage the statistical
characteristics of the source and the channel to design a
more efficient coding method. However, the complexity and
discontinuity of source data distributions introduce challenges
to the design of JSCC. For that, the authors in [133] propose
a novel JSCC approach based on VAEs over additive noise
analog channels. Specifically, the proposed VAE’s encoder is
used to convert source data into a low-dimensional latent space
while the VAE’s decoder recovers it to original data for JSCC.
More importantly, the authors study that when the channel
dimension is smaller than the source dimension, the encoding
of two neighboring source samples needs to be near each other
for good encoding performance. Therefore, multiple encoders
are employed, and one of them will be selected for sample
encoding on a specific side of the discontinuity. Experiments
then demonstrate that using the proposed VAE-based JSCC
method can help to increase the average peak SNR (PSNR) by
nearly 3 dB compared to conventional CNN-based approaches.

Recently, JSCC has been emerging as an effective tech-
nology for semantic communications. However, in [134], the
authors highlight that when the source dimension increases,
e.g., large-scale images, the performance of DL-based JSCC
methods degrades significantly. Moreover, when the channel
bandwidth ratio increases, these methods provide poor coding
gain as they cannot learn the source distribution to determine
patch-wise variable-length transmissions. To tackle these is-
sues, the authors design a JSCC architecture based on VAEs
in which the noise channel is viewed as a sample of latent
variables. In this way, the proposed architecture can effectively
learn the source distribution to provide a more effective coding
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Fig. 10. Multi-GAN architecture for beamforming with (a) Generator G1, (b) Generator G2, (c) Generator G3, (d) the spectrum efficiency module, and (e)
the discriminator [130].

TABLE VIII
SUMMARY OF GAI APPROACHES FOR BEAMFORMING

Issue Ref. Drawbacks of TAI Proposed GAI Approach

Beamforming

[131] Lack of training data Use GAN to generate additional data for beam prediction

[128],
[132]

Not effective in learning
data distribution Use VAE to approximate the probabilistic model of beam dynamics

[129]
High feedback overhead
and high complexity

Use GAN to reconstruct a low-dimensional channel fed back from the receiver
to perform hybrid beamforming at the transmitter. Reduce 2,048 complex channel
elements to just 15 real values while maintaining good communication performance

[130]
Suffer from the rank-
deficient problem

Use a GAN architecture with three generators to recover (i) rank-deficient channels,
obtain (ii) analog beamforming and (iii) digital beamforming matrices. Improve
the beamforming performance by 47.49% compared to a conventional CNN-based
method

mechanism. Experiments then show that the proposed solution
can achieve up to 28.91% bandwidth saving or a PSNR gain
of 2.64 dB on the CIFAR10 dataset while the conventional
deep JSCC increases the bandwidth cost by up to 54.31%.

Similarly, the authors in [135] also consider JSCC for se-
mantic image transmissions. The authors study that DL-based
JSCC possesses significant perceptual quality losses in edge
scenarios. Therefore, they propose two novel JSCC schemes
based on GAN, namely InverseJSCC and GenerativeJSCC.
InverseJSCC aims to recover the distorted reconstructions of
a DL-based JSCC model via solving an inverse optimization
problem using a pre-trained style-based GAN architecture. In
contrast, in GenerativeJSCC, GAN is used as the decoder to
produce latent and noise inputs for the StyleGAN-2 [136]
generator. By jointly training the encoder and GAN decoder,
GenerativeJSCC can outperform DL-based JSCC methods in
terms of perceptual quality and distortion, as demonstrated
by extensive simulations. GAI has also been adopted in other
studies as summarized in Table IX.

As summarized in Table IX, VAE is mainly adopted in
existing studies for JSCC. This is because VAE is particu-
larly powerful in converting high-dimensional data into low-
dimensional latent space. Moreover, the transformer, as a
sequence-to-sequence model, can be a potential approach
for JSCC to effectively learn the complex and long-range
dependencies of input data, resulting in better coding pro-
cesses [48].

G. CSI Feedback

With its powerful capabilities in learning data distribution
and generating synthetic data, GAI has also been applied to
recover compressed CSI feedback, as summarized in Table X.
For example, the authors in [27] propose to use GAN for
reconstructing CSI feedback in massive MIMO communica-
tions systems. In particular, massive MIMO can provide high
cell throughput and reduce multiuser interference but largely
relies on exploiting the CSI feedback from UEs. To reduce the
signaling overhead of the system, the CSI feedback is usually
compressed at UEs before transmitting to BSs. During the
compressing process, important CSI information may be re-
moved unintentionally, resulting in low precoding performance
at BSs. To tackle this problem, the authors develop a GAN-
based CSI recovery framework that can effectively generate a
CSI matrix based on its compressed version. Specifically, the
compressed CSI feedback will be first fed to the generator to
estimate the CSI vector. This estimated CSI vector is then fed
to the discriminator together with the original CSI vector to
determine if the reconstructed CSI is good or bad. A new loss
function combining the adversarial loss of the discriminator
and the mean square error loss between the reconstructed and
original CSI is introduced to further enhance the recovery
performance of the proposed GAN-based approach. Extensive
simulations reveal that by using GAN, the proposed framework
is superior to traditional DL-based approaches. For instance,
with a compression ratio of 1

4 , the GAN-based framework can
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TABLE IX
SUMMARY OF GAI APPROACHES FOR JOINT SOURCE CHANNEL CODING (JSCC)

Issue Ref. Drawbacks of TAI Proposed GAI Approach

JSCC

[133]

Not effective in dealing with the
complexity and discontinuity of
source data distributions

VAE’s encoder converts the source data into a low-dimensional latent space while
the VAE’s decoder tries to recover it to original data for JSCC. Increase the average
PSNR by nearly 3 dB compared to conventional CNN-based approaches

[134]
Not effective when source dimen-
sion increases

Use VAE to learn the source distribution by considering the noise channel as a sample
of latent variables. Achieve up to 28.91% bandwidth saving

[135]
Have significant losses of percep-
tual quality for the edge cases

Use two GAN-based networks to recover the distorted reconstructions of a DL-based
JSCC and to produce the latent and noise inputs for the StyleGAN-2, respectively

[36]

Not stable for multivariate Gaus-
sian source over Gaussian multiple
access channels

Propose a VAE-based JSCC system with added distribution restrictions on the loss
function to avoid falling into the local minimum in specific regions

[137] Suffer from the cliff effect Use diffusion models as a generative refinement component to enhance the recon-
struction’s perceptual quality

[138] High complexity Use a GAN compression method based on intermediate feature distillation

achieve an outdoor NMSE of -15.88 dB while CsiNet [139]
and CsiNet+ [140] can only obtain -8.75 dB and -12.4 dB,
respectively.

Differently, the authors in [141] propose to use VAEs for
CSI compression at UEs under noisy channel conditions. The
authors highlight that conventional DL-based CSI compression
approaches such as CsiNet in [139] are vulnerable to noisy
feedback channels which are common in practice. In contrast,
the proposed VAE-based compressor can approximate distri-
bution parameters for each dimension instead of estimating a
point for each dimension in the latent space (i.e., deterministic
latent space) as in classic DL-based solutions. As a result,
the compressed CSI is robust against noise in the feedback
channel. To make the proposed VAE network more suitable
for the noise conditions of the feedback channel, the authors
modify the VAE loss by using a weighted combination of
reconstruction error and KL divergence between the encoder’s
distribution and the true distribution. The authors then test
the proposed solution with an additive white Gaussian noise
(AWGN) feedback channel and indicate that the proposed
VAE-based compression technique can outperform other DL-
based techniques (e.g., CsiNet [139]) and compressive-sensing
based models both under noise-free and noisy channel condi-
tions. Similarly, the authors in [142] adopt GAN for wire-
less channel data augmentation before feeding CSI data into
CsiNet. Specifically, a GAN-based network is developed to
enrich data features of the original wireless channel data and
also to generate new similar data by learning the distribution
of the original channel data. These GAN-generated data will
be fed into CsiNet for compression before feeding back to
BSs. Simulation results reveal that using GAN can achieve
a 3dB performance improvement compared to existing data
augmentation approaches.

In summary, with the ability to learn data distribution and
then reconstruct data from limited and noisy samples, GAI is
a powerful tool for CSI feedback in wireless communications.
Nevertheless, current applications are limited to GAN-based
approaches. Further efforts in applying other advanced GAI
techniques should be considered to reveal the full potential of
GAI for CSI feedback.

H. Radio Map and Channel Delay Estimation

Due to its capability of variational learning and sampling
to explore the data distribution in a more versatile manner,
GAI can also be used for radio map estimation [143], [144],
as summarized in Table X. In particular, a radio map spatially
shows RF signal strength distribution and network coverage
information which are essential characteristics for resource
management and network planning in wireless communication
systems. Unfortunately, conventional DL-based approaches
such as RadioUNet [146] and autoencoder [147] may not be
effective for radio map estimation in modern IoT and cellular
systems due to nonuniformly positioned measurements and
access constraints. For that, the authors in [143] and [144]
propose to use the conditional GAN architecture to efficiently
estimate radio maps based on observations from the envi-
ronment. Particularly, the generator aims to generate image
masks while the discriminator learns to distinguish the masks
of the original dataset and those generated by the generator.
Simulation results then demonstrate the effectiveness of GAN
in estimating radio maps in various outdoor environments.

In addition, GAN is a promising approach for channel delay
estimation as studied in [145]. The authors aim to accurately
estimate the first-arrival-path delay in wireless multi-path
channels which plays an essential role in positioning and
localization services. To do that, they first propose a CNN
network to learn the mapping between the cross-correlation
sequence and the delay offset. However, this CNN network
suffers from the lack of training data. As such, the authors use
GAN to generate synthetic cross-correlation data and smooth it
with a Savitzky-Golay filter. The authors then perform various
simulations to show that the proposed channel delay estimator
can outperform existing approaches. In addition, the proposed
GAN architecture can help to maintain a good estimation
accuracy for the CNN network even with limited real cross-
correlation data.

In conclusion, GAI has been mostly adopted for common
issues in physical layer communications such as physical layer
security, channel estimation, and signal detection. However,
thanks to its capabilities, GAI can also be applied to other
problems in the physical layer, such as radio map estimation,
waveform generation, and channel delay estimation, opening
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TABLE X
SUMMARY OF GAI APPROACHES FOR CSI FEEDBACK, RADIO MAP ESTIMATION, AND CHANNEL DELAY ESTIMATION

Issue Ref. Drawbacks of TAI Proposed GAI Approach

CSI feed-
back

[27]
Cannot achieve performance
as good as GAN

Use GAN to recover original CSI from its compressed version. Achieve an outdoor
NMSE of -15.88 dB while CsiNet [139] and CsiNet+ [140] can only obtain -8.75
dB and -12.4 dB

[142]
Cannot achieve performance
as good as GAN

Use GAN to enhance wireless channel data, resulting in better CSI compression
processes. Achieve a 3dB performance improvement compared to existing data
augmentation approaches

[141]
Less effective under noisy
feedback channels Use VAE to compress CSI under noisy channel conditions

Radio
map
estimation

[143] Lack of training data The generator aims to generate image masks while the discriminator learns to
distinguish the masks of the original dataset and those generated by the generator.

[144]

Poor performance due to
nonuniformly positioned
measurements and access
constraints

Use conditional GAN architecture to efficiently estimate radio maps based on
observations from the environment

Channel
delay
estimation

[145] Lack of training data Use GAN to generate synthetic cross-correlation data and smooth it with a Savitzky-
Golay filter

new research directions.

IV. OPEN ISSUES AND FUTURE RESEARCH DIRECTIONS

Although having great capabilities in complex data feature
extraction, transformation, and enhancement, GAI is still in
its early stage of development. Thus, open issues and research
directions of GAI in physical layer communications will be
discussed in this section.

A. Security and Privacy

As discussed above, adversarial attacks can significantly
impact GAI systems. In particular, adversaries can inject
crafted perturbations into the input data of GAI models to
replicate these models or degrade their performance. More-
over, GAI can be exploited by adversaries to generate data
that is similar to legitimate/trusted data, making conventional
security approaches less effective in classifying these adver-
sarial attacks. However, there is limited effort in dealing with
adversarial attacks, especially GAI-based attacks in physical
layer communications. One potential approach is to fight fire
with fire by using GAI models to generate adversarial training
data and learn on this synthetic data to determine statistical
anomalies that suggest potential perturbations. Moreover, GAI
can be used to recover poisoned input data to mitigate the
negative effects of adversarial perturbations [148].

B. Model-driven GAI

As can be observed in Section III, existing GAI-based
models mostly focus on data-driven approaches that rely
on the availability of training data. However, in practice,
collecting a sufficient amount of training data may be costly,
time-consuming, and even impossible. To tackle this issue,
model-driven approaches [149], [150] can be adopted. In
particular, model-driven approaches can incorporate the prior
knowledge of target domains, e.g., carrier frequencies, physical
constraints, and noise distributions, into the training process
to further improve the performance of GAI-based solutions.

For example, with prior knowledge of bandwidth and carrier
frequency, GAI-based solutions can be trained to generate
more realistic channel samples.

C. Resource-Efficient Learning

The training and inference of GAI require computation, stor-
age, and communication resources, putting burdens on existing
communication systems, especially for resource-constrained
devices such as IoT devices, mobile phones, and UAVs.
As such, novel GAI architectures need to be developed
to minimize resource consumption while maintaining good
learning performance. Distributed and federated learning can
be integrated into GAI to offload computational tasks to
edge devices as well as reduce communication overhead by
transmitting model updates instead of raw data. For example,
GAI models can be trained at edge devices with local data and
then aggregated at a centralized server to obtain a global GAI
model. In addition, GAI can be used to recover compressed
local model updates to reduce communication overhead while
still maintaining good training performance. Incentivization
mechanisms such as dynamic spectrum access should also be
considered to utilize communication resources, especially in
cognitive radio networks as studied in a few papers reviewed
in Section III.

D. Real-time Adaptation

Although GAI has the capability of domain adaptation that
can leverage knowledge from a source domain for training in
a target domain, it still requires a large amount of training
data and a long training time to achieve good performance.
For example, when UAVs fly to a new area without prior
channel knowledge, GAI models may not be able to quickly
adapt to the new conditions with a limited number of labeled
training samples. Consequently, GAI may not effectively deal
with real-time wireless channel/environment changes caused
by random factors such as mobility, blockage, and interference.
For that, it is essential to develop novel GAI approaches
that can quickly adapt to track these variations. Integrating
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advanced ML techniques such as meta-learning [151] into GAI
is a promising direction to help GAI models quickly adapt to
new environmental conditions based on a few training samples.
Specifically, meta-learning can obtain important and useful
information in the training process of source environments
and use that knowledge to quickly learn new environments.
With meta-learning, GAI can achieve high accuracy with a
few training data samples in new wireless systems, making it
more practical in real-world applications. In addition, over-
the-air evaluation and implicit CSI feedback mechanisms
should be developed to further improve the performance of
GAI under the dynamics and uncertainty of physical layer
communications.

V. CONCLUSION

Generative AI is a promising technology for physical layer
communications due to its capabilities of complex data feature
extraction, transformation, and enhancement. In this article,
we have presented a comprehensive survey of the applications
of generative AI in physical layer communications. Firstly,
we have introduced an overview of generative AI, common
generative models, and their advantages compared to tradi-
tional AI techniques. Then, we have provided detailed reviews,
analyses, and comparisons of different generative AI tech-
niques in emerging problems in physical layer communications
such as channel modeling, channel estimation and signal
detection, physical layer security, joint source channel coding,
beamforming, and intelligent reflecting surface. Finally, we
have highlighted important open issues and future research
directions of generative AI in physical layer communications.
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