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Abstract

Influenza, commonly known as flu, is a respiratory disease that poses a significant
challenge to global public health due to its high prevalence and potential for serious
health complications. The disease is caused by influenza viruses, among which
influenza A viruses are of particular concern. These viruses are known for their
rapid transmission, potential to cause severe health issues, and frequent mutations,
which underscore the need for ongoing research and surveillance. A key aspect
of managing influenza outbreaks includes understanding host origins, antigenic
properties, and the ability of influenza A viruses to transmit between species, as
this knowledge is critical in forecasting outbreaks and developing effective vaccines.

Traditional approaches, such as hemagglutination inhibition assays for antigenic-
ity assessment and phylogenetic analysis to determine genetic relationships, host
origins and subtypes, have been fundamental in understanding influenza viruses.
These methods, while informative, often face limitations in terms of time, resources,
and the ability to keep pace with the rapid evolutionary changes of viruses. To
mitigate these limitations, this thesis uses advanced machine learning techniques to
analyse critical protein sequence data from influenza A viruses, offering an alternative
perspective for unravelling the complexities of influenza, and potentially opening
new avenues for analysis without strict reliance on prior biological knowledge.

The core of the thesis is the application and refinement of predictive models
to determine host origins, subtypes, and antigenic relationships of influenza A
viruses. These models are evaluated comprehensively, considering factors such as
the impact of incomplete sequences, performance across various host taxonomies
and individual hosts, as well as the influence of reference databases on model
performance. This evaluation illuminates the potential of machine learning to
enhance our understanding of influenza A viruses in real-world scenarios, pointing
out the ongoing importance of this research in public health.
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1
Introduction

The central concern of this thesis is influenza, a highly infectious disease that
presents a global public health concern. The symptoms of influenza vary widely,
with common signs such as cough, fever, sore throat, tiredness and body aches.
In more severe cases, it may result in hospitalisation. On rare occasions, it can
be fatal, especially in high-risk populations such as older adults, young children,
and those with underlying chronic health conditions. Influenza is caused by the
influenza viruses, which primarily infect the respiratory system, specifically the nose,
throat, and lungs. There are four types of influenza viruses: A, B, C, and D, with
type A being the most severe and responsible for epidemics and rare pandemics.
Moreover, Influenza A Viruses (IAVs) can mutate quickly, requiring continuous
vaccine adaptations to keep up with the changes. Therefore, the dynamism and
adaptability of IAVs not only make them subjects of extensive research, but also
present challenges that require innovative solutions.

The methodologies proposed in this thesis are inspired by the recent advance-
ments in the field of machine learning. In simple terms, machine learning allows
computers to "learn" from data, which holds promise in revealing complex patterns
in large datasets. Thus, machine learning is widely used in various domains,
including virology, as it can be used to extract meaningful information from large
datasets to predict future trends, optimise the decision-making process, and tackle
historically difficult-to-solve problems.

The development of machine learning offers the opportunity to view the world
from a novel vantage point, one that is observed through the lens of data. This thesis
takes advantage of machine learning, with a particular focus on their potential to
analyse the complex nature of IAVs. The primary objective is to apply and further
refine existing machine learning techniques, such as Convolutional Neural Network
(CNN) and Transformer, to analyse and predict characteristics of IAVs. This
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involves using machine learning to understand better virus-host origins, antigenic
relationships, and subtypes, all of which are crucial for effective influenza surveillance
and response strategies.

The data used in this thesis are protein sequence data, which can be gathered
from public databases, and the meta-data does not contain private information.
Analysing these protein data often involves the use of bioinformatics techniques.
Thus, bioinformatics was applied in the first study mentioned in this thesis.

The first study centres on predicting the host origins of IAVs. This study uses
two methods to encode protein sequences: a commonly used bioinformatics method
known as Position-Specific Scoring Matrix (PSSM) and a popular Natural Language
Processing (NLP) technique called word embedding. These encoded features are
further processed using traditional machine learning and deep learning techniques,
respectively. This study evaluates the performance of these different methods and
examines how data quality affects modelling accuracy.

The subsequent study focuses on predicting hosts and antigenic types of IAVs
using Multi-Channel Neural Network (MC-NN). It performs a detailed analysis
of various machine learning models, with a specific emphasis on evaluating their
performance across diverse datasets. This in-depth analysis is designed to enhance
understanding of the models’ adaptability and accuracy in various scenarios,
including those involving datasets with incomplete sequences and inputs based
on single sequences.

The research then shifts to comparing supervised and semi-supervised learning
models in predicting antigenicity of IAVs. This study spans different ratios of
labelled data, emphasising the influence of pre-trained model features on the
models’ performance. This study underscores the adaptability and effectiveness of
machine learning in scenarios with varied data availability, particularly in relation
to different influenza subtypes.

1.1 Motivation

This thesis is primarily motivated by the crucial interplay between healthcare
disparities and the advanced achievements of machine learning, with a focus on
managing influenza globally. Influenza remains a significant public health challenge,
presenting varying degrees of severity worldwide. In countries like the UK, where
healthcare systems are robust and vaccination programmes are extensive, the impact
of the influenza is somewhat controlled. However, the story is quite different in
many developing countries. These regions face challenges such as limited healthcare

2



infrastructure, limited access to vaccinations, and a general lack of public awareness,
leading to more severe consequences during influenza outbreaks. For example,
vaccination coverage for critical vaccines in wealthier nations often exceeds 90%,
but this figure can fall below 50% in some low- and middle-income countries [1].

Furthermore, the World Health Organisation (WHO) estimates that vaccination
prevents 2 - 3 million deaths annually, but this figure could be underestimated,
indicating the profound impact of vaccines on global health management [1, 2]. The
global Influenza Vaccination Rates (IVRs) also paints a concerning picture, with only
24.96% of the general population being vaccinated, which is significantly lower than
that of specific groups, such as individuals with chronic diseases (41.65%), healthcare
professionals (36.57%), and pregnant women (25.92%) [3]. This disparity becomes
more evident when comparing high-income countries/regions to middle-income
ones, such as the United States and India.

In the United States, during the 2020–21 influenza season, the Centers for
Disease Control and Prevention (CDC) reported an influenza vaccination coverage
of 58.6% among children aged 6 months to 17 years and 50.2% among adults aged
18 years and older. Overall, approximately half (52.1%) of the US population
aged 6 months and older were vaccinated during this season [4]. In contrast, in
India, influenza vaccinations are not commonly administered, primarily due to a
lack of awareness, limited access, and high costs. The pandemic raised awareness
and demand for influenza vaccines, but the cost of these vaccines, which ranged
between 1,500 and 2,000 Indian rupees ($20 - $27), remains a hurdle for many,
considering that the country’s per capita income was $1,913 in 2020 [5, 6]. This
disparity reflects the significant challenges in increasing IVRs in lower-income
countries, where financial constraints and lack of infrastructure present major
barriers to widespread immunisation.

Given the context that influenza vaccination coverage is low in low- and middle-
income countries, primarily due to limited financial resources allocated toward
vaccine development and distribution, it sets the stage for the significant role of
machine learning. This disparity highlights the need for innovative approaches
to predict and manage infectious diseases, such as influenza, in a cost-effective
manner. Meep learning, with its shift from model-driven to data-driven approaches,
offers promising solutions by allowing the analysis of large amounts of data to
generate actionable insights.

The focus on predicting the host origins, subtypes, and antigenicity of Influenza
A Viruses (IAVs) using protein sequence data is particularly relevant. Protein
sequences are key to understanding the genetic makeup of viruses, offering insights
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into their behaviour and evolution. Furthermore, the use of protein sequence data
avoids privacy concerns that are often associated with clinical or demographic data.
This aspect is particularly important for maintaining ethical research practices and
public trust, especially in studies that span multiple countries and cultures. The
non-invasive nature of collecting protein sequences, compared to some forms of
clinical data, also eases the logistical and ethical challenges in research.

Understanding the origins of the hosts is crucial for early detection and contain-
ment of outbreaks, as different hosts can harbour viruses with varying potentials to
cross species barriers. Predicting subtypes is vital for identifying strains that could
potentially cause pandemics, helping health authorities to prepare and respond more
effectively. Lastly, studying antigenicity is important due to the antigenic variations
caused by mutations in the HA1 protein of IAVs. These variations can lead to viruses
that escape antibodies generated by previous infections or vaccinations, making the
prediction of these antigenic relationships essential for designing effective vaccines.

In this light, applying machine learning to predict these aspects of IAVs becomes
a critical component of modern healthcare strategies. The interest in evaluating the
performance of machine learning models under real-world conditions, such as with
incomplete protein sequences, is driven by the reality that biological data is often
imperfect. Incomplete sequences represent a significant challenge in bioinformatics
and can lead to inaccurate predictions if not properly accounted for. By focusing on
how machine learning models perform with incomplete data, the aim is to enhance
their robustness and reliability. This is especially important in low-resource settings,
where data might be more fragmented or difficult to obtain.

Therefore, this thesis aims to explore how machine learning models can be
adapted and improved for real-world applications in influenza prediction and
management. The ultimate goal is to contribute to the development of models
that are not only theoretically sound, but also practically effective in diverse and
challenging data environments.

1.2 Related Work

This thesis focuses on the application of machine learning to predict various aspects
of IAVs, particularly focusing on host and subtype prediction. This section provides
an overview of related work that has contributed to advancements in this field.
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1.2.1 Encoding Techniques for Influenza Virus Sequence
Representation

Traditional methods for detecting IAVs hosts and subtypes, such as Hemagglu-
tination Inhibition (HI) assays and Nucleic Acid-Based Tests (NATs), are noted
for being laborious and time-consuming [7, 8].

To save manpower and time, various machine learning and deep learning
algorithms have been used in viral host prediction, particularly leveraging sequence
data for model training. A pivotal prerequisite for training these machine learning
models is not only the collection of high-quality sequence data, but also its conversion
into numerical vectors. This step is essential because machine learning models
inherently require numerical input to perform computations and extract patterns
within the biological data.

Various methods have been implemented to convert biological sequences into
numerical forms for computational analysis. Among the most straightforward of
these are one-hot encoding or pre-defined binary encoding schemes [9–15]. Each
amino acid within a sequence is translated into a binary vector in these methods.
Specifically, one-hot encoding assigns a "1" to a position corresponding to a specific
amino acid, and "0"s to all other positions. On the other hand, pre-defined binary
encoding schemes assign a unique binary code to each amino acid. Another technique
explored is k-mer frequency [12, 16], which calculates the occurrences of subsequences
of length k within the biological sequences.

Furthermore, the ASCII-based encoding scheme [17] has been used to convert
each nucleotide to its corresponding integer. For example, the ASCII codes for
the nucleotides A, C, G, and T are assigned as 65, 67, 71, and 84, respectively.
This method yields a format easily interpretable by computational models and
offers a more data-dense alternative than one-hot encodings, making it particularly
efficient for handling complex genomic data.

In addition to the aforementioned methods, the use of physicochemical properties
to represent sequences numerically [18–26] has been a method of interest. This
technique leverages the fundamental biological characteristics of proteins, thereby
enhancing the capacity of machine learning models to discern patterns pertinent to
biological functions and structures. By incorporating features such as hydrophobicity,
charge, and molecular weight, the models can gain a deeper understanding of the
data, which allows for a more complex understanding of protein functionality and
interactions. Previous research has identified factors that strongly correlate with
host prediction accuracy. These include van der Waals volume, polarisability, and
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charge for Hemagglutinin (HA), as well as polarity for Neuraminidase (NA) [20].
Alongside this, the use of evolutionary information has proven beneficial in

improving model performance, with recent studies [27] indicating that it can
attain performance levels comparable to those of attention models. Therefore,
physicochemical properties are a data representation that reflects the nature of
biological processes.

However, using handcrafted feature sets or physicochemical features requires a
feature selection process, which can be time-consuming and burdensome. Word2Vec
[28, 29] is a neural network-driven approach for capturing semantic relationships
between words. It can be further used to capture the context of protein sequences in
a multidimensional vector space [30]. This method offers an alternative by automat-
ically learning representations, which can encapsulate complex relationships in the
sequence and inherently grasp underlying patterns that may correlate with physico-
chemical properties, without the explicit need for extensive feature engineering.

Expanding upon this, using pre-trained language models for feature extraction
from sequences offers further innovation in the field [31]. These models are
usually trained on large-scale biological sequence databases, enhance efficiency,
and potentially provide more informative features for computational analysis.

1.2.2 Machine Learning for Influenza A Host and Subtype
Prediction

Various supervised machine learning algorithms have been used in predicting IAV’s
hosts or subtypes. This includes, but is not limited to, Support Vector Machine
(SVM) [13, 23, 30, 32], k-Nearest Neighbors (kNN) [19], Random Forest (RF) [10,
19, 20, 23, 33], Artificial Neural Network (ANN) [12], Decision Tree (DT) [13, 34–36],
Naïve Bayes (NB) [20, 23], Convolutional Neural Network (CNN) [14, 17], and
Long Short-Term Memory (LSTM) [11].

The application of RF combined with physicochemical features has sometimes
shown superior performance in predicting hosts (avian, human, swine) compared
to other methods like kNN, NB, SVM, and ANN [10, 19, 20]. Additionally, DT
has been used for extracting meaningful association rules from each segment of
viral protein, helping to clarify how different influenza genome segments contribute
to the determination of host range [34].

Furthermore, Scarafoni et al. [14] suggest that CNN might be more suited
for tasks that involve host tropism than RF and kNN. In a related development,
Fabijańska and Grabowski developed a universal automatic virus subtyping tool,
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VGDC [17], which uses a deep CNN. This tool can predict the most prevalent pure
Influenza A subtypes. In their study, they performed a comparative analysis of
its performance against other models such as CASTOR [37], COMET [38] and C-
measure [39], discovering that specific models could not be feasibly compared. They
also observed that the optimal depth of the CNN architecture varied with genome
length. Specifically, shallower architectures proved sufficient for shorter genomes,
such as IAVs. In these cases, employing just two convolutional/pooling layers pairs
for feature extraction was adequate to achieve commendable classification outcomes.
The additional convolutional layers did not significantly enhance accuracy but
did result in increased training time.

Previous research has also attempted to transform biological sequences into
image-like formats, which aligns with the initial design of CNN for image processing.
For example, Ahsan and Ebrahimi [13] used deep CNN specifically for subtyping
IAVs, converting protein sequences into binary image formats. Their research
particularly focused on the H1, H3, H4, H5, H9, N1, N2, N6, and N8 subtypes.
In a similar vein, Sara et al. [31] adopted an innovative approach by extracting
features from a pre-trained model, TAPE [40], and then reshaping each vector
to a 28 × 28 size to suit ProtConv, the proposed simplified Lenet-5 based CNN
[41]. In addition to these applications, CNN has also been shown to improve the
training efficiency of LSTM models [11].

1.2.3 Multi-channel Neural Networks

Regarding the use of multi-channel neural networks (MC-NNs), these have been
applied in diverse fields, including but not limited to imaging processing [42,
43], relation extraction [44], relation recognition [45], emotion recognition [46,
47], entity alignment [48], sentiment classification [49], face detection [50], and
haptic material classification [51].

A MC-NN typically refers to a type of Neural Network (NN) architecture
that processes multiple types of input data simultaneously but through separate
channels. For example, channels can handle text and images in a task that
requires understanding both the content of a photograph and a corresponding
description. The model can from multiple perspectives or modalities of input
through this approach.

The design of MC-NNs varies depending on the data, time, and task specificity.
In general, features learned by each channel are fused at some point before generating
outputs, either at the early stage or later stage. Most prior research has combined
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the features of each input channel following convolutional or LSTM layers to ensure
that the neural network can learn distinct deep features from different inputs
[44, 45, 47, 52–56]. Additionally, input features can be extracted using pre-trained
models and merged after a down-sampling process [57]. Each channel may have
the same layer structure or a completely different one to better accommodate
the input type [51, 58, 59].

However, the application of MC-NNs in infectious diseases, particularly in
the domain of influenza, remains relatively unexplored. In this context, this
thesis introduces three distinct MC-NN architectures designed specifically for the
simultaneous prediction of host origins and subtypes of IAVs. This approach
contrasts with the more conventional method of training single task-specific models,
offering a more integrated and potentially more insightful analysis for IAVs research.

1.2.4 Predicting Antigenicity of Influenza A Viruses Using
Machine Learning

The prediction of IAVs’s antigenicity using machine learning represents a significant
stride towards improving influenza surveillance and vaccine design, given the virus’s
rapid antigenic evolution. Recent advancements in this domain highlight the
versatility and efficacy of machine learning models in understanding and anticipating
the antigenic properties of IAVs.

The introduction of the Context-Free Encoding Scheme (CFreeEnS) [22] provides
a novel method for encoding protein sequences into a numeric matrix specifically
designed for machine learning applications. This approach is free from subtype-
specific selected features and has been proven to enhance the accuracy of predicting
the antigenicity of IAVs.

Furthermore, advanced machine learning models have been employed to enhance
the prediction of antigenic variations, such as the application of 2D CNN for
forecasting antigenic variants in multiple influenza subtypes, including A/H1N1,
A/H3N2, and A/H5N1 [60]. In addition, a sophisticated method combining CNN
with Bidirectional Long Short-Term Memory (BiLSTM) networks [15], focusing
on predicting antigenic variants of the A/H3N2 subtype. This method leverages
the strengths of both CNN for feature extraction and BiLSTM for capturing
temporal dependencies.

Further research has led to the development of specific models aimed at under-
standing antigenic relationships within these subtypes. For instance, the PREDAC-
H1pdm model [61] focuses on post-2009 pandemic H1N1pdm viruses, along with
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PREDAC-H1 [62], illustrating the utility of machine learning in tracking antigenic
clusters and their evolution over time. In addition to the PREDAC-H1pdm model,
other models have been specifically designed for predicting antigenic variants of the
A/H1N1 virus, including the use of a stacking model [63]. This approach leverages
three techniques for extracting features: based on residues, regional bands, and
epitope regions, to evaluate its efficacy and stability. The findings revealed that
this stacking model surpasses single prediction models, using various classifiers,
including Logistic Regression (LR), SVM, NB, NN, and kNN.

Following advancements in models for A/H1N1, predictive models for the
A/H3N2 subtype have been further developed. For example, the attribute network
embedding technique [64] has been proposed for forecasting antigenic distances
among influenza A/H3N2 virus strains, using protein sequence representations as
node attributes and antigenic distances as edges. A joint RF method [65] has also
been applied to predict A/H3N2 antigenicity.

Beyond subtype-specific models, there are also universal models designed to
offer broad applicability across various IAVs’ subtypes, such as Univ-Flu [26],
which uses novel 3D structure-based descriptors combined with RF, and PREDAV-
FluA [66], which was built on regional bands to predict antigenic variation across
different HA subtypes.

1.3 Contributions of the Thesis and Outline

This thesis first applies machine learning to predict the host origins of IAVs
and adopts the Position-Specific Scoring Matrix (PSSM) to extract informative
evolutionary features from protein sequences, based on the characteristics of protein
data. This method involves sequence alignment, a commonly used method in prior
studies [12, 14, 20, 67, 68], which increases the computational cost and complicates
the process of building the model. Thus, a sequence alignment-free method is
also proposed, which uses word embedding techniques to enable the model to
learn features from sequences autonomously. It was found that both methods
exhibit comparable performance, thereby suggesting that sequence alignment is
not a necessity. It also indicates that deep learning can learn the physicochemical
features from data, reducing the need for manual feature extraction that previously
used in [9–12, 12–26].

Most previous studies [10, 12, 14, 19, 20, 25, 30, 33, 34, 69] have focused on
predicting host origin at a higher classification level (i.e., human, swine, and avian),
primarily because their research focus is on host tropism or zoonotic risk prediction.
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In contrast, this thesis predicts host origin not only at this higher classification level,
but also at a lower classification level (i.e., subdividing the avian class further).

The thesis introduces novel architectures of end-to-end MC-NNs specifically
designed for predicting hosts and antigenic types of IAVs. Furthermore, it conducts
rigorous evaluation and validation of the proposed models under mimicked real-world
scenarios to demonstrate the practical utility of these models.

1.3.1 Published Works

Most of the work presented in this thesis has been published in the following
publications. For the most recent versions of these papers, please refer to the
corresponding arXiv versions:

Conference Paper

1. Xu, Y. and Wojtczak, D., 2021. Predicting influenza A viral host using
PSSM and word embeddings. In 2021 IEEE Conference on Computational
Intelligence in Bioinformatics and Computational Biology (CIBCB) p.1-10.
IEEE [70]. arXiv:2201.01140. (Chapter 4)

2. Xu, Y. and Wojtczak, D., 2022. End-to-End Multi-channel Neural Networks
for Predicting Influenza A Virus Hosts and Antigenic Types. In Proceed-
ings of the 14th International Joint Conference on Knowledge Discovery,
Knowledge Engineering and Knowledge Management - KDIR, p.40-50 [71].
arXiv:2206.03823. (Chapter 5)

Journal Paper

1. Xu, Y. and Wojtczak, D., 2022. Dive into machine learning algorithms for
influenza virus host prediction with hemagglutinin sequences. Biosystems,
220, p.104740 [72]. arXiv:2207.1384. (Chapter 4)

2. Xu, Y. and Wojtczak, D., 2023. Predicting Hosts and Antigenic Types of
Influenza A Virus using End-to-End Multi-channel Neural Networks. Springer
Nature Computer Science, 4(5), p.435 [73]. arXiv:2306.05587. (Chapter 5)

1.3.2 Structure of the Thesis

This thesis undertakes a comprehensive exploration of machine learning methodolo-
gies tailored for addressing challenges in IAVs’ research, with a specific focus on
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predicting host origins and understanding antigenic relationships. It begins with
a foundational overview of influenza and machine learning concepts (Chapter 2),
followed by an introduction to sequence data representation (Chapter 3). Subsequent
chapters include an extensive investigation into predicting the host origins of the
IAVs using bioinformatics and machine learning (Chapter 4) and an exploration of
a MC-NNs approach for identifying hosts and antigenic types of IAVs (Chapter 5).
The thesis also examines the role of semi-supervised learning in predicting IAVs’s
antigenicity (Chapter 6). The final chapter (Chapter 7) consolidates the main
conclusions and discusses potential avenues for future research.
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2
Preliminaries of Influenza and Machine

Learning

In this chapter, a foundational understanding of both influenza and machine learning
is established, providing the necessary background for the thesis’s focus on the
prediction of Influenza A Viruses (IAVs) using machine learning techniques. Some
key algorithms and techniques used in the experiments throughout this thesis are
also introduced to avoid redundancy in later sections.

The exploration begins with influenza, delving into its biological aspects and
how it differs from similar viruses like the common cold. This includes a discussion
on the key proteins that define influenza viruses, their evolutionary mechanisms,
and the factors contributing to their pathogenicity. Understanding the host range of
IAVs and the techniques like Hemagglutination Inhibition (HI) assay used in their
study is crucial for grasping the complexity of predicting virus behaviour and spread.

Then, the chapter transitions into the fundamentals of machine learning, a
field that has become instrumental in analysing complex biological data. This
section elucidates what constitutes machine learning, how it differs from and relates
to deep learning and the paradigms that underpin it. By outlining the typical
workflow of machine learning projects, including various algorithms and techniques
such as nested k-fold Cross-validation (CV) and Bayesian Optimisation (BO),
the chapter sets the stage for understanding how these tools can be applied to
the nuanced challenges of influenza research. The rationale behind using specific
evaluation metrics to assess the performance of machine learning models is also
discussed to highlight their importance in validating the effectiveness of these
computational approaches.
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2.1 Foundations of Influenza

2.1.1 Influenza, Influenza Viruses and the Common Cold

Difference between Influenza and the Common Cold

Influenza is a respiratory illness caused by influenza viruses. This viral infection
triggers annual epidemics, affecting approximately 1 billion people worldwide each
year [74]. These recurrent outbreaks are significant, leading to around half a
million deaths worldwide annually. It is important to distinguish between the
flu and common colds, as they are often mistakenly thought to be the same
due to overlapping symptoms.

Influenza is not a (severe) cold. The common cold, primarily affecting the upper
respiratory system, is often referred to by physicians as Upper Respiratory Infection
(URI). A common misconception is that a sudden drop in temperature is a primary
trigger for the onset of the common cold. However, the common cold actually
arises from an imbalance between the body’s immune defences and the normal viral
flora present in areas such as the nasal cavity, rather than being directly caused
by cold weather or a foreign pathogen invasion. While exposure to cold weather
can influence susceptibility, common colds can occur at any time throughout the
year, particularly when individuals are subjected to conditions that may weaken
immune responses. In contrast, influenza is specifically caused by an influenza virus
infection and is known for its seasonal outbreaks, often linked to specific strains
of the virus circulating during a given period [75].

The development of vaccines for the common cold remains unfeasible for several
reasons [75]. Firstly, the common cold typically results from an interaction
between the body’s immune defences and the endogenous viral population in
our respiratory system, which generally does not elicit a novel immune response.
Furthermore, the common cold can be caused by over 200 different viruses, presenting
a significant challenge in developing a universal vaccine. Additionally, the cold is
typically a self-limiting disease that usually resolves within a few days through the
innate immune system’s primary action, thereby reducing the need for adaptive
immunity intervention.

Regarding its prevalence, adults may experience the common cold two to five
times annually, while school-aged children are more susceptible, contracting it
approximately seven to ten times each year [76, 77]. Although common colds
are widespread and can cause discomfort, they are generally less severe than the
influenza. It’s important to note that antibiotics are not effective in treating either
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the influenza or the common cold, as both are viral infections and antibiotics
target bacterial pathogens.

Influenza Viruses

Influenza viruses belong to the Orthomyxoviridae family, which are major human and
animal pathogens categorised into four serotypes: A, B, C, and D [78]. Specifically,
influenza A, B, and C viruses are major human pathogens. Influenza B and C
are known to infect only mammals. Influenza A Viruses (IAVs) are characterised
by their single-stranded Ribonucleic Acid (RNA) genomes, which consist of eight
segments of negative polarity [78], varying in length from approximately 890 to 2,341
nucleotides. The simplified representation of the genomic structure of influenza
virus is presented in Fig. 2.1. These segments encode at least 11 proteins: segment 1
encodes for Polymerase Basic 2 (PB2), segment 2 for Polymerase Basic 1 (PB1) and
PB1-F2, segment 3 for Polymerase Acidic (PA), segment 4 for Hemagglutinin (HA),
segment 5 for Nucleoprotein (NP) segment 6 for Neuraminidase (NA), segment 7 for
matrix proteins M1 and M2, and segment 8 for nonstructural proteins NS1 and NS2.
Among these, the surface proteins HA and NA play crucial roles in virus attachment,
and cell fusion, and are primary targets of the host immune system. The serotypes
of IAVs are distinguished based on HA and NA subtypes, with 18 HA (named H1
to H18) and 11 NA (labelled N1 through N11) have been reported to date [79, 80].
Further details about the functions of these proteins are discussed in Section 2.1.2.

Figure 2.1: Schematic representation of influenza virus genome segments: the diagram
simplifies the genomic structure for visual clarity, whereas in reality, the influenza genome
is composed of single-stranded RNA segments that are not arranged in a linear fashion as
illustrated. Image was sourced from [81, 82].

Table 2.1 presents an overview of the various HA and NA subtypes along
with the species in which they have been detected, and Fig. 2.2 illustrates the
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distribution of influenza virus subtypes A/H1, A/H3, A/H5, and Type B in the
top 15 countries with the highest prevalence.

Table 2.1: Distribution of Hemagglutinin (H) and Neuraminidase (N) subtypes across
various species [83].

Species Detected In H/N Subtypes
Human, Poultry, Swine, Bat or Other Animals H3

Human, Poultry, Swine H1, H2, H5, H9; N1, N2
Swine, Bat or Other Animals H4

Human, Poultry or Other Animals H7; N7, N8
Human, Poultry H6, H10; N6, N9

Poultry H8, H11 - H16; N3 - N5
Bat H17, H18; N10, N11

A/H1

United States (20957)
United Kingdom (4247)
Japan (4167)
Spain (3699)
Russian Federation (3564)
China (3412)
Australia (2919)
Canada (2370)
Brazil (1915)
India (1870)
Singapore (1849)
France (1716)
Netherlands (1531)
Germany (1300)
Italy (1140)

A/H3

United States (34496)
Canada (8561)
Spain (8046)
Australia (7256)
United Kingdom (6018)
China (5472)
Japan (4282)
Brazil (3154)
France (2999)
Germany (2977)
Netherlands (2890)
Russian Federation (2087)
Norway (1965)
Italy (1652)
Denmark (1609)

A/H5

China (3612)
United States (2012)
Vietnam (1585)
Egypt (1537)
Indonesia (1108)
Japan (1037)
Korea, Republic of (850)
Netherlands (749)
Bangladesh (610)
Italy (557)
Germany (500)
Russian Federation (420)
Canada (358)
Taiwan (349)
United Kingdom (348)

B

United States (6803)
China (2826)
Japan (1237)
Russian Federation (1052)
Australia (873)
Canada (852)
Spain (781)
France (540)
Brazil (479)
Singapore (461)
Netherlands (456)
Hong Kong (SAR) (449)
United Kingdom (398)
Lao, People's Democratic Republic (376)
Bangladesh (364)

Figure 2.2: Distribution of influenza virus subtypes A/H1, A/H3, A/H5, and Type B in
the top 15 countries with the highest prevalence, as of 25 March 2023 [84].

The persistence and spread of influenza viruses are greatly affected by environ-
mental factors, with temperature playing a particularly significant role [85–87]. It
has been observed that the influenza virus demonstrates greater stability at lower
temperatures, indicating that temperature is a vital factor in its transmission
and prevalence [88].
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2.1.2 Key Proteins of Influenza Viruses

Influenza viruses, while structurally simple, exhibit complexity in their functional
mechanisms, primarily due to the presence of several key proteins that play pivotal
roles in the infection process. Among these, HA and NA are the most critical for the
virus’s life cycle. A brief introduction to these proteins will be outlined in this section.

HA is a major surface glycoprotein of influenza A and B viruses, it facilitates the
virus’s attachment to susceptible cells in the host’s respiratory tract, marking one
of the initial steps in the infection process, which enables the virus to enter the cell.
Additionally, HA is crucial in mediating the fusion between viral and endosomal
membranes, a process vital for the delivery of the virus’s genome into the cell.
This fusion mechanism has positioned influenza’s HA as a paradigm for virus-cell
fusion processes, offering a framework for understanding similar mechanisms in
other enveloped viruses. Moreover, HA is a critical antigen for inducing protective
antibody responses in the host, making it the primary target for the humoral
immune response during influenza infection.

NA plays a complementary role to HA in the influenza virus lifecycle. While HA
facilitates entry into the host cell, HA assists in releasing newly formed virus particles
post-replication. NA’s receptor-destroying activity, which recognises Sialic Acids
(Sias), is essential for the virus’s propagation within the host. The intricate balance
in Sias recognition between HA and NA is crucial for a successful viral infection.

In addition to HA and NA, the influenza virus comprises other vital proteins.
Matrix proteins (M1 and M2) contribute to the virus’s structure and stability, with
M2 playing a role in aiding the virus to enter the host cell. NP binds to the virus’s
RNA genome, providing protection and organisation. It serves as a structural and
functional unit within the Ribonucleoprotein (RNP) complex.

The non-structural proteins (NS1 and NS2), play critical roles in evading the
host’s immune response. The polymerase proteins (PA, PB1, PB2) are important
for replicating the virus’s RNA genome, crucial for generating new virus particles
inside the host cell. PB1 is responsible for the polymerase activity, PB2 serves as
the cap-binding protein, and PA is associated with proteolytic activity.

The structure and lifecycle of the IAV are shown in Fig. 2.3 and Fig. 2.4. For
a more comprehensive understanding of these key proteins and their roles in the
influenza virus lifecycle and host interactions, please refer to [78, 89, 90].
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Figure 2.3: Structure of influenza A viruses, sourced from [91].

2.1.3 Evolutionary Mechanisms and Pathogenicity of In-
fluenza Viruses

Influenza viruses are transmitted to hosts through respiratory droplets from infected
individuals and exhibit significant virulence primarily due to two major surface
glycoproteins: HA and NA. As mentioned in Section 2.1.2, HA facilitates the
virus’s attachment to respiratory epithelial cells. In addition, NA cleaves Sias to
release new virions from host cells and reduces the mucous film’s viscosity in the
respiratory tract, aiding in the spread of the virus. This rapid viral spread leads
to widespread infection and damage to the respiratory epithelium, rendering it
vulnerable to secondary bacterial infections or superinfections.

HA and NA are not only vital for the virus’s propagation but also the primary
targets of the host immune response. To evade this immune detection, these proteins
undergo constant evolutionary changes. Two primary evolutionary processes that
influenza undergoes are antigenic drift and antigenic shift. Antigenic drift is
characterised by the gradual accumulation of point mutations. These mutations
give rise to distinct influenza strains (i.e., antigenic variants), which are responsible
for annual epidemics. The newly evolved strains of the influenza virus exhibit
sufficient genetic divergence from those of previous years, thereby evading the host’s
memory responses developed from prior infections or vaccinations. This is the
primary reason for the necessity of frequent updates to influenza vaccines, to ensure
they remain effective against these continuously evolving and circulating strains.

Antigenic shift, in contrast to antigenic drift, represents a more radical change,
resulting in the introduction of entirely new subtypes of the virus into the human
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Figure 2.4: The influenza A virus lifecycle can be described through the following stages:
(1) viral attachment: the virus uses HA to latch onto sialic acid on the surface of a
host cell; (2) endocytosis: the virus is then taken into the host cell through a process
known as endocytosis; (3) fusion and uncoating: inside the host cell, the virus merges
with cell membranes and releases its genetic material; (4) replication: this genetic
material is transported into the cell’s nucleus, where it is copied and new viral proteins
are made; (5) assembly: the new viral components are assembled into complete viruses
at the cell’s membrane. (6) release: these new viruses exit the host cell to infect more
cells. The image was sourced from [90].

population, as shown in Fig. 2.5. The antigenic shift can occur through genetic
reassortment between different influenza virus strains, potentially in a host infected
with both human and non-human influenza strains. Due to the segmented nature of
the influenza virus genome, this reassortment is readily facilitated. This mechanism
is one of the contributors to infrequent but severe worldwide pandemics, as they
introduce novel and dangerous strains against which the entire population lacks
pre-existing immunity.

Antigenic drift and antigenic shift pose significant challenges for public health,
particularly in vaccine development and influenza control strategies. Continuous
surveillance and research are essential to understand and mitigate the impacts of
these changes, especially considering the heightened risk groups, such as pregnato
whichomen, who face more significant complications from influenza due to immune
system adaptations during pregnancy. These adaptations can weaken the maternal
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Figure 2.5: Genetic reassortment in Influenza A Virus: Antigenic drift is the minor
variations in the surface proteins of the influenza virus, resulting from errors made by the
virus’s polymerase, allowing the virus to evade immune responses accumulated within the
population. Antigenic shift, on the other hand, involves larger-scale genetic reassortment,
leading to the acquisition of new genetic material by the virus, which can trigger influenza
pandemics. Pandemic viruses typically emerge following antigenic shift, carrying entirely
new combinations of antigens that the population lacks immunity, thus enabling rapid
spread. Once a pandemic subsides, these viruses often persist within the population as
seasonal influenza, undergoing antigenic drift and gradually adapting to human hosts.
The image was sourced from [92].

response to infections like influenza, underlining the need for targeted prevention
and treatment strategies in such vulnerable populations.

For a more comprehensive understanding of the evolutionary mechanisms and
pathogenicity of influenza viruses, please refer to [78, 90, 92, 93].
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2.1.4 Host Range of Influenza A Viruses

Influenza viruses use multivalent interactions of their HA with sialyl oligosaccharide
moieties on cellular glycoconjugates to attach to target cells. This interaction,
crucial in determining the virus’s host range and tissue tropism, is mediated
by sialic acids, which are commonly found on the surfaces of most avian and
mammalian cells. As a result, influenza viruses can bind to a variety of cell types,
leading to significant biological responses, including the stimulation of inflammatory
responses. The host range of influenza viruses encompasses a variety of species,
ranging from humans to various animal groups such as avian, swine, equine, and
canine [78], as shown in Fig. 2.6.

Figure 2.6: Host range of influenza viruses: an overview of the transmission pathways
and subtypes of influenza A, B, C, and D viruses among humans, various animals, and
birds. The image was sourced from [92].

Influenza A Viruses (IAVs) demonstrate the broadest host range among influenza
viruses, distinguished by their capacity to infect many species. This attribute
contributes to the widespread occurrence of both endemic and epidemic infections
across diverse populations. Wild aquatic birds are the primary natural reservoirs for
IAVs. These viruses sporadically transmit to a diverse range of species, such as sea
mammals, swine, land-based poultry, horses, and humans, leading to infections of
varying severity. Typically, following transmission to a new host species, these viruses
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tend to die out due to inadequate adaptation. However, on rare occasions, they
can adapt effectively, resulting in their prolonged presence and the establishment
of stable, host-specific viral lineages. All recognised lineages of IAVs present
in terrestrial birds and mammals are originally derived from strains hosted by
wild aquatic birds [78, 92].

2.1.5 Hemagglutination Inhibition Assay

The Hemagglutination Inhibition (HI) assay, also termed the HI test, is a widely
used method for quantifying antibodies specific to influenza viruses. It is based
on the principle that these antibodies can inhibit agglutination of erythrocytes
(red blood cells) [94], as shown in Fig. 2.7. This agglutination (i.e., hemagglu-
tination) occurs when the virus’s Hemagglutinin (HA) protein binds to Sialic
Acids (Sias) on the surface of erythrocytes, effectively "gluing" them together to
form a lattice. Thus, the HI assay quantifies the ability of antibodies to inhibit
this agglutination (i.e., hemagglutination inhibition, which aids in detecting the
antigenic characteristics of the virus.

In the HI assay, antibodies are typically sourced from animals without prior
exposure to influenza viruses or related vaccines, with ferrets being the most common
choice. The influenza viruses tested are usually collected from human infections.
Additionally, Red Blood Cells (RBCs) used in the HI assay are commonly sourced
from animals, such as turkeys or guinea pigs. In this assay, a mixture of antibodies,
influenza virus, and red blood cells is placed into the wells of a microtiter plate.
The wells of these microtiter plates are arranged in rows and columns, labelled
with letters and numbers on the plate, respectively. The rows enable the testing of
various influenza viruses with a consistent antibody set, while the columns help in
distinguishing between the dilutions of antibodies, as illustrated in Fig. 2.8. As
previously mentioned, hemagglutination in the HI test indicates that antibodies
fail to recognise and attach to influenza viruses. However, if the vaccine-induced
antibodies bind to the circulating virus isolated from respiratory specimens of ill
patients, it indicates that the circulating virus is antigenically similar to the vaccine
strain. Therefore, the HI assay is instrumental in selecting candidate vaccine strains
[97, 98], aiding in vaccine licensing [97–102], evaluating vaccine effectiveness [103],
conducting antigenic cartography [97, 98], and supporting seroepidemiologic studies
to assess population immunity levels [104], among other applications.

However, the efficacy of the HI assay, particularly its predictive accuracy
concerning Vaccine Effectiveness (VE), has been a subject of critique [105–107].
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Figure 2.7: Hemagglutination inhibition assay: in a microtiter plate well, Red Blood
Cells (RBCs) will settle at the bottom in the absence of influenza viruses. However,
when introducing influenza viruses, they bind to the RBCs, causing a lattice formation or
hemagglutination, visible as a diffuse layer. This interaction is prevented by antibodies
with a strong affinity for the viral Hemagglutinin (HA), which bind to the viruses and
inhibit their ability to cause hemagglutination. This results in the RBCs settling as a
small red dot at the base of the well, indicating hemagglutination inhibition. The image
was adapted from [95] and generated using Figdraw [96].

Several factors can influence HI titers (i.e., the results of HI assay), which are
not directly connected to antigenic differences. These include the virus strain’s
propensity to trigger antibody production [108], its affinity for red blood cells,
and specific experimental conditions such as temperature and pH. Additionally,
antibodies specific to heterologous strains may occasionally be present in low
concentrations, implying that slight variations in these concentrations can introduce
measurement inaccuracies in the HI titers.

Given the significant variability observed in HI titer measurements across
independent assays, it is recommended that estimations of antigenic differences be
based on multiple replicated measurements to improve accuracy and reliability [109].
This approach helps mitigate the intrinsic inconsistencies of the HI assay and ensures
more robust conclusions about the antigenic characteristics of influenza virus strains.

For more details of HI, please refer to [7, 95, 110, 111].
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Figure 2.8: Using the HI test to determine antigenic differences between circulating
influenza viruses and the previous season’s vaccine strain. The microtiter plate shown
contains rows and columns of wells with different mixtures of RBCs, influenza virus,
and antibodies that were developed against a comparison virus, such as a vaccine virus.
The antibody dilutions are marked across the top of the plate and serve as a scale for
evaluating antigenic similarity and immune response. The HI test measures how effectively
antibodies at higher dilutions can prevent hemagglutination. For example, circulating
virus 1 has an HI titer of 640, representing the highest antibody dilution that still inhibits
hemagglutination. Viruses are considered antigenically similar if their HI titers are within
two dilutions (a four-fold difference) of each other. Thus, circulating virus 1 is considered
antigenically similar to the vaccine virus from the previous season, whereas circulating
virus 2 is not. The image was sourced from [95].

2.2 Foundations of Machine Learning

2.2.1 What is Machine Learning?

Artificial Intelligence (AI) is a broad domain focused on developing machines that
can mimic intelligent human behaviour. Its goal is to devise systems capable of
undertaking complex tasks that mirror human problem-solving techniques. The
ambition of AI is to craft computational models that are capable of recognising
visual scenarios, understanding natural language, and performing actions in the
physical world.

Within this broad AI spectrum, machine learning emerges as a crucial sub-field
that diverges from traditional programming methods. In traditional programming,
the logic and rules are explicitly defined by programmers. However, in machine
learning, the model identifies patterns and makes predictions based on the input
data it is fed, without explicitly being programmed for each possible situation, as
depicted in Fig. 2.9. This "learning" is not a one-off process but rather an ongoing
cycle where the model continuously improves its accuracy and efficiency with more
data and occasional human guidance to fine-tune its algorithms.

Therefore, the essence of machine learning is the utilisation of data, whether
it be numbers, images, or text. This training data is the foundation upon which
a machine learning model is built. The accuracy of a model often improves with
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the richness of the dataset, provided the data is of high quality, diverse, and
relevant to the task at hand, and the model is appropriately complex for the task
it is designed to perform. This paradigm shift from traditional, instruction-based
programming to a data-driven learning process marks a significant evolution in
how we approach problem-solving in computing.

Figure 2.9: Traditional programming vs. machine learning: from explicit instructions
to data-driven decisions. The image was sourced from [112].

To evaluate the model’s prowess, some data are reserved and not used during
training. This evaluation data gauges the model’s accuracy on unseen information.
Once trained and validated, the model can be used on diverse datasets in the future.
This process is known as holdout validation. Another model evaluation method
is Cross-validation (CV), detailed in Section 2.2.6.

Machine learning is adept at addressing various problems, including classification
(whether binary or multi-class) and regression. Classification problems focus
on categorising data into predefined classes, while regression aims to predict a
continuous value based on input variables. The models are typically learned
by estimating parameters, such as weights, or by learning structures like trees,
with their progress and accuracy being guided by minimising a score or loss
function. The nature of a model’s output delineates its task: if the output is
categorical, it’s a classification problem; if it’s a continuous numerical value, then
it’s a regression classification. An overview of the standard machine learning
problem types, along with their associated loss functions commonly used in deep
learning, is presented in Table 2.2.

In the broader landscape, machine learning is a cornerstone of data science.
Machine learning algorithms have varied roles: they can be descriptive, offering
explanations based on data; predictive, forecasting future events; or prescriptive,
suggesting potential courses of action [113]. By employing statistical techniques,
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Problem Types Output Unit Loss Function
Binary Classification Logistic Cross-entropy Loss

Multi-class Classification Softmax Categorical Cross-entropy Loss
Regression Linear Mean Squared Error (MSE) Loss

Table 2.2: Classic problem types of machine learning.

these algorithms make predictions, categorise data, and unearth pivotal insights.
Such revelations guide strategic decisions and can potentially influence critical
growth indicators.

2.2.2 Common Machine Learning Paradigms

Machine learning enables computers to learn from data, and it can be widely
classified by the type and extent of supervision they need during training.

Supervised Learning Supervised machine learning is a paradigm where models
are trained using labelled data sets, meaning each training sample is paired with
the correct output so that we already know the outcome of interest. This allows
the algorithm to gradually enhance its accuracy by learning from the provided
data. Supervised learning aims to understand the relationship between inputs and
outputs (i.e., learning a model that can map input features to outputs), aiming
to make accurate predictions on unfamiliar data (i.e., unseen data).

Fig. 2.10 illustrates an example of supervised learning, in which the goal is
to predict the target y based on input features X. The learner is trained on
labelled data to build a predictive model that can make predictions Ypredicted based
on new input features Xnew.

Unsupervised Learning Contrary to supervised learning, which relies on labelled
data, unsupervised learning is trained on unlabelled data (i.e., target y is not
provided). It depends on the algorithm’s capacity to autonomously discern patterns
and structures within the input data without explicit guidance. The most common
unsupervised learning method is clustering, where the algorithm tries to group
similar data. This method has practical applications in scenarios such as anomaly
detection, including fraud identification. Another common method is dimensionality
reduction, where the algorithm identifies and extracts the most important features
from the data, thereby preserving the essence of the original dataset’s properties.
This technique is particularly useful for data visualisation and optimising the data
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Figure 2.10: An example of supervised learning, adapted from [112].

for subsequent algorithmic processing.

Semi-supervised Learning Semi-supervised learning, also known as weak
supervision, lies between supervised and unsupervised learning and is particularly
useful in situations where obtaining labelled data is challenging, and the process
of labelling data is impractical. In this approach, the model is trained on a blend
of a relatively small amount of labelled data complemented by a larger amount of
unlabelled data. The main idea behind semi-supervised learning is that the model
can leverage the unlabelled data to better understand the overall data distribution
and thus improve its performance on the labelled data.

Self-supervised Learning As the name suggests, self-supervised learning enables
models to be supervised by "itself". Unlike traditional unsupervised learning, which
uses unlabelled data, self-supervised learning involves generating labels from the
input data, thereby transforming the learning task from unsupervised to supervised.
The essence of self-supervised learning lies in its ability to discern hidden parts of
the input from its unhidden counterparts. It leverages the inherent structure of the
data to generate various supervisory signals across data sets without depending
on external labels. These signals serve as integral feedback during the training
process. In self-supervised learning, the model is trained to solve a specific task
(i.e., "pretext" task). Once trained on this pretext task, the model can be fine-
tuned for a downstream task.

An example is a model trained to predict the next word in a sentence. In
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this scenario, the model is trained on many sentences where one word is removed,
and its task is to predict the missing word. This approach allows the model to
learn important features about the data unsupervised, which is helpful for other
tasks like classification or regression.

Reinforcement Learning Reinforcement learning differs from the previously
mentioned learning methods. Unlike supervised or unsupervised learning, reinforce-
ment learning does not necessitate a supervisor or pre-labelled data. Instead, it gains
its training data through experience, acquired by interacting with its environment
and observing the responses to its actions. The goal of reinforcement learning is
to develop an optimal strategy or policy that maximises cumulative reward over
time. Cumulative reward refers to the total sum of rewards an agent collects, where
each reward is a numerical feedback signal by the agent after executing an action.
This approach is beneficial in scenarios where the correct decision or action is not
predetermined but can be deduced from the rewards or penalties following an action.
Applications of reinforcement learning are diverse, including game playing, robotics,
and specific optimisation problems, where it excels in determining the best course
of action in complex and dynamic environments.

2.2.3 Machine Learning and Deep Learning

It’s not uncommon to encounter confusion or misinterpretations regarding the terms
AI, machine learning, and deep learning. In simple terms, machine learning is a sub-
field within artificial intelligence, and deep learning is a subset of machine learning.

Meep learning models are supplied with features (i.e., input data) and corre-
sponding labels (i.e., output data). During the training phase, the model learns
to map these inputs to the desired outputs. This learning process is directed by
a loss function, which quantifies the divergence between the model’s predictions
and the actual labels. Additionally, model parameters are refined, and the model’s
generalisation capabilities are evaluated using a validation set.

Meep learning includes both traditional machine learning and deep learning
approaches. Traditional machine learning relies on manually crafted features
and established algorithms, such as decision trees or support vector machines,
primarily suited for structured data. In contrast, deep learning uses multi-layered
neural networks to extract features from raw data autonomously, resulting in
more sophisticated data representations and a deeper understanding of underlying
patterns and complexities.
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Fig. 2.11 presents a comparative overview of some popular algorithms in both
traditional machine learning and deep learning [114]. Traditional machine learning
algorithms are usually simpler and less computationally intensive compared to
deep learning, which requires substantial computational power and extensive data
for effective performance, as shown in Fig. 2.12. However, deep learning has
demonstrated exceptional performance in areas such as image recognition, natural
language processing, and complex decision-making tasks.

Figure 2.11: Comparative overview of traditional machine learning and deep learning
algorithms, sourced from [114].

Deep learning applies complex Neural Network (NN) architectures to identify
intricate patterns in data. Fig. 2.13 provides an example of a fully connected NN.
These neural networks are computing systems inspired by the structure of the human
brain, consisting of layers of nodes, often referred to as neurons, interconnected by
edges or weights. Data enters the network through an input layer, gets processed
in one or more hidden layers, and ultimately generates an output from the output
layer. In a fully connected (or dense) NN, each node in one layer is linked to
all nodes in the following layer.

2.2.4 Machine Learning Workflow

The machine learning workflow typically includes the following steps:
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Figure 2.12: The impact of data volume on model performance varies with the complexity
of machine learning models: traditional machine learning models initially benefit from
increased data volumes but quickly reach a performance ceiling due to complexity
constraints. In contrast, shallow neural networks use a few hidden layers to handle
larger datasets more efficiently, thereby extending their performance limit. Medium neural
networks have more hidden layers that make them better at capturing complex patterns,
thus increasing their capacity to learn from more datasets. Deep neural networks have
even more layers, allowing them to process complex data and benefit significantly from
larger datasets.

Data Preparation The foundation of any machine learning model lies in its data –
the more, the better. Data should be collected, meticulously cleaned, and rigorously
preprocessed. This preprocessing may encompass normalisation, addressing missing
values, and transforming the data into a suitable format for training. While data
quality can affect model performance, this does not always hold. Data can also
influence the choice of subsequent methods to be employed. For instance, if the
data consists of a small number of labelled samples and many unlabelled data, then
we can consider using semi-supervised learning techniques.

Model Design This step involves choosing suitable machine learning algorithms.
If selecting the deep learning models, then it involves the designation of NN
architecture, regarding the number of layers, the number of neurons in each layer,
and the type of layers (dense, convolutional, recurrent, etc.) that are made at this
stage. A suitable optimisation method for hyperparameter tuning can also be
chosen at this stage.

Training To mitigate the risk of overfitting, preprocessed data is usually divided
into distinct sets for training, validation, and testing. Once the model is designed,
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Figure 2.13: An example of a fully connected neural network: this neural network has
an input layer with 16 nodes, two hidden layers with 12 and 10 nodes, respectively, and
an output node that is suitable for binary classification or regression tasks. In binary
classification, this node would typically output a probability score for one class versus
another, while in regression, it would output a continuous value. Conversely, networks
with multiple output nodes are better suited for multi-class classification tasks, where each
node corresponds to a distinct class, and the network outputs a probability distribution
across these classes. The image was generated by NN-SVG [115].

it is trained using the training dataset. During this phase, the deep learning
models primarily focus on adjusting internal weights through a learning process. In
contrast, classic machine learning models use a variety of techniques tailored to their
specific algorithms. These techniques include, but are not limited to, generating
decision-making rules, identifying optimal hyperplanes for data separation, and in
some cases, straightforwardly storing data for subsequent reference. Each technique
represents a unique approach to "learning" from training data, enabling the model
to make informed predictions or classifications based on the learned patterns.

When optimisation algorithms are employed for hyperparameter tuning, the
validation set is used to evaluate the model’s performance during the training process,
facilitating the fine-tuning of hyperparameters to enhance overall performance.
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Evaluation After training, the model’s performance is usually evaluated on a
test set to ensure it generalises well to new, unseen data. The validation and
test sets should not be used interchangeably due to their distinct functions in
the model development process. The test set is used in the final evaluation,
while the validation set is primarily used for hyperparameter tuning and model
evaluation during the training phase.

Figure 2.14 illustrates the general process flow for evaluating machine learning
or deep learning models. It shows how the model processes input data to produce
predictions. These predictions are then compared with the true labels to generate
a Confusion Matrix (CM) and Receiver Operating Characteristic (ROC) curve
for evaluating performance metrics. The validation set, although not explicitly
mentioned, is typically utilised immediately after the model is trained on the training
data. It aids in tuning hyperparameters and validating the model’s performance
iteratively. Once the model is fully trained and the hyperparameters are optimised,
the test set is introduced. It provides an unbiased evaluation of the model’s
performance. This is depicted in the latter part of the figure, where true labels are
compared against predicted labels to construct the CM and calculate the metrics
represented by the ROC curve.

Figure 2.14: Process flow for evaluating deep learning models. The image was sourced
from [114].

2.2.5 Machine Learning Algorithms

This section introduces the machine learning algorithms used in this thesis.

Random Forest

The Random Forest (RF) algorithm [116] represents an advanced ensemble learning
technique that combines the principles of bagging (i.e., bootstrap aggregating)
and decision trees to enhance model performance. Bagging effectively reduces
the variance of predictive models by creating multiple datasets from the original
dataset through bootstrapping (sampling with replacement) and then aggregating
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the models trained on these datasets. Decision trees, in contrast, typically have
higher variance but lower bias. By combining bagging with decision trees, RFs
achieve a balance, resulting in a robust model with improved accuracy and stability.

In a RF, each decision tree within the ensemble is exposed to only a subset of
features when determining where to split at each node, rather than considering all
features. This strategy introduces an element of randomness, thereby increasing the
diversity among the trees and helping to reduce overfitting, a common problem with
deep decision trees. In contrast to boosting-based ensembles, which sequentially
build models with a focus on correcting the errors of previous models, bagging-based
ensembles like RF construct trees independently and allow them to grow deep.
This independence and depth lead to more complex models but also contribute
to the model’s robustness and accuracy.

However, while bagging-based ensembles such as RF might require more compu-
tational resources and time due to their complexity, they often obviate the need
for a separate validation dataset to estimate generalisation performance. This is
because the aggregation of multiple, diverse decision trees inherently provides a
measure of validation, offering a reliable estimate of the model’s performance on
unseen data. Through this internal validation mechanism, RFs can provide insights
into their expected accuracy and stability without additional validation steps.

Extreme Gradient Boosting

Extreme Gradient Boosting (XGBoost) [117] represents a scalable and efficient
implementation of gradient boosting algorithms. Gradient boosting is an advanced
ensemble technique that sequentially builds models to correct the errors of previous
ones, and uses gradient descent to optimise a differentiable loss function. This
approach is different from and more sophisticated than earlier ensemble methods
such as Adaptive Boosting (AdaBoost), which primarily focus on reweighting
misclassified instances.

A key strength of XGBoost is its versatility and robustness in tackling complex
challenges in data science. It is engineered to manage missing values automatically
and efficiently process sparse data, common issues in real-world datasets. This
capability is due to its innovative handling of sparse structures, which significantly
reduces memory use and improves computational efficiency.

Moreover, XGBoost distinguishes itself by including built-in mechanisms for
regularisation, both L1 and L2 forms, which help prevent overfitting, a frequent
issue with standard gradient boosting methods. This integration of regularisation
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terms into the model’s objective function enhances its robustness and predictive
performance across a variety of datasets.

Another salient feature of XGBoost is its parallel processing capability. Unlike
traditional gradient boosting, which processes components sequentially, XGBoost
leverages modern computational architectures to parallelise the construction of
decision trees. This parallelism, coupled with advanced optimisation techniques such
as cache-aware access patterns and out-of-core computing, significantly expedites
the model training process, making XGBoost exceptionally efficient for large-
scale and complex datasets.

In essence, XGBoost embodies a versatile, robust, and highly efficient solution
for both classification and regression problems, equipped with unique features such
as automatic handling of missing data, advanced regularisation, and efficient parallel
training. These attributes make XGBoost a preferred choice for data scientists
aiming to tackle challenging predictive modelling tasks with precision and speed.

Random Undersampling Boosting

Addressing class imbalance in machine learning is a critical challenge, often addressed
through data sampling techniques and boosting algorithms. Data sampling methods,
such as oversampling (which augments minority class instances) and undersampling
(which reduces instances of the majority class), are commonly employed strategies to
achieve a more balanced dataset. The Random Undersampling Boosting (RUSBoost)
algorithm [118] integrates the concept of undersampling with boosting techniques
to handle class imbalance effectively.

RUSBoost combines the advantages of random undersampling of the majority
class with the iterative model building of boosting, thereby enhancing the focus
on minority class examples during the learning process. This integration helps
address the imbalance and contributes to building a more robust predictive model.
Compared to other oversampling methods like SMOTEBoost [119], which is based
on Synthetic Minority Oversampling Technique (SMOTE), RUSBoost is recognised
for its computational efficiency and efficacy. It offers a cost-effective solution by
reducing the training time and resource consumption, making it a viable option
for large data sets where class imbalance is a significant concern.

Support Vector Machine

Support Vector Machine (SVM) is one of the most commonly used supervised
learning algorithms [120]. A key strength of SVMs lies in their ability to classify not
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Figure 2.15: Comparison of support vector machine classification boundaries using
linear, polynomial, and Radial Basis Function (RBF) kernels.

only linearly separable data but also non-linearly separable data, courtesy of the
"kernel trick". This technique enables SVMs to process high-dimensional, and even
infinite-dimensional data effectively. It achieves this by mapping lower-dimensional
data into a higher-dimensional space, thus facilitating the separation of complex
data sets without the need for explicit data transformation.

A key feature of SVMs is its ability to identify the optimal hyperplane that
distinctly separates different classes within the feature space. This is achieved
by maximising the margin between the data points of different classes, ensuring
a clear and definitive classification boundary. Additionally, SVM’s versatility is
further enhanced by using various kernel functions, such as the Gaussian kernel,
which allows for the construction of a multi-class SVM capable of tackling complex,
multi-dimensional data sets.

Fig. 2.15 illustrates SVM classification boundaries using different kernel functions.
This comparison showcases how the choice of the kernel can significantly influence
the SVM’s ability to delineate between classes.

Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP) is a type of feed-forward neural network that
addresses the limitations of single-layer perceptrons, particularly their inability to
solve problems that are not linearly separable [121]. A MLP typically comprises
three layers: an input layer, one or more hidden layers, and an output layer. Each
layer consists of neurons, with connections flowing from the input to the output
layer without any cycles, characterising its feed-forward nature.

Fig. 2.16 illustrates a standard five-layer fully connected MLP architecture,
including the one input layer, three hidden layers and one output layer. The number
of neurons in the input layer corresponds to the number of features present in the
input data, ensuring that each feature is adequately represented. Similarly, the
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number of neurons in the output layer is determined by the number of classes in the
dataset, facilitating the classification or regression tasks. Each neuron in a given
layer is connected to every neuron in the subsequent layer, forming a dense network
of connections that enables complex data processing and pattern recognition. This
architecture allows the MLP to learn and model relationships in the data, making
them suitable for a wide range of applications from simple binary classification
to complex multi-class classification tasks.

Input Layer Hidden Layers Output Layer

X = A[0]

a[4]

A[1] A[3]

X
Ŷ
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Figure 2.16: Example of a fully connected MLP architecture, adapted from [122].

Convolutional Neural Network

Convolutional Neural Networks (CNNs) are widely used in a variety of fields,
including facial recognition, object recognition, and autonomous vehicles. CNNs
were initially trained on images but have since expanded their applicability to
encompass diverse data types, including time series, text, and audio. In contrast to
traditional machine learning techniques, CNNs are designed to learn and extract
features at each hidden layer autonomously. CNNs also differ from standard fully
connected neural networks, such as the one depicted in Fig. 2.16, regarding their
sparse layer connectivity and reduced number of parameters that must be learned.
This distinction not only enhances efficiency but also improves computational
feasibility, making CNNs more adept at handling complex data processing tasks.

A typical CNN architecture consists of three core layers: the convolutional
layer, which is responsible for learning spatial features; the activation layer, which
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activates significant features; and the pooling layer, which downsamples features
to reduce dimensionality. In many CNN models, the number of filters tends to
increase as the network delves deeper. This approach is based on the rationale
that as the spatial resolution of feature maps decreases due to pooling layers or
strided convolutions, having a greater number of channels becomes beneficial to
capture more complex and high-level features.

However, variations exist, such as in some protein-related prediction tasks or
when CNNs are used as encoders. In these scenarios, a decreasing or constant number
of filters in convolutional layers can be observed. Such configurations are designed
to capture local patterns in the initial layers, which are then integrated into more
abstract representations in the deeper layers. This demonstrates the adaptability
and versatility of CNN architectures in handling a wide range of complex tasks.

Transformers

The Transformer model represents a breakthrough in neural network design and
forms the basis for advanced applications such as Bidirectional Encoder Representa-
tions from Transformers (BERT) and the Generative Pre-trained Transformer (GPT)
series. This model has shown superior performance in language translation tasks
compared to Recurrent Neural Network (RNN), with higher Bilingual Evaluation
Understudy (BLEU) scores [123]. RNNs, which processes words sequentially, faces
limitations in training speed and struggles with long sequences due to vanishing
and exploding gradient problems.

Transformers, however, move away from the recurrent approach and use a self-
attention mechanism. This mechanism allows the model to focus on specific parts
of the input data. The key feature of the Transformer is its scaled dot-product
attention, which is defined by the formula:

Attention(Q, K, V ) = softmax(QKT

√
dk

)V (2.1)

where dk is the dimension of the key, so 1/
√

dk is the scaling factor. Q, K and V

denote the query vector, key vector and value vector, respectively. The softmax
function converts the attention score to attention distribution. The core idea
behind the dot-product attention is that the dot product is higher between similar
sequences than in dissimilar ones.

Another important innovation of the Transformer is the multi-head attention.
This feature combines several scaled dot-product attentions, leading to a more
diverse and effective model. This multi-faceted approach prevents the model
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from excessively focusing on specific words, thereby yielding more robust results
compared to single-head attention. However, like the bag-of-words model, attention
mechanisms inherently lack sequential order information. To address this, the
original design added positional encoding to the input embeddings. Fig. 2.17 shows
the architecture of the Transformer, including the scaled dot-product attention
and the multi-head attention mechanisms. More detailed information about the
Transformer is available in [123].

(a) Transformer architecture (b) Multi-head attention (c) Scaled dot-
product attention

Figure 2.17: The architecture of the Transformer model, sourced from [123].

Bidirectional Recurrent Neural Networks

Within the domain of neural networks tailored for sequential data processing, such
as text or time series data, two advanced variations of bidirectional RNNs stand
out for their effectiveness in various applications: Bidirectional Long Short-Term
Memory (BiLSTM) and Bidirectional Gated Recurrent Unit (BiGRU).

LSTM is an advanced type of RNN that solves the vanishing gradient problem
seen in standard RNNs [124, 125]. A typical LSTM uses three gates: an input
gate, which stores new information from the current input and selectively updates
the cell state; a forget gate, responsible for removing irrelevant data; and an
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output gate, which determines what information gets passed to the next state.
Bidirectional LSTM, or BiLSTM, combines a forward and a backward LSTM. It
processes data in both directions to better understand context and is more effective
than unidirectional LSTM [126, 127].

Gated Recurrent Unit (GRU) is another RNN variant similar to LSTM, but
it has only two gates: a reset gate and an update gate [128]. These gates help
the GRU decide how much of the past information to keep and how much new
information to add. GRUs are generally faster in training than LSTMs because
they have simpler operations. Similar to BiLSTM, bidirectional GRU also works in
both forward and backward directions, enabling the network to capture a broader
context. Fig. 2.18 shows an architectural comparison of RNN, LSTM and GRU.

RNN LSTM GRU

Figure 2.18: Architectural comparison of recurrent neural networks.

2.2.6 Nested k-fold Cross-validation

As mentioned in Section 2.2.4, the data is usually split into separate subsets for
training, validation, and testing during model training. This is a crucial step
to ensure that the model not only learns from the data but also generalises well
to new, unseen data. One of the most robust methods to achieve this balance
is through Cross-validation (CV).

CV is primarily used for preventing overfitting, a common issue where a model
performs well on its training data but poorly on new, unseen data. Fig. 2.19
displays three different outcomes of model fitting: underfitting, where the model
is too simple and does not capture the complexity of the data; optimal fitting,
where the model balances complexity and simplicity, accurately reflecting the true
distribution without being influenced by the noise in the data; and overfitting,
where the model is too complex and captures the noise in the training data, which
impairs its performance on new data.

Cross-validation includes a variety of methods with their approach to partitioning
data and evaluating model performance. For example, Leave-One-Out Cross-
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Figure 2.19: Comparative visualisation of model fitting in machine learning, adopted
from [122].

Validation (LOOCV) uses a single observation as the validation set for each iteration;
the holdout method simply splits the data into a single training and test set; and
repeated random sub-sampling validation, also known as Monte Carlo CV, repeatedly
divides the data at random into validation and training sets; and k-fold CV partitions
the data into k equally-sized folds and systematically uses each as a validation set
once. Amongst these, k-fold CV, particularly when stratified and nested, is the
preferred choice for this thesis. It is a well-balanced validation process, using all
available data points across multiple training and testing iterations. Therefore, our
subsequent discussions will be dedicated to detailing k-fold CV, with a particular
focus on stratified k-fold CV and nested k-fold CV.

Stratified k-fold CV preserves the proportion of classes in the training set that
is almost the same as that of the test set, maintaining class distribution consistency
across folds, irrespective of whether the approach is nested or not. Nested k-fold
CV differs from the standard k-fold CV in that it adds an inner loop. The standard
k-fold CV divides the data into k parts and performs k rounds of evaluations. In
each evaluation, one part is selected as the testing set, ensuring that every part of the
data is used for testing exactly once during the entire process. In contrast, nested
k-fold CV introduces an additional layer within each outer fold, where the remaining
data is further divided into k smaller subsets for the inner loop. This inner loop is
used for hyperparameter tuning, ensuring that the model selection is unbiased and
that the evaluation of the outer loop is based on a completely independent dataset
[129]. This method provides a more rigorous evaluation of the model’s predictive
performance. The example of nested 5-fold CV is shown in Fig. 2.20.

Hyperparameter tuning is typically conducted within the inner loop of nested
k-fold CV. This crucial step can be achieved using a variety of methods, with
Bayesian optimisation (BO) being one such example. The pseudo-code detailing the
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Figure 2.20: Example of nested k-fold cross-validation (kouter = 5 and kinner = 4).

implementation of nested k-fold CV with such optimisation techniques is presented
in Fig. 2.21. While nested k-fold CV provides a thorough evaluation, it demands
significant computational resources and time. In situations with constraints on
time or computational capacity, alternative validation techniques like random
splitting may be more appropriate.

2.2.7 Bayesian Optimisation

Modern machine learning algorithms usually have many hyperparameters, and their
performance can vary significantly depending on the specific set of hyperparameters
chosen. Therefore, it’s essential to select appropriate hyperparameter values for
the effective application of these algorithms. Bayesian Optimisation (BO) is a
frequently used technique for hyperparameter tuning and optimisation of any black-
box function. This optimisation approach centres on a key question: "Considering
what we currently know, which data point should we evaluate or explore next?"
This involves finding a trade-off between exploration and exploitation through
acquisition functions, which are heuristics indicating the desirability of evaluating
a point based on the current model.

In BO, a model is maintained to represent estimates and uncertainties at each
point. The model is typically a surrogate model, such as a Gaussian Process (GP),
to model the objective function and define its prior distribution. Then, the posterior
is obtained using Bayes’ rule based on observations (i.e., function evaluations).
The following sample point is guided by an acquisition function, which depends
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Algorithm 1: Nested k-fold Cross-validation with Bayesian Optimi-
sation
Data: Data set with features X and labels y, D = {X, y}
input : Number of inner folds kinner, number of outer folds kouter

Maximum number of steps of Bayesian Optimisation niter

Maximum tuning time MaxTime
output: Generalisation error Eg of the model

Shuffle D;
Stratified split D into kouter folds;
for i = 1 to kouter do

Take ith fold of D as test set Di
test and remaining as training set

Di
train;

Stratified split Di
train into kinner folds;

for k = 1 to niter do
for j = 1 to kinner do

Take jth fold of Di
train as validation set Dj

val and remaining

as training set Dj
train′ ;

Train the model on Dj
train′ with hyperparameter set Pk;

Compute validation error Ek,j
val′ of the model on Dj

val;

Compute average validation error Ek
val, where

Ek
val = average(Ek

val′);
if elapsed time > MaxTime then

Stop tuning

Select optimal hyperparameter set Popt with the lowest Eval;
Fit the model on Di

test with Popt;
Compute the test error Ei

test of the model on Di
test;

Compute generalisation error Eg of the model, Eg = average(Etest);

Figure 2.21: Pseudo code of stratified nested k-fold cross-validation.

on the posterior. Following this, the new data point is added to the existing
observations, and the posterior is updated accordingly. This iterative process of
adding new data and updating the model continues until either convergence is
achieved or available resources are exhausted.

While parameters in machine learning models are learned from data, hyperpa-
rameters are pre-set and require careful selection. For less complex models or when
training is not costly, a grid search can effectively find optimal hyperparameters.
However, grid search becomes unfeasible for cost-intensive functions like training
extensive neural networks. BO thus can be a more efficient solution to quickly find
hyperparameter settings that yield good performance. While BO is efficient, it can
sometimes get stuck in local minima, potentially overlooking better solutions.

We used BO for hyperparameter tuning across all models. For traditional ma-
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chine learning models, skopt.BayesSearchCV [130] was the chosen implementation,
whereas keras_tuner.BayesianOptimization [131] was applied for deep learning
models, both using their default acquisition functions.

Further details about BO can be found in [132–134].

2.2.8 Evaluation Metrics

Confusion Matrix The Confusion Matrix (CM) is commonly used for sum-
marising a classification model’s predictions on test data, in a matrix format. It
is suitable for both binary and multi-class classification scenarios. The matrix is
square-shaped, with its columns and rows equalling the total number of classes.
Thus, the CM is an n × n matrix, where n is the number of classes. The CM
for binary classification is illustrated in Fig. 2.22. In this matrix, the columns
represent the predicted classes, and the rows indicate the actual classes. This
matrix provides insights into which classes the model may incorrectly interpret.
Furthermore, the CM facilitates the calculation of key metrics such as Accuracy
(Acc), Recall (Rec), Precision (Pre), and Specificity (Spec).
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Figure 2.22: The confusion matrix for binary classification.

True Positive and True Negative True Positive (TP) and True Negative
(TN) represent the number of correct predictions (the diagonal of CM). Specifically,
TP corresponds to correctly predicted positive instances, while TN relates to
correctly classified negative instances. For example, for a binary classification
problem, such as determining a patient’s health status, where "positive" denotes
being unhealthy and "negative" indicates healthiness, TP quantifies the correctly
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diagnosed patients as unhealthy. In contrast, TP corresponds to the number of
patients correctly discerned as healthy.

False Positive and False Negative False Positive (FP) and False Negative
(FN) denote the number of incorrect predictions (the off-diagonal of CM). FP is the
number of negative instances incorrectly classified as positive, while FN is vice versa.
For example, FP refers to the instances where healthy patients (negative class) are
erroneously diagnosed as unhealthy (positive class). In contrast, FN represents the
number of patients misdiagnosed as healthy when they are unhealthy.

Accuracy Accuracy (Acc) is the ratio of correctly classified instances to the total
number of instances within the test dataset. This metric ranges between 0 and 1,
where 1 represents the perfect prediction of all positive and negative samples, and 0
indicates a complete failure to correctly predict any positive or negative samples.

Although accuracy is a commonly used metric for evaluating model performance,
it may not always provide a reliable indication, particularly in cases of imbalanced
data sets. A model might achieve high accuracy in such scenarios by predominantly
classifying instances into the more frequent class. As a result, it becomes crucial
to consider additional metrics, such as recall, precision, and the F1 score. These
metrics offer a more thorough understanding of a model’s performance across various
classes, particularly when there is a significant disparity in class distribution.

The formula for calculating accuracy is expressed as:

Acc = TP + TN
TP + FP + TN + FN (2.2)

Recall The Recall (Rec), also referred to as Sensitivity or the True Positive Rate
(TPR), is a measure of the proportion of positive samples that the model correctly
classifies. It is calculated as the ratio of the correctly classified positive samples
(true positives) to the total number of actual positive samples. The recall value lies
within the range of [0, 1], where 1 represents the correct prediction of all samples
in the positive class, and 0 indicates a complete failure in correctly predicting any
sample in the positive class. recall is particularly crucial in medical research and
diagnostics, where the aim is to minimise the number of missed positive cases,
thereby necessitating a high recall value.

The formula for recall is given by:

Rec = TP
TP + FN (2.3)
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Precision Precision (Pre) measures the accuracy of positive predictions. It is
calculated as the ratio of correctly identified positive instances (TPs) to the total
number of instances predicted as positive, including both correct (TPs) and incorrect
(FPs) predictions. Essentially, precision answers the question: "Of all the instances
classified as positive, how many were actually positive?" The value of precision
ranges between 0 and 1, where 1 indicates perfect precision (all instances predicted
as positive are indeed positive), and a value of 0 means none of the instances
predicted as positive are actually positive.

The formula for calculating precision is as follows:

Pre = TP
TP + FP (2.4)

Specificity Specificity (Spec), often considered the counterpart of recall for the
negative class, measures the proportion of actual negatives that are correctly
identified. It is computed as the ratio of correctly classified negative samples to the
total number of actual negative samples. The range of specificity lies between 0
and 1, where 1 represents the perfect classification of all negative class samples,
and 0 indicates a complete misclassification of negative class samples.

The formula for specificity is:

Spec = TN
TN + FP (2.5)

F1 score F1 score (F1) represents the harmonic mean of precision and recall. Its
key characteristic is the penalisation of extreme values in either precision or recall,
ensuring a balanced consideration of both metrics. The F1 score’s value is influenced
by the designated positive and negative classes, thereby it is asymmetric between
these classes. In situations with a predominant positive class and a classifier
biased towards it, the F1 score tends to be high due to a high number of true
positives. However, if the negative class becomes the majority and the classifier’s
bias shifts accordingly, the F1 score may decrease, demonstrating its sensitivity
to class definitions, despite constant data and class distribution. The range of
the F1 score is from 0 to 1, where 1 signifies maximum precision and recall, and
0 indicates either no precision or no recall.

The formula for the F1 score is:

F1 = 2 × Precision × Recall
Precision + Recall = 2 × TP

2 × TP + FP + FN (2.6)
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Matthews Correlation Coefficient Pearson’s correlation coefficient, when
applied to binary cases, transforms into Matthew’s Correlation Coefficient (MCC).
The MCC has gained popularity in machine learning, particularly for its effectiveness
in imbalanced class situations. Essentially, it acts as a correlation coefficient
between the true and predicted class labels, attaining high values only when the
classifier performs well across all aspects of the CM. The range of the MCC is from
−1 to 1, where 1 indicates perfect prediction accuracy, 0 indicates performance
equivalent to random guessing, and −1 reflects complete discordance between
prediction and observation.

The formula for the MCC is:

MCC = TP × TN − FP × FN√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(2.7)

Additionally, an overall MCC for multi-class cases can be calculated as:

Overall MCC = c · s − ∑N
i pi · ti√

s2 − ∑N
i p2

i ·
√

s2 − ∑N
i t2

i

(2.8)

In this equation, c represents the sum of products of corresponding elements
of the CM, s is the sum of all elements in the CM, pi and ti are the sums of the
rows and columns, respectively, of the CM. This formula allows a more nuanced
understanding of classifier performance in scenarios with multiple classes.

Area Under the Receiver Operating Characteristic Curve This metric
has been somewhat touched upon previously, as exemplified by Fig. 2.14, where
the Receiver Operating Characteristic (ROC) curve was used as an evaluation
metric. An ROC curve measures the performance of a classification model across
various thresholds. It graphically plots two key metrics: True Positive Rate (TPR)
and False Positive Rate (FPR).

The TPR, also known as recall, which has been previously defined, measures
the proportion of actual positives correctly identified. On the other hand, the FPR
is the ratio of false positives to the total actual negatives (i.e., 1− Specificity), and
measures the likelihood of a false alarm. The FPR is defined as follows:

FPR = FP
FP + TN (2.9)

Fig. 2.23 shows a standard ROC curve, it plots TPR versus FPR at various
classification thresholds. Reducing the classification threshold results in more
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instances being classified as positive, which consequently raises the counts of both
FPs and TPs. It is inefficient to measure the model’s performance many times
with various classification thresholds. This is where the Area Under the Receiver
Operating Characteristic Curve (AUROC) comes into play.

ROC curve AUROC

Figure 2.23: ROC curve and AUROC.

The AUROC, as the name suggests, calculates the total area underneath the
ROC curve. It represents the probability that the model assigns a higher rank to a
random positive sample than a random negative sample. A model that perfectly
differentiates between the positive and negative classes will achieve an AUROC of
1. Conversely, a model with no better discriminatory ability than random guessing
will have an AUROC of 0.5, and a AUROC of 0 indicates the model makes all
predictions incorrectly. The AUROC is invariant to scale and classification threshold
as it measures the ranking of predictions and quality of the predictions.

Area Under Precision-Recall Curve The Area Under Precision-Recall Curve
(AUPRC) is a useful metric for evaluating performance on imbalanced data [135–
139]. It computes the area under the Precision-Recall (PR) curve, akin to how
AUROC operates with the ROC curve. The PR curve plots precision (the ratio of
true positive predictions to all positive predictions) against recall (the ability of
the classifier to find all the positive instances) at different thresholds. An example
of PR curve is shown in Fig. 2.24. In scenarios with imbalanced data, AUPRC is
often the preferred metric over AUROC as AUROC can present an overly optimistic
view of model performance, especially when it poorly predicts the minority class
[140, 141]. In contrast, AUPRC focuses on the positive class and provides a more
realistic evaluation of a model’s performance.
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Figure 2.24: An example of the PR curve.

However, interpreting AUPRC is somewhat more complex compared to AUROC.
For AUROC, the baseline is consistently 0.5. On the other hand, the baseline for
AUPRC equals the ratio of positive samples in the dataset [142]. Thus, the AUPRC
baseline varies across classes due to this dependency on the specific class distribution.

Although the varying baseline of AUPRC depends on the class distribution,
this metric is favoured in imbalanced datasets precisely because of its sensitivity
to the performance in the minority class. While it’s true that the dependency
on class distribution makes AUPRC a more complex metric to interpret, this
characteristic enables it to more accurately reflect the challenges of predicting
the minority class in imbalanced settings. In contrast to AUROC, which may
mask performance issues in imbalanced datasets by averaging across all thresholds,
AUPRC’s focus on the positive class makes it a more informative metric when
assessing the effectiveness of a model in these difficult scenarios. Therefore, while the
interpretation of AUPRC requires consideration of the underlying class distribution,
this also makes it particularly useful for evaluating model performance in the
context of imbalanced data.

The AUPRC can be calculated by various methods, with the Average Precision
(AP) [143] being one such method and the one selected for use in this thesis, as
the use of linear interpolation to calculate AUPRC is inappropriate [141]. AP
has been developed for binary classification but can be adapted to multi-class
classification using a one-vs-all approach.
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2.3 Chapter Summary

This chapter is a foundational bridge for interdisciplinary experiments presented
in this thesis, specifically designed to address the knowledge gap between those
unfamiliar with influenza and machine learning. The goal is to establish a solid
understanding of both areas.

Given that the primary data in our experiments consist of protein sequence
data, a comprehensive understanding of influenza, particularly its proteins and
evolutionary mechanisms, is crucial. The chapter first dives into the foundation
of influenza viruses. It also introduces the range of hosts susceptible to the virus.
This exploration then extends to elucidate the mechanisms of antigenic drift and
antigenic shift, which are responsible for the seasonal variability and potential
pandemic outbreaks of influenza, respectively.

The chapter also delves into the realm of machine learning. It begins by defining
what machine learning is and then explores various paradigms within the field.
The discussion includes deep learning, the general workflow in machine learning
projects, and specific algorithms that are particularly relevant to the nature of
our data and research objectives. Methods such as nested k-fold Cross-validation
(CV) and Bayesian Optimisation (BO) or the purposes of model evaluation and
hyperparameter tuning, respectively. The chapter also discusses various evaluation
metrics, which are pivotal in evaluating the efficacy of the employed machine
learning models.
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3
Sequence Data Description and

Representations

In the scope of this thesis, protein sequence data is exclusively utilised in all our
studies. To avoid repetitive explanations regarding the nature of these data in
subsequent sections, this chapter lays out an introductory overview of protein
sequences, underlining their differentiation from nucleotide sequences. Additionally,
the methods of sequence representations will be briefly mentioned.

3.1 Nucleotide Sequence and Protein Sequence

Nucleotides are organic molecules that serve as the building blocks for nucleic acids
like Deoxyribonucleic Acid (DNA) and Ribonucleic Acid (RNA). They comprise
three primary components: a nitrogenous base, an aldopentose sugar, and phosphoric
acid. The nitrogenous bases are classified into purines, which are Adenine (A) and
Guanine (G), and pyrimidines, which include Cytosine (C) and Thymine (T) in
DNA, and Uracil (U) in RNA.

In the case of influenza viruses, their genetic material is encoded in single-
stranded RNA instead of double-stranded DNA, which is found in most living
organisms. This viral RNA comprises chains of nucleotides, or polynucleotides,
which whole genome sequencing has shown to consist of approximately 13,500
nucleotides that form the virus’s genome [144]. These polynucleotide chains are
crucial in encoding various proteins required for virus replication and function.

Proteins are large molecules essential for numerous biological functions. Each
protein has a unique sequence of amino acids, which determines its specific role
within the host. These functions are incredibly varied: proteins may act as enzymes
to accelerate chemical reactions, as transporters to move substances across cellular
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barriers, as antibodies to defend against pathogens, or as signalling molecules to
coordinate biological processes. The sequence of amino acids in a protein and its
subsequent three-dimensional structure defines its biological role, making proteins
indispensable in the functioning and regulation of the body’s tissues and organs.

The simplified relationship between DNA, RNA and protein is shown in Fig. 3.1.
The coding systems used for nucleotides and amino acids are shown in Table 3.1. A
typical nucleotide sequence is composed of four primary nucleotide codes: Adenine
(A), Cytosine (C), Guanine (G), and Thymine (T) or Uracil (U) in RNA. These are
the fundamental building blocks of DNA and RNA. In contrast, amino acids, the
building blocks of proteins, are represented by 20 primary amino acid codes. Each
amino acid has a corresponding single-letter code and a three-letter code. While
nucleotide sequences generally use a more straightforward coding system, amino
acids have a more diverse range due to the complexity of proteins.

Figure 3.1: The simplified relationship between DNA, RNA, and protein, which depicts
the general pathway of gene expression. The image was generated using Figdraw [96].

3.2 Sequence File Formats

3.2.1 Raw Format

The raw sequence data contain only a string of characters representing a sequence
without any accompanying description or annotation. In this format, sequences
are presented as continuous strings of nucleotide bases (e.g., A, T, C, G for DNA
sequences) or amino acids (e.g., A, R, N, D for protein sequences). There are no line
breaks, headers, or meta-information. The primary advantage of the raw format is
its simplicity, making it straightforward for computational processing. However, it
lacks contextual information that might be essential for understanding the source,
function, or other relevant details of the sequence. As such, while raw formats are
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Table 3.1: IUPAC nucleotide and amino acid codes [145, 146].

No. Nucleotide Code Base Amino Acid Code Three Letter Code Amino Acid
1 A Adenine A Ala Alanine
2 C Cytosine C Cys Cysteine
3 G Guanine D Asp Aspartic Acid
4 T Thymine E Glu Glutamic Acid
5 U Uracil F Phe Phenylalanine
6 R A or G G Gly Glycine
7 Y C or T H His Histidine
8 S G or C I Ile Isoleucine
9 W A or T K Lys Lysine
10 K G or T L Leu Leucine
11 M A, C M Met Methionine
12 B C, G or T N Asn Asparagine
13 D A, G or T P Pro Proline
14 H A, C or T Q Gln Glutamine
15 V A, C or G R Arg Arginine
16 N A, G, T or C S Ser Serine

17 ȯr - Gap T Thr Threonine
18 V Val Valine
19 W Trp Tryptophan
20 Y Tyr Tyrosine
21 X Xaa Any amino acid
22 Z Glx Gln or Glu
23 B Asx Asp or Asn
24 - Gap
25 . or * Terminator

helpful for specific applications, they may not be ideal for comprehensive sequence
analysis or sharing data across different platforms and researchers. An example
of a sequence in raw format is shown in Fig. 3.2.

MKTTIILILLTHWVYSQNPTSGNNTATLCLGHHAVANGTLVKTITDDQIEVTNATELVQSISIGKICNNSYRVLDGRNCTLIDAMLGDPHCDDFQYENWDLFIER
SSAFSNCYPYDIPDHASLRSIVASSGTLEFTAEGFTWTGVTQNGGSGACKRGSADSFFSRLNWLTKSGNSYPILNVTMPNNKNFDKLYIWGIHHPSSNKEQTKLY
IQESGRVTVSTERSQQTVIPNIGSRPWVRGQSGRISIYWTIVKPGDILMINSNGNLVAPRGYFKLRTGESSVMRSDALIGTCVSECITPNGSIPNDKPFQNVNKV
TYGKCPKYIRQNTLKLATGMRNVPEKQIRGIFGAIAGFIENGWEGMVDGWYGFRYQNSEGTGQAADLKSTQAAIDQINGKLNRVIERTNEKFHQIEKEFSEVEGR
IQDLEKYVEDTKIDLWSYNAELLVALENQHTIDLTDAEMNKLFEKTRRQLRENAEDMGGGCFKIYHKCDNACIGSIRNGTYDHYIYRDEALNNRFQIKGVELKSG
YKDWILWISFAISCLLICVVLLGFIMWACQKGNIRCNICI

Figure 3.2: The example of hemagglutinin protein sequence (GenBank: AAB27733.1)
for influenza A virus in raw data format.

3.2.2 FASTA Format

The FASTA format is one of the most commonly used formats for representing
DNA, RNA, or protein sequences. It starts with a single-line description, known
as the sequence header, which is typically denoted by a greater-than symbol (">")
followed by the sequence identifier and an optional description. This is then followed
by one or multiple lines of the sequence data. Each sequence in a FASTA file is
represented by pairs of header and sequence lines. The sequences are written in
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the same character codes representing nucleotides or amino acids. An example
of a FASTA format sequence is shown in Fig. 3.3.02/08/2023, 21:35 hemagglutinin [Influenza A virus (A/equine/Taby/1991(H3N8))] - Protein - NCBI

https://www.ncbi.nlm.nih.gov/protein/AAB27733.1?report=fasta&log$=seqview&format=text 1/1

>AAB27733.1 hemagglutinin [Influenza A virus (A/equine/Taby/1991(H3N8))]
MKTTIILILLTHWVYSQNPTSGNNTATLCLGHHAVANGTLVKTITDDQIEVTNATELVQSISIGKICNNS
YRVLDGRNCTLIDAMLGDPHCDDFQYENWDLFIERSSAFSNCYPYDIPDHASLRSIVASSGTLEFTAEGF
TWTGVTQNGGSGACKRGSADSFFSRLNWLTKSGNSYPILNVTMPNNKNFDKLYIWGIHHPSSNKEQTKLY
IQESGRVTVSTERSQQTVIPNIGSRPWVRGQSGRISIYWTIVKPGDILMINSNGNLVAPRGYFKLRTGES
SVMRSDALIGTCVSECITPNGSIPNDKPFQNVNKVTYGKCPKYIRQNTLKLATGMRNVPEKQIRGIFGAI
AGFIENGWEGMVDGWYGFRYQNSEGTGQAADLKSTQAAIDQINGKLNRVIERTNEKFHQIEKEFSEVEGR
IQDLEKYVEDTKIDLWSYNAELLVALENQHTIDLTDAEMNKLFEKTRRQLRENAEDMGGGCFKIYHKCDN
ACIGSIRNGTYDHYIYRDEALNNRFQIKGVELKSGYKDWILWISFAISCLLICVVLLGFIMWACQKGNIR
CNICI

Figure 3.3: The example of hemagglutinin protein sequence from Influenza A virus
strain A/equine/Taby/1991(H3N8) is shown in FASTA format with AAB27733.1 as its
GenBank identifier.

While the headers in FASTA format may vary across different databases, they
typically include the name of the respective influenza virus strain. As illustrated
in Fig. 3.3, the HA sequence from a non-human origin virus strain, labelled as
A (antigenic type) / equine (host of origin) / Taby (geographical origin)
/ 1991 (year of isolation).

Ideally, the naming convention for influenza viruses should adhere to the interna-
tionally recognised format: antigenic type / host of origin (specifically
for non-human origin viruses) / geographical origin / strain number /
year of isolation [79, 147]. However, not every strain strictly follows this naming
convention. Occasionally, some strain names might lack a strain number or use
abbreviations for the place of isolation that are not immediately recognisable.

The FASTA format allows for easy readability and quick parsing of sequence
data. FASTA files can contain a single sequence or multiple sequences, making
them suitable for both individual sequence representation and datasets with various
sequences. While the FASTA format offers a uniform way to present sequence data,
it lacks capabilities for incorporating very detailed annotations or metadata.

In the context of this thesis, all data procured are presented in the FASTA format.

3.3 Sequence Representations

The raw sequence data, as depicted in Fig. 3.3, cannot be directly fed into models
due to its non-numeric nature and the absence of a fixed structure required by
many machine learning models. Therefore, before model training, it is essential to
preprocess and transform these character-based sequences into numerical values
that ensure that the underlying patterns within the data can be efficiently processed
and learnt by these models.
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In this section, various sequence representation methods commonly used in
the field will be introduced, as well as those specifically employed in the studies
presented in this thesis will be introduced.

3.3.1 Integer Encoding

Integer encoding, or ordinal encoding, assigns a unique integer value to each
character, word, or categorical value. One benefit of using integer encoding is that
it assigns a natural order to each element, making it apt for data with inherent
ordinal relationships. Fig. 3.4 shows the integer encoding of the protein sequence
from Fig. 3.3. For simplicity, only the first five amino acids (i.e., "MKTTL")
are encoded in the example.

M

K

T

T

L

Original Data

2

0

3

3

1

Integer Encoding

Figure 3.4: An example of integer encoding.

3.3.2 One-hot Encoding

For data without ordinal relationships, using integer encoding may result in poor
performance and introduce noise. This occurs because the model might erroneously
interpret the numeric values as having inherent ordinal relationships, leading to
incorrect or suboptimal predictions. In such cases, one-hot encoding can serve
as an alternative choice.

Fig. 3.5 shows the one-hot encoding of the first five amino acids from the protein
sequence depicted in Fig. 3.3. Each amino acid is mapped to a binary vector, where
the length of the vector corresponds to the number of unique amino acids in the
data. Hence, the binary vector for each sequence has a size of (M × N), where
M is the sequence length, and N is the number of unique amino acids present in
the sequence. The position corresponding to the particular amino acid is marked

53



with a "1", while all other positions are set to "0". This method ensures a unique
binary representation for every amino acid.
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1 0 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1

One-hot Encoding

Figure 3.5: An example of one-hot encoding.

However, using one-hot encoding increases the dimensionality of the data, as
each unique amino acid is represented by a binary vector whose length matches
the total number of unique amino acids in the data. When working with large
data, this can result in large and sparse matrices, thereby demanding more
computational resources.

3.3.3 Biological Property-based Sequence Representation

We can use the physicochemical and structural characteristics of proteins, including
properties such as hydrophobicity, molecular weight, electronegativity, charge, heat
of formation, hardness, and electrophilicity, to transform protein sequences into
numerical vectors that capture the inherent biological behaviours and functionalities
of proteins. The commonly used relevant protein descriptors employed for this
purpose are detailed in Table 3.2.

This encoding methodology delves deeply into the functional facets of proteins,
harnessing their intrinsic properties to yield a biologically pertinent representation.
This not only bolsters the precision and efficiency of diverse computational analyses
but also manifests its indispensability in specialised tasks such as protein-protein
interaction studies, protein structure prediction and function annotation, where a
comprehensive understanding of the sequence’s physicochemical context becomes
paramount. For more details of practical applications and comparison studies of
these encoding schemes, please refer to [155–157].
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Table 3.2: Biological property-based protein descriptor.

Descriptor Type Dimension
AAC Physicochemical 20
DPC Physicochemical 400
TPC Physicochemical 8000

VHSE [148] Physicochemical -
Z-scales [149] Physicochemical -
T-scales [150] Topological -
ST-scales [151] Topological -

BLOSUM62 [152, 153] Physicochemical and substitution matrix -
MS-WHIM [154] 3D electrostatic potential -

3.3.4 Word Embedding

A protein sequence is composed of letters, each representing a specific amino acid,
which is quite analogous to the structure of a text, with alphabets forming words.
Hence, methodologies from Natural Language Processing (NLP) can be applied to
protein sequences. In NLP, a commonly used technique is word embedding, which
captures the semantic meaning of words by analysing their contextual usage and
relationships within the text. Word embeddings are dense vector representations
and can be adapted and applied to analyse and process protein sequences.

Several algorithms have been devised for generating word embeddings, and one
intuitive method to adapt this concept for protein sequences involves integrating an
embedding layer into a neural network. This layer functions analogously to word
embeddings in NLP, considerably alleviating the necessity for laborious feature
engineering. It autonomously learns to represent amino acids in a high-dimensional
space, thereby capturing the underlying patterns and relationships within the
data. Fig. 3.6 is an example of word embedding using the Word2Vec [28, 29],
wherein each word is mapped to a dense vector in a high-dimensional space to
encapsulate its semantic meaning, and words with similar semantic relationships
are positioned closely together.

In our work, we have employed word embedding techniques in both Section 4.3.2
and Section 5.2.3.

3.3.5 Feature Derived from Pre-trained Models

Considering that training models on substantial datasets demand a considerable
amount of time and computational resources, initiating the training process from
scratch for every individual task can become impractically time-consuming, particu-
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-1.81 6.48 -5.82 -4.94 … -1.04

-0.09 0.43 -0.17 -0.45 … -0.11

queen

king
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Words Word embedding Visualisation of word 
embedding in 2D

Figure 3.6: An example of word embedding using Global Vectors for Word Representation
(GloVe) [158]: each word is represented by a vector in a 50-dimensional space, with a
subset of these dimensions and their numerical values shown here to reflect the word’s
semantic and syntactic properties. These vectors, generated through the GloVe model,
capture the relationships between words in a multi-dimensional space. The dimensionality
reduction process is applied to project these high-dimensional vectors onto a 2D plane for
visualisation, showing how related words cluster together (e.g., "man" is close to "woman",
"king" to "queen").

larly when multiple tasks require the same training data. This redundancy could
lead to unnecessary repetition and wasted resources in such scenarios.

To tackle the challenges and inefficiencies associated with model training, using
pre-trained models has become a widely accepted practice. A pre-trained model is
a saved network that was previously trained on a large dataset, resulting in saved
parameters that capture crucial information about the underlying structure of the
data. These models can be readily applied to a diverse range of tasks involving
similar types of data through fine-tuning, even when the dataset for the new task
is limited. As a result, using pre-trained models eliminates the need to train from
scratch, leading to considerable time savings.

Beyond using the embedding layer, we also use features generated by pre-trained
models in our work, as detailed in Section 5.2.3 and Section 6.2.2.

3.4 Chapter Summary

The focus of this chapter is to introduce sequence data and its various representations,
a critical aspect of understanding the biological and computational elements
of the research.

The chapter begins by elucidating the concepts of nucleotide and protein
sequences, laying the groundwork for understanding the fundamental building
blocks of the genetic and proteomic data central to the study. It then transitions
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to discussing sequence file formats to highlight the differences between the raw
format and the FASTA file format. Before feeding data into a machine learning
model, it is necessary to preprocess the data, and different sequence file formats
may require different preprocessing methods.

Protein sequence data cannot be directly fed into models. This chapter then
delves into the different methods of sequence representation, an essential step in
transforming biological data into a format amenable to computational analysis.
The first method explored is integer encoding, where sequences are converted into
numerical forms for computational convenience. Following this, the chapter explores
one-hot encoding, a widely used representation in machine learning that transforms
categorical data into a binary matrix.

Subsequently, the chapter introduces the biological property-based sequence
representation. This method takes into account the specific properties of biological
sequences, offering a more detailed and context-rich representation. Next, the
chapter discusses word embedding techniques, which are used for capturing the
contextual relationships within sequences.

Finally, the chapter presents the application of features derived from pre-
trained models for encoding sequences. This advanced approach leverages models
meticulously trained on extensive protein databases to extract complex features
from sequence data, enabling more sophisticated analysis of biological information.
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4
Predicting Influenza Host Origins through

Bioinformatics and Machine Learning
Approaches

4.1 Introduction

Influenza is a highly contagious respiratory illness that has consistently been at the
forefront of scientific investigation due to its pandemic potential, posing significant
health and economic challenges. One of the critical questions surrounding influenza
is its host origins — understanding which species are responsible for specific strains
can guide efforts in prevention, surveillance, and response. Traditional laboratory
methods, although reliable, can be time-consuming and resource-intensive. This
has led to a growing interest in employing computational techniques, especially as
the volume of available genomic data continues to expand.

Only protein sequence data have been used in this thesis. As mentioned in
Section 3.3, the representation of sequences is important because raw protein
sequence data cannot be directly fed into machine learning models, and different
data pre-processing methods may lead to varying performance outcomes on the
same model. In this chapter, we delve into two primary approaches for handling
sequence data based on the characterise of protein sequences: Position-Specific
Scoring Matrix (PSSM)-based and word embedding techniques.

PSSM-based methods are primarily utilised to extract biologically relevant
information, especially evolutionary features, from protein sequence data and serve
as an input for traditional machine learningg models. In contrast, word embedding
techniques are predominantly used in deep learning models to extract features
that capture both the local context and the complex patterns within the protein
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sequences, which are integral to the architectures of deep learning models. The
size of a PSSM varies with the sequence length, making it essential to standardise
its size. This chapter outlines three methods to standardise PSSM, with detailed
explanations in Section 4.3.2. These three methods are:

• EG-PSSM (Extended Grouped-PSSM): This method leverages the
concept of residue grouping to manage the variability in sequence and PSSM
lengths. Applying this grouping rule to each row of the grouped-PSSM
(GPSSM), a 10 × 10 matrix is generated. This matrix is then restructured
into a 1 × 100 feature vector, making it compatible for integration with
classical machine learning models. The EG-PSSM method is instrumental in
condensing the sequence information into a manageable format for traditional
machine learning models, capturing the essence of the sequence in a compact
representation.

• GDPC-PSSM (Grouped Dipeptide Composition-PSSM): This ap-
proach extends the idea of dipeptide compositions to PSSMs. Each L × 10
GPSSM is restructured into a 10 × 10 matrix, and then transformed into
a 100-dimensional feature vector. The GDPC-PSSM extracts both amino
acid composition and partial local-order information from protein sequences,
offering a nuanced understanding of the sequence structure.

• ER-PSSM (Extended Reduced-PSSM): Similar to GDPC-PSSM, this
method extracts local sequence order information. However, it extends the
computation of pseudo-compositions of dipeptides for amino acids in sequences
with variable gaps. The resulting 91 × 10 matrix for each sequence is then
converted into a 1 × 910 feature vector. ER-PSSM offers a comprehensive
representation by considering the relationships between amino acids at various
positions within the sequence.

The quality of data is a pivotal factor influencing model performance. It’s
common practice to cleanse the data during preprocessing, ensuring that only
high-quality data is utilised for training models. However, this approach may not
adequately prepare models for real-world scenarios, which often include a substantial
amount of noisy data. Thus, the experiments detailed in this chapter adopt a dual-
faceted approach. Alongside the high-quality data used for model training, data
imbued with noise is also incorporated. This strategy is designed to reflect the
model’s potential performance more accurately in practical, real-life situations.

59



In addition to the aforementioned aspects, the results have been analysed
comprehensively, casting light on the performance of our approach across diverse
taxonomic levels and individual hosts. The analysis uncovered that a shallow Neural
Network (NN) is adequate for processing influenza sequences. Moreover, 3-grams
word embeddings surpass other sequence representations in performance. While
PSSMs generation is time-consuming, opting for a smaller reference database does
not significantly impact overall performance. It was also determined that a unified
scheme for PSSMs is vital, considerably affecting model performance, with PSSM and
word embedding-based sequence representations producing comparable outcomes.

Furthermore, Transformers with 5-grams inputs show superior performance and
are least affected by incomplete sequences. The analysis acknowledges challenges in
predicting sequences collected during pandemics, which underscores the model’s
potential in identifying strains with cross-transmission capabilities. For more
detailed information about these results, please refer to Section 4.4.

4.2 Position-specific Scoring Matrix

One of the most commonly used methods to extract evolutionary information from
protein sequences is the Position-Specific Scoring Matrix (PSSM) [159], which can
be generated using Position-Specific Iterative Basic Local Alignment Search Tool
(PSI-BLAST) [160]. PSSM encapsulates the pattern of sequence motifs across a
collection of aligned sequences. PSSMs play a vital role in computational biology,
particularly in identifying conserved motifs within a protein family and aiding in
predicting proteins’ secondary and tertiary structures.

A PSSM is generated from a Multiple Sequence Alignment (MSA) of various
related sequences. It effectively measures the frequency of each amino acid’s
occurrence at specific positions in the sequence alignment. In the matrix, each
column corresponds to a particular position in the sequence alignment. The values
in the matrix, often derived from the frequency of each amino acid at each position
and adjusted for background amino acid frequencies, represent the likelihood (score)
of each amino acid occurring at each position.

The application of PSSMs extends to identifying and characterising protein
domains and motifs, which are specific regions within proteins with particular
structural or functional attributes. These motifs typically exhibit conserved
sequences, and PSSMs are instrumental in predicting such conserved areas in
different protein sequences.

Furthermore, PSSMs are employed in a variety of sequence analysis tools and
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algorithms. For instance, in database search tools like the Basic Local Alignment
Search Tool (BLAST), PSSMs enhance the sensitivity of sequence similarity searches
by allowing for the identification of sequences sharing similar patterns or motifs.

In bioinformatics, PSSMs are highly valued for their ability to capture evolution-
ary information from amino acid sequences across protein families. They focus on
evolutionary details, which are often more informative compared to physicochemical
features derived solely from sequences [161, 162]. They are adept at extracting
evolutionary information from protein sequences, which proves more informative
for various predictive tasks. This includes identifying protein interactions and
functionalities, thus making PSSM a superior choice for improving the accuracy
of the predictions related to protein structure and function [163].

As protein sequences typically contain 20 different types of amino acids (i.e.,
A, R, ... V ), the original PSSM, denoted as PSSMoriginal, is a L × 20 matrix that
consists of scores representing the substitution probabilities of amino acids across a
query protein sequence with L length. The sequence is represented as a1a2 . . . aL,
where a1 corresponds to the amino acid type at the i-th position in a sequence of
length L. An illustrative example of the PSSMoriginal is provided below:

PSSMoriginal =



A R . . . V

a1 p1,1 p1,2 . . . p1,20

a2 p2,1 p2,2 . . . p2,20

· · · · · · · · · · · · · · ·
aL pL,1 pL,2 . . . pL,20


, (4.1)

where pi,j is the score of the amino acid ai that mutates to aj . It can also be inter-
preted as a probability of mutation in the range of [0, 1] using the sigmoid function:

pi,j = 1
(1 + e−pi,j ) , i = 1, 2, . . . , L; j = 1, 2, . . . 20, (4.2)

4.3 Experiments

4.3.1 Data Collection

In this study, two datasets were used. The primary difference between the two sets is
that Dataset 2 includes both complete and incomplete Hemagglutinin (HA) protein
sequences, whereas Dataset 1 exclusively contains high-quality, complete sequences.
Therefore, Dataset 2 is completely unforeseeable for models and noisier than Dataset
1. We used Dataset 2 as an additional testing set to test the performance of the
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pre-trained model. The pre-trained models were trained and validated by Dataset 1.

Dataset 1

Dataset 1 includes the complete Influenza A Virus (IAV) HA protein sequences
isolated from avian, swine, and human samples in the Global Initiative on Sharing
All Influenza Data (GISAID) [164] database (status 2020-09-25). Only HA protein
sequences are used in this study, given that HA is the most dominant protein for
immunity response and helps the virus bind to target hosts [165]. To maintain
the quality of the data, we further removed sequences that are either redundant,
multi-label, or contain ambiguous amino acids X (any amino acid), B (Asp or
Asn), and Z (Gln or Glu) [166]. Therefore, 59,785 sequences from the original set
have been selected. Only Dataset 1 was subjected to nested k-fold Cross-validation
(CV), as described in Section 2.2.6.

Dataset 2

Dataset 2 is an additional testing set. It includes the IAV HA protein sequences
collected from 2020-09-26 to 2022-05-05 in the GISAID [164] database. Sequences
present in both datasets 1 and 2 have been removed from Dataset 2 to ensure
mutual exclusivity between the datasets. In addition, we have applied the same
process as used in Dataset 1 to eliminate any redundant or multi-label sequences.
However, in contrast to the approach taken with Dataset 1, Dataset 2 retains
sequences that contain ambiguous amino acids. As a result, the sequences in
Dataset 2 are also unique and have an unambiguous isolated host. The resulting
final set consists of 3,686 sequences.

The change in the amount of data before and after filtering is presented in
Table 4.1. Fig. 4.1 and Fig. 4.2 show the data distribution of different taxonomic
levels. In terms of the performance of the model at a higher taxonomic level, we only
consider three classes: human, avian, and swine, whereas at a lower classification
level, avian data is divided further and results in 26 classes. When the number
of classes increases, models face more challenges.

Table 4.1: Amount of data before and after selection.

Data Sets Original # Selected # Only Complete? NRa? No Multi-label? No X, B, Z? Purposesb

1 180,833 59,785 ✓ ✓ ✓ ✓ Train, Val and Test
2 13,798 3,686 ✓ ✓ Test

a NR: non-redundant
b The purpose of the dataset: training, validation or testing.
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Figure 4.1: Data distribution (higher taxonomic level).
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Figure 4.2: Data distribution (lower taxonomic level).

The original dataset contained redundant data. To address this, all identical
sequences were removed, yielding a non-redundant dataset for this research. No
additional sequence reduction steps aimed at removing redundancy were undertaken,
considering the IAV’s cross-species infection potential, which could lead to high
similarity among sequences from different hosts. Consequently, omitting similar
sequences would diminish the dataset’s diversity and potentially skew the results,
as illustrated in Fig. 4.3.

4.3.2 Sequence Representations

Position-Specific Scoring Matrix-Based Representations

We ran PSI-BLAST [169] iteratively with default parameters (E-value = 0.001,
number of iterations= 3) on a partial NCBI’s Non-Redundant Protein Sequence
Database (NR) database. The NR database is a comprehensive collection of protein
sequences from various sources, including GenBank, RefSeq, and PDB, which elimi-
nates redundancies. Given the vast scope of the complete NR database, we opted for
a subset tailored to ensure a focused analysis with reduced computational demands.
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Figure 4.3: Error rate versus sequence identity for a set of aligned sequences. The plot
shows the error rate as a function of sequence identity, with sequence identity ranging
from 40% to 100%. The solid line represents a cubic spline fit to the data points, while
the orange circles indicate the actual data points. The error rate for a set of clustered
sequences is calculated as the total number of sequences with a different label than their
corresponding representative sequence in their cluster, divided by the total number of
sequences across all clusters. CD-HIT [167, 168] was used to reduce redundancy based on
sequence similarity, wherein sequences were clustered together if they shared a certain
percentage of similarity.

PSSMs cannot be fed directly into classic machine learning models due to their
variable size. To overcome this hindrance, we propose three sequence encoding
schemes based on PSSM. In order to reduce the complexity of proteins and
unnecessary computations, we first introduce a residue grouping rule.

Residue Grouping Rule As amino acids have similar properties in proteins,
they can be classified into 10 groups [170], which we have labelled for ease of
reference: G1 (F, Y, W), G2 (M, L), G3 (I, V), G4 (A, T, S), G5 (N, H), G6

(Q, E, D), G7 (R, K), G8 (C), G9 (G) and G10 (P). A grouped-PSSM (GPSSM)
with L × 10 dimensions can be created by applying residue grouping rules to the
columns of the original PSSM (4.1).

PSSMG =



G1 G2 . . . G10

a1 g1,1 g1,2 . . . g1,10

a2 g2,1 g2,2 . . . g2,10

· · · · · · · · · · · · · · ·
aL gL,1 gL,2 . . . gL,10


, (4.3)

where
gi,j =

∑
pi,Gj

|Gj|
, (4.4)
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The GPSSM is produced based on the original PSSM (4.1). Therefore, ∑
pi,Gj

represents the score of an amino acid ai that is mutated to an amino acid belonging
to j-th group Gj. L is the length of sequences; i = 1, 2, . . . , L; |Gj| is the number
of amino acid types in Gj. The GPSSM (4.3) was used to derive the following
proposed feature sets: EG-PSSM, GDPC-PSSM, and ER-PSSM.

EG-PSSM (Extended Grouped-PSSM) The length of the input sequence
as well as the original PSSM (4.1) and GPSSM (4.3) may vary. This means they
cannot be directly used in many machine learning models. An intuitive method
for overcoming this problem is applying the residue grouping rule across rows of
the GPSSM (4.3). This will result in a matrix of 10 × 10. We reformat the matrix
by iterating through it row by row, moving from left to right within each row,
thereby generating a 1 × 100 feature vector from a GPSSM (4.3) before feeding
it to classical machine learning models:

PSSMEG =
(
EG1,G1 EG1,G2 · · · EG10,G10

)T
, (4.5)

where
EGi,Gj

=
∑

gGi,j

|Gi|
, i, j = 1 . . . 10, (4.6)

GDPC-PSSM (Grouped Dipeptide Composition-PSSM) By using Dipep-
tide Composition (DPC) [171], we are able to determine amino acid composition
information and partial local-order information in protein sequences. DPC acts
directly on raw sequence data and generates a 400−dimensional feature vector for
each sequence, representing the 400 dipeptide combinations from 20 standard amino
acids. DPC can also be extended to PSSM [172]. Therefore, each L×10 GPSSM (4.3)
can be rewritten as a 10 × 10 matrix by grouped dipeptide composition encoding.
This 10 × 10 matrix can then be reshaped as a 100-dimensional feature vector:

PSSMGDP C =
(
D1,1 D1,2 · · · D10,10

)T
, (4.7)

where
Di,j = 1

L − 1

L−1∑
k=1

gk,i × gk+1,j i, j = 1, 2, . . . , 10, (4.8)

Each gk,i is the value of row k and column i in the GPSSM (4.3).

ER-PSSM (Extended Reduced-PSSM) The third proposed sequence repre-
sentation is adapted from RPSSM [173], which computes the pseudo-composition
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of the dipeptide in sequences. As with GDPC-PSSM, RPSSM also extracts partial
local sequence order information from sequences. RPSSMs only compute the pseudo-
composition of any two adjacent amino acids. We extended the computation of
RPSSM for any two amino acids akak+t with gap t in sequences and extracted
a 91 × 10 matrix per sequence. The matrix can be reformatted as a 1 × 910
feature vector:

PSSMER =
(
M1,1,1 M1,2,1 · · · M10,10,9 T1 · · · T10

)T
, (4.9)

where

Mi,j,t = 1
L − t

L−t∑
k=1

(gk,i − gk+t,j)2

2 ,

i, j = 1, 2, . . . , 10; t = 1, 2, . . . , 9
(4.10)

and

Ti = 1
L

L∑
k=1

(
gk,i − Ḡi

)2
, i, j = 1, 2, . . . , 10. (4.11)

Ḡi is the average of values of GPSSM (4.3) in column i, Ti computes the average
pseudo-composition of all the amino acids in the protein sequence corresponding
to column i in GPSSM (4.3).

Learning Representations

Overlapping N-grams Protein sequences are morphologically similar to text
sentences, except that text is composed of words, whereas amino acid letters
comprise a protein sequence. In order to transform a protein sequence into a protein
"sentence", we split the sequence into overlapping N -grams (N varies from 3 to 5).
An N -gram is a protein "word" composed of successive N amino acids. Fig. 4.4
is an example of overlapping 3-grams for a protein sequence, and Fig. 4.5 shows
the word clouds of trigrams for human, avian and swine.

seq: M L S I T I L F L . . .

trigrams: MLS LSI SIT ITI TIL ILF LFL . . .

Figure 4.4: Example of overlapping trigrams: the protein sequence MLSITILFL can be
converted into a protein "sentence" containing 7 protein "words" MLS, LSI, SIT, ITI, TIL,
ILF and LFL.
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Figure 4.5: Word clouds of trigrams for each class were generated using MATLAB®, where
the size of each trigram corresponds to its frequency of occurrence within the protein
sequence data, with more common trigrams appearing larger in the cloud.

Word Embedding Word embedding overcomes the drawbacks of one-hot en-
coding. It is capable of producing dense vectors as well as capturing relationships
between words. The idea behind word embedding is to map words to an embedding
space, where words with similar meanings are closer together and, hence, have similar
embeddings. Word2Vec [28, 29] is a popular implementation of word embedding,
but it does not include domain-specific words. Thus, we generated a custom word
embedding from the training set and mapped the N -grams of each sequence to the
embedding vectors. An N -gram is represented as a vector of size N , and a protein
sequence is represented as an L × N , where L is the length of the sequence (i.e.,
the number of N -grams in the sequence) and N is the embedding dimension.

To unify the dimensions of matrices, we apply left-padding to the sequences
with the longest sequence length (i.e., adding zeros or a predefined placeholder
value to the beginning of sequences to match the length of the longest sequence in
the dataset). Therefore, while most sequence information will be retained, more
noise will be introduced to the shortest sequence.

4.3.3 Implementation and Evaluation

In this work, we employed a diverse set of traditional machine learning and
deep learning algorithms, including Convolutional Neural Network (CNN), Multi-
Layer Perceptron (MLP), Random Forest (RF), Random Undersampling Boosting
(RUSBoost), Support Vector Machine (SVM), Transformer, and Extreme Gradient
Boosting (XGBoost). A detailed description of each algorithm and its corresponding
theory can be found in Section 2.2.5. In this section, we will focus primarily on
discussing the parameter settings and architecture of the models employed in
our experiments.

We designed a simple CNN for classifying protein sequences. The CNN in this
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study consists of one input layer (Input), three convolution layers (Conv), three
max-pooling layers (Max-Pool), one flattening layer (Flatten), three dense layers
with Rectified Linear Unit (ReLU) activation (Dense) and one dense layer with
softmax activation (Output). PSSM or tokenised virus sequences can be used as
input data. The CNN also includes an embedding layer (Embedding) when the
input data are tokenised sequences, as shown in Fig. 4.6. The hyperparameter
settings for CNN can be seen in Table 4.2.
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Figure 4.6: Example of the CNN architecture with an embedding layer: here, for
simplicity, we assume that the longest length of the sequence is 500, the dimension of
embedding is 100, and the number of filters for the first, second, and third convolutional
layers is 64, 32, and 16, respectively. The layers are represented by coloured boxes:
input layer (light yellow), embedding layer (light orange), convolutional layer (light red),
max-pooling layer (light pink), and flatten/dense layer (light blue).

The sequence-sequence Transformer model usually includes an encoder block
and a decoder block, which take a sequence as input and output a sequence, such
as the sequence-to-sequence model often used in language translation. In contrast,
a sequence-to-vector model accepts a sequence as input and outputs a class label
for that sequence, and no decoder block is needed. We used a sequence-vector
Transformer model, which accepts a sequence as input and outputs a class label
for that sequence. Thus, the Transformer used in this study only has an encoder
block. The Transformer architecture used in this study is shown in Fig. 4.7. The
number of heads (num_heads) ranges from 1 to 5, and the embedding dimension
(embed_dim) varies between 32, 64, and 128.

All models were evaluated using optimised parameters, as shown in Table 4.2.
We used Bayesian Optimisation (BO) to adjust hyperparameters in 5 iterations
automatically. RF, SVM and MLP were implemented by the Scikit-learn [174],
RUSBoost was implemented by imblearn [175], XGBoost was implemented in
XGBoost Python package [117]. CNN and Transformer mode were implemented
by Keras [176].

In this study, we used nested k-fold Cross-validation (CV) with kouter = 5 and
kinner = 4. Each outer fold, which comprises 20% of the total data, serves as the
test set. The remaining 80% forms the trainingouter set, which is further divided into
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Figure 4.7: Example of the Transformer architecture: here, we assume that the number
of heads is 3 and the dimension of embedding is 32.

Table 4.2: Hyperparameter settings.

Algorithms Hyperparameters

SVM C = 0.01, 0.1, 1, 10, 100
gamma = 0.001, 0.01, 0.1, 1

RF
n_estimators = 100, 200, 500, 1000,
1500, 2000
max_depth = 5, 10, 15, 20

RUSBoost
n_estimators = 50, 100, 200, 500, 1000,
1500, 2000
learning_rate = 0.001, 0.01, 0.1

XGBoost
max_depth = 5, 10, 15, 20
eta = 0.001, 0.01, 0.05
colsample_bytree = 0.1, 0.3, 0.5, 0.8, 1

MLP
alpha = 0.001, 0.01, 0.05
max_iter = 500
learning_rate_init = 0.001, 0.01, 0.05

CNN

num_filters = 64, 128, 256
learning_rate = 0.01, 0.05, 0.001, 0.0001
batch_size = 128
epochs = 300
kernel_size = 3

Transformer

embed_dim = 32, 64, 128
num_heads = 1, 2, 3, 4, 5
batch_size = 128
epochs = 300

four inner folds. In each inner loop, one fold (representing 20% of the total data or
25% of the trainingouter set) acts as the validation set, with the rest used for training.
As a result, approximately 60%, 20%, and 20% of the data from Dataset 1 were used
for training, validation, and testing purpose, respectively. The nested k-fold CV was
applied exclusively to Dataset 1, as Dataset 2 only served as an additional test set.

Evaluation measurements used in the study include F1 score (F1), Area Under

69



Precision-Recall Curve (AUPRC) and Matthew’s Correlation Coefficient (MCC).
The equations of F1 score and MCC for each class are defined as in Section 2.2.8.
We also used the mean score to present the overall performance of each model. The
mean score is defined as the mean of OAUPRC, OF1 and OMCC:

Mean Score = average(OAUPRC, OF1, OMCC) (4.12)

where OAUPRC, OF1 and OMCC represent the overall AUPRC, F1, and MCC, re-
spectively.

Regarding the models’ performance in each class, we only show the results
of AUPRC as AUPRC is recommended for evaluating classifiers when data is
highly imbalanced [135].

4.4 Results and Discussions

In this study, we conducted various experiments to assess the performance of our
models. This included analyses on different aspects such as comparing sequence
representations, evaluating various machine learning models, analysing overall
performance, examining performance across different hosts, investigating the impact
of incomplete sequences, evaluating ensemble approaches, and considering the
influence of the reference database used for generating Position-Specific Scoring
Matrices (PSSMs).

Our findings indicate that a simple shallow Neural Network (NN) is sufficient
for processing influenza sequences. We observed that 3-grams-based word embed-
dings tend to outperform other sequence representations in terms of performance.
Although the generation of PSSMs is time-intensive, we found that utilising a
smaller reference database does not significantly compromise overall performance.
Furthermore, it is critical to implement a unified scheme for PSSMs generation,
as this significantly affects model performance. We also discovered that PSSMs
and word embedding-based sequence representations could achieve comparable
performance. In terms of overall performance and resilience to incomplete sequences,
Transformers configured with 5-grams inputs were superior. However, sequences
collected during a pandemic presented challenges in accurate prediction. This
indicates a difficulty in consistently identifying strains with the potential for cross-
transmission. By considering the outputs from all models, we observed a potential
for ensemble approaches to identify the most hard-to-predict sequences that all
models struggle to predict accurately.
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The following sections provide details of these findings.

4.4.1 Performance at Different Taxonomic Levels

We evaluated all models across varying taxonomic levels. The higher taxonomic level
represented only three classes: avian, human, and swine. However, the avian class
was further subdivided, and the dataset comprised 26 classes, making it challenging
for models to classify hosts at the more refined taxonomic levels. In this section,
we discussed the performance of sequence representations and machine learning
algorithms across Dataset 1, as well as the overall results of each model.

Comparison of Sequence Representations

To encode protein sequences, we used two kinds of representation: sequence
alignment-free (word embedding) and sequence alignment-based (PSSM-based
representations). Table 4.3 compares sequence representation, where the metric
scores are averaged across the respective machine learning algorithms applied for
each representation. We seek to determine if certain representations universally
boost algorithm performance or their effectiveness varies with specific algorithms,
aiming to understand the adaptability and efficiency of sequence representations
across different computational models.

At lower and higher taxonomical levels, 3-grams word embeddings reached mean
scores of 87.73% and 97.94%, respectively. Additionally, as the N -gram size in
word embedding increased from 3 to 5, a noticeable trend of declining performance
emerged across all evaluated metrics at both higher and lower classification levels.
This suggests that longer N -grams may be less effective in capturing context
for Dataset 1.

In contrast, PSSM-based representations showed lower performance and higher
variability compared to word embeddings, possibly because of their instability and
poor performance on RUSBoost. When comparing PSSM-based representations,
EG-PSSM had a relatively low deviation and a higher mean score.

The performance of all evaluated methods was consistently superior at the higher
taxonomic level. In contrast, data became more skewed at the lower taxonomic
level, with mean score drops for all sequence representations ranging from 10%
to 15%. Among the various methods evaluated, ER-PSSM was the most affected,
with a mean score drop of 14.85%, while 3-grams word embeddings were the least
affected, with a mean score drop of 10.21%.
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Table 4.3: Comparison of sequence representations on Dataset 1.

Classification Level Higher Classification Level Lower Classification Level
Representations Mean Score (%) AUPRC (%) F1(%) MCC (%) Mean Score (%) AUPRC (%) F1 (%) MCC (%)

WE*(2-grams) 97.83 (0.19) 99.50 (0.07) 97.78 (0.19) 96.21 (0.32) 87.42 (0.74) 94.64 (0.42) 87.18 (0.71) 80.45 (1.09)
WE (3-grams) 97.94 (0.16) 99.51 (0.05) 97.90 (0.16) 96.41 (0.29) 87.73 (0.56) 94.76 (0.35) 87.52 (0.55) 80.92 (0.81)
WE (4-grams) 97.54 (0.36) 99.41 (0.09) 97.48 (0.36) 95.72 (0.61) 87.21 (0.47) 94.41 (0.35) 87.02 (0.43) 80.22 (0.65)
WE (5-grams) 97.32 (0.85) 99.36 (0.22) 97.26 (0.87) 95.34 (1.46) 86.56 (1.33) 93.97 (0.94) 86.41 (1.24) 79.30 (1.80)

EG-PSSM 92.52 (8.02) 96.02 (5.93) 92.93 (7.33) 88.62 (10.85) 79.30 (10.81) 87.78 (10.06) 79.97 (9.54) 70.16 (12.88)
ER-PSSM 89.77 (13.81) 94.15 (9.40) 90.20 (13.72) 84.95 (18.38) 75.42 (15.29) 85.42 (13.63) 76.15 (14.18) 64.68 (18.99)

GDPC-PSSM 85.13 (21.06) 90.96 (14.46) 85.50 (20.94) 78.92 (28.00) 70.28 (19.79) 82.15 (18.08) 72.90 (16.54) 55.77 (30.31)

* WE: Word Embedding

Comparison of Machine Learning Algorithms

Table 4.4 represents the comparison of machine learning algorithms with the averaged
metric scores across sequence representations. RUSBoost performed the worst at
both classification levels, but it maintained a narrower fluctuation in performance
at the higher classification level compared to the lower one. Contrary to RUSBoost,
SVM had a larger deviation under conditions of increased data skewness and class
imbalance at the lower taxonomic level. Therefore, the performance of RUSBoost
and SVM exhibited a dependency on the sequence representation, but RUSBoost
was least affected by data skewness among all methods compared with SVM.

The Transformer and XGBoost performed best at the higher and lower taxonomic
levels, respectively. Nevertheless, a decline in performance was observable for all
classifiers when transitioning from the higher to the lower taxonomic level, with the
mean score experiencing reductions between 9% and 30%. Among the evaluated
algorithms, SVM was the most adversely affected, undergoing a substantial 26.1%
drop in mean score. On the other hand, XGBoost appeared to be fairly stable,
showing a moderate decrease in the mean score of 9.74%, which suggested it could
manage difficult classification situations reasonably well.

Table 4.4: Comparison of machine learning algorithms on Dataset 1.

Classification Level Higher Classification Level Lower Classification Level
Classifiers Mean Score (%) AUPRC (%) F1 (%) MCC (%) Mean Score (%) AUPRC (%) F1(%) MCC (%)

CNN 97.07 (0.74) 99.20 (0.31) 97.05 (0.71) 94.96 (1.22) 85.71 (2.01) 93.43 (1.31) 85.63 (1.87) 78.06 (2.86)
MLP 93.00 (0.97) 96.63 (0.85) 93.49 (0.77) 88.88 (1.33) 78.10 (1.64) 87.42 (1.61) 78.95 (1.28) 67.94 (2.08)
RF 97.41 (0.16) 99.31 (0.07) 97.38 (0.16) 95.52 (0.28) 87.57 (0.40) 94.53 (0.26) 87.43 (0.38) 80.75 (0.59)

RUSBoost 59.49 (17.92) 72.80 (11.56) 60.74 (18.93) 44.92 (23.79) 47.96 (7.27) 55.97 (11.12) 51.88 (6.60) 36.02 (5.85)
SVM 90.67 (3.78) 95.17 (2.33) 91.39 (3.51) 85.46 (5.55) 64.57 (15.01) 85.72 (3.63) 68.12 (11.21) 39.86 (30.68)

Transformer 97.86 (0.18) 99.48 (0.06) 97.82 (0.18) 96.27 (0.32) 87.33 (0.41) 94.55 (0.24) 87.11 (0.41) 80.34 (0.62)
XGBoost 97.72 (0.18) 99.42 (0.07) 97.69 (0.18) 96.04 (0.31) 87.98 (0.52) 94.83 (0.34) 87.80 (0.49) 81.31 (0.75)

Overall Results

Fig. 4.8 illustrates the top 10 models with the highest performance at different
taxonomic levels. The results were ranked in descending order according to the
mean score of each model, with the naming convention of the model being sequence
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representation - machine learning algorithm. Most models reached at least a 96%
mean score, particularly when the dataset comprised fewer classes, suggesting
increased efficiency in less complex classification tasks.

Specifically, while the majority of the top ten models demonstrated consistent
performance across different taxonomic levels, notable exceptions were observed in
the case of the GDPC-PSSM-RF and 2-grams-Transformer models. The 2-grams-
Transformer model excelled particularly at higher taxonomic levels. In contrast,
the GDPC-PSSM-RF model tended to perform better at lower taxonomic levels.
Among these models, ER-PSSM-XGBoost, 3-grams-CNN, 2-grams-CNN, and 5-
grams-Transformer more effectively at both taxonomic levels, as indicated by their
higher average rankings in comparison to other models.
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Figure 4.8: Performance of different models at different classification levels on Dataset
1.

4.4.2 Performance in Individual Hosts

Given that most machine learning algorithms are inclined to favour the majority
class, it stands to reason that their performance would be better on the majority class
compared to the minority class. In Dataset 1, 55% of sequences belonged to humans,
while only 0.01% belonged to partridges. This degree of data imbalance brought
great challenges to classifiers. ER-PSSM-XGBoost, 3-grams-CNN, and 5-grams-
Transformer were the top three models that worked better, no matter how skewed the
data was. Their AUPRC score in individual hosts of Dataset 1 was shown in Fig. 4.9.

All three models scored AUPRC below 80% in all hosts, except human, swine,
and chicken, which accounted for approximately 81% of the sequences in Dataset 1.
However, the baseline of the AUPRC for each class was the proportion of each class
in the dataset. Therefore, human, swine, and chicken classes also had a relatively
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higher baseline than other classes. The AUPRC and corresponding baseline for
each class were shown in lime and green. These three models achieved higher scores
than the baseline, but the variability increased with fewer classes.

Fig. 4.10 illustrates the performance of the three models in individual hosts at a
lower taxonomic level for Dataset 2. The AUPRC of 5-grams-Transformer and 3-
grams-CNN in each class still outperformed the baseline, even with the introduction
of incomplete sequences, while ER-PSSM-XGBoost very slightly beat the baseline.

Figure 4.9: Performance of different models in individual hosts at a lower taxonomic
level on Dataset 1.

(a) Include Incomplete Sequences (b) Exclude Incomplete Sequences

Figure 4.10: Performance of different models in individual hosts at a lower taxonomic
level on Dataset 2.

4.4.3 Effect of Incomplete Sequences

It’s not uncommon to come across partial or incomplete sequence data in real-world
scenarios. Instead of simply discarding such data, we’re interested in exploring
their potential for use. We sought to discover if our models can maintain strong
performance on these less-than-ideal datasets, showcasing their adaptability and
effectiveness in real-world contexts.

Reflecting on the composition of two data sets used in the study, Dataset 1
contained numerous selected HA sequences that we used to produce a pre-trained
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model. Meanwhile, Dataset 2 contained 103 incomplete sequences, which we also
used for evaluating the impact of incomplete sequences on models for Dataset 2,
as results were illustrated in Fig. 4.11 and Fig. 4.12.

Among the various algorithms tested, the Transformer algorithm exhibited
relatively stable performance across both taxonomic levels, showing a degree of
resilience to incomplete sequences.

Although most models, including 3-grams-Transformer and 3-grams-CNN, ex-
hibited a decline in performance and stability on Dataset 2 due to the addition
of noisy data from incomplete sequences, the models still retained a degree of
robustness. The influence of such data on their effectiveness was not excessively
detrimental. This suggests a certain resilience of these models to less-than-ideal
data conditions, a relevant factor for real-world applications.
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Figure 4.11: Performance of different models at a higher taxonomic level on Dataset 2.
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Figure 4.12: Performance of different models at a lower taxonomic level on Dataset 2.
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4.4.4 Ensemble Results

Each algorithm naturally tends towards specific biases based on its design and
underlying principles, and we sought to uncover the types of data that consistently
elude correct prediction across all employed models. With this in mind, we assembled
all the models for an ensemble approach, aiming to leverage their combined strengths
and mitigate individual weaknesses. This ensemble generated predictions for Dataset
1, achieving a 97.56% match between the predicted and true labels, while 2.44% of
the sequences were incorrectly predicted. More specifically, we found that 0.88%
of the sequences across all models were mismatched with their true labels. To
delve into which sequences were consistently "mispredicted" across all models, we
conducted a basic statistical analysis.

Approximately 30% of these mispredicted sequences were collected from 2009
to 2011, a timeline that corresponds with the 2009 Influenza pandemic. With
respect to their source, 57.52% of the sequences were derived from swine, while
40.76% were isolated from humans. As for their subtypes, 50.66% belonged to
H1N1, 23.42% to H5N1, 8.57% to H9N2, and 4.00% to H5N6. We also generated
the word clouds for these sequences, as presented in Fig. 4.13. The most frequent
tokens revealed were LVL and GAI, which had also been the most frequent tokens
in swine sequences, as shown in Fig. 4.5.
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Figure 4.13: Word clouds of sequences that cannot be "correctly" predicted by all
models, generated by MATLAB®.

The sequences that did not align with model predictions might have been
collected during outbreak periods, such as pH1N1-like situations, or might have
possessed strong cross-species characteristics. For example, A/Beijing/1/2017
and A/India/TCM2581/2019 were avian viruses isolated from humans [177, 178];
therefore, the label of these sequences was "human" while our prediction was "avian".
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In a similar vein, A/swine/Jangsu/48/2010 was a pH1N1-like swine virus used
to prove retro-infection from swine back to humans in China [179]. Although it
was labelled as "swine", our models predicted "human". This could have indicated
that the models were picking up on the cross-species characteristics of these viruses,
although they did not match the assigned labels.

4.4.5 Effect of Reference Database

In this section, we delved into how the choice of reference database influences
PSSM-based models. The reference database used for BLAST could impact the
quality of PSSM profiles as discussed in previous studies [163, 180], one primary
limitation of PSSM that these matrices are derived from large datasets, which can
be time-consuming. The time for generating the matrices will depend on the size
of the reference database. Specifically, the duration required to generate these
matrices is related to the size of the reference database.

Accordingly, we evaluated the performance of sequence-alignment-based models
using PSSM generated from two distinct reference databases: the first part of NCBI’s
Non-Redundant Protein Sequence Database (NR) (i.e. nr.00) and Universal Protein
Resource Database with at least 50% sequence identity (UniRef50). The general com-
parison between partial NR, complete NR, and UniRef50 was presented in Table. 4.5.

Table 4.5: Comparison for NR and UniRef50

Database Size # Sequences Version
NR.00 26 GB > 7 million 2023-09-09

NR 200 GB > 600 million 2023-09-09
UniRef50 12 GB > 60 million 2023-06-28

The PSSM profiles generated by BLAST processing with UniRef50 were executed
on the POSSUM [162] server, which took approximately 3 minutes per sequence. In
relative terms, the number of sequences in nr.00 was only 9% of that in UniRef50.
As a result, it became feasible to execute the processing on a local machine,
which significantly decreased the processing time. For convenience, we referred
to the PSSM generated by UniRef50 as UniRef50-PSSM, and the one generated
by partial NR as PartialNR-PSSM.

The evaluation was also carried out at various taxonomic levels, with the
results illustrated in Fig. 4.14 and Fig. 4.15. It was observed that most of the
models exhibited consistent performance across different taxonomic levels, and no
significant differences were discernible between the outcomes derived from either
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of the reference databases for most of the models. This suggested that the models
were fairly stable when dealing with variations in taxonomic levels and highlighted
a level of equivalence between the two databases in terms of their contribution
to the model’s predictive accuracy.
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Figure 4.14: Comparison of model performance using UniRef50-PSSM and PartialNR-
PSSM at the higher taxonomic level.
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Figure 4.15: Comparison of model performance using UniRef50-PSSM and PartialNR-
PSSM at the lower taxonomic level.

Nevertheless, RUSBoost-based models showed more pronounced variability
across different reference databases at a higher taxonomic level while displaying
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more consistency at lower taxonomic levels. ER-PSSM-XGBoost exhibited a
slightly superior performance based on the mean score compared to other models.
Among these, PartialNR-PSSM demonstrated superior performance compared to
UniRef50-PSSM at a higher taxonomic level. Additionally, it was observed that the
performance of GDPC-PSSM-SVM decreased as the number of classes increased.
However, using the UniRef50-PSSM had been found to enhance its performance,
showcasing its potential in improving model effectiveness under certain conditions.

Regarding the performance of models on incomplete sequences, we used the same
test set (i.e. Dataset 2) as mentioned in Section 4.4.3, with the results illustrated
from Fig. 4.16 to Fig. 4.19. UniRef50-PSSM had been observed to enhance
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Figure 4.16: Comparison of model performance on Dataset 2 (excluding incomplete
sequences) at the higher taxonomic level using UniRef50-PSSM and PartialNR-PSSM.

the performance of models to a noticeable extent, a trend that was particularly
prominent in models such as EG-PSSM-SVM, EG-PSSM-XGBoost, EG-PSSM-
RF, and ER-PSSM-XGBoost. This suggested that the UniRef50-PSSM database
contributed positively to the predictive accuracy and efficiency of these specific
models. Conversely, models including GDPC-PSSM-SVM, ER-PSSM-RUSBoost,
and EG-PSSM-RUSBoost tended to perform better when using the PartialNR-
PSSM, showcasing an inclination towards this particular reference database for
optimal results.

When it came to handling incomplete sequences, specific models displayed some
resilience. For instance, EG-PSSM-RF showed only a minor decrease in performance
in the presence of incomplete sequences, a trend that was less pronounced when
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Figure 4.17: Comparison of model performance on Dataset 2 (including incomplete
sequences) at the higher taxonomic level using UniRef50-PSSM and PartialNR-PSSM.
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Figure 4.18: Comparison of model performance on Dataset 2 (excluding incomplete
sequences) at the lower taxonomic level using UniRef50-PSSM and PartialNR-PSSM.

compared to other models. This variation underlined the resilience of some
algorithms to handle noisy or incomplete data effectively.

Additionally, it was observed that the performance of models using UniRef50-
PSSM improved as the number of classes increased. This trend highlighted
the adaptability and efficiency of UniRef50-PSSM in managing more complex
classification scenarios, where the diversity and quantity of classes presented a
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Figure 4.19: Comparison of model performance on Dataset 2 (including incomplete
sequences) at the lower taxonomic level using UniRef50-PSSM and PartialNR-PSSM.

greater challenge.
In general, models tended to perform somewhat less effectively on data sets

that incorporated incomplete sequences than those that did not. This suggests that
incomplete sequences might have introduced challenges or noise during prediction.
Furthermore, the performance variation observed across models using PSSMs
generated by different reference databases indicated that the choice of reference
database played a significant role in the model’s predictive capabilities, and it
was crucial to align the database selection with the specific model to ensure
optimal performance.

4.5 Chapter Summary

The chapter focuses on predicting host origins of Influenza A Viruses (IAVs) through
bioinformatics and Machine Learning (ML) approaches, addressing the significant
health and economic challenges posed by influenza. It emphasises the importance
of understanding the host origins of specific IAV strains to guide prevention,
surveillance, and response efforts. Traditional laboratory methods for this purpose,
while reliable, are noted to be time-consuming and resource-intensive. This has led
to an increased interest in computational techniques, especially given the expanding
volume of available genomic data.

Two primary approaches for handling sequence data are explored: Position-
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Specific Scoring Matrix (PSSM)-based methods and Word Embedding (WE) tech-
niques. PSSM-based methods are used to extract biologically relevant information
from protein sequence data, serving as inputs for traditional machine learning
models. In contrast, word embedding techniques are used in deep learning models
to extract features that capture both the local context and intricate patterns
within protein sequences.

The chapter discusses three methods for standardising the size of PSSMs due
to the dependency of PSSM size on sequence length:

1. EG-PSSM (Extended Grouped-PSSM): Utilises the concept of residue
grouping to manage variability in sequence and PSSM lengths, condensing
sequence information into a manageable format for traditional machine
learning models.

2. GDPC-PSSM (Grouped Dipeptide Composition-PSSM): Extends
the idea of dipeptide compositions to PSSMs, extracting both amino acid
composition and partial local-order information from protein sequences.

3. ER-PSSM (Extended Reduced-PSSM): Focuses on extracting local
sequence order information, extending the computation of pseudo-compositions
of dipeptides for amino acids in sequences with variable gaps.

The chapter emphasises the importance of data quality, pointing out that models
trained solely on high-quality data may not be adequately prepared for real-world
scenarios often filled with noisy data. Therefore, the experiments incorporate
high-quality and noisy data, aiming to reflect the model’s potential performance
in real-life situations accurately.

The results of these methods are analysed comprehensively, shedding light on
the performance across different taxonomic levels and individual hosts, and factors
like incomplete sequences and the choice of reference database are considered. The
integration of ensemble results is also discussed, providing a holistic perspective
on the efficacy of combining multiple models. For a brief summary of the results
from these extensive analyses, please refer to Table 4.6 and Table 4.7.
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Table 4.6: Summary of key findings and analysis in Chapter 4.

Chapter/Section Key Findings
Sequence
Representations

- 3-grams-based WEs generally perform the best.
- PSSM and WE-based representations can have
comparable performance, subject to the choice of
N -grams for WE and the unified schema for PSSM.

ML Models - Simple shallow NN effective for IAV sequences.
- Transformers with 5-grams inputs show superior
performance in general.

Performance
Across Different
Hosts

- Data skewness impacts performance.
- ER-PSSM-XGBoost, 3-grams-CNN and
5-grams-Transformer work better.
- 3-grams-CNN and 5-grams-Transformer show
resilience to incomplete sequences.

Impact of
Incomplete
Sequences

- Transformers show resilience.
- Performance generally decreases slightly with
incomplete sequences.

Ensemble
Approaches

- Ensemble methods help identify hard-to-predict
sequences, improving overall accuracy.
- Achieved a 97.56% match between predicted and true
labels.
- Identified sequences commonly mispredicted across
models primarily originate from the pandemic.

Reference
Database
Influence

- Choice of database can affect PSSM-based models.
- Smaller reference databases (e.g., PartialNR-PSSM)
do not significantly compromise performance.
- Certain models perform better with specific reference
databases.
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Table 4.7: Summary of performance at different taxonomic levels.

Feature Higher Taxonomic
Level

Lower Taxonomic
Level

Best Performing
Sequence
Representation

3-grams WEs (Mean
Score: 97.94%)

3-grams WEs (Mean
Score: 87.73%)

Worst Performing
Sequence
Representation

GDPC-PSSM (Mean
Score: 85.13%)

GDPC-PSSM (Mean
Score: 70.28%)

Performance Trend
with N-grams Size

Decrease in performance with increase from 3 to
5-grams.

Best Performing ML
Algorithm

Transformer (Mean
Score: 97.86%)

XGBoost (Mean Score:
87.98%)

Worst Performing ML
Algorithm

RUSBoost (Mean Score:
59.49%)

RUSBoost (Mean Score:
47.96%)

Most Stable
Algorithm across
Levels

XGBoost (Moderate decrease in performance at a
higher level)

Best Performing ML ER-PSSM-XGBoost, 3-grams-CNN, 2-grams-
CNN, 5-grams-Transformer
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5
An End-to-End Multi-Channel Neural

Network Approach for Predicting Influenza
A Virus Hosts and Antigenic Types

5.1 Introduction

Influenza A Viruses (IAVs) can be transmitted across species. Therefore, employing
machine learning to predict the host of the influenza virus can provide insights
into which strain has the capacity for cross-species infection. Furthermore, precise
prediction of subtypes is not only crucial for early detection and management of
influenza outbreaks but also instrumental in identifying emerging novel subtypes.
This enhanced understanding of subtype dynamics is crucial for public health
planning and can significantly contribute to more effective outbreak control and
mitigation efforts.

The process of training individual models for each distinct task associated
with influenza virus prediction is not only time-consuming but also demands
significant resources. Addressing this challenge, this chapter presents an end-
to-end Multi-Channel Neural Network (MC-NN) tailored for predicting the hosts
and antigenic types of IAVs. Rather than relying on traditional methods, this
approach harnesses the power of deep learning, tapping into the depth and breadth
of information hidden in sequence data.

In line with the experiments detailed in the previous chapter, this chapter
continues to utilise protein sequence data. However, we’ve broadened our sources
to include multiple databases, namely Influenza Research Database (IRD) and
Global Initiative on Sharing All Influenza Data (GISAID), and have also included
Neuraminidase (NA) sequence data in our analysis. After thoroughly filtering, we’ve
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curated a final dataset consisting of 46,172 unique pairs of Hemagglutinin (HA)
and NA sequences. This dataset has been divided into two periods: pre-2020 and
2020-2022, and it includes a subset of incomplete sequences as well.

The model is trained on the pre-2020 set, while the 2020-2022 set is used to
simulate the real-world scenario, evaluating the model’s prediction stability when
new data is added. In contrast to the previous chapter, where incomplete and
complete sequences were mixed, we separated incomplete sequences into a separate
set. This allows for a better evaluation of the impact of incomplete sequences
on the model’s performance.

In this chapter, we refine the classification of each sequence’s host and delve into
the predictive capabilities of using features from pre-trained models for influenza
virus tasks, focusing on host and subtype predictions. This chapter shifts focus
away from Position-Specific Scoring Matrix (PSSM)-based representations towards
the exploration of features derived from pre-trained models alongside custom word
embeddings. Custom word embeddings for protein sequences are typically generated
by training models on specific datasets, which requires the construction of tailored
vocabularies and the initialisation of embeddings with random values. In contrast,
pre-trained models leverage embeddings derived from extensive training on large,
diverse text corpora, so they can be fine-tuned to better suit specific tasks without
the need to build dictionaries from scratch. Therefore, we aimed to assess whether
these advanced methods could enhance model performance or offer new insights
compared to traditional approaches.

Our experimental setup employed a MC-NN architecture that processes both HA
and NA sequences to predict host, HA, and NA labels. However, not every influenza
strain has pairs of H/N sequences in real-life scenarios. Therefore, in addition
to the regular evaluation, the model performance is evaluated under scenarios
with only HA or NA sequence inputs.

The findings revealed that Convolutional Neural Network (CNN) and Trans-
former models demonstrated superior overall performance, showing that these
architectures can effectively handle the complexity of influenza virus prediction
tasks. Additionally, custom word embeddings were as effective as features generated
by pre-trained models, suggesting that carefully tailored embeddings can match the
sophistication of widely used pre-trained models. Furthermore, when faced with
incomplete input data, the Transformer model exhibited exceptional performance
with HA-only sequences, while the Bidirectional Gated Recurrent Unit (BiGRU)
model was particularly adept at handling NA-only inputs.

This exploration underscores the potential of leveraging advanced Neural Network
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(NN) architectures and using pre-trained model features to improve the accuracy
and efficiency of IAVs’ prediction. It opens up avenues for future research to
further refine these methods and explore their applicability to other virology-
related prediction tasks.

5.2 Experiments

5.2.1 Data Collection

The Hemagglutinin (HA) and Neuraminidase (NA) sequences were acquired from two
sources: the Influenza Research Database (IRD) [181]1 and the Global Initiative on
Sharing All Influenza Data (GISAID) [84]. The initial data collection process yielded
381,369 HA sequences and 338,631 NA sequences (downloaded on 13 December
2022). To maintain the uniqueness of each strain, redundant and multi-label
sequences were filtered, resulting in a unique HA and HA sequence pair for each
strain in the final dataset. To prevent duplicates, the integration process involved
removing GISAID sequences if they were already present in IRD. Additionally,
strains belonging to the H0N0 subtype, which have an uncleaved HA0 protein
that is non-infectious, were also removed from the dataset. The HA0 protein is
a precursor form of the HA protein, and it must undergo cleavage into its active
forms, HA1 and HA2, for the virus to become infectious. Removing these strains
with uncleaved HA0 proteins ensures that only infectious strains are included in
the dataset, improving the data quality for our analysis.

The data curation process also included the removal of sequences with erro-
neous or ambiguous metadata labels, such as the case with A/American Pelican/
Kansas/W22-200/2022 (GISAID Isolated ID: EP_ISL_14937098), which was inac-
curately labelled as "host". The class labels for each sequence primarily rely on
the metadata extracted from their corresponding FASTA files. In FASTA files,
the metadata is usually indicated by the information following the ">" symbol, as
explained in Section 3.2.2. Subsequently, the final result comprised 46,172 unique
pairs of complete and partial HA and NA sequences.

The sequence was considered complete if its length was equivalent to the
actual genomic sequence [84] or it covered the complete coding region as defined
by the National Center for Biotechnology Information (NCBI) [182]. Complete-
ness annotation cannot be explicitly obtained from strain metadata. Therefore,

1The IRD is now known as the Bacterial and Viral Bioinformatics Resource Center (BV-BRC),
available at https://www.bv-brc.org.
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incomplete sequences were obtained by filtering complete sequences from the
entire influenza database, which comprises complete and incomplete sequences
(all sequences = complete sequences ∪ incomplete sequences).

The pre-trained model was trained using a training dataset comprising sequences
of strains isolated before 2020. On the contrary, the strain sequences isolated from
2020 to 2022 were used solely to evaluate the performance of the models during
testing, which also incorporated incomplete sequences. The characteristics of the
datasets used in this study are presented in Table 5.1.

Table 5.1: Summary statistics of datasets.

Dataset (alias) # Total Pairs # Seqs from IRD # Seqs from GISAID
< 2020 (pre-20 ) 33,159 41,940 24,378

2020 - 2022 (post-20 ) 4,488 3,232 5,744
Incomplete (incomplete) 8,525 11,111 5,939

5.2.2 Label Reassignment

While the GISAID and IRD databases recorded more than 300 hosts, only 30% were
consistent between both databases, potentially due to the mixed use of common
and scientific names. To address this inconsistency, we manually assign hard labels,
regrouping viral hosts into 25 categories based primarily on the classification of the
biological family of the animals. The distribution of reassigned hosts is presented in
Fig. 5.1. We reclassified certain subtypes with insufficient data points in the dataset
under a broader "other" category, in order to facilitate more robust Cross-validation
(CV) (i.e., H15, H17, H18, N10, and N11), as shown in Fig. 5.2.
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Figure 5.1: Distribution of data based on hosts.
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5.2.3 Sequence Representations

In this study, we used the word embedding to encode the protein sequences, as
detailed in Section 4.3.2. Additionally, we applied four pre-trained language models
for generating protein sequence embeddings: ESM-2 [183], ProtBert [184], ProtT5
[184], and ProtVec [185]. We will not elaborate on word embedding further here as
it has been covered in the aforementioned section, and the focus of this part is to
highlight the introduction of the pre-trained models implemented in our research.

ESM-2

ESM-2 [183] is a Transformer-based protein language model trained using masked
language modelling, forming a part of the Evolutionary Scale Modeling (ESM)
series. ESM-2 aims to learn the evolutionary patterns in proteins only using
protein sequences, and it offers a diverse range of model sizes, ranging from smaller
configurations with 8 million parameters to extensive, highly complex versions
comprising up to 15 billion parameters.

ESM-2 uses the Transformer architecture, incorporating its attention mechanism
to facilitate a comprehensive understanding of amino acid relationships within
protein sequences. Trained using masked language modelling objectives, ESM-2
adeptly learns dependencies between amino acids, culminating in the formation of
attention patterns that correlate with residue-residue contact maps. As a result,
ESM-2 is capable of developing attention patterns that correlate with residue-residue
contact maps, ultimately reflecting the protein’s tertiary structure and providing
valuable insights into its three-dimensional conformation. ESM-2 was exposed to
approximately 65 million unique protein sequences throughout its training phase,
ensuring a thorough and well-rounded training process for the model.
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ESM-2 surpasses many single-sequence protein language models in structure
prediction tasks and effectively predicts protein structure, function, and other
characteristics directly from individual sequences. It is adaptable for fine-tuning
a variety of tasks involving protein sequences.

In this study, we opted for the esm2_t30_150M_UR50D checkpoint of ESM-2
from Hugging Face, which contains 30 layers and a total of 150M parameters. For
ease of reference, we have abbreviated the name of this particular pre-trained model
to ESM2-30. More details of the model’s training procedure can be referred
to [183, 186, 187].

ProtBert

ProtBert [184] is based on Bidirectional Encoder Representations from Transformers
(BERT), akin to ESM-2, built upon the Transformer architecture. These BERT-
based models are particularly effective due to their deeply bidirectional nature,
considering bidirectional context across all layers, resulting in robust representations.
ProtBert is tailored to process uppercase amino acid sequences. It distinguishes
itself by interpreting each sequence as a discrete document, dispensing with the
next-sentence prediction component inherent in traditional BERT models.

During its training phase, ProtBert also employed a masked language modelling
objective similar to the original BERT; it randomly masked 15% of amino acids
in the input sequences. Of these, 80% were replaced with the [MASK] token, 10%
with a random amino acid, and the remaining 10% were left unchanged. This
approach enables the model to effectively infer patterns from the unlabelled data,
which is a massive corpus from the UniRef100 dataset, including 217 million protein
sequences. The sequences were tokenised by spaces and limited to a vocabulary of
21 unique terms, thereby generalising less common amino acids such as "U, Z, O,
B" to "X". For efficient processing, sequences were batched by length, classified
into either shorter than 512 or under 2,048 amino acids, and treated as independent
units, streamlining the pre-training process.

ProtBert can generate embeddings from unlabelled sequences that capture
essential biophysical characteristics relevant to protein structure. The resulting
insights reflect a profound grasp of protein "language". Although ProtBert excels
at feature extraction from protein sequences, it reaches its full potential when
fine-tuned for specific applications. More details of the model’s training procedure
can be referred to [184, 188].

90

https://huggingface.co/facebook/esm2_t30_150M_UR50D


ProtT5

ProtT5 is a protein language model based on Text-to-Text Transfer Transformer
(T5), designed specifically for protein-related applications. T5 is a transformer
model that has restructured all NLP tasks into a text-to-text format. Therefore,
when the T5-based model is applied to proteins, it can be used for tasks such
as predicting protein-protein interactions or the effects of mutations by treating
them as text-to-text problems. Unlike the original T5-3B, which employed a span
denoising objective, ProtT5 was pre-trained with a BERT-like masked language
modelling denoising objective. This training maintained the traditional T5 strategy
of randomly masking 15% of amino acids in the input sequences.

This model was rigorously pre-trained in a self-supervised manner on UniRef50,
a dataset encompassing 45 million protein sequences without any human-annotated
labels. This automated process allowed for the extensive use of publicly available
data, generating inputs and labels directly from the raw protein sequences. During
its training, ProtT5 adopted methodologies similar to ProtBert, processing protein
sequences that are uppercased, tokenised using spaces, and using a specialised
vocabulary of 21 symbols, with infrequent amino acids "U, Z, O, B" remapped to
"X". Sequences were truncated or padded to 512 tokens to fit the model architecture.
Furthermore, the masked language modelling objective was implemented by masking
15% of the amino acids: 90% of the time, these were replaced with a [MASK] token,
and 10% of the time, with a random different amino acid.

For our research, we employed a more compact and computationally efficient
version of ProtT5 (prot_t5_xl_half_uniref50-enc), which operates solely with the
encoder part of the original ProtT5 (ProtT5-XL-UniRef50) model and is configured
to run in half-precision (float16) mode. This configuration is optimised for generating
protein and amino acid representations with reduced demand on GPU resources but
matching the full model’s capabilities on downstream tasks without compromising
performance. More details of the model’s training procedure can be referred to [184].

ProtVec

ProtVec [185] distinguishes itself by offering k-mer based vector embeddings for
proteins. In contrast to ESM-2, ProtBert, and ProtT5, which leverage the Trans-
former architecture and masked language modelling for their models, ProtVec is
inspired by Word2Vec, which represents words in a continuous vector space. ProtVec
analogously treats amino acid subsequences, or k-mers, as the basic elements similar
to words, thereby embedding protein sequences into a continuous vector space.
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ProtVec was developed using an extensive training set from the Swiss-Prot
database, encompassing 549,790 sequences. The training process harnesses the
power of the Skip-gram neural network model, which is designed to optimise the
probability of predicting the context within sequences of words—or, in this case,
amino acids. By leveraging three lists of shifted non-overlapping words, a technique
also applied in other studies within this thesis (Section 4.3.2 and Section 5.2.3),
ProtVec effectively groups biologically similar words, which share physical and
chemical properties, in close proximity within the vector space. Upon evaluation
using k-Nearest Neighbors (kNN) with a two-fold CV approach, a window size
of three has been identified as optimal.

ProtVec’s strength lies in its ability to detect and encapsulate local patterns
within protein sequences into compact vector representations. These embeddings
are adept at retaining some of the local contextual information surrounding each
tripeptide, providing valuable insights for various predictive tasks. More details
of the model’s training procedure can be referred to [185].

Table 5.2 shows the comparison of pre-trained protein language models with
their respective embedding dimensions, granularity, and training datasets.

Table 5.2: Comparison of pre-trained protein language models.

Pre-trained Models Dimension Granularity Training Set
ESM-2 (30) 640 Amino Acid UniRef50 (sample UniRef90)

ProtBert 1,024 Amino Acid UniRef100
ProtT5 1,024 Amino Acid UniRef50
ProtVec 100 Tripeptides Swiss-Prot

5.2.4 Implementation and Evaluation

In this work, we used Convolutional Neural Network (CNN), Bidirectional Gated
Recurrent Unit (BiGRU) and Transformer. A detailed description of each algorithm
and its corresponding theory can be found in Section 2.2.5. In this section, we
will focus on discussing the parameter settings and architecture of the models
applied in our experiments.

All the models in this study were built using Keras [176] and trained on pre-
20 datasets. They were then tested in both post-20 and incomplete datasets.
The architecture of the Multi-Channel Neural Network (MC-NN) used in this
study is illustrated in Fig. 5.3. The Transformer architecture used here is the
encoder presented in [123].
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Figure 5.3: The multi-channel neural network architecture: positional encoding is only
employed along with the Transformer.

We used nested k-fold Cross-validation (CV), and the outer fold kouter was set
to 5, and the inner fold kinner was set to 4. The details about nested k-fold CV can
be found in Section 2.2.6. The hyperparameters settings for the Neural Network
(NN) architectures used in this study are presented in Table 5.3.

Table 5.3: Hyperparameter settings.

Models Hyperparameters

CNN
kernel size = 3, 4, 5
embedding size = 50, 100, 150, 200
learning rate = 0.01, 0.005, 0.001, 0.0001

BiGRU embedding size = 50, 100, 150, 200
learning rate = 0.01, 0.005, 0.001, 0.0001

Transformer
embedding size = 32, 64, 128
learning rate = 0.01, 0.005, 0.001, 0.0001
num heads = 1, 2, 3, 4, 5

The overall performance of the models was evaluated by comparing their results
to those from the Basic Local Alignment Search Tool (BLAST) [169, 189, 190], which
was used with its default settings. BLAST is a widely used sequence analysis tool in
computational biology and bioinformatics. F1 score (F1) and Area Under Precision-
Recall Curve (AUPRC) were selected as the evaluation metrics for this study.
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5.3 Results and Discussions

In this study, we conducted various experiments to evaluate the performance of our
models. These evaluations included assessments of overall performance, performance
on single protein sequence inputs, and performance across different feature sets.

Our findings indicate that both CNN and Transformer models exhibit superior
overall performance. Custom word embeddings are found to have performance
comparable to that of features generated by pre-trained models. When only partial
inputs are provided, the Transformer model demonstrates exceptional performance
with HA-only inputs. Conversely, the BiGRU model shows enhanced performance
with NA-only inputs.

For detailed insights into these findings, please refer to the subsequent sections.

5.3.1 Overall Performance

The performance of the model in various datasets was shown from Fig.5.4 to Fig.5.6.
The BLAST results were obtained through 5-fold CV and were indicated by the
solid black line in the figures.
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Figure 5.4: Comparison of overall performance between models for host prediction tasks:
the baseline results with BLAST are highlighted with a solid black outline.
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Figure 5.6: Comparison of overall performance between models for NA subtype prediction
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The models were trained exclusively on the pre-20 dataset (labelled as "<
2020 ") and were tested on the post-20 (labelled as "2020 - 2022 ") and incomplete
(labelled as "incomplete") datasets. The pre-20 and post-20 datasets only contained
complete sequences, while the incomplete dataset included incomplete sequences,
as detailed in Table 5.1.

In evaluating the models on the pre-20 dataset, it was evident that each surpassed
the baseline performance. However, the differences in their respective performances
were subtle, with negligible differences observed. The best-performing model across
all prediction tasks was the MC-CNN, which achieved an average AP of 93.92%
(93.62%, 94.21%), and an average F1 score of 92.62% (92.38%, 92.85%).

When we evaluated the models on the post-20 dataset, we observed a general
improvement in performance compared to the pre-20 dataset. MC-BiGRU exhibited
a 1.43% rise in its average F1 score, while MC-Transformer exhibited a 1.23%
increase in its average AP score. Nevertheless, MC-CNN was still the top performer
across all prediction tasks, achieving an average AP of 94.88% (94.76%, 94.99%)
and an average F1 score of 93.81% (93.41%, 94.21%).

The incomplete dataset brought about its challenges, with a discernible decline
in performance across all models, and the MC-BiGRU showed increased variation.
The MC-Transformer model achieved superior performance, with an average AP of
90.13% (89.87%, 90.39%), and an average F1 score of 87.09% (86.49%, 87.69%). Addi-
tionally, the Transformer also had the most consistent performance across all datasets
and all prediction tasks. We also observed that the task of predicting the host across
all models was significantly more complex compared to predicting the subtype.

5.3.2 Overall Performance on Single Sequence Input

The proposed MC-NN took two inputs, but obtaining paired HA and NA for every
strain wasn’t always feasible in practical scenarios. To align with this reality, we
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conducted additional experiments on two distinct test sets: the first comprised
23,802 HA protein sequences (labelled as "HA only"), and the second contained
5,142 NA protein sequences (labelled as "NA only"). The models were still trained
using the pre-20 dataset and were tested on these datasets. The results of these
experiments were presented from Fig.5.7 to Fig.5.9.
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Figure 5.7: Comparison of overall performance between models for host prediction task
using single sequence inputs.
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Figure 5.8: Comparison of overall performance between models for HA subtype prediction
task using single sequence inputs.

When presented with inputs that lacked the corresponding H/N sequence pairs,
there was a discernible decline in performance across all models, particularly for the
host prediction tasks. When using the HA-only dataset, the MC-Transformer led in
overall performance across all prediction tasks, achieving an average AP of 85.91%
(83.14%, 88.67%) and an average F1 score of 70.59% (63.38%, 77.79%). In contrast,
for the NA-only dataset, MC-BiGRU was the top performer, with an average AP of
78.18% (75.50%, 80.87%) and an average F1 score of 60.89% (54.51%, 67.26%).

For the host prediction task, MC-BiGRU showed comparable performance
between the NA-only and NA-only datasets. In contrast, MC-CNN tended to
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Figure 5.9: Comparison of overall performance between models for NA subtype prediction
task using single sequence inputs.

excel with the NA-only dataset, while MC-Transformer performed more favourably
with the NA-only dataset. Regarding HA subtype predictions, all models generally
displayed better and more consistent performance with the NA-only dataset than
with the NA-only dataset. For NA subtype prediction tasks, both MC-CNN and
MC-BiGRU demonstrated superior results using the NA-only dataset, whereas MC-
Transformer’s performance remained consistent between the NA-only and NA-only
datasets, as indicated by its AP score.

In summary, the MC-Transformer model consistently outperformed the other
models when predicting using single sequence datasets. Furthermore, for the host
prediction task, the MC-Transformer favoured the HA-only dataset over the NA-
only dataset, while other models preferred the opposite. It was unsurprising that
all models exhibited superior prediction accuracy with HA sequences for the HA
subtype prediction task and with NA sequences for the NA subtype prediction task.

5.3.3 Performance on Different Feature Sets

From Section 5.3.1 to Section 5.3.2, we discussed the performance of the models
under various practical scenarios. However, we had not delved into the impact
of different features on model performance. Therefore, the previously discussed
model performance was averaged across all feature sets.

Fig. 5.10 to Fig. 5.12 show the model performance for different prediction
tasks based on various features.

In the host prediction task, MC-Embedding-CNN stood out, achieving the
highest performance on both the pre-20 dataset and post-20 dataset. It reached
an AP of 86.90% (85.99%, 87.82%) and an F1 score of 83.52% (82.71%, 84.34%)
for the pre-20 dataset, and an AP of 85.86% (85.58%, 86.14%) and an F1 score of
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Figure 5.10: Comparison of model performance for hosts prediction task based on
diverse features.
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Figure 5.11: Comparison of model performance for HA subtype prediction task based
on diverse features.

83.30% (82.76%, 83.84%) for the post-20 dataset. Meanwhile, for the incomplete
dataset, MC-Embedding-Transformer had the best performance with an AP of
80.55% (80.06%, 81.03%) and an F1 score of 76.13% (75.29%, 76.97%). When only
HA sequences were present without their corresponding NA pairs, MC-ProtVec-
Transformer was the top-performing model based on the average of AP and F1 score,
achieving an AP of 77.59% (73.57%, 81.61%) and an F1 score of 68.59% (60.90%,
76.28%). However, MC-ProtVec-BiGRU showcased less variability in its performance
metrics, with an AP of 78.39% (77.12%, 79.66%) and an F1 score of 67.59% (65.86%,
69.32%). When inputs comprised only NA sequences without corresponding HA
pairs, the MC-Embedding-Transformer showed optimal performance, achieving
an AP of 77.41% (73.57%, 81.25%) and an F1 score of 62.85% (57.98%, 67.73%).
However, MC-ProtT5-BiGRU exhibited a more consistent performance, with an
AP of 71.56% (69.84%, 73.28%) and an F1 score of 62.62% (60.56%, 64.69%).

For the HA subtype prediction task, all models generally performed well on
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Figure 5.12: Comparison of model performance for NA subtype prediction task based
on diverse features.

the pre-20 dataset and the post-20 dataset, with negligible performance differences
between them. Therefore, our analysis narrowed down to evaluating performance
metrics on the incomplete, HA-only, and NA-only datasets. For the incomplete
dataset, MC-Embedding-Transformer was superior, with an AP of 96.99% (96.86%,
97.12%) and an F1 score of 95.37% (94.94%, 95.81%). For the HA-only dataset,
MC-ProBert-Transformer was the top performer, showcasing an AP of 98.19%
(98.08%, 98.30%) and an F1 score of 95.77% (94.39%, 97.14%). Meanwhile, for
the NA-only dataset, MC-Embedding-Transformer was the best performer, with
an AP of 77.53% (74.62%, 80.45%) and an F1 score of 58.39% (50.94%, 65.85%),
though MC-ProtT5-Transformer showed more stable results, with an AP of 73.53%
(71.75%, 75.30%) and an F1 score of 60.79% (57.86%, 63.72%).

Regarding the NA subtype prediction task, our focus remained on the perfor-
mance across the incomplete, HA-only, and NA-only datasets. For the incomplete
set, MC-Embedding-Transformer was the dominant model, with an AP of 97.35%
(97.30%, 97.41%) and an F1 score of 96.37% (96.18%, 96.56%). On the HA-only
dataset, while MC-Embedding-Transformer again was the standout model, with
an AP of 91.29% (90.26%, 92.33%) and an F1 score of 72.02% (62.39%, 81.65%),
MC-ESM2-30-Transformer had a smaller variance, with an AP of 87.20% (85.40%,
89.00%) and an F1 score of 73.38% (70.37%, 76.39%). For the NA-only dataset,
MC-ProtVec-BiGRU was the best, with an AP of 95.34% (95.16%, 95.53%) and
an F1 score of 94.87% (94.58%, 95.16%).

In terms of model variance, MC-CNN exhibited the least fluctuation across all
feature sets for every prediction task on both the pre-20 and post-20 datasets. In
contrast, MC-Transformer showed consistent results when utilising various feature
sets for tasks on the incomplete and Single HA datasets. For the NA-only dataset,
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MC-BiGRU exhibited stability in terms of AP, while MC-Transformer remained
stable in its F1 scores. This variance was determined by calculating the average
scores of the models across different feature sets and tasks.

Fig. 5.13 to Fig. 5.15 show the comparison of AP and F1 scores across different
feature sets for different prediction tasks.
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Figure 5.13: Comparison of AP and F1 scores across different feature sets for the host
prediction task.
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Figure 5.14: Comparison of AP and F1 scores across different feature sets for the HA
subtype prediction task.
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Figure 5.15: Comparison of AP and F1 scores across different feature sets for the NA
subtype prediction task.

The "Embedding" feature set in the figures refers to features derived from the
word embedding layer. Specifically, these embeddings are generated based on the
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input training data. For the purposes of our study, only the pre-20 dataset was
employed to train the model. We implemented 5-fold CV, which implies that
the test set sequences were encoded based on the vocabulary and distribution
of the training set’s corpus.

All feature sets consistently demonstrated strong performance across all models
when trained on the pre-20 dataset, with only minimal performance differences.
This trend was similar to that seen in the post-20 dataset. However, when evaluating
the average metric scores obtained from various models, the ProtVec feature set
exhibited a slightly weaker performance in the host prediction task compared
to other feature sets.

The variance in performance of the feature sets, once fed into the models, was
predominantly observed in the incomplete, HA-only, and NA-only datasets. For the
host prediction task, ProtVec and ProtBert outperformed others on the incomplete
dataset, ESM2-30 stood out on the HA-only dataset, while Embedding and ProtT5
were the top performers on the NA-only dataset.

For the HA prediction task, ProtVec excelled on the incomplete dataset. Both
ProtVec and ProtBert stood out on the HA-only dataset, with Embedding taking
the top spot on the NA-only dataset. For the NA prediction task, ProtVec was
top-tier in the incomplete dataset. ESM2-30 and Embedding shared the spotlight
on the HA-only dataset, while ProtVec and ProtBert were the best performers
on the NA-only dataset.

In summary, across both pre-20 and post-20 datasets, all feature sets delivered
a commendable performance with minimal variations. ProtVec, while generally
robust, showed a slight decline in its host prediction metrics. ProtVec and ProtBert
consistently shined in host and HA predictions on the incomplete dataset. ESM2-30
was the best for host prediction on the HA-only dataset and equally shared the top
position with Embedding for NA predictions. Embedding, besides its accolade with
ESM2-30, Embedding was also the pinnacle performer for HA predictions on the
NA-only dataset. ProtT5, along with Embedding, dominated in host predictions
for the NA-only dataset. Lastly, ProtVec and ProtBert took the lead for NA
predictions on the NA-only dataset.

5.4 Chapter Summary

This chapter delves into developing and evaluating an efficient approach for pre-
dicting the hosts and antigenic types of the Influenza A Virus (IAV) using a Multi-
Channel Neural Network (MC-NN) model. The necessity of this research stems
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from the potential of IAVs to transmit across species, emphasising the importance of
early detection and management of influenza outbreaks, as well as the identification
of emerging novel subtypes for effective public health planning and outbreak control.

The model introduced in this chapter marks a departure from conventional
approaches that typically involve training separate models for different aspects of
IAVs’ prediction. This approach utilises an end-to-end MC-NN. By harnessing the
power of deep learning, it delves into the rich information encapsulated within
sequence data, offering a more comprehensive and efficient prediction model.

In terms of data handling, the chapter builds upon methodologies used in
previous research, employing complete Hemagglutinin (HA) and Neuraminidase
(NA) sequences gathered from the Influenza Research Database (IRD) and Global
Initiative on Sharing All Influenza Data (GISAID) databases. After stringent
filtering for uniqueness and completeness, the resulting dataset comprises 46,172
unique pairs of HA and NA sequences. These are further divided into pre-2020 and
2020-2022 sets, with an additional subset for incomplete sequences. This segregation
aims to enhance the model’s performance evaluation, with the pre-2020 set used
for training and the 2020-2022 set for testing the model’s adaptability to new data.
In a deviation from previous chapters, this study segregates incomplete sequences
to more accurately determine their impact on the model’s efficacy.

The methodology for assigning sequence host labels has undergone a meticulous
refinement process. The approach to sequence representation moves away from the
reliance on Position-Specific Scoring Matrix (PSSM)-based sequence representations,
as used in the study previously discussed in this thesis. Instead, the focus shifts
to word embedding techniques and the utilisation of features extracted from pre-
trained models, following findings that suggest these methods offer performance
comparable to PSSM-based approaches. This shift involves creating dictionaries and
embeddings from input data and utilising pre-trained models trained on extensive
databases. The objective is to explore whether these pre-trained model features
could further enhance model performance or offer new insights.

The chapter details the architecture of the multi-channel neural network used
in these experiments. This architecture is unique in its dual input channels (for
HA and NA sequences) and its triple output system (predicting host, HA, and
NA labels). Given the reality that not all IAV strains have matching pairs of H/N
sequences, the model’s performance is rigorously evaluated in both typical scenarios
and in special cases where only HA or NA sequences are available. This thorough
evaluation approach ensures the model’s robustness and applicability across various
real-world situations, thereby contributing to the field of IAVs’ prediction and
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public health surveillance. For a brief summary of the results from these extensive
analyses, please refer to Table 5.4.

Table 5.4: Summary of results and findings of Chapter 5.

Evaluation
Criteria

Dataset Best
Performing
Model /
Feature Set

Observations

Overall
Performance

Pre-20 MC-CNN All models surpass the
baseline performance, with
MC-CNN leading with an
average AP of 93.92% and an
F1 score of 92.62%.

Post-20 MC-CNN A general improvement is
observed, with MC-CNN
maintaining top performance
with an average AP of 94.88%
and an F1 score of 93.81%.

Incomplete MC-
Transformer

Performance declines across
models, with MC-Transformer
achieving superior
performance. Challenges are
noted in predicting hosts.

Overall
Performance
on Single
Sequence
Input

HA-only MC-
Transformer

MC-Transformer leads in
performance, indicating its
effectiveness in HA-only input
scenarios.

NA-only MC-BiGRU MC-BiGRU excels, showing
strength in NA-only input
scenarios.

Continued on next page.
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Table 5.4 continued from previous page

Evaluation
Criteria

Dataset Best
Performing
Model /
Feature Set

Observations

Performance
Across
Models with
Varied
Feature Sets

Pre-20 MC-Embedding-
CNN

MC-Embedding-CNN
outperforms others in host
prediction tasks.
All models generally perform
well on the pre-20 dataset for
the HA subtype task.

Post-20 MC-Embedding-
CNN

The high performance of
MC-Embedding-CNN
continues in the post-20
dataset for host prediction.
All models generally perform
well on the post-20 dataset
for the HA subtype task.

Incomplete MC-Embedding-
Transformer

MC-Embedding-Transformer
shows the best performance
in the incomplete dataset for
all prediction tasks.

HA-only MC-ProtVec-
Transformer,
MC-ProBert-
Transformer,
MC-Embedding-
Transformer

MC-ProtVec-Transformer
excels in the host prediction
task.
MC-ProBert-Transformer is
the top performer in the HA
subtype prediction task.
MC-Embedding-Transformer
is the top performer in the
NA subtype prediction task.

Continued on next page.

104



Table 5.4 continued from previous page

Evaluation
Criteria

Dataset Best
Performing
Model /
Feature Set

Observations

NA-only MC-Embedding-
Transformer,
MC-ProtVec-
BiGRU

MC-Embedding-Transformer
is the top performer for host
and HA subtype prediction
tasks.
MC-ProtVec-BiGRU
outperforms others in the NA
subtype prediction task.

Feature Set
Performance

Pre-20,
Post-20

Varied Feature sets demonstrate
strong performance across all
models with minimal
differences.
ProtVec is slightly weaker in
host prediction.

Incomplete ProtVec,
ProtBert

ProtVec and ProtBert stand
out in host prediction.
ProtVec is best for subtype
predictions.

HA-only ESM2-30,
ProtVec,
ProtBert,
Embedding

ESM2-30 stands out in host
prediction.
ProtVec and ProtBert are
best for HA predictions.
ESM2-30 and Embedding
stand out in the NA
prediction task.

Continued on next page.
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Table 5.4 continued from previous page

Evaluation
Criteria

Dataset Best
Performing
Model /
Feature Set

Observations

NA-only Embedding,
ProtT5,
ProtVec,
ProtBert

Embedding and ProtT5 excel
in host predictions.
ProtVec and ProtBert are
best for NA predictions.
Embedding is best for HA
predictions.
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6
Evaluating the Influence of

Semi-supervised Learning in Predicting
Antigenicity of Influenza A Viruses

6.1 Introduction

This chapter focuses on the crucial task of accurately predicting the antigenicity
of Influenza A Viruses (IAVs), a critical factor in developing effective vaccines and
anticipating future outbreaks. The measurement of antigenic distance, traditionally
reliant on extensive laboratory work, results in a large amount of unlabelled data
that remains underutilised. To address this, this chapter delves into the efficacy of
semi-supervised learning approaches, specifically label spreading and self-training, to
enhance predictive accuracy in estimating antigenic distances. These semi-supervised
learning methods effectively combine labelled and unlabelled data, represent a
significant advancement in computational biology, and are particularly valuable
in contexts where labelled data are scarce.

The data used in this study are sourced from various previous literature, enriching
the diversity and complexity of the dataset. The semi-supervised methods employed
are foundational yet powerful in exploiting the vast reservoir of unlabelled data. By
improving learning algorithms and developing more comprehensive models, these
methods are ideally suited for the complex task of flu antigenicity study. The
integration of detailed patterns from the limited labelled data with broader trends
from the unlabelled data is expected to yield a more in-depth understanding
of antigenic evolution.

For encoding the protein sequences, the study employs features derived from pre-
trained models, similar to methodologies discussed in Section 5.2.3. This approach
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allows for a sophisticated representation of the sequences, facilitating the extraction
of relevant patterns and features critical for the prediction tasks.

The comparative analysis conducted in this chapter evaluates the performance
of traditional supervised methods against semi-supervised techniques. The dataset
comprises high-quality labelled instances and a larger pool of unlabelled influenza
virus sequences. The focus is on assessing how well the semi-supervised algorithms
leverage the abundance of unlabelled data and their effectiveness in scenarios
marked by data scarcity and imbalance, which are common challenges in antigenic
distance research.

This research explores the potential of semi-supervised learning to provide
more accurate estimations of antigenic distances. Such improvements in predictive
accuracy are crucial for the timely development of vaccines and effective public
health planning. The findings from this study may provide valuable insights for
future research directions and contribute to optimising the application of machine
learning techniques in the field of influenza studies.

Our analysis reveals that semi-supervised learning models exhibit performance
comparable to that of fully supervised models in most of the evaluated scenarios. In
situations where only 25% and 50% of the data are labelled, semi-supervised learning
significantly enhances the models’ effectiveness, particularly when utilising ProtVec
feature sets. Moreover, all models showed enhanced performance on H1N1 and H9N2
viruses as opposed to H3N2 and H5N1. These results underscore the potential of
semi-supervised learning to improve the accuracy of antigenic distance estimations,
thereby contributing valuable insights for the advancement of vaccine development
and public health strategies in the face of influenza virus diversity and evolution.

6.2 Experiments

6.2.1 Data Collection

The data were sourced from previous literature and are publicly available [22, 60, 63,
66, 191, 192]. The original dataset includes 5,311 pairs of Influenza A Viruses (IAVs)
and 2,179 HA1 sequences with measured antigenic distance, covering four subtypes.

The Hemagglutinin (HA) protein, composed of three identical subunits, com-
prises two chains: HA1 and HA2, with lengths of 329 and 175 residues, respectively.
The HA1 undergoes mutations more frequently than HA2 and is under significant
selective pressure for new variants [193–195].

The HI titers (i.e., the results of the HI assay) are derived from the reaction
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between viral hemagglutinins and host antibodies and are often used to understand
antigenic differences. If the HI titers of a virus pair differ by four dilutions or
more, then this pair is considered antigenically different. However, this data can be
challenging to interpret directly due to its complex nature. Therefore, instead of
using raw HI values to delineate antigenic differences, the antigenic difference was
quantified using HI data, based on Archetti-Horsfall definition [106, 109, 196, 197]
providing a more structured and interpretable approach to understanding antigenic
relationships. The antigenic distance between the viral strain D and the strain V

can be calculated using the Archetti-Horsfall distance formula, as shown below:

dDV =
√

HDD × HV V

HDV × HV D

where HDV represents the HI titer of viral strain D in relation to antisera produced
against strain V .

A pair of viruses was deemed antigenically similar if their antigenic distance
was less than 4; otherwise, they were categorised as antigenically different.

The antigenic distance calculated using the Archetti-Horsfall definition can be
asymmetric. We excluded viral pairs that showed ambiguous antigenic relationships
and those with redundant HA1 sequences. The final dataset comprises distinct viral
pairs, unique HA1 sequences, and unambiguous antigenic relationships, as detailed in
Table 6.1. The unlabelled data refer to pairs within the same subtype in the dataset
that have not been measured. The final dataset contains around 87% unlabelled.

Table 6.1: Summary statistics of the dataset.

Subtypes # Seqs # Pairs # Similar Pairs # Variant Pairs # Unlabelled Pairs
H1N1 152 11,448 483 851 10,114
H3N2 61 1,826 125 142 1,559
H5N1 87 3,687 186 265 3,236
H9N2 29 400 31 87 282
Total 329 17,453 825 1,345 15,283

6.2.2 Sequence Representations

We used four state-of-the-art pre-trained models to generate protein sequence
embeddings, consistent with the approach outlined in Section 5.2.3. In particular, for
the ESM-2 model, we applied a distinct checkpoint featuring a 33-layer architecture
that covers 650M parameters (esm2_t33_650M_UR50D). Each protein sequence
is encoded into an embedding of 1280 dimensions in this configuration.
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6.2.3 Semi-supervised Learning Algorithms

In this work, we used two basic and well-established semi-supervised algorithms:
label spreading and self-training.

Label Spreading

Semi-supervised learning leverages the idea that points in the input space sharing
the same label, or those residing within the same structure or manifold in the
input space, should be close to one another [198]. One popular semi-supervised
technique constructs a graph that establishes connections among examples in the
training dataset and then propagates known labels through the graph’s edges to
label unlabelled examples. This approach, known as label spreading [198], draws
inspiration from experimental psychology’s spreading activation networks.

Label spreading constructs a similarity graph where each node corresponds to
a data point. The data points in this graph are interconnected based on their
relative distances within the input space. The edges of this graph are assigned
weights that reflect the similarity between nodes, typically calculated using a
distance metric within the feature space. As the algorithm progresses, it propagates
information throughout this graph to capture the input space’s inherent structure.
The algorithm then uses the spread of labels across this network to effectively
classify unlabelled data points, taking advantage of the established relationships
and similarities within the graph.

The strength of label spreading lies in its ability to incorporate the underlying
structure of both labelled and unlabelled data, aiding in uncovering inherent
groupings within the dataset. This attribute makes it particularly useful in scenarios
where the labelled data is limited or may not represent the full diversity of the input
space, as is often the case in biological data sets. The propagation of labels through
the graph enables the model to learn from the vast, untapped information present in
the unlabelled data, potentially enhancing classification performance and deepening
the understanding of the underlying patterns and structures within the data.

Self-training

Self-training [199] begins with a pre-existing classifier, often termed the pseudo-
labeller, which is initially trained on a small set of labelled data. This pseudo-labeller
is then used to generate predictions, known as pseudo-labels, on a larger pool of
unlabelled data. The predictions made with the highest confidence are selected
according to specific thresholds or criteria, and their pseudo-labels are added to

110



the training dataset. The model undergoes retraining with this expanded dataset,
progressively integrating these new examples.

Self-training has the potential to substantially improve model accuracy, even
though it depends on self-generated predictions instead of true labels. This is
partly due to the model’s ability to progressively refine itself through exposure to a
broader array of training examples in each iteration. The approach is particularly
beneficial in contexts where labelled data is limited or costly to obtain, allowing
the model to capitalise on the abundance of unlabelled data.

However, the effectiveness of self-training hinges on the initial model’s accuracy.
If the pseudo-labeler’s predictions are erroneous, these errors can be perpetuated in
subsequent iterations, potentially compromising the model’s overall performance.
Therefore, strategically determining confidence thresholds and stopping criteria is
crucial to ensure that self-training contributes positively to the model’s predictive
accuracy. This method’s efficacy in expanding the training set and enhancing
generalisation capabilities, particularly in data-scarce environments, makes it a
valuable tool in the semi-supervised learning toolkit.

6.2.4 Implementation and Evaluation

In this study, we applied traditional supervised learning algorithms, including
Convolutional Neural Network (CNN), Bidirectional Gated Recurrent Unit (BiGRU),
Support Vector Machine (SVM), and Random Forest (RF), in a fully supervised
setting, to provide a comparison with semi-supervised learning models. Specifically,
RF and SVM were chosen as the base model for self-training due to their simplicity
and computational efficiency, which are beneficial for iterative retraining processes
in semi-supervised learning. A detailed description of each algorithm and its
corresponding theory can be found in Section 2.2.5. In this section, we will focus
on discussing the parameter settings and architecture of the models applied in
our experiments.

Table 6.2 details the hyperparameter settings used in this study, and Fig. 6.1
illustrates the architecture of CNN and BiGRU.

Consistent with the methodologies applied in the preceding two studies of this
thesis, we used a nested k-fold Cross-validation (CV) approach (the details of nested
k-fold CV can be found in Section 2.2.6), using 5 outer folds (kouter = 5) and 4
inner folds (kinner = 4), with the F1 score as the performance metric.

In contrast to the previous studies in this thesis, which primarily used labelled
data, thereby enabling straightforward data partitioning for evaluation, this study
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Table 6.2: Hyperparameter settings.

Algorithms Hyperparameters

SVM C = [10−6, 101]
gamma = [10−6, 101]

RF n_estimators = 10, 50, 100, 150, 200
max_depth = 5, 10, 15, 20, None

CNN

num_filters = 32, 64, 128, 512
learning_rate = 1e-5,1e-4,1e-3,1e-2
batch_size = 32, 64, 128
epochs = 500
kernel_size = 3, 5

BiGRU

units = 32, 64, 128, 256, 512
learning_rate = 10−5, 10−4, 10−3, 10−2

batch_size = 32, 64, 128
epochs = 500

Label Spreading

kernel = ’knn’
alpha = 0.1, 0.2, 0.3
n_neighbors = 3, 5, 7, 11, 20, 30, 40, 50, 75, 100
max_iter = 20, 25, 30, 35, 40, 45, 50

Self-training

threshold = 0.5, 0.55, 0.6, ..., 0.95, 0.99
criterion = ’threshold’, ’k_best’
k_best = 3, 5, 10, 15
max_iter = 5, 10, 15, 20

employed a significant proportion of unlabelled data. Therefore, we added additional
steps before CV, as shown in Fig. 6.2. Each inner fold is composed exclusively of
labelled data with an equitable distribution of labels across all folds. To evaluate
the impact of the ratio of labelled data on the model’s performance, we also
adjusted the proportion of labelled data within the training set to 25%, 50%,
75%, and 100%, respectively.

6.3 Results and Discussion

In this study, several experiments were carried out to evaluate the effectiveness of our
models. The evaluations spanned a range of aspects, such as general performance, the
efficacy of each feature set, performance across various subtypes, and performance
in relation to different proportions of labelled data.

Our findings reveal that the semi-supervised models exhibit performance com-
parable to that of fully supervised models in most of the evaluated scenarios.
Specifically, in scenarios where 25% and 50% of labelled data were available, semi-
supervised learning significantly improved the efficacy of models employing the
ProtVec feature sets. Moreover, all models showed superior performance on H1N1
and H9N2 subtypes when compared to H3N2 and H5N1.
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Figure 6.1: Model architecture for CNN and BiGRU.

For detailed insights into these findings, please refer to the subsequent sections.

6.3.1 Overall Performance

Figure 6.3 compares fully supervised and semi-supervised learning approaches across
various ratios of labelled data, using features derived from different pre-trained
models. As expected, there is a general trend of improved model performance with
an increased ratio of labelled data, since more labelled data typically helps achieve
better model performance. Ideally, semi-supervised learning methods would surpass
the performance of their fully supervised counterparts, but this was not a constant
outcome in our study. The semi-supervised models demonstrated comparable
performance to the fully supervised models across most evaluated scenarios.

For simplicity and clarity in our discussion, each model within our study is
identified using a structured format: [Training Approach] - [Pre-trained Model] -
[ML Algorithm]. For example, the model’s name "FullySupervised-ESM2_33-RF"
breaks down as follows: "FullySupervised" indicates that the model undergoes
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Figure 6.2: Incorporation of unlabelled data in cross-validation. (a) the initial dataset
employed in the experiment; (b) the labelled data is partitioned into training and test
sets for model training and performance evaluation, respectively, while the unlabelled
data is reserved for subsequent steps; (c) a fraction of the training data is divided as
pseudo-unlabelled data (PUL) based on a specific labelled ratio, simulating an unlabelled
state, while the test data remains intact for unbiased performance assessment; (d) the
training set is fused with the pseudo-unlabelled data and untouched unlabelled data to
form a final training set used for model fitting and validation. The test data is preserved
for the final evaluation of the model’s performance on new data.
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Figure 6.3: Comparing supervised and semi-supervised methods with different pre-
trained model features at different labelled data ratios.

training in a fully supervised manner, "ESM2_33" identifies the specific pre-trained
model used for generating features, and "RF" represents the machine learning
algorithm we applied. The "FullySupervised-RF" collectively denotes models trained
in a fully supervised way, incorporating various pre-trained models for feature
extraction and using the RF algorithm.
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We will next examine which models, both fully supervised and semi-supervised,
perform optimally at different ratios of labelled data. At 25% labelled data, the
best performers are SelfTraining-ProtVec-RF and FullySupervised-ProtBert-RF,
achieving an F1 score of 0.797 (CI: 0.760, 0.829) and 0.792 (CI: 0.761, 0.821)
respectively. With 50% labelled data, FullySupervised-ProtVec-RF and SelfTraining-
ProtT5-RF lead, achieving an F1 score of 0.826 (CI: 0.810, 0.837) and 0.823 (CI:
0.807, 0.836) respectively. At 75% labelled data availability, SelfTraining-ProtBert-
RF and FullySupervised-ProtBert-RF emerge as the top models, with an F1 score of
0.841 (CI: 0.823, 0.859) and 0.837 (CI: 0.817, 0.866) respectively. Finally, when 100%
of the labelled data is provided, SelfTraining-ProtBert-RF and FullySupervised-
ProtBert-RF again perform best, with an F1 score of 0.864 (CI: 0.841, 0.878) and
0.860 (CI: 0.834, 0.882), respectively. We also found that both the SelfTraining-
SVM and FullySupervised-BiGRU models exhibited their poorest performance when
using features extracted either from ProtT5 or ProtVec.

6.3.2 Performance for Pre-trained Features

We fed features from four different pre-trained models into the models. In this section,
we evaluated the performance of feature sets extracted from different pre-trained
models, namely ESM-2, ProtBert, ProtVec, and ProtT5, by averaging their F1

scores across a range of machine learning models, as the results are shown in Fig. 6.4.
Our findings indicate that feature sets from ProtVec generally yielded the lowest

performance. Conversely, feature sets from ProtBert showed promising results,
particularly when the proportion of labelled data was 50% or higher. Additionally,
the ESM-2 feature sets demonstrated remarkable consistency in performance across
varying ratios of labelled data and presented the least variance compared to other
feature sets. ProtBert feature sets were the next most stable in terms of variance.

The analysis reveals a trend where richer labelled data typically leads to higher
F1 scores across the different feature sets, indicating improved model efficacy.
However, some pre-trained model feature sets, like those from ESM-2, exhibit
strong performance even with fewer labelled data, offering potential advantages
in situations where labelled data is limited.

Fig. 6.5 presents a comparative analysis of feature sets extracted from various
pre-trained models under different learning paradigms. In contexts where 25% and
50% labelled data are available, semi-supervised learning significantly enhances the
efficacy of models using ProtVec feature sets. On the other hand, this approach
seems to reduce the performance of models built on ProtBert feature sets. Models
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Figure 6.4: Comparing various pre-trained model features at different labelled data
ratios.

that utilised other feature sets show similar performance levels in supervised and
semi-supervised learning.
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Figure 6.5: Comparing various pre-trained model features in fully supervised and
semi-supervised settings at different labelled data ratios.

6.3.3 Performance in Each Subtype

Figures 6.6 and 6.7 display the performance outcomes for the FullySupervised-RF
and SelfTraining-RF models, using features extracted from ESM-2 and ProtBert,
respectively. Each figure specifically illustrates these models’ performance across
various subtypes.

All models demonstrate superior performance on H1N1 and H9N2 compared to
H3N2 and H5N1. Specifically, for H5N1, all models show good results with more
than 50% labelled data. Notably, semi-supervised learning does not significantly
outperform supervised learning in this context, with supervised learning even
surpassing semi-supervised learning when only 20% of labelled data is available.
Regarding H3N2, semi-supervised learning does not perform markedly better than
supervised learning with 100% labelled data. However, when 75% of labelled
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Figure 6.6: Comparison of fully supervised and self-training methods using ESM-2 (33
layers) features in predicting antigenicity of influenza A viruses across different subtypes
with varied levels of labelled data.
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Figure 6.7: Comparison of fully supervised and self-training methods using ProtBert
features in predicting antigenicity of influenza A viruses across different subtypes with
varied levels of labelled data.

data is provided, semi-supervised learning tends to surpass supervised learning.
At a 25% labelled data level, the SelfTraining-ESM2_33-RF model outshines
its fully supervised counterparts, whereas SelfTraining-ProtBert-RF exhibits the
opposite trend.

6.4 Chapter Summary

This chapter presents an exhaustive examination of semi-supervised learning method-
ologies and their impact on predicting antigenicity of Influenza A Viruses (IAVs).
It aims to illuminate the potential of these techniques to mitigate the challenges
that arise from the scarcity of labelled data in virological studies, with a particular
focus on the influenza virus.
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Traditional supervised learning paradigms face limitations due to their reliance
on large labelled data sets, which are often not readily available. This is attributed
to the swift mutation rates of IAVs, and the practical difficulties encountered
in laboratory tests.

In an effort to address these limitations, this study delves into the applicability of
semi-supervised learning strategies, with a special emphasis on label spreading and
self-training algorithms. These methods are comprehensively described, underscoring
their ability to utilise both labelled and unlabelled data to improve predictive
accuracy. The label spreading algorithm is expounded for its proficiency in
transferring information from labelled to unlabelled data points, thus enhancing the
training dataset. In parallel, the self-training approach is depicted as an iterative
process that enriches the labelled dataset with unlabelled instances predicted
with high certainty.

Additionally, this chapter applies features extracted from four distinct pre-
trained models. This inclusion aims to further refine the predictive capability of
the semi-supervised learning approaches. The chapter’s empirical segment utilises
various supervised learning models, such as Support Vector Machine (SVM) and
Random Forest (RF), as baselines to gauge the improvements offered by semi-
supervised methods. A comparative analysis is conducted between models trained
solely on supervised learning and those augmented with semi-supervised techniques.

Results from these experiments are rigorously scrutinised to determine the
contexts in which semi-supervised learning is most effective. The chapter elucidates
the metrics employed for evaluation and discusses the implications of these findings
for IAVs’ antigenicity prediction. For a brief summary of the results of these
extensive analyses, please refer to Table 6.3.
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Table 6.3: Summary of results and findings of Chapter 6.

Aspect Fully Supervised Best
Performers

Semi-Supervised Best
Performers

Comparison
across various
ratios of
labelled data.

At 25% labelled data:
FullySupervised-ProtBert-
RF (F1: 0.792)
At 50% labelled data:
FullySupervised-ProtVec-
RF (F1: 0.826)
At 75% labelled data:
FullySupervised-ProtBert-
RF (F1: 0.837)
At 100% labelled data:
FullySupervised-ProtBert-
RF (F1: 0.860)

At 25% labelled data:
SelfTraining-ProtVec-RF
(F1: 0.797)
At 50% labelled data:
SelfTraining-ProtT5-RF
(F1: 0.823)
At 75% labelled data:
SelfTraining-ProtBert-RF
(F1: 0.841)
At 100% labelled data:
SelfTraining-ProtBert-RF
(F1: 0.864)

Averaged (F1
scores across
models for
different
pre-trained
models.

ProtBert features perform
best, especially at higher
data ratios.

Significant enhancement
with ProtVec features in
semi-supervised learning.

Performance
across H1N1,
H9N2, H3N2,
H5N1
subtypes.

Varies; H1N1 and H9N2 see superior performance
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7
Conclusion and Future Work

7.1 Introduction

In bioinformatics, augmented by machine learning, we have witnessed remarkable
advancements in addressing critical challenges in virology. This work has involved
a deep exploration into predicting Influenza A Viruses (IAVs), utilising both
established and emerging methods. Our engagement with Position-Specific Scoring
Matrices (PSSMs), multi-channel neural networks (MC-NNs), and other advanced
techniques has illuminated the capabilities of computational models to unravel
the complexities of biological systems.

This fusion of extensive virological knowledge with sophisticated computational
techniques has not only sharpened the accuracy of predicting hosts of IAVs but
also revealed intricate patterns and relationships. These achievements indicate
our progress in comprehending the IAV and forming a solid foundation for a more
informed and proactive approach to managing future outbreaks.

This work is underpinned by a philosophy similar to that of Google’s GraphCast
[200], an open-source Artificial Intelligence (AI) weather forecasting system. Graph-
Cast epitomises a paradigm shift in predictive modelling, moving from traditional
methods to a data-driven AI approach. Rather than adhering to meteorological
principles or physical laws, GraphCast uses four decades of weather data to train
its model. Its success is rooted in a "black box" approach, prioritising utility over
an understanding of the underlying complexities of the natural world.

This thesis embraces a data-driven philosophy, indicating that an exhaustive
comprehension of the IAV might not be essential to design effective predictive
models. The core of our approach is to exploit existing protein data, which is
the sole basis for most of our experiments. This focus on protein data allows
our models to learn and make predictions based solely on these datasets without
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additional information. Consequently, while the finer details of the IAV’s behaviour
may remain elusive to models, our approach still yields pragmatic outcomes by
capitalising on the insights gleaned from this protein data.

7.2 Summary of Results and Findings

The key results and findings from each study conducted in this thesis will be
presented as follows. This will showcase how these approaches have contributed to
our understanding and prediction capabilities in the context of the IAV research.

Chapter 4 This chapter presents an extensive analysis of the results obtained from
various bioinformatics and machine learning methods used to predict host origins
of IAVs. The performance of these methods is evaluated at different taxonomic
levels and in varying conditions, including the presence of incomplete sequences
and the choice of reference databases. The chapter also explores the effectiveness
of ensemble results, integrating multiple models for a holistic assessment.

Sequence Representations and Performance:

• Word embeddings (especially 3-grams) outperformed Position-Specific Scoring
Matrix (PSSM)-based methods in most cases.

• The performance of all methods was generally better at higher taxonomic
levels than lower ones.

• At lower taxonomic levels, the mean score drops for all sequence representa-
tions, ranging from 10% to 15%.

Machine Learning Algorithms:

• Transformer and XGBoost algorithms performed best at higher and lower
taxonomic levels, respectively.

• A decline in performance was observed for all classifiers when moving from
higher to lower taxonomic levels, with mean score reductions between 9% and
30%.
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Impact of Incomplete Sequences:

• Models showed a notable decrease in performance and stability on dataset 2,
influenced by noisy data from incomplete sequences.

• However, the impact on their effectiveness was not overwhelmingly large,
indicating a certain level of robustness.

Ensemble Results:

• The ensemble of models achieved a 97.56% match between predicted and true
labels, with 2.44% of sequences incorrectly predicted.

• Some sequences, especially those collected during outbreak periods or possess-
ing strong cross-species characteristics, were consistently mispredicted.

Effect of Reference Database:

• The choice of reference database (partial NR vs. UniRef50) played a significant
role in the PSSM-based model’s predictive capabilities.

• The performance of PSSM-based models, which used PSSMs generated by
different reference databases, varied. Thus, the choice of the reference database
for PSSM calculation is important.

Overall Observations:

• Models tended to perform less effectively on datasets that incorporated
incomplete sequences.

• The adaptability and efficiency of UniRef50-PSSM in managing complex
classification scenarios were observed.

This comprehensive analysis underscores the complexity and challenges in pre-
dicting influenza host origins using computational techniques. The results highlight
the importance of considering various factors such as data quality, taxonomic level,
and the choice of reference database to optimise the performance of bioinformatics
and machine learning models in real-world scenarios. The integration of ensemble
results provides a holistic perspective on the efficacy of combining multiple models,
which can offer valuable insights for future research and practical applications in
influenza surveillance and response efforts.
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Chapter 5 This chapter provides a comprehensive analysis of the performance of
various models in predicting hosts and antigenic types of IAVs, focusing on different
datasets, single sequence inputs, and the impact of diverse feature sets.

Overall Model Performance Across Datasets

1. Pre-2020 and Post-2020 Datasets:

• The models were trained on the pre-2020 dataset and tested on both the
pre-2020 and post-2020 datasets, containing only complete sequences.

• The best-performing model was MC-CNN, achieving an average AP of
93.92% and an average F1 score of 92.62%.

• In the post-2020 dataset, there was a general improvement in performance,
with MC-CNN remaining the top performer.

2. Incomplete Dataset:

• A decline in performance was observed across all models in the incomplete
dataset.

• The MC-Transformer model showed superior performance with an average
AP of 90.13% and an average F1 score of 87.09%.

Performance on Single Sequence Input

1. HA-only Dataset: MC-Transformer led in overall performance, achieving an
average AP of 85.91% and an average F1 score of 70.59%.

2. NA-only Dataset: MC-BiGRU was the top performer, with an average AP of
78.18% and an average F1 score of 60.89%.

3. Comparative Analysis:

• MC-CNN excelled with NA-only inputs.

• For the host prediction task, the MC-Transformer performed better with
HA-only inputs, while others preferred the opposite.

• For HA subtype predictions, all models generally performed better with
HA-only inputs.

• For NA subtype predictions, all models generally performed better with
NA-only inputs.
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Performance Based on Different Feature Sets

1. Host Prediction Task:

• MC-Embedding-CNN and MC-Embedding-Transformer exhibited the
highest performance across different datasets.

• ProtVec and ProtBert outperformed other feature sets across different
datasets.

2. HA Subtype Prediction Task:

• MC-ProBert-Transformer was the top performer in the HA-only dataset.

• ProtVec excelled on the incomplete dataset and shared the top spot with
Embedding on the NA-only dataset.

3. NA Subtype Prediction Task:

• MC-Embedding-Transformer dominated in the incomplete and HA-only
datasets.

• ProtVec and ProtBert led in the NA-only dataset.

4. Model Variance:

• MC-CNN exhibited the least fluctuation across feature sets for all
prediction tasks.

• MC-Transformer showed consistent results with various feature sets,
especially in incomplete and HA-only datasets.

This chapter highlights the robustness of the models in predicting influenza A
virus hosts and subtypes across various scenarios and datasets. The performance var-
ied depending on the dataset and feature set used, with MC-CNN, MC-Transformer,
and MC-BiGRU emerging as significant models across different tests.

Chapter 6 The chapter provides a detailed analysis of the performance of both
supervised and semi-supervised learning models in predicting influenza antigenicity.
The models were evaluated based on various ratios of labelled data, using features
derived from different pre-trained models, and their performance was assessed
across various influenza subtypes.
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Model Performance with Different Ratios of Labelled Data:

1. 25% Labelled Data: The best performers were SelfTraining-ProtVec-RF and
FullySupervised-ProtBert-RF, with F1 scores of 0.797 and 0.792, respectively.

2. 50% Labelled Data: FullySupervised-ProtVec-RF and SelfTraining-ProtT5-RF
led with F1 scores of 0.826 and 0.823, respectively.

3. 75% Labelled Data: SelfTraining-ProtBert-RF and FullySupervised-ProtBert-
RF emerged as top models with F1 scores of 0.841 and 0.837, respectively.

4. 100% Labelled Data: SelfTraining-ProtBert-RF and FullySupervised-ProtBert-
RF again performed best with F1 scores of 0.864 and 0.860, respectively.

5. Overall Trend: A general trend of improved model performance was observed
with an increased labelled data ratio. Semi-supervised models demonstrated
comparable performance to the fully supervised models across most scenarios.

Performance Based on Pre-trained Model Features:

1. ProtVec Features: Generally yielded the lowest performance.

2. ProtBert Features: Showed promising results, particularly when the proportion
of labelled data was 50% or higher.

3. ESM-2 Features: Stood out at a 25% labelled data ratio, exhibiting the best
performance and demonstrating remarkable consistency across varying ratios
of labelled data.

4. Overall Trend: Richer labelled data typically led to higher F1 scores across
different feature sets. Some pre-trained model feature sets, such as those from
ESM-2, exhibited strong performance even with fewer labelled data, offering
advantages in situations where labelled data is limited.

Performance Across Various Influenza Subtypes:

1. Subtypes H1N1 and H9N2: All models performed better than H3N2 and
H5N1.

2. Subtype H5N1: Good results were observed with more than 50% labelled
data.
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3. Subtype H3N2: Semi-supervised learning tended to surpass supervised learning
when 75% of labelled data was provided.

4. Specific Trends: The SelfTraining-ESM2_33-RF model outperformed its fully
supervised counterparts at a 25% labelled data level, while SelfTraining-
ProtBert-RF exhibited the opposite trend.

5. General Observation: semi-supervised learning did not consistently outperform
supervised learning, with the latter even surpassing semi-supervised learning
in some scenarios with limited labelled data.

The chapter reveals nuanced insights into the efficacy of various models and
feature sets in predicting influenza antigenicity, emphasising the importance of
the proportion of labelled data and the choice of feature sets in achieving optimal
performance. The analysis also underscores the varying effectiveness of the model
across different influenza subtypes.

7.3 Summary of Limitations

This thesis offers valuable insights and advances in the field but also faces limitations
that warrant discussion. In this section, we describe the primary constraints
encountered in our research:

One limitation arises from the evaluation methodologies employed in our
experiments, which may not fully capture models’ ability to predict the cross-
species transmission potential of IAVs, given that the data used are confined to
a single class. Future studies should aim to develop or integrate more specialised
evaluation methods that directly assess and validate model efficacy in predicting
cross-species transmission scenarios.

The challenge of identical protein sequences yielding varied functionalities
underscores another limitation. Relying solely on protein sequences to predict
functional outcomes does not account for the complexities underlying these variances,
suggesting a need for more nuanced analytical approaches.

The use of Basic Local Alignment Search Tool (BLAST) also presents limitations
and complexities. For example, the "max_target_seqs" parameter might not return
the highest scoring sequences but, instead, the initial sequences exceeding a certain E-
value threshold, potentially compromising result accuracy [201]. Moreover, BLAST’s
array of configurations, including different scoring matrices and gap penalties, can
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significantly influence search outcomes, necessitating careful consideration when
using it as a standard benchmark [202].

The models we implemented are designed to produce a probability distribution for
various labels, with a default setting that assigns labels based on a 50% probability
threshold. This means that a label is assigned to a given sample if the model’s
predicted probability for that label exceeds 50%. This method assumes equal
importance and error cost for all classifications, which may not always align with
practical scenarios. Therefore, it highlights the need for model calibration to
tailor the threshold more effectively to the specific requirements of our application.
Calibration could adjust this threshold to better reflect the varying significance
of different labels and the differing misclassification costs, thereby improving the
model’s practical accuracy and applicability to real-world data.

In the second and third of our study, we employed features from popular pre-
trained protein language models to convert sequence data into a numerical format.
However, this introduces the risk of data leakage, as sequences for validation
and testing might overlap with those used in training the pre-trained models.
This overlap can inadvertently lead to overly optimistic performance evaluations,
as the models may recognise and predict these sequences with higher accuracy
than genuinely unseen data.

The second study also introduced a MC-NN designed to predict influenza hosts
and subtypes. The separate input channels for HA and NA sequences merge early
(i.e., right after embedding layers) in the process to optimise training time. They
may capture the interactions or relationships between proteins. However, this
early merging strategy potentially limits the model’s capacity to learn variations
specific to either protein, as well as its ability to extract high-level features from
the protein sequences. Thus, this approach may risk bias towards one protein’s
features over the other.

Furthermore, we explored fundamental self-training algorithms for IAVs’ anti-
genicity prediction. However, such basic semi-supervised learning algorithms may
not fully capture the complex nature of protein sequence data.

Throughout most studies, we applied standard stratified nested k-fold Cross-
validation (CV) to mitigate overfitting, but this method does not account for the
evolutionary trajectory of IAVs, which progresses linearly rather than cyclically [203].

Furthermore, our subtype prediction analysis may not fully encompass the
potential evolutionary trajectories of the H1N1 subtype into various forms, thus
revealing a limitation in our approach to subtype prediction. As viral genomes
continuously undergo mutations and reassortments, there is a possibility for new
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variants or subtypes emerging beyond those considered in our study. Consequently,
the predictive scope of our analysis may be constrained by this inherent variability
and unpredictability in viral evolution. Therefore, while our study has found models
capable of accurately classifying subtypes, future research needs to incorporate
mechanisms for anticipating and adapting to potential shifts in viral subtypes,
ensuring the continued relevance and accuracy of predictive models in combating
infectious diseases.

7.4 Future Work

The advancements chronicled in this work open avenues for further exploration. A
prominent direction lies in using machine learning for epidemic decision-making.
The current frameworks predominantly harness protein sequences to extract protein-
level information. However, our findings suggest that identical protein sequences can
sometimes lead to varied protein functionalities. Relying solely on protein sequences
presents limitations in unravelling the underlying reasons for such variances.

We presented a multi-channel neural network to process HA and NA protein
sequences simultaneously. This approach allowed us to capture more complex
information from these key influenza proteins, shedding light on the complex
interplay of viral components. The promising results of this approach highlight
the potential to expand the number of input channels of this model to handle all
influenza virus proteins, while reducing the need for sequences from each virus to
contribute all proteins. Another future work in this area lies in exploring embedding
features from multi-sources instead of using the same word embedding scheme
for different protein inputs. For example, each input channel can be used with
a different pre-trained embedding.

Gene regulations also play an important role in influencing protein functionalities.
For example, variations in codon usage can profoundly impact protein synthesis
and folding. Certain codons are translated more rapidly than others, and these
translation rate discrepancies can influence how an amino acid sequence folds
into a protein. Slow translation processes can even initiate Ribonucleic Acid
(RNA) degradation, impeding protein production altogether, as evidenced by
research from [204].

Moreover, the ambient environment of a protein, characterised by factors such
as temperature, pH levels, and molecular interactions, can significantly dictate
protein folding patterns. A notable example is that of prion proteins, which
can manifest in multiple structural forms. While one is typically observed in
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healthy cells, its misfolded counterpart is implicated in prion diseases, including
Creutzfeldt-Jakob disease.

Additionally, the scope for exploring other biological data types, such as spatial-
temporal patterns or host immune responses, remains vast. Transfer learning,
where insights derived from related viral families could enhance our comprehension
of influenza, also beckons exploration. Furthermore, the ever-evolving field of
artificial intelligence paves the way for formulating dynamic models that can adapt
in real-time to the mutable nature of viral evolution.

Future endeavours should also prioritise the development of intuitive tools
and platforms grounded in these insights, facilitating wider scientific community
engagement, fostering collaborative initiatives, and promoting shared discoveries.
The confluence of biology and technology ushers in a promising future where our
understanding, readiness, and response to infectious diseases are more informed,
prompt, and efficacious.

In furthering these aims, future research could incorporate few-shot learning
to enhance the adaptability of machine learning models to rapidly evolving viral
mutations. This approach can significantly reduce the data required to train models
effectively, enabling quicker responses to new threats. Additionally, the exploration
of continual learning techniques can enable models to continuously update their
knowledge base as new data become available, while also retaining previously learnt
information, thus mitigating the risk of obsolescence and ensuring their relevance over
time. Leveraging multi-label data can provide a more comprehensive understanding
of the complex interactions between viral proteins and host cells, which could lead to
more effective intervention strategies. Furthermore, the application of meta-learning
approaches holds promise in developing models capable of generalising across
different viral families and quickly adapting to novel pathogens, thus bolstering
our preparedness for future epidemics and pandemics.
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