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A B S T R A C T 

Financial institutions have recognized the value of collaborating human 
expertise and AI to create high-performance augmented decision-support 
systems. Stakeholders at lending firms have increasingly acknowledged 
that plugging data into AI algorithms and eliminating the role of human 
underwriters by automation, with the expectation of immediate returns 
on investment from business process automation, is a flawed strategy. 
This research emphasizes the necessity of auditing the consistency of 
decisions (or professional judgment) made by human underwriters and 
monitoring the ability of data to capture the lending policies of a firm to 
lay a strong foundation for a legitimate system before investing millions 
in AI projects. The judgments made by experts in the past re-emerge in 
the future as outcomes or labels in the data used to train and evaluate 
algorithms. This paper presents Evidential Reasoning-eXplainer, a 
methodology to estimate probability mass as an extent of support for a 
given decision on a loan application by jointly assessing multiple 
independent and conflicting pieces of evidence. It quantifies variability 
in past decisions by comparing the subjective judgments of underwriters 
during manual financial underwriting with outcomes estimated from 
data. The consistency analysis improves decision quality by bridging the 
gap between past inconsistent decisions and desired ultimate-true 
decisions. A case study on a specialist lending firm demonstrates the 
strategic work plan adapted to configure underwriters and developers to 
capture the correct data and audit the quality of decisions. 

1. Introduction 

1.1 Background on Human-AI Collaboration for Augmented Decision-Making 

Lending firms are actively seeking the application of artificial intelligence (AI) in financial technology 

(FinTech) to enhance the efficiency of loan processing and deliver responsible lending decisions to meet the 

urgent financial needs of their customers in a digitally dominated landscape (Kowalewski & Pisany, 2022). It 

can be achieved by a symbiotic merger of humans and AI, aiming to harness their respective strengths and 

prepare for the forthcoming wave of AI innovation (Wilson & Daugherty, 2019). The recent technological 
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leap in generative AI tools, such as OpenAI's Generative Pre-trained Transformer 4 (GPT-4) and Google Bard, 

has demonstrated a remarkable capability to reason, plan, and learn from experience at or above human-level 

capabilities in solving intricate and novel tasks across a broad range of domains (Akter, et al., 2023) (Dwivedi, 

et al., 2023). However, a comprehensive study conducted by Microsoft Research on GPT-4 uncovered inherent 

flaws: contradictory outputs of inputs within similar contexts and a lack of sufficient explanation for the 

generated decision (Bubeck, et al., 2023). These limitations coupled with the challenge of quantifying the 

reliability of explanations due to the black-box nature of generative AI, impede its application in high-stake 

financial decision-making tasks. 

Studies proposed on black-box AI algorithms for lenders to provide credit decisions include deep neural 

networks (Luo, et al., 2017) (Zhao, et al., 2015) (Wu & Wang, 2000), ensemble classifiers (Xu, et al., 2018) 

(Abellán & Castellano, 2017), support vector machine (Harris, 2015) (Tomczak & Zięba, 2015), Bayesian 

networks (Anderson, 2019), (Leong, 2016), and genetic programming (Metawa, et al., 2017). In addition, three 

studies have introduced interpretable lending models. An interpretable knowledge-based system for retail and 

commercial loans is proposed to provide interpretable lending decisions through the activation weight of 

lending rules and attribute contributions (Sachan, 2022). Another study introduced the concept of globally-

consistent rules to summarize a broad pattern of the classifier to provide local explanation and measure the 

quality of a decision by cardinality and quantity of data support for a given rule (Chen, et al., 2022). A 

hierarchical belief rule-based system is proposed to process factual and heuristic knowledge of financial 

underwriters by incorporating the collective knowledge of humans and data to provide reasoning behind a loan 

funding decision (Sachan, et al., 2020). This research highlights the importance of configuring the intelligence 

of human experts in transparent AI algorithmic systems to establish augmented decision-making processes in 

financial institutions.  

The shortcomings of AI automation in advancing FinTech innovation within banking, investments, and 

microfinance can be traced back to the use of nonrepresentative data, inherent biases in the sampled data, 

choices in algorithmic methodologies, and human judgments influenced by their interpretations of AI 

outcomes (Ashta & Herrmann, 2021). Financial institutions have acknowledged that rushing into the 

opportunity of reshaping businesses by plugging data into AI algorithms with the prospect of immediate 

returns on investment from business process automation is a poor strategy (Fountaine, et al., 2019). In contrast, 

hybrid human-AI intelligence can mutually achieve a high-performance decision-support system (Dellermann, 

et al., 2019). However, the approach for creating an active learning AI system, which entails constant 

evaluation of the model output and assimilation of human-elicited knowledge is not well articulated by AI 

system developers to domain experts and organizational stakeholders. The disconnection between developers 

(or data scientists) and domain experts poses a considerable challenge in addressing the multifaceted concerns 

(Bellomarini, et al., 2022).  

A study identified two primary concerns in AI deployment in FinTech startups. First, the adoption of AI 

for customer and employee support presents complexities, as technology demands appropriate resources and 

is found to be ineffective in solving specialized problems. Second, the integration of AI has led to a decline in 
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employee morale over concerns regarding the reduction in workforce requirements (Almansour, 2023). 

Human experts, such as financial underwriters, have a skeptical perspective on AI due to the difficulty of 

standardizing their subject matter expertise and cognitive thinking within a machine. This distrust drives them 

back to their familiar, unassisted manual tasks. It is widely recognized that machines may not surpass humans 

in applying heuristic knowledge to complex tasks, and humans may not necessarily excel over machines in 

executing repetitive and monotonous tasks (Glikson & Woolley, 2020). Automation does not eliminate the 

role of human underwriters (Fuster, et al., 2019). Therefore, augmenting lending decision tasks by configuring 

human-AI as an integrated unit would produce a high-performance system.  

1.2 Role of Human Judgment in Generating Biased and Noisy AI Decisions 

The performance of data-driven AI methods depends on involving meaningful features in the data (Rudin, 

2019). Gathering high-quality features is challenging due to inevitable ambiguities resulting from missing 

information, a dynamic decision task environment (continuously evolving lending policies and regulations), 

and a lack of understanding of the data fed into the algorithm (Sachan, et al., 2021).  

One significant source of ambiguity predominantly disregarded by many firms is the inconsistency in 

decisions or subjective judgment given by human experts, which gets recorded as labels in the dataset utilized 

to train AI algorithms (Kahneman, et al., 2016). The professionals often contradict their decision and deviate 

from their peers, especially when they stray from their expertise to intuition (Kahneman, D; Klein, G, 2009). 

Additionally, the quality of a decision is affected by the complexity of the task at hand. More complex tasks 

demand more time. The investment of time reflects the decision maker's confidence in their cognitive decision 

(Boundy-Singer, et al., 2023). The prevalence of variability in expert judgment is observed in many domains, 

such as medicine (Litvinova, et al., 2019) (Levi, 1989) (Koran, 1975), psychology (Garb, 1996), finance 

(Kahneman, et al., 2016), weather (Lusk, et al., 1990) (Stewart, et al., 1989), and human data annotators (Shan, 

et al., 2021). An experimental study assessed the quality of expert judgment by two metrics: learnability and 

ecological validity in various domains (Bolger & Wright, 1994). It concluded that the consistency of decisions 

given by bankers, weather forecasters, and research and development managers is better than that by 

professionals in other domains, such as clinical psychologists, physicians, and audit managers. 

Financial underwriters rely on their cognitive abilities and heuristic knowledge to make decisions based on 

the ambiguous information in the documents submitted within a loan application pack. Human judgment is 

known to be noisy and biased. Consequently, an AI algorithm trained on past human judgments or manually 

annotated data might generate biased or noisy decisions. Judgment errors can be categorized into noise and 

biases. Bias in judgment can be attributed to social preconceptions, such as stereotyping of minorities, or 

cognitive biases, such as overconfidence and unfounded optimism (Kahneman, D., 2011). Noise is the 

scattered judgment which is not attributable to social or cognitive biases. For example, an AI algorithm would 

consistently produce the same decision, denoted as 𝜃, for different borrowers with similar lending 

characteristics in their loan application. In contrast, humans could make varying decisions - 𝜃,𝜃 ᇱ, and 𝜃ᇱᇱ for 

different borrowers despite identical lending characteristics. AI decision-support systems are considered 

superior to humans in executing simple repetitive tasks. However, they are falling short in replicating human 
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judgments due to the inherent flaws in the data employed to train these systems. Figure 1 presents a visual 

example of extremely biased, noisy, and optimally accurate data space based on two features (2-dimensional) 

to estimate the decision to "fund" or "reject" loan applications.  

 

 
Figure 1: 2-dimensional decision space exhibiting highly biased, noisy, and optimally accurate decisions 

1.3  Contribution 
Consistency of loan underwriters' judgment is critical for a lending firm to spend time and money to build 

an augmented AI system by integrating an extensive dataset and allocating significant resources for tasks 

involving human intervention. An underwriter provides a decision by following the policy and regulations in 

a manual underwriting guideline. A financial institution's pre-defined rules and criteria revolve around credit 

history and affordability criteria (Sachan, et al., 2020). Lenders fall broadly into three categories: banks, 

FinTech firms, and non-bank lenders (Fuster, et al., 2019). Mainstream banks have strict lending criteria that 

enable them to provide AI-driven algorithmic decisions for many applications based on stringent rules. Some 

lending institutions follow a common-sense lending approach for the financial inclusion of borrowers rejected 

by mainstream banks due to less-than-perfect credit history. However, these firms face the challenge of 

inconsistent decisions and high processing time due to manual analyses of a considerable volume of dynamic 

information by underwriters (Peterson, 2017). These lending firms require a strategic initiative to leverage AI 

for digital FinTech transformation to offer efficient decisions without compromising their fundamental 

business values. 

There is no question that the adoption of AI for the FinTech transformation of a lending firm can be 

accomplished primarily by utilizing new technologies and algorithms to expand their capacity for data-driven 

analysis. Most research addresses only the algorithmic approach. They failed to address the issues of data 

ambiguity and ways to control the variability in decisions by incorporating domain experts' opinions before 

initiating the development of an augmented AI system. This paper proposes an initial work plan to configure 

domain experts and developers to capture the correct data and assess the quality of decisions to get the most 

from AI implementation. It presents a technique to map ambiguous data from multiple sources to lending rules 

to maximize data coverage for the lending policy and measurement of decision inconsistency. The Evidential 

Reasoning-eXplainer (ER-X) is proposed to estimate the probability mass as the extent of support for a 

decision to "fund" or "reject" a loan application by jointly assessing multiple independent and highly 
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conflicting pieces of evidence. A piece of evidence is a criterion in a lending rule mapped with uncertain credit 

data. ER-X provides explainable decisions by weight and reliability of evidence.   

 

 
Figure 2: Humans and AI collaboration to reduce judgment noise  

ER-X can infer from the missing values in numerical and categorical features in the data (missing pieces 

of evidence) without any requirement of data imputation. It introduces the concept of the "ultimate-true 

decision", a benchmark used to audit past human expert assessments that are later represented as labels in the 

data used to develop AI systems and to adjust the algorithm's output to enhance performance. The "ultimate-

true decision" is derived by evaluating the variability between decisions estimated from the data, as a joint 

probability mass of multiple criteria in lending rules, and decisions provided by human experts in the form of 

subjective judgments. The subjective judgments of human experts, such as underwriters, are obtained through 

knowledge elicitation tasks. Figure 2 presents the main contribution of the paper as the process of reducing 

and detecting the judgment noise by consistency analysis to produce trustworthy decisions from an 

eXplainable AI (XAI) based decision-support system.    

This study demonstrates a practical application of the proposed framework through a case study from a 

UK-based lending firm. The lending firm implemented this framework to investigate the decision consistency 

between data and human underwriters to explore their potential to streamline their lending process through the 

integration of AI, thereby marking their evolution into a FinTech firm. This study emphasizes the strategic 

task of establishing a connection between human underwriters and developers to lay a strong foundation for a 

trustworthy and high-performance augmented AI decision-support system. This research addresses the 

following questions: 

Question 1: How to map uncertain data from multiple sources with lending rules?    

Question 2: How to refine the decision quality by minimizing the gap between past-inconsistent decisions 

and the "ultimate-true decision"? 

Question 3: How to detect variability in decisions?  

Question 4: Are human underwriters inconsistent in their decision-making? 
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Question 5: What types of collaborative tasks human experts (underwriters) and developers can perform to 

establish an augmented-AI decision-support system?   

This paper is organized as follows: Section 2 presents the literature review on the evidential reasoning 

approach. Section 3 describes the methodology to map uncertain data from multiple sources with lending rules 

outlined in the policy and ER-X framework to conduct consistency analysis to audit the assessment given by 

human experts (underwriters). It addresses Questions 1 to 3. Section 4 attempts to answer Questions 4 and 5 

through a case study conducted on a lending firm. This firm was interested in exploring its potential to adopt 

AI to enhance lending decisions, and our study involved evaluating the quality of captured data and the 

consistency of underwriters' decisions for the most frequently funded and rejected loan applications. Section 

5 discusses the results, and Section 6 concludes the paper. Appendix A defines the joint evidence, acronyms 

of lending criteria in the case study, and descriptive statistics of the data. Appendix B presents the accuracy 

metrics of the ER-X model and its comparison with deep learning, the decision tree model, and logistic 

regression. 

2.  Literature Review on Evidential Reasoning for Decision Analysis 

ER-X is based on the Conjunctive-Maximum Likelihood Evidential Reasoning (C-MAKER) rule. The C-

MAKER framework was proposed to infer from the ambiguous categorical data (missing values in input and 

output features) (Sachan, et al., 2021) (Liu, et al., 2019). It can preprocess the categorical features in data by 

numerical transformation and fusion of multiple pieces of evidence to reduce the cardinality of various 

categories for different machine learning models such as deep-learning, tree-based, and rule-based. It 

conceptualizes the notion of weight, i.e. the importance of evidence, and reliability, i.e. potential of evidence 

to point correctly to a decision for each subset of propositions in a power set of a frame of discernment. The 

frame of discernment is a mutually exclusive and collectively exhaustive set of expected outcomes (or 

decisions). The concept of weight and reliability of a piece of evidence in C-MAKER was an extension of the 

ER rule (Yang & Xu, 2013). However, it does not consider each proposition's distinct weight and reliability 

in a power set of a frame of discernment. The C-MAKER and ER rules have evolved from the Dempster-

Shafer (DS) theory. The DS theory is a benchmark for information fusion and decision-making (Shafer, 1976). 

However, it provides counter-intuitive results when it is implemented to combine highly conflicting evidence. 

The rational probabilistic reasoning process of ER-X is rigorously compared to other evidence fusion rules, 

such as the proportional conflict redistribution rule (Smarandache, et al., 2010), Dempster's rule (Dempster, 

2008), Smets' rule (Smets & Kennes, 1994), Dubois and Prade's rule (Dubois & Prade, 1988), and Yager's rule 

(Yager, 1987). These methods combine multiple pieces of evidence but do not compare the outcome of the 

same evidence from numerous sources. An approach to compare dissimilarity between probability for each 

proposition in a power set of a frame of discernment from pieces of evidence collected from multiple sources 

was presented by Yong (Yong, et al., 2004).   
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3. Methodology to Reduce Noisy Decisions by Evidential Reasoning-eXplainer (ER-X)  

3.1 Mapping of Uncertain Credit Data with Lending Rules  

A set of lending rules is formulated to capture the core aspects of the lending policy of a firm. Let, a lending 

institution has 𝐽, 𝑗 ∈ {1, … , 𝐽} number of standard lending rules. These rules mandate underwriters to pursue 

lending policies that enable them to provide individualized decisions for each loan application. Each rule has a 

set of criteria that contribute toward the rejection or acceptance of a loan. A criterion within a rule can represent 

a fact or a piece of heuristic information (Feigenbaum, 1980). For instance, consider a rule that assesses the 

"number of secured loan defaults for the last 24 months" has the following set of criteria: {"0_arrears", "1-

2_arrears", "3+_arrears"}. In this set, "0_arrears" represents zero arrears of a borrower, "1-2_arrears" indicates 

one or two arrears, and "3+_arrears" denotes more than three arrears. Suppose the lending policy explicitly 

states the rejection of borrowers with more than three arrears, representing a clear-cut decline criterion based 

on factual information. On the other hand, the "1-2_arrears" criterion represents a heuristic piece of information 

because it does not point to a strict outcome. Underwriters jointly examine the criterion of multiple rules to 

provide a final decision. In ER-X, each criterion in a rule is treated as an independent piece of evidence. 

 

Figure 3: Demonstrates a raw dataset (𝐷) and an aggregated dataset (𝒟ഥ) 

 Definition of evidence: A piece of evidence refers to a criterion in a rule. A 𝑗௧௛ rule has 𝑉௝ number of 

criteria such that 𝑣 ∈ {1, … , 𝑉௝}. A 𝑣௧௛ evidence in a 𝑗௧௛ rule is denoted by 𝑒௩,௝. A set of evidence (or set 

of criteria) in a 𝑗௧௛ rule can be represented as: 

𝑒௝ = ൛𝑒௩,௝, 𝑣 ∈ {1, … , 𝑉௝}ൟ,      ∀𝑗 ∈ {1, … , 𝐽}                                         (1) 

AI-enabled systems process borrowers' data integrated from various sources, such as credit bureaus, fraud 

intelligence, and digital loan applications, as a raw dataset (𝐷). In Figure 3, the left table illustrates the structure 

of a raw dataset, where 𝑄, 𝑞 ∈ {1, … , 𝑄}, represents the number of features (or columns), and 𝐼, 𝑖 ∈ {1, … , 𝐼}  

represents the number of instances (or rows). Each instance represents the data for a given borrower for a loan.  

Merging multiple data sources into a single raw dataset can introduce ambiguities due to missing values in 

independent input features and missing labels in the output feature. Each instance in the captured historical 

dataset is expected to correspond to an outcome representing a past decision on a loan application made either 
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by a human underwriter or an AI algorithmic decision-support system deployed within a lending firm. Let 𝑁 

denote the total number of anticipated outcomes (or decisions) such that 𝑛 ∈ {1, … , 𝑁}. The frame of 

discernment of a mutually exclusive and collectively exhaustive set of expected outcomes can be represented 

as: 

 Θ = {𝜃ଵ, … , 𝜃௡, … , 𝜃ே , 𝑛 ∈ {1, … , 𝑁}}                                           (2.1) 

In the context of lending decisions, the expected outcomes correspond to specific types of judgments made 

for loan applications. Expression (2.2) illustrates a set comprising two distinct lending decisions: 

Θ = {𝜃ଵ = 𝐹𝑢𝑛𝑑, 𝜃ଶ = 𝑅𝑒𝑗𝑒𝑐𝑡, 𝑛 ∈ {1,2}}                                            (2.2) 

A power set of the frame of discernment is denoted by 𝑃(Θ). The cardinality of the power set, indicating the 

total number of subsets it contains, is denoted by 𝑌 =  2ே such that 𝑦 ∈ {1, … , 𝑌}. Any subset indexed by 𝑦 is 

a part of 𝑃(Θ), such that 𝑦 ∈ 𝑃(Θ). The 𝑃(Θ) can be expressed as: 

𝑃(Θ) = {∅, {𝜃ଵ}, … , {𝜃ே}, {𝜃ଵ, 𝜃ଶ}, … , {𝜃ଵ, 𝜃௡}, … , {𝜃ଵ, … , 𝜃ேିଵ}, Θ}              (3) 

Raw credit data have higher dimensionality than the cardinality of a set of lending rules, such that 𝑄 ≥ 𝐽. 

Put simply, the datasets compiled from various sources have significantly more columns than the number of 

lending rules. Therefore, the 𝑄 number of columns in a raw dataset requires reshaping into 𝐽 columns for each 

lending rule to process information for lending decisions. The right table in Figure 3 shows the aggregated 

dataset (𝒟ഥ) extracted for a set of lending rules. It has 𝐽, 𝑗 ∈ {1, … , 𝐽} number of columns for each lending rule 

and 𝐼, 𝑖 ∈ {1, … , 𝐼} the number of rows for each borrower. A column for a rule is represented by 𝑒௝, where 𝑒 

denotes a piece of evidence and 𝑗 denotes a rule. A single data point is referred as 𝑥௜,௝.  The dataset (𝒟ഥ),  

aggregates information from various columns of the raw dataset and maps it into the lending rule-oriented 

dataset, 𝐷ொ → 𝒟ഥ ௃ . Figure 4 illustrates selecting the data for a rule "secured loan worst status code in all 

addresses". The worst status code in row 𝑖 = 0 is Default (DF), and 𝑖 = 2  is Voluntary Repossession (VR). 

The data for each rule for 𝑖௧௛ borrower is extracted from multiple columns of the raw dataset.  

 

Figure 4: An example of aggregation of a raw dataset to map data to a lending rule. Acronym meanings 
can be referred to in Table 3, Appendix A. 

Reliable data-driven algorithmic decisions require comprehensive vertical and horizontal data coverages. 

Horizontal coverage is the comprehensiveness of the data captured to ensure that every potential state or 
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condition stipulated by the criteria in the lending rules is represented. Exhaustive horizontal coverage can be 

achieved through the collaboration between developers and domain experts. The developers can easily pinpoint 

some straightforward columns in raw data for a given rule, and the rest of the columns can be identified with 

the assistance of domain experts. The vertical coverage is sufficient data support to represent the majority (most 

frequent type of borrowers) and minority cases (loan applications of rare kinds of borrowers) and consistency 

in outcome (past decisions or judgments). However, attaining exhaustive vertical coverage is typically 

unattainable because a dataset in a lending firm may only represent a limited group of borrowers, while other 

unconventional borrowers may be underrepresented or not represented at all. 

3.2 ER-X 

Preliminary definitions for ER-X:   

 Definition of the probability mass: The degree of uncertainty for a piece of evidence is measured by its 

extent of support for a given subset of outcomes in the power set 𝑦, 𝑦 ∈ 𝑃(Θ). It shows how strongly a 

piece of evidence supports 𝑦. A piece of evidence pointing to an outcome 𝑦 is denoted by 𝑒௬,௩,௝, and its 

probability mass is denoted by 𝑚௬,௩,௝. 

 Definition of the body of evidence (BOE): Focal elements are the non-zero probability masses of evidence 

for a given outcome within a power set 𝑃(Θ). The probability mass of each focal point can be obtained 

from multiple sources, such as estimation from data and judgment from domain experts, as their subjective 

degree of belief (Eriksson & Hájek, 2007). The BOE is the set of all focal elements. It can be represented 

as a distribution of probability mass as follows:   

𝑒௩,௝ = ൛൫𝑒௬,௩,௝, 𝑚௬,௩,௝൯, ∀𝑦 ∈ 𝑃(Θ), ∑ 𝑚௬,௩,௝௬∈௉(஀) = 1ൟ                              (4) 

       where the pair ൫𝑒௬,௩,௝, 𝑚௬,௩,௝൯ is the focal element of evidence if 𝑚௬,௩,௝ > 0.  

 Definition of the weight of evidence: The weight of evidence ൫𝑤௬,௩,௝൯ is the importance of a piece of 

evidence in data, such that 0 ≤ 𝑤௬,௩,௝ ≤ 1.  

 Definition of the reliability of evidence: The reliability of evidence (𝑟௬,௩,௝) is a measure of how accurately 

the evidence indicates a subset of outcomes in the power set such that 0 ≤ 𝑟௬,௩,௝ ≤ 1.  

 Definition of ultimate-true decision: The "ultimate-true decision" is a reference point for a piece of 

evidence against which an algorithmic decision and a subjective judgment are evaluated. The "ultimate-

true decision" is estimated and validated by the knowledge elicitation of multiple human experts.     

Data aggregated from various sources may suffer from limited vertical and horizontal coverage due to 

informational uncertainty and unforeseen uncertainty within a decision-task environment (Sachan, et al., 2021). 

Therefore, the BOE should not be a primitive estimation from the data. The subjective judgment of human 

experts can be incorporated to approximate the ultimate-true decision. Suppose, the BOE is collected from 𝐹 

number of sources such that 𝑓 ∈ {1, … , 𝐹}. If multiple sources support a BOE, then the evidence is relatively 
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important in comparison to a highly conflicting BOE (Chen, et al., 2018). The BOE estimated from data is 

represented by 𝑓 and acquired from domain experts 𝑓ᇱ, such that 𝑓, 𝑓ᇱ ∈ {1, … , 𝐹}.    

3.2.1 Estimate Probability Mass of Evidence from Data 

3.2.1.1 Data Transformation by Similarity Distribution 

(a) Numerical or Continous Data Transformation – Single Evidence 

A sample 𝑥௜,௝ in a dataset (𝒟ഥ) for a 𝑗௧௛ rule pointing to an outcome 𝑦 can be represented as: 

൫𝑥௜,௝, 𝑦൯;  where 𝑖 ∈ {1, … , 𝐼}, 𝑗 ∈ {1, … , 𝐽}, and 𝑦 ∈ 𝑃(Θ)                                 (5) 

Each sample of a 𝑗௧௛ rule is transformed into a similarity distribution across its set of criteria  

𝑒௝ = ൛𝑒௩,௝| 𝑣 ∈ {1, … , 𝑉௝}ൟ to approximate the distribution between the sample and its recorded outcome. The 

transformed data 𝑍൫𝑥௜,௝൯ can be represented in the following way: 

𝑍൫𝑥௜,௝൯ = ൛൫𝑒௩,௝, 𝛼௩,௝
௜ ൯;  𝑣 ∈ ൛1, … , 𝑉௝ൟ, 𝑖 ∈ {1, … , 𝐼}, and 𝑗 ∈ {1, … , 𝐽}ൟ                    (6) 

In Expression (6), 𝛼௩,௝
௜  is the degree of similarity to which a sample 𝑥௜,௝ match to the values in a set of criteria 

of a 𝑗௧௛ rule. The transformation of continuous data is summarised below:  

𝛼௩,௝
௜ = ቐ

൬𝛼௩,௝
௜ =  

௘ೡశభ,ೕି  ௫೔,ೕ

௘ೡశభ,ೕି ௘ೡ,ೕ 
, 𝛼௩ାଵ,௝

௜ = 1 − 𝛼௩,௝
௜ ൰ , 𝑖𝑓 𝑒௩,௝ ≤ 𝑥௜,௝ ≤ 𝑒௩ାଵ,௝

ቀ𝛼௩ᇲ,௝
௜ = 0, 𝛼௩ᇲାଵ,௝

௜ = 0ቁ , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  𝑒௩ᇲ,௝ ≰ 𝑥௜,௝ ≰ 𝑒௩ᇲାଵ,௝

                 (7)   

In Expression (7), 𝑣ᇱ ≠ 𝑣 and 𝑣, 𝑣ᇱ ∈ ൛1, … , 𝑉௝ൟ.  

 (b) Categorical Data Transformation – Single Evidence 

If the data for 𝑗௧௛ rule has categorical values, then the value in its set of criteria would be categorical. A 

categorical sample 𝑥௜,௝ would have 100% similarity to one of the categorical criteria. The transformation of 

categorical data is summarised below: 

𝛼௩,௝
௜ = ൜

1, 𝑖𝑓 𝑥௜,௝ = 𝑒௩,௝

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 𝑥௜,௝ ≠ 𝑒௩,,௝
                                                           (8) 

In Expression (8), 𝑣ᇱ ≠ 𝑣 and 𝑣, 𝑣ᇱ ∈ ൛1, … , 𝑉௝ൟ. Table 1 illustrates the transformation process of numerical and 

categorical data samples based on a set of criteria in a rule. For instance, consider a rule related to "Credit Score" 

has numerical criteria as {"0","100","300","600"}. A data sample, denoted as 𝑥௜,௝ = 253, falls within the range 

of 100 to 300. This numerical data point was then mapped to two membership values: 𝛼ଶ,௝
௜ = 0.235 and 𝛼ଷ,௝

௜ =

0.765. Similarly, the rule regarding the "Number of Secured Loan Defaults in the Last 24 Months" has 

categorical criteria, such as {"0_arrears", "1-2_arrears", "3+_arrears"}. A given data sample for this rule is 

𝑥௜,௝ = "1 − 2_arrears", which belongs exclusively to the "1-2_arrears" category in the criteria set.  
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Table 1: Example of the transformation of numerical and categorical data 
Data Type Rule 𝒙𝒊,𝒋 𝒁൫𝒙𝒊,𝒋൯ 
Numerical Credit Score 253 {("0", 0.0), ("100", 0.235), ("300", 0.765), ("600", 

0.0)} 
Categorical Number of 

Secured Loan 
Defaults in the 
Last 24 Months 

1-2_arrears {("0_arrears", 0), ("1-2_arrears", 1), ("3+_arrears", 0)} 

 

 (c) Generate Joint Transformation Data - Joint Evidence 

The previous section has shown the method to transform numerical or categorical data for an individual 

rule with single independent evidence. A joint evidence space is obtained by combining a single piece of 

evidence from different rules. The data for a set of rules can have mixed data, i.e. combined realization of 

numerical and categorical data type or either. Suppose, we want to combine 𝑣௧௛ criteria in a 𝑗௧௛ rule and 𝑣′௧௛ 

criteria in a 𝑗′௧௛ rule such that 𝑣 ∈ {1, … , 𝑉௝} and 𝑣ᇱ ∈ {1, … , 𝑉௝ᇲ
ᇱ }, respectively. The joint degree of similarity 

(𝛼
௩ೕ,௩

ೕᇲ
ᇲ

௜ ) for each 𝑖௧௛ instance approximates the distribution across a set of joint pieces of evidence. The sum 

of the joint degree of similarity for all joint pieces of evidence for each 𝑖௧௛ instance is equal to 1, summarized 

below: 

𝛼
௩ೕ,௩

ೕᇲ
ᇲ

௜ = 𝛼௩,௝
௜  𝛼௩ᇲ,௝ᇲ

௜                                                             (9) 

here, 𝑣 ≠ 𝑣ᇱ and 𝑣 ∈ {1, … , 𝑉௝},𝑣ᇱ ∈ {1, … , 𝑉௝ᇲ
ᇱ }  

∑ ൬∑ 𝛼
௩ೕ,௩

ೕᇲ
ᇲ

௜
௩ᇲ∈{ଵ,…,௏

ೕᇲ
ᇲ } ൰௩∈{ଵ,…,௏ೕ} = 1                                           (10) 

Figure 5 demonstrates the process of generating joint transformation data for two distinct rules, labeled 𝑗 

and 𝑗ᇱ. Table A1 corresponds to the column 𝑒௝ associated with rule 𝑗 and Table B1 depicts the column 𝑒௝ᇲ  

associated with rule 𝑗ᇱ in an aggregated dataset (𝒟ഥ). Tables A1 and B1 undergo numerical transformations 

based on the methods presented in Section 3.2.1.1, subsections (a) and (b). The resultant data from the 

transformations for the individual rules 𝑗 and 𝑗ᇱ are displayed in Tables A2 and B2, respectively. Table C1 

features the conjoined transformation of data representing joint evidence in rules 𝑗 and 𝑗ᇱ by methods presented 

in Section 3.2.1.1, subsection (c). 
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 Figure 5: Data transformation process for joint evidence  

3.2.1.2 Estimate Basic Probability of Evidence  

The sample pair ൫𝑥௜,௝, 𝑦൯ of each 𝑖௧௛ instance of a 𝑗௧௛ rule is transformed by the method described in Section 

3.2.1.1 ൫𝑥௜,௝, 𝑦൯ → ൫𝑍൫𝑥௜,௝൯, 𝑦൯. Table A and B in Figure 6 show the sample pair and the transformed sample 

pair, respectively. A contingency table is created from the transformed data table containing the sum of the 

matching degree of each 𝑣௧௛ criteria paired with an outcome 𝑦 ∈ 𝑃(Θ). Table C in Figure 6 is a contingency 

table, where 𝑎௬,௩,௝ = ൫∑ 𝛼௩,௝
௜  | ൫𝑍൫𝑥௜,௝൯ = 𝛼௩,௝

௜ , 𝑦൯ூ
௜ୀଵ ൯ is the sum of matching degrees of a 𝑣௧௛ criterion in a 𝑗௧௛ 

rule which belongs to a class 𝑦. 

 

 

Figure 6: Illustrates the contingency table of a single piece of evidence 

 The sum of the matching degrees of all criteria for a given outcome is denoted by 𝛿௬. It is the row-wise sum 

of the matching degrees in a contingency table, represented as 𝛿௬ = ∑ 𝑎௬,௩,௝
௩ೕ

௩ୀଵ . The sum of the matching 

degrees of all subsets of outcomes for a given criterion is denoted by 𝜏௩. This is determined by summing the 
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matching degrees column-wise in a contingency table, represented as 𝜏௩ = ∑ 𝑎௬,௩,௝௬∈௉(஀) . The overall 

summation of matching degrees across both rows and columns in the contingency table equates to the total 

number of instances in the dataset, denoted by 𝐼. Mathematically, this relationship is expressed as: 

∑ 𝜏௩௩∈{ଵ,…,௏ೕ} = ∑ 𝛿௬௬∈௉(஀) = 𝐼. If any sample data is missing, the matching degree for all criteria in a rule is 

filled with zero. The missing samples are not included in estimating the support for a piece of evidence by 

probability mass.  

Let 𝐿௬,௩,௝
௙  be the likelihood of observing 𝑣௧௛ criteria in a 𝑗௧௛ rule for an outcome 𝑦 (a piece of evidence 

𝑒௬,௩,௝ ). Here, 𝑓 represents estimation from data. It is calculated from the contingency table as follows: 

𝐿௬,௩,௝
௙

=
௔೤,ೡ,ೕ

ఋ೤
, ∀𝑦 ∈ 𝑃(Θ)                                                        (11) 

The basic probability is calculated from normalized likelihood as follows:  

𝑝௬,௩,௝
௙

=
௅೤,ೡ,ೕ

೑

∑ ௅
೤,ೡ,ೕ
೑

೤∈ು(౸)

, ∀𝑦 ∈ 𝑃(Θ)                                                   (12) 

Here, 𝑝௬,௩,௝
௙  is the basic probability of evidence 𝑒௬,௩,௝. The sum of the probability mass of all 𝑉௝ criteria in a rule 

is one.    

3.2.1.3 Reliability and Weight of Evidence  

The reliability (𝑟௬,௩,௝) of evidence in a rule depends on the number of samples 𝑥௜,௝ for the outcome 𝑦 (Xu, et 

al., 2017). The reliability of 𝑣௧௛ evidence in a 𝑗௧௛ rule pointing to an outcome 𝑦 can be obtained from the 

contingency table by the following Expression: 

𝑟௬,௩,௝ =
ఈ೤,ೡ,ೕ

௠௔௫೤∈ು(౸)ఈ೤,ೡ,ೕ
 ,   ∀𝑦 ∈ 𝑃(Θ)                                             (13)  

The overall reliability of evidence  (𝑟௩,௝) is the sum of the products of 𝑟௬,௩,௝ and 𝑝௬,௩,௝
௙  for ∀𝑦 ∈ 𝑃(𝛩), as shown 

below:  

𝑟௩,௝ =  ∑ 𝑟௬,௩,௝  𝑝௬,௩,௝
௙

௬∈௉(௵)                                                      (14) 

The relative reliability of a rule can be quantified as the average reliability across all its individual pieces of 

evidence:  

𝑟௝ =  
∑ ௥ೡ,ೕ

ೇೕ
ೡసభ

∑ ൬∑ ௥ೡ,ೕ

ೇೕ
ೡసభ ൰

಻
ೕసభ

                                                                (15) 

Similarly, the relative weight, that is, the importance of a rule or its significance, is computed as the average 

weight of each piece of evidence: 

𝑤௝ =  
∑ ቀ∑ ௪೤,ೡ,ೕ  ௣೤,ೡ,ೕ

೑
೤∈ು(೭) ቁ

ೇೕ
ೡసభ

∑ ൤∑ ቀ∑ ௪೤,ೡ,ೕ ௣
೤,ೡ,ೕ
೑

೤∈ು(೭) ቁ
ೇೕ
ೡసభ ൨

಻
ೕసభ

                                                 (16) 
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3.2.1.4 Probability Mass of Evidence 

The probability mass of a piece of evidence is the weighted basic probability. The weight of a piece of 

evidence for a class is a parameter in ER-X. It is trained by data-driven optimization. The probability mass of 

each piece of evidence is given as follows: 

𝑚௬,௩,௝
௙

= 𝑤௬,௩,௝ 𝑝௬,௩,௝
௙                                                              (17) 

3.2.1.5 Combine Probability Mass of Multiple Evidence from Data 

Finally, utilize the C-MAKER inference method to combine multiple pieces of evidence in all 𝐽 rules to 

get inference by joint probability mass. The rules are combined iteratively. Each iteration combines two pieces 

of evidence. The interrelation index between two pieces of evidence, 𝑒௩,௝ and 𝑒௩ᇲ,௝ᇲ is estimated to combine 

multiple pieces of evidence pointing to the same outcome 𝑦, 𝑦 ∈ 𝑃(𝛩): 

𝜓௬,௩ೕ,௩
ೕᇲ
ᇲ =

⎩
⎪
⎨

⎪
⎧0 ,    if  𝑝௬,௩,௝

௙
= 0 or 𝑝

௬,௩ᇲ,௝ᇲ
௙

= 0

௣
೤,ೡೕ,ೡ

ೕᇲ
ᇲ

೑

௣
೤,ೡ,ೕ
೑

 ௣
೤,ೡᇲ,ೕᇲ
೑ ,          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     

                                         (18) 

where, 𝜓௬,௩ೕ,௩
ೕᇲ
ᇲ  is the interrelation index of a joint evidence 𝑒௩ೕ,௩

ೕᇲ
ᇲ  pointing to an outcome 𝑦, 𝑦 ∈ 𝑃(𝛩). The 

joint basic probability mass is calculated from joint transformation data by following the approach in Section 

3.2.1.2. A joint contingency table between multiple pieces of evidence in different rules is created to obtain 

joint basic probability mass. The test to evaluate the feasibility of combining multiple pieces of evidence to 

generate joint probability mass can be conducted by sparse index (Sachan, et al., 2021). The sparse index (𝒮) is 

given by:  

𝒮 =
ଷ𝒞ℛ𝒯

𝒞𝒯ାℛ𝒯ା𝒞ℛ
                                                                     (19) 

where 𝒞ϵ[0,1] is the proportion of non-empty columns in a joint contingency table, ℛϵ{0,1} indicate non-zero 

instances for singleton subsets in the power set of the frame of discernment, and 𝒯ϵ[0,1] is the proportion of 

the number of complete samples in a joint contingency table. The highest value of the sparse index is one, which 

represents zero missing values in the joint contingency table, and its lowest value is zero, which represents an 

empty joint contingency table.   

Let the joint support for a proposition 𝑦 by two pieces of evidence 𝑒௬,௩,௝ and 𝑒௬,௩ᇲ,௝ᇲ be denoted by 𝑚ഥ
௬,௩ೕ,௩

ೕᇲ
ᇲ

௙ . 

The joint probability mass (𝑚ഥ
௬,௩ೕ,௩

ೕᇲ
ᇲ

௙
) is given by: 

𝑚ഥ
௬,௩ೕ,௩

ೕᇲ
ᇲ

௙
=

⎩
⎪
⎨

⎪
⎧ 0                                                 ,             𝑦 = ∅                

௠
೤,ೡೕ,ೡ

ೕᇲ
ᇲ

೑

∑  ௠
೤,ೡೕ,ೡ

ೕᇲ
ᇲ

೑
ା ௠

ು(ഇ),ೡೕ,ೡ
ೕᇲ
ᇲ

೑
೤∈ು(೭)  

    ,   ∀𝑦 ∈ 𝑃(𝛩), 𝑦 ≠ ∅    
              (20a) 
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𝑚
௬,௩ೕ,௩

ೕᇲ
ᇲ

௙
= ቂ൫1 − 𝑟௩ᇲ,௝ᇲ൯𝑚௬,௩,௝

௙
+ ൫1 − 𝑟௩,௝൯ 𝑚

௬,௩ᇲ,௝ᇲ
௙

ቃ + ∑ 𝜓஻,஼,௩ೕ,௩
ೕᇲ
ᇲ஻∩஼ୀ௬ 𝑚஻,௩,௝

௙
𝑚

஼,௩ᇲ,௝ᇲ
௙            (20b) 

The residual support (𝑚
௉(௵),௩ೕ,௩

ೕᇲ
ᇲ

௙ ) in Equation (20a) is earmarked to the power set as given by: 

𝑚
௉(௵),௩ೕ,௩

ೕᇲ
ᇲ

௙
= 𝑚௬,௩,௝

௙
 𝑚

௵,௩ೕ,௩
ೕᇲ
ᇲ

௙                                          (20c) 

The weight of evidence is the training parameter. It is the variable that controls and estimates the 

characteristics of training data. The parameters are fine-tuned to bridge the gap between the expected and 

predicted probability masses for every data instance. The optimization problem aims to determine the optimal 

weight for each piece of evidence that minimizes an objective function. The objective function in ER-x 

quantifies the square of the difference between the expected and predicted probability masses, normalized by 

the total number of data instances. 

The objective function to train the weight for each piece of evidence is:  

ெ௜௡௜௠௜௭௘:௙(௪)ୀ
భ

మ಺
 ∑ ∑ (௠೚ି௠ഥ (௪))మ

೤∈ು(౸)
಺
೔సభ

௖௢௡௦௧௥௔௜௡௧௦:   ଴ஸ௪ ஸଵ
                                              (21)        

In Equation (21), the observed and estimated probability masses of each instance 𝑖 are simply denoted by 𝑚௢ 

and 𝑚ഥ(𝑤), respectively. The objective function 𝑓(𝑤) minimizes the error between the observed (𝑚௢) and 

estimated (𝑚ഥ(𝑤)) probability masses across all instances in the dataset. Variable 𝑤 simply denotes the weight 

of a piece of evidence ൫𝑤௬,௩,௝൯ and the joint piece of evidence ൬𝑤௬,௩ೕ,௩
ೕᇲ
ᇲ ൰.  

3.2.2 Probability Mass of Evidence from Domain Experts 

The loan underwriters are domain experts. The subjective judgment of multiple underwriters can be acquired 

to understand the variability in decisions in a lending firm. An underwriter can provide judgment as a degree of 

belief by examining a single and a joint piece of evidence. The degree of belief reflects the probability mass of 

evidence for a given outcome. 

The judgments by single piece of evidence can be trusted if it has direct power to provide a firm decision 

for a loan application regardless of other evidence. For example, a lending firm has strict decline policies for 

borrowers with "two or more bankruptcies in the past" and "six or more credit defaults in the past 24 months". 

Suppose BOE of both pieces of evidence is acquired from an underwriter, then it is expected that all 

underwriters would provide full support towards the reject decision and zero support for any other outcome. If 

the BOE of both pieces of evidence is estimated from data, then it is expected that the estimated probability 

mass of both pieces of evidence is one; 𝑚ഥ௬,௩,௝
௙

= 1 (𝑦 is reject decision) because all samples in the dataset for 

pieces of evidence would have full support for rejection decision and zero support for other decisions. However, 

inconsistency in outcome from data could arise due to unintentional error by human underwriters, biases in an 

existing decision-support system, a large proportion of missing data, and recent amendments in lending policy 

and regulations. This type of inconsistency is high for evidence pointing to heuristic information.    
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Most decisions by underwriters are given by collective examination of multiple evidence instead of single 

evidence. For example, suppose a borrower's data has not activated clear-cut declinable criteria in the rules like 

in the previous example for single evidence. In that case, an underwriter jointly evaluates other remaining 

evidence, such as "credit score = 550", "unsecured loan defaults in last 24 months = 0", and "secured loan 

default in last 24 months = 1". In this case, some underwriters might reject this loan due to unconvincing credit 

history on account of two secured loan defaults. In contrast, some underwriters might approve funding due to a 

good credit score and few defaults in secured and unsecured loans. This indicates variability in decisions by 

domain experts. The ultimate-true decision for such cases can be approximated by combining the BOE from 

multiple underwriters to avoid noisy judgment by experts that would reflect in future training data. 

 

Figure 7: Example of the reliability of a piece of joint evidence. In this diagram, the powerset is the subset 
of two decisions, 𝐹 (fund) and 𝑅 (reject) 

Figure 7 illustrates the reliability of joint pieces of evidence estimated by the amount of data support (number 

of samples) in the joint evidence space represented by the contingency table. For simplicity, a contingency table 

of two joint pieces of evidence is shown; however, more than two pieces of evidence can be combined. Usually, 

all possible joint pieces of evidence in the real-world data are not available, which results in empty columns in 

a contingency table. The piece of evidence reflecting the most recurrent characteristic of borrowers occurring 

in a lending firm has a large number of instances, whereas the characteristics of a rare type of borrowers may 

have a very small or almost zero number of instances. 

Table 2: Consistency between estimated probability mass of evidence from data and subjective 
judgment from domain experts 

Probability Mass of Evidence 

(Following applies to both single and joint evidence) 

Outcome 

𝑦, 𝑦ᇱ ∈ 𝑃(Θ) 

Decision 
Consistency 

between data and 
domain experts 

All samples in the data (high reliability of evidence) and 
experts point to only one outcome. The probability mass of 
evidence estimated from data (𝑚ഥ) and obtained from 

𝑦 = 𝑦ᇱ Yes 

Ultimate-true 
decision 
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underwriters as a degree of belief is approximately equal to 
one.  

𝑚ഥ
௬,௩ೕ,௩

ೕᇲ
ᇲ

௙
≅ 𝑚ഥ

௬ᇲ,௩ೕ,௩
ೕᇲ
ᇲ

௙ᇲ

≅ 1 

𝑦 ≠ 𝑦ᇱ No 

Most samples for a piece of evidence (moderate reliability 
of evidence) and experts strongly point to one of the 
outcomes. The probability mass of evidence estimated from 
data (𝑚ഥ) and obtained from underwriters as a degree of 
belief are almost equal. 

𝑚ഥ
௬,௩ೕ,௩

ೕᇲ
ᇲ

௙
≈ 𝑚ഥ

௬ᇲ,௩ೕ,௩
ೕᇲ
ᇲ

௙ᇲ

, ∀𝑦, 𝑦ᇱ ∈ 𝑃(Θ) 

𝑦 = 𝑦ᇱ Yes 

𝑦 ≠ 𝑦ᇱ No 

Samples for a piece of evidence scattered across different 
outcomes (low reliability of evidence). Unequal probability 
mass of a piece of evidence estimated from data and 
obtained from underwriters as a degree of belief.  

𝑚ഥ
௬,௩ೕ,௩

ೕᇲ
ᇲ

௙
≠ 𝑚ഥ

௬ᇲ,௩ೕ,௩
ೕᇲ
ᇲ

௙ᇲ

, ∀𝑦, 𝑦ᇱ ∈ 𝑃(Θ) 

𝑦 = 𝑦ᇱ No 

𝑦 ≠ 𝑦ᇱ No 

A zero sample is used for the evidence for all outcomes in 
the dataset; therefore, the probability mass of a piece of 
evidence can be considered zero because it cannot be 
estimated without representative data. The information 
required to estimate the probability mass is absent from the 
data. 

𝑚ഥ
௬,௩ೕ,௩

ೕᇲ
ᇲ

௙
≠ 𝑚ഥ

௬ᇲ,௩ೕ,௩
ೕᇲ
ᇲ

௙ᇲ

 

𝑚ഥ
௬,௩ೕ,௩

ೕᇲ
ᇲ

௙
= 0 and 𝑚ഥ

௬ᇲ,௩ೕ,௩
ೕᇲ
ᇲ

௙ᇲ

≠ 0 

𝑦 = 𝑦ᇱ No 

𝑦 ≠ 𝑦ᇱ No 

 
Table 2 and Figure 7 demonstrate four scenarios to investigate the consistency between a decision by data 

and expert judgment. The human expert is denoted by 𝑓ᇱ, and data is denoted by 𝑓. In the first scenario, the 

estimated probability mass of a joint piece of evidence derived from data is approximately equal to one for 

an outcome and is roughly equivalent to zero for other outcomes in a powerset because all evidence instances 

point to a single outcome (full support for an outcome). If the probability mass of evidence for an outcome 

estimated from data is equal to subjective judgment as a degree of belief from an expert, such that  

𝑚ഥ
௬,௩ೕ,௩

ೕᇲ
ᇲ

௙
≅ 𝑚ഥ

௬ᇲ,௩ೕ,௩
ೕᇲ
ᇲ

௙ᇲ

≅ 1 and 𝑦 = 𝑦ᇱ; 𝑦, 𝑦ᇱ ∈ 𝑃(Θ), then the judgment consistency between data and an 

expert can be validated. This uniformity demonstrates the potential for automated decisions. These single or 

joint pieces of evidence are presumed to point to the "ultimate-true decision". 

Similarly, in the second scenario, the probability mass of evidence for an outcome estimated from data is 

almost equal to that obtained from underwriters for all outcomes in a powerset. In this case, the judgment 

inconsistency between data and an expert is not very high, and the probability mass integrated from data and 

experts can be utilized to approximate the "ultimate-true decision". For other scenarios, human underwriters 
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are required to provide a manual decision on loan applications due to a lack of consistency in a decision by 

data and experts.  

 

3.2.3 Relative Consistency to Estimate Ultimate-True Decision 

The purpose of consistency analysis is to audit the assessment given by human experts in the past now 

reflected in the data, and manually adjust the output of the algorithm to improve the performance. This task 

establishes a connection between domain experts and developers.    

The relative inconsistency between multiple experts and data for a given piece of evidence can be measured 

by the degree of credibility. The degree of credibility of a source of information for a given piece of evidence 

is measured by dissimilarity or lack of similarity between the probability mass of the evidence (Yong, et al., 

2004). The Jousselme distance based on Cuzzolin's geometric interpretation of the evidence is used to measure 

the dissimilarity between two sources (Jousselme & Maupin, 2012). Suppose, two BOEs for a joint piece of 

evidence 𝑒௩ೕ,௩
ೕᇲ
ᇲ  is obtained from different sources of judgment, a loan underwriter 𝑓ᇱ and data 𝑓, such that 

𝑓, 𝑓ᇱ ∈ {1, … , 𝐹}. A vector of the basic probability of a joint piece of evidence ቆ𝑝௙ሬሬሬሬ⃗ ൬𝑒௩ೕ,௩
ೕᇲ
ᇲ ൰ቇ under the power 

set of the frame of decrement from a source 𝑓 is simply denoted by 𝑝௙ሬሬሬሬ⃗  . The difference between BOEs from 

two sources ቆ𝑑௙,௙ᇲ ൬𝑒௩ೕ,௩
ೕᇲ
ᇲ ൰ቇ for a piece of evidence is simply denoted by 𝑑௙,௙ᇲ. The similarity measure 

𝑆𝑖𝑚௙,௙ᇲ from two different sources for a piece of evidence (𝑒௩,௝) is: 

𝑆௙,௙ᇲ = 1 − 𝑑௙,௙ᇲ = ට
ଵ

ଶ
൫𝑝௙ሬሬሬሬ⃗ − 𝑝௙ᇲሬሬሬሬሬ⃗ ൯

்
𝐷൫𝑝௙ሬሬሬሬ⃗ − 𝑝௙ᇲሬሬሬሬሬ⃗ ൯                                       (22) 

In Expression (22), 𝐷 is defined as 𝐷(𝑦, 𝑦ᇱ) =
ห௬∩௬ᇲห

|௬∪௬ᇲ|
 , 𝑦, 𝑦ᇱ ∈  𝑃(Θ) and |. | represents the cardinality. The 

BOEs from different sources have high dissimilarity if the distance between BOEs is large and vice versa. If 

there are 𝐹 sources for BOE acquisition, then the similarity between a pair of sources can be presented through 

the following similarity matrix 𝑆𝑀𝑀: 

𝑆𝑀𝑀 =

⎣
⎢
⎢
⎢
⎡

1 ⋯ 𝑆ଵ,௙ᇲ ⋯ 𝑆ଵ,ி
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⋮
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⎥
⎥
⎥
⎤

                                              (23) 

The degree of support for a BOE from a 𝑓௧௛ source for a given piece of evidence (𝑒௩,௝)  is: 

𝑆𝑢𝑝௙ = ∑ 𝑆௙,௙ᇲ
ி
௙ୀଵ

௙ஷ௙ᇲ

                                                         (24) 

The degree of credibility 𝐶𝑅𝐷௙ is the normalized degree of support: 

𝐶𝑅𝐷௙ =
ௌ௨௣೑

∑ ௌ௨௣೥೥∈{భ,…,ಷ}
                                                            (25) 
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In Expression (25), 𝐶𝑅𝐷௙ is the simple representation of the degree of credibility of a source for a joint 

piece of evidence 𝐶𝑅𝐷௙(𝑒௩ೕ,௩
ೕᇲ
ᇲ ). The relative credibility of multiple sources is evenly distributed if the 

probability mass for different outcomes in the powerset is the same and vice versa. The probability mass in a 

BOE is information from multiple sources. It can be fused together to estimate the "ultimate-true decision" 

൬𝑀௬,௩ೕ,௩
ೕᇲ
ᇲ ൰ by considering the degree of credibility of each source to estimate weighted combined probability 

mass, as follows: 

𝑀௬,௩ೕ,௩
ೕᇲ
ᇲ = ∑ 𝐶𝑅𝐷௭ 𝑚ഥ

௬,௩ೕ,௩
ೕᇲ
ᇲ

௭
௭∈{ଵ,…,ி}                                                 (26) 

4. Study on a FinTech Transformation in Specialist Lending Firm 

4.1 Lending Rules and Uncertain Lending Data 

This study is conducted on a specialist lending firm based in the UK that provides mortgage loans to 

underserved communities. These communities often struggle with less than optimal credit scores, hindering 

their chances of securing a successful loan from a retail bank. This demographic requires a complex and 

time-intensive manual underwriting process. The firm intends to investigate the decision consistency 

between data and human underwriters to evaluate their potential to streamline their lending process through 

the integration of AI, marking its transition into a FinTech firm. The evaluation process is shown in Figure 

8. 

The lending firm established seven distinct lending rules, each featuring decline and referral criteria as 

the guideline for underwriters to provide mortgage loan decisions, as shown in Figure 9. The criteria in each 

rule are mutually exclusive. The subjective judgment by human underwriters on loan applications centres 

around these rules. They analyze borrower data captured from a digital application, data obtained from the 

Credit and Fraud Intelligence Bureau, and supporting documents (proof of ID, address history, and income) 

to satisfy the conditions in the rules. The data is captured by a document processing tool from digital 

applications and borrower-submitted supporting documents. However, the tool faced challenges in the 

accurate extraction of unstructured data from scanned documents through Optical Character Recognition 

(OCR), necessitating manual verification. A customer credit and fraud bureau provided information to verify 

identity, default, and fraud linked to an application's residence (current address, previous address, and 

previous linking address). 

The data relevant to each rule is compiled following the procedure outlined in Section 3.1. Borrower 

affordability is then assessed by evaluating sustainable income, expenditure, and existing debts to estimate 

the Stressed-Maximum Affordability Monthly Repayment (Sachan, et al., 2020). The complete dataset 

merged from different sources had 5700 loan applications or instances. It had 26.8% rejected and 73.2% 

funded cases.  
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Figure 8: Process to evaluate decision consistency between data and domain experts 
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Figure 9: Decline and referral rules for loan underwriting. A full definition of acronyms for criteria can be 

seen in Table 4, Appendix A.   

4.2 Evaluating Criteria in Lending Rules and Processing Time 

The augmentation of human intelligence in AI starts by first getting insight into data serving the AI 

algorithm. A rule weight can be interpreted as the global importance of a feature for the rule in a dataset. 

Reliability can be interpreted as the capability of the feature to point correctly to a particular decision. Figure 

10 shows the relative weight and reliability of rules arranged in decreasing order for balanced and imbalanced 

data. The rules R16, R15, and R14 on property valuation, credit score, and affordability status have the 

highest weight and reliability in aggregated lending data. This implies that data for these rules has the caliber 

to point strongly towards a decision, and in general, they were critical in estimating decisions.  

Certain criteria within these rules, such as "R14 = pass", "R15 = 500", "R15 = 600", and "R16 = valuer 

valuation", have a high probability mass for the funding decision. Conversely, criteria such as "R14 = fail" 

and "R15 = 0", have a high probability towards a reject decision, as shown in the left column of Figure 11. 

It shows the probability mass for two outcomes in the powerset of frame of discernment 𝛩 = {{𝐹}, {𝑅}, ∅ =

{𝐹, 𝑅}}, where F stands for the fund, R stands for the reject, and the set {𝐹, 𝑅}  is empty due to the absence 

of nondeterministic recorded decisions and no missing outcome in the output feature in the dataset. The 

performance of the ER-X framework was compared with that of a deep neural network (DNN), a decision 

tree, and logistic regression.  

Like any other machine learning algorithm, ER-X is susceptible to overfitting on the training data, which 

can result in poor performance on validation or unseen data. The k-fold cross-validation can be used as a 

regularization technique to suppress overfitting. In this approach, an independent test set is initially set aside 

for the final model evaluation; it is not used during the 𝑘-fold cross-validation process. The k-fold cross-

validation of the remaining training dataset is partitioned into 𝑘 equally sized folds or subsets. An AI algorithm 

is trained on 𝑘 − 1 folds and evaluated on a one-fold left out. This procedure is repeated 𝑘 times, each time 

with a different fold serving as the validation set. 
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Figure 10: Importance (𝑤௝) and reliability (𝑟௝) of lending rules 

 

The ER-X was applied to the 𝑘 cross-validation set (𝑘 = 5 could be an arbitrary choice). Both the weight 

and reliability of the evidence are affected by imbalanced classes in a dataset. The Synthetic Minority Over-

sampling Technique (SMOTE) technique has been implemented to balance minority classes by generating 

synthetic instances  ቀ𝑥௜ = ൫𝑥௜,௝, 𝑗 ∈ {1, … , 𝐽}൯ቁ around the decision region of the minority class (Almaghrabi, 

et al., 2021). After balancing the classes using SMOTE, ER-X was applied to 𝑘 different cross-validation sets 

to data balanced by SMOTE and imbalanced data. After cross-validation, the model version that exhibited the 

best performance on the validation folds was selected for the final assessment on an independent test set that 

was previously set aside. The dataset consisted of 5700 loan applications. A stratified one-sixth portion of the 

data was kept aside for testing purposes. The stratification process ensures that the proportion of samples from 

each class in the subset is representative of the entire dataset (Sechidis, et al., 2011). The remaining data were 

utilized for 5-fold cross-validation. 

Table 8 in Appendix B presents the average accuracy metrics of the 5-fold cross-validation set and an 

independent test set for balanced (by SMOTE) and imbalanced datasets across four models: ER-X, DNN, 

Decision Tree, and Logistic Regression. In both balanced and imbalanced datasets, ER-X's performance is 

relatively close to DNN and is better than the decision tree and logistic regression; however, the DNN is not 

inherently interpretable and cannot incorporate expert knowledge. A similar trend was observed in the 

evaluation of the independent test set. However, model-agnostic and model-specific methods exist to interpret 

decisions by DNNs. The task of decomposing non-linearly transformed decisions made by DNNs is an active 

area of research (Zhang, et al., 2023). The details of the hyperparameters utilized for the DNN, Decision Tree, 

and Logistic Regression models are shown in Tables 9, 10, and 11 in Appendix B, respectively. 
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In this paper, the performance of AI models was measured using metrics such as precision, recall, and F1-

score. Precision is a measure of the model's accuracy in predicting that a loan application should be funded; 

it is calculated as the proportion of loan applications correctly identified as suitable for funding (true positives) 

out of all the applications predicted to be funded (positive instances) by the AI model. Recall, on the other 

hand, evaluates the model’s ability to correctly identify all loan applications that are genuinely suitable for 

funding, which is determined by the proportion of loan applications correctly identified as suitable for funding 

(true positives) out of all actual fundable applications (true positives and false negatives). F1-score strikes a 

balance between precision and recall.  

In Figure 11, the right column shows the normal probability density function of time to process the 

information for a given rule, 𝒩(𝜇 = 𝑚𝑒𝑎𝑛 𝑡𝑖𝑚𝑒, 𝜎ଶ = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒). The processing time is the time for 

information/data to arrive and get processed by the lending firm. The processing time is in hours; it is 

assumed that each working day has 8 hours. The information required for all rules does not arrive with the 

loan application pack. Additional documents are requested if the information in the application pack is 

unsatisfactory, especially previous and linking residential addresses to search credit history. An algorithm or 

human underwriters can provide a final decision after receiving complete information (or data). It suggests 

that an algorithm may improve the quality of lending decisions but may not effectively reduce the processing 

time of a loan application due to delays in the advent of complete information. 

The mean processing time of information for rules for "Secured loans", "Bankruptcy, Individual 

Voluntary Arrangements (IVA), CCJ, and DRO", and "Affordability" is zero and has significantly less 

variance compared to other rules. The affordability rules (R14 and R15) and bankruptcy, IVA, CCJ, and 

DRO rules (R9, R10, and R11) have clear-cut decline criteria. These criteria have a high probability mass 

for rejection decisions and a short processing time. For example, "R14 = fail" explicitly rejects a loan 

application. Its mean information processing time is zero, with low variance (only 1 to 2 hours) across 

different loan applications. A part decision reached by decline criteria could be transformed into a hardcoded 

heuristic. However, this analysis alone is insufficient to confirm the trustworthiness of a decision derived 

from singular evidence (decline criteria) for task augmentation. This is due to the potential susceptibility of 

the algorithm's output to data noise and reflecting only a subset of borrowers. To mitigate this, human experts 

should be engaged in the auditing process, revisiting both their previous decisions and those made by the AI 

algorithms to reduce noise in judgment through the integration of high-quality data.  
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Figure 11: Probability mass of criteria in rules and processing time of information for each rule  
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4.3 Knowledge Elicitation to Evaluate the Decision Consistency Between Data and Experts 

Knowledge elicitation (KE) is a resource-intensive procedure that requires substantial investment in time, 

active engagement, and specialized expertise of subject matter experts. The domain experts collaborate 

closely with the AI system development team on carefully structured tasks. In this study, KE was conducted 

to map data against a pre-defined rule set and acquire judgments from underwriters for the most recurrently 

funded and rejected cases that emerge in the firm to compare consistency between decisions derived from 

data and judgment from domain experts. Two PhD researchers acted as knowledge engineers to transfer 

domain-specific insights from two junior underwriters and two senior underwriters at the lending firm.  

The task was executed in four stages. The first stage initiated an open dialogue between knowledge 

engineers and underwriters. This stage served dual purposes. It introduced underwriters to the concept of AI 

tools designed to support them in decision-making tasks and simultaneously allowed knowledge engineers 

to understand the basic aspects of the problem domain. In the second phase, knowledge engineers conducted 

non-intrusive observations of the underwriters while processing loan applications. This allowed the engineers 

to gain first-hand insights into their day-to-day operations and decision-making processes. In the third phase, 

a series of questions were prepared for underwriters based on the tasks performed during the observational 

stage (in phase two) and the lending guidelines of the firm as read by the knowledge engineer. In the fourth 

phase, the underwriters were presented with an online assessment sheet containing various scenarios 

(technically termed 'multiple evidence'). They were prompted to make heuristic decisions based on these 

scenarios, facilitating a richer understanding of the experiential knowledge embedded in their judgments. 

Figure 12 illustrates an example of a window in an online assessment tool used for capturing the 

judgments of underwriters. The assessment consists of multiple windows, each requiring underwriters to 

indicate their decision by moving a radio button along a slider. This decision is transferred into probability 

mass by the technique shown in Section 3.2.1.1 for each outcome in the powerset; 𝑃(Θ) = {{𝐹}, {𝑅}, {𝐹, 𝑅}}. 

Here, the numerical values -1, 0, and 1 correspond to reject {𝑅}, not sure {𝐹, 𝑅}, and fund {𝐹}, respectively. 

A radio button placed entirely towards -1, 0, or 1 indicates full support for an outcome. In the system, 

complete certainty for a given decision equates to a probability mass being equal to 1, 𝑚ഥ
௬ᇲ,௩ೕ,௩

ೕᇲ
ᇲ

௙ᇲ

= 1. 

Conversely, if the radio button is positioned between two outcomes, it denotes a degree of uncertainty, 

translating to a probabilistic decision. 

 

 
Figure 12: Illustration of online assessment 
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A loan application is expected to be declined if it triggers one or more clear-cut decline criteria (single 

pieces of evidence). Conversely, if a loan application does not activate any clear-cut criteria, multiple pieces 

of evidence are jointly assessed to reach a decision on whether to fund or reject the loan application. The 

boundary of inconsistency analysis was set to the subset of the most frequent cases encountered by 

underwriters in the firm. Each loan application type is defined by a combination of individual or multiple 

pieces of evidence. The multiple evidence for recurrently funded cases and rejected cases can be seen in 

Table 5 and Table 6 (Appendix A), respectively. A joint piece of evidence within these tables can be 

identified by its unique group number. For example, evidence labeled E34131 represents the characteristics 

of a funded case (the last case in Figure 14). Here, E means evidence, 3 is the third evidence in the first 

group, 4 is the fourth evidence in the second group, and so on. This structured naming convention aids in a 

systematic and organized representation of the various pieces of evidence associated with each loan 

application case.      

Figures 13, 14, and 15 demonstrate the probability mass through line plots and degree of credibility 

(relative consistency) among four domain experts and data by heat maps for the clear-cut decline, recurrently 

funded, and rejected cases, respectively. In these figures, the junior underwriters are designated with labels 

'1' and '2', while senior underwriters are marked as '3' and '4'. The scattered judgment for single pieces of 

evidence in clear-cut cases and multiple pieces of evidence in recurrent cases is visually represented by 

variations in color intensity. The degree of credibility does not vary much among underwriters and data for 

clear-cut decline criteria and recurrently rejected loan applications compared to funded loan applications. 

The probability mass for an outcome by data reflects the collective judgment by multiple underwriters in the 

past at time 𝑡, whereas the subjective judgment by underwriters through online assessment was obtained at 

the time 𝑡ᇱ, such that 𝑡 < 𝑡ᇱ.  

All underwriters fully agreed to reject any loan applications that displayed more than six telecom arrears, 

acknowledging this as an unambiguous decline criterion (R4: 6+arrears); however, this consensus among 

underwriters did not align with the data, which indicated a slight probability of funding (𝑚ഥ = 0.268). 

Similarly, data assigned a small probability mass to the decision to fund when the information regarding the 

worst status of a secured loan was missing (R8: M*). This discrepancy led to a discussion with the 

quantitative risk team. They concluded that the R4:6+arrears and R8: M* were referral criteria three years 

ago and later added as decline criteria. In alignment with the existing and previous decline policies, borrowers 

lacking credit scores (R15: M*) are subject to immediate decline. Surprisingly, this policy is not mirrored in 

the subjective judgment of the senior underwriters, compared to the data and junior underwriters. A loan that 

falls outside the established criteria (R18: outside) is generally declined outright, but exceptions can be made 

with managerial approval. Data and senior underwriters reflected this awareness. However, junior 

underwriters gave full support for explicit rejection. The consistency of collective decisions in the past at 𝑡 

and recently at 𝑡ᇱ indicates an "ultimate-true decision" for a given set of evidence representing a loan 

application. However, this does not imply that the decision will remain constant in the future, as it could 

change due to shifts in lending policy. 
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Figure  13: Consistency analysis of 16 clear-cut decline criteria. The line plot shows the probability mass 
for the reject {R} decision. The remaining probability mass is assigned to fund {F} decision by data and not-
sure {F, R} by underwriters. Refer to Table 4, Appendix A for the full definition of evidence.   

The variability in the degree of credibility does not show the low confidence of individual experts. Instead, 

it validates the existence of noisy judgment or disagreement among loan underwriters. The inconsistency 

between experts and past decisions by their peers exhibited by data is high for ambiguous loan applications. 

The most inconsistent cases for funding — [E31111, E32111, E31121, E32121, E34131, E32131, E33131] 

— are primarily associated with the third piece of evidence in group 1 in Table 5 (Appendix A). This 

subgroup has the highest number of missing (M*) criteria. Additionally, six out of seven of these cases have 

a credit score of less than 250 (belong to the first and second evidence of group 2 in Table 5). The most 

inconsistent cases for rejection — [E111211, E111311, E111321, E111361, E111331] — are characterized 

by missing debt relief order, credit scores exceeding 350, and in four out of five cases, a single payday loan 

in the past three years with three-to-five worst Telcom status. Complete elimination of inconsistency might 

be impractical. However, it's crucial to recognize the potential for underwriters to display inconsistencies in 

their future decisions on loan cases, as this can have significant implications for decision-making reliability. 

 

 
Figure  14: Consistency analysis of 36 recurrently funded cases. The line plot shows the probability mass 
for the fund {F} decision. The remaining probability mass is assigned to reject {R} decision by data and not-
sure {F, R} by underwriters. Refer to Table 5, Appendix A for the full definition of joint evidence. 

 



 28 

 
Figure  15: Consistency analysis of 42 recurrently rejected cases. The line plot shows the probability mass 
for the reject {R} decision. The remaining probability mass is assigned to fund {F} decision by data and not-
sure {F, R} by underwriters. Refer to Table 6, Appendix A for the full definition of joint evidence.   

 
4.4 Impact of Auditing Noisy Decisions by Consistency Analysis  

This study aimed to maintain complete homogeneity in decision-making conditions and the quality of 

evidence assessed by underwriters. To maintain uniformity, knowledge elicitation of the most recurrent cases 

was conducted by a collective presentation of evidence captured from various ambiguous data sources on a 

computer screen, as illustrated in Figure 12. In practice, underwriters obtain some evidence from multiple 

documents arriving in an asynchronous time and some from external databases. As a result, the underwriter 

may encounter variations in the source and quality of evidence when assessing seemingly identical loan 

applications, which can lead to inconsistent decisions. A system for consistency analysis was implemented 

using the ER-X approach to standardize the assessment of information and conduct noise audits. 

Figure 16 illustrates the impact of auditing ambiguous lending decisions using the ER-X model over four 

iterations. The auditing focused on three specific types of lending decisions: 16 clear-cut decline criteria, 36 

recurrently funded cases, and 42 recurrently rejected cases. These selected categories constitute 40% of the 

mortgage loan application dataset, which comprises 5700 cases. 

In the first iteration, ER-X was executed without underwriter input to establish a baseline performance. 

During this initial run, the average area under the curve (AUC) and F1-score calculated using 5-fold cross-

validation were 0.86 and 0.80, respectively. AUC metric indicates the model's proficiency in distinguishing 

between loans that should be funded and those that should be rejected. A high AUC score, for instance, 0.86 

achieved here, suggests that the ER-X model is adept at distinguishing loans that should be funded and 

rejected. An AUC score nearing 1 indicates a high level of model precision in discerning fundable from 

nonfundable applications. On the other end of the spectrum, an AUC score of 0.5 would mean the model's 

decision-making is essentially random, making its decisions no better than a coin toss. The F1-score is the 

balance between precision (accuracy of positive predictions) and recall (ability to capture all actual positive 

instances). An F1-score of 1 represents perfect precision and recall, while a score closer to 0 indicates poor 

precision and recall.  
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Figure  16: ER-X Performance After 4 Iterations of Consistency Analysis 

 

The second iteration introduced improvements to the training dataset by incorporating refined feedback 

from underwriters and performing a consistency analysis on the clear-cut decline criteria to infer an 

"ultimate-true decision". This process significantly enhanced the performance of the ER-X model. The AUC 

rose to 0.92, and the F1-score increased to 0.86, marking a noticeable improvement from the initial baseline 

metrics.  

Further refinements were applied to the training dataset during the third and fourth iterations by 

integrating improved underwriter feedback. A consistency analysis was performed on the recurrently funded 

and recurrently rejected cases, allowing the model to infer "ultimate-true" decisions. These adjustments 

resulted in a continued rise in the AUC and F1-scores. In the third iteration, the AUC and F1-scores increased 

to 0.93 and 0.88, respectively. During the fourth iteration, these metrics further escalated to 0.96 and 0.90, 

respectively. This progression indicates the continuous improvement of the ER-X model's performance over 

four iterations of consistency analysis. 
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5. Discussion  
This study provides compelling evidence that the development of an AI-based lending decision-support 

system requires groundwork on input-data quality evaluation and assessment of the accuracy of decisions 

made by human experts. Past judgments by experts subsequently emerge in the future as outcomes in training 

data. Features derived from consolidated data must be aligned with lending policies to lay a solid foundation 

for a legitimate and ethical system.  

The integration of AI in lending decision-making processes has profound ethical implications for both 

individuals and broader society. It demands a balance between technological advancement and ethical 

considerations to prevent discriminatory practices and uphold fairness, accountability, and transparency. The 

ethical use of AI has the potential to revolutionize financial accessibility, provide better access to credit, and 

empower individuals from diverse communities. However, ethical lapses can magnify societal inequalities, 

undermine trust, and violate individual rights. Therefore, lending institutions must adhere to ethical 

guidelines and regulatory frameworks, conduct regular audits, and foster open dialogue between stakeholders 

to address ethical concerns regarding the responsible use of AI before allocating resources and investments 

to develop AI decision-support systems. In the wake of FinTech transformation, regulators have initiated 

proposals to set legal guidelines for the safe implementation of AI in financial services firms (Burri & von 

Bothmer, 2021). Therefore, a lending firm is responsible for ensuring the integrity of every loan application 

decision on diverse profiles of borrowers. 

The concept of consistency analysis presented in this paper has the potential to raise the quality of 

decisions by offsetting the gap between past inconsistent decisions and the "ultimate-true" decisions. There 

are no universally "correct" decisions for ambiguous cases. The significant practical expertise of underwriters 

is accumulated as heuristic knowledge over years of learning and from receiving critical feedback from their 

managers and peers. 

Maintaining decision consistency is challenging, especially for loan applications with ambiguous 

information. For example, in the case study, loan applications with missing data on bankruptcy, IVA, and 

DRO had the most irregularities between outcomes from the data and the four underwriters compared to 

other cases. Estimating the "ultimate-true" decision for the most frequent type of loan applications in a 

lending firm would allow the lending firm to allocate the collaborative responsibilities between human 

underwriters and an AI system. Ideally, an interpretable AI system (to understand the reasoning), such as a 

heuristic rule-based or data-driven algorithm, would automate specific manual and cognitive tasks required 

for frequently occurring loan applications. As a result, underwriters can focus on non-routine tasks and 

exceptional loan applications that require specialist knowledge and occasional collaboration with a 

development team consisting of developers and data scientists. A consistency analysis is not a one-off 

process. It should be regularly scheduled to monitor the evolution of irregularities. Table 3 synthesizes the 

tasks for establishing collaboration between the underwriters and developers. 
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Table 3: Collaborative Tasks  
Task Underwriters-Developers Collaborative Tasks   

Transform data into value Identify attributes in raw data to achieve exhaustive coverage of the 
lending policy. 
Recognize minority and majority groups of borrowers in the data. 

Detect ambiguity in the input data.  

Improve the quality of 
decisions 

Maintain consistency in heuristic decisions among underwriters.  

Estimate ultimate-true decisions.  

Identify and then minimize the gap between past-inconsistent 
decisions and the "ultimate-true decisions". 

Identify any recent amendments to policies and regulations. 

Audit and alter 
algorithmic decisions 

Identify and then reduce the gap between inaccurate and biased 
algorithm-generated decisions and the ultimate-true decisions. 

 
 

The process of Knowledge Elicitation (KE) plays a pivotal role in validating individual decisions on 

various types of loan applications, necessitating the examination of multiple pieces of evidence. However, 

this intricate process can be time-consuming, leading to a perception among human experts that such 

activities are unproductive and a "waste of time" (Forsythe & Buchanan, 1989). Despite these challenges, 

the notion of human involvement in refining and augmenting AI systems remains undisputed, fostering the 

advent of augmented work patterns. These emergent patterns encapsulate a range of activities, including the 

monitoring and refinement of algorithmic outputs as well as the annotation of data previously unidentified 

by the algorithms (Grønsund & Aanestad, 2020) (Sachan, et al., 2023).   

 

6. Limitations and Future Research 
One limitation of the current study is the absence of a thorough examination of the cost and resource 

implications associated with the refinement and maintenance of the ER-X model proposed for auditing the 

consistency of decisions and input data in AI decision-support systems. A comprehensive understanding of 

financial and human resources is essential to assess the sustainability of augmented work patterns facilitated 

by ER-X or other similar proposed techniques. A prospective direction for future research could be to 

undertake a comprehensive cost-benefit analysis, evaluating the time, costs, and resources required to 

integrate expert knowledge into the AI decision-support system. The scope of ER-X could be expanded to 

provide generalized audits for AI-driven decisions across various sectors, such as law, insurance, and 

healthcare. The proposed methodology is focused on its application to ambiguous structured data; however, 

the potential of ER-X can be extended to unstructured data.  

Additionally, an unaddressed limitation of this study is the potential shift in the composition of teams 

conducting AI systems data auditing. Financial experts engaged in collaborative human-AI workflow 
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patterns might need a diverse range of expertise within their teams. Subsequent research should explore the 

dynamics of forming multidisciplinary teams in such a context, aiming to understand how diversifying skills 

and knowledge can refine the auditing process and elevate the overall performance of human-AI 

collaborative systems.  

 

7. Conclusion  
This paper contributes to the emerging research on the development of augmented human-AI 

collaborative workflows to manage noisy decisions and ensure the accurate embodiment of lending policies 

within data utilized by AI systems. It conceptualizes collaborative tasks between human underwriters and 

developers to perform value-added analysis, such as consistency analysis and knowledge elicitation 

exercises. These exercises pre-assess the quality of data and decisions to lay a legitimate foundation for a 

high-performing augmented AI decision-support system through a series of iterative refinements and the 

integration of underwriter feedback. The findings of this study demonstrate the intricate interrelationship 

between past judgments made by experts and the subsequent manifestation of decisions by experts in the 

training data of AI algorithms. It emphasizes the importance of meticulous alignment of lending policies 

with features derived from consolidated data to forge an ethical and legitimate system.  

We introduced the ER-X methodology, a novel approach designed to evaluate the capability of evidence 

aggregated from multiple sources to provide a trustworthy data-driven decision using AI. Central to the ER-

X methodology is consistency analysis, which is a cornerstone strategy to enhance decision quality. This was 

accomplished by bridging the gap between past inconsistencies and "ultimate-true" decisions.  

The variability inherent in past decisions for different types of loan applications, represented by a set of 

single (clear-cut cases) or multiple pieces of evidence, was determined by comparing outcomes estimated 

from data and expert judgments derived from four human underwriters during the knowledge elicitation 

process. A business case study on a lending firm demonstrates guidance on a procedure to capture human 

expert knowledge through an online assessment. This study addresses the strategy of remodelling the end-

to-end loan decision-making process to incorporate AI by establishing underwriters' verification feedback to 

prepare for transformation into a FinTech firm without defecting back to manual decisions and relying on 

hard-coded heuristics. The paper signifies that an augmented system workflow must exceed technical 

boundaries through multidisciplinary collaborations in lending firms to deploy a continual learning system.  
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Appendix A:  
Table 4: Definition of code in criteria in lending rule in Figures 4 and 9  

Linking Rule Status Code Definition 
R1, R2 0_UT Zero utilization. Missing credit or store card data.  

R2 up-to-60 Up to 60% utilization 
R1 up-to-70 Up to 70% utilization 

R1, R2 full_UT Full utilization 
R3, R4, R6, R7 0_arrears Account zero payment in arrears 

R4 1-2_arrears Account one to two payments in arrears 
R3 1-3_arrears Account one to three payments in arrears 
R6 1-4_arrears Account one to four payments in arrears 
R4 3-5_arrears Account three to five payments in arrears 
R7 3+arrears More than two payments in arrears 
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R3 4+arrears More than three payments in arrears 
R6 5+arrears More than four payments in arrears 
R4 6+arrears More than five payments in arrears 
R5 0_payday Zero number of payday loans 
R5 1_payday One number of payday loan 
R5 1+payday More than one payday loan 
R9 0_BK Zero number of bankruptcies  
R9 1_BK One number of bankruptcies 
R9 2+_BK More than two bankruptcies 
R10 0_IVA Zero individual voluntary arrangements 
R10 2_IVA One or two individual voluntary arrangements 
R10 3+IVA More than two individual voluntary arrangements 
R11 0_RO Zero debit relief order 
R11 2_RO One or two debit relief order 
R11 3+RO More than two debit relief order  
R12 0_CS Zero credit searches 
R12 1-4_CS One to four credit searches 
R12 5+CS More than four credit searches 
R13 0_DS Zero debit searches 
R13 1-3_DS One to three debit searches 
R13 4+DS More than three debit searches 
R8 DF Account in default 
R8 AG Account at the state of agreed payments 
R8 AU Account up-to date 
R8 QR Account in query 
R8 RP Repossession 
R8 ST Account settled 
R8 VR Voluntary repossession 
R19 X0 No suspected fraud activity 
R19 X2+ More than 2 suspected fraud activity in last 36 months 
R19 XX46+ four to five suspected fraud activity in last 48 months 
M* All rules Missing information 

 

Table 5: Recurrently funded cases 

Evidence 
Group 1 

[1] -R14 = pass and R18 = within and R19 = X0 and R9 = 0_BK and R10 = 0_IVA 
and R11 = 0_RO  

[2] - R14 = pass and R18 = within and R19 = X0 and R9 = M* and R10 = M* and 
R11 = 0_RO  

[3] - R14 = pass and R18 = within and R19 = X0 and R9 = M* and R10 = M* and 
R11 = M* 

Evidence 

Group 2 

[1] - R15 = 250 [2] - R15 = 350 [3] - R15 = 500 [4] - R15 = 600 
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Evidence 

Group 3 

[1] - R1 = (0_UT or up-to-70) and R2 = (0_UT or up-to-60) and R3 =  0_arrears 
and R4 = 0_arrears and R5 = 0_payday and R6 = 0_arrears and R7 = 0_arrears and 
R8 = (ST or NAC) and R12 = (0_CS or 1-4_CS) and R13 = (0_CS or 1-3_CS) 

Evidence 

Group 4 

[1] - R16 = driven by  [2] - R16 = customer 
valuation 

[3] - R16 = valuer 
valuation 

Evidence 

Group 5 

[1] - R17 = (detached or flat or semidetached) 

 

Table 6: Recurrently rejected cases 

Group 1 [1] - R14 = pass and R18 = within and R19 = X0 and R9 = 0_BK and R10 = 
2_IVA  

Group 2 [1] - R11 = M* [2] - R11 = 2_RO 

Group 3 [1] - R1: (M* or 0_UT or up-to-70) and R2: (M* or 0_UT or up-to-60) and 
R12:(0_CS or 1-4_CS M* or) and R13:(0_CS or 1-3_CS or M*) 

Group 4 [1] - R15 = 0 [2] - R15 = 250 [3] - R15 = 350 

Group 5 [1] R3: 1-3_arrears and R4: 0_arrears and R5: 0_payday and R6: 0_arrears and R7: 
1-2_arrears and R8: (ST or NAC)  

[2] - R3: 0_arrears and R4: 0_arrears and R5: 1_payday and R6: 0_arrears and R7: 
1-2_arrears and R8: (ST or NAC)  

[3] - R3: 0_arrears and R4: 3-5_arrears and R5: 1_payday and R6: 0_arrears and 
R7: (0_arrears or 1-2_arrears) and R8: (ST or NAC)  

[4] - R3: 0_arrears and R4: 0_arrears and R5: 0_payday and R6: 1-3_arrears and 
R7: 1-2_arrears and R8: AG  

[5] - R3: 0_arrears and R4: 1-2_arrears and R5: 1_payday and R6: 1-3_arrears and 
R7: 0_arrears and R8: QR  

[6] - R3: 0_arrears and R4: 0_arrears and R5: 1_payday and R6: 1-4_arrears and 
R7: (0_arrears or 1-2_arrears) and R8: QR  

[7] - R3: 0_arrears and R4: 0_arrears and R5: 0_payday and R6: 0_arrears and R7: 
0_arrears and R8: (ST or NAC)  

Group 6 [1] - R16: (customer valuation or driven by) and R17: (detached or flat or 
semidetached) 

 

Table 7 provides a detailed overview of the number of samples associated with each lending rule. 
Each lending rule encompasses data for 5700 loan applications segregated into "Samples (Fund)" 
and "Samples (Reject)". 
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Table 7: Descriptive Statistics of Samples per Lending Rule  
Linking Rule Status Code Samples (Fund) Samples (Reject) 

R1 0_UT 3192 2508 
R1 up-to-70 4109 1590 
R1 full_UT 4075 1624 
R2 0_UT 3448 2251 
R2 up-to-60 4018 1681 
R2 full_UT 4018 1681 
R3 0_arrears 4115 1584 
R3 1-3arrears 4115 1584 
R3 4+arrears 0 5700 
R4 0_arrears 4104 1710 
R4 1-2_arrears 3534 2166 
R4 3-5_arrears 2280 3420 
R4 6+arrears 1527 4172 
R5 0_payday 4126 1573 
R5 1_payday 4126 1573 
R5 2+payday 0 5700 
R6 0_arrears 3420 2280 
R6 1-4_arrears 2850 2850 
R6 5+arrears 0 5700 
R7 0_arrears 4075 1624 
R7 1-2_arrears 3135 2565 
R7 3+arrears 0 5700 
R8 ST 4104 1596 
R8 NAC 4104 1596 
R8 AG 3705 1994 
R8 QR 0 5700 
R8 DF 0 5700 
R9 0_BK 3932 1710 
R9 1_BK 2280 3420 
R9 2+_BK 0 5700 
R10 0_IVA 4104 1596 
R10 2_IVA 3876 1824 
R10 3+IVA 0 5700 
R11 0_RO 4104 1596 
R11 2_RO 3305 2394 
R11 3+RO 0 5700 
R12 0_CS 4275 1425 
R12 1-4_CS 3989 1710 
R12 5+CS 3989 1710 
R13 0_DS 3989 1710 
R13 1-3_DS 3192 2508 
R13 4+DS 3989 1710 
R14 pass 4172 1527 
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R14 fail 0 5700 
R15 0 2565 3135 
R15 250 4446 1254 
R15 350 3705 1994 
R15 500 4446 1254 
R15 600 5016 684 
R16 driven by 3705 1994 
R16 customer valuation 3705 1994 
R16 valuer valuation 5424 275 
R17 detached 4092 1607 
R17 flat 4560 1140 
R17 semi-detached 4092 1607 
R17 other 4092 1607 
R18 within 3135 2565 
R18 outside 946 4753 
R19 X0 4098 1601 
R19 X2+ 0 5700 
R19 XX46+ 0 5700 

 

Appendix B:  

 
Table 8: Average accuracy metrics of 5-fold validation set and test set after four iterations of 

consistency analysis  

Data Model 
Average accuracy metrics of the 

5-fold validation set 

Test Set 
(Independent test set for the 

final evaluation) 
Precision Recall F1-Score Precision Recall F1-Score 

Balanced 
(SMOTE) 

ER-X 0.930 0.920 0.925 0.928 0.918 0.923 
DNN 0.939 0.908 0.923 0.937 0.905 0.921 

Decision 
Tree 

0.893 0.883 0.888 0.890 0.880 0.885 

Logistic 
Regression 

0.868 0.858 0.863 0.865 0.855 0.860 

Imbalanced 

ER-X 0.877 0.926 0.901 0.875 0.923 0.899 
DNN 0.880 0.893 0.886 0.877 0.890 0.883 

Decision 
Tree 

0.869 0.859 0.864 0.866 0.856 0.861 

Logistic 
Regression 

0.848 0.838 0.843 0.845 0.835 0.840 

 
 

Table 9: Hyper-parameters of deep neural network (DNN) 
Hyper-parameters Imbalanced Data (Original 

Data) 
Balanced Data (SMOTE) 

Number of hidden layers 
(𝐿) 

5 4 
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 {𝐿ଵ = 62, 
𝐿ଶ to 𝐿ସ = 80, 𝐿ହ =  2} 

{𝐿ଵ = 62, 
𝐿ଶ to 𝐿ଷ = 80, 𝐿ସ =  2} 

Activation function -ReLu: 𝐿ଵ𝑡𝑜 𝐿ସ 
-SoftMax in output layer 

-ReLu: 𝐿ଵ𝑡𝑜 𝐿ଷ  
-SoftMax in output layer 

Dropout rate 10% at 𝐿ହ 15% at 𝐿ସ 
Batch size 100 100 
Epoch  100 100 
Regularization strength  𝐿ଶregularization strength = 

0.01 in each layer  
𝐿ଶregularization strength = 0.01 in 
each layer 

Learning rate 0.001 0.001 

* 𝐿 denotes a layer in deep neural network. Layer (𝐿ଵ) is input layer and number of units in first 
layer. The missing data was imputed by missForest an approach based on random forest algorithm. 
Default values were set for other hyper-parameters.  

 
Table 10: Hyper-parameters of decision tree 

Hyper-parameters Imbalanced Data 
(Original Data) 

Balanced Data 
(SMOTE) 

Maximum depth of 
the tree 

8 5 

Measure the quality 
of a split 

gini gini 

Minimum number of 
samples to split node 

2 2 

Maximum number of 
leaf nodes  

9 7 

*Default values were set for other hyper-parameters 

 
Table 11: Hyper-parameters of logistic regression 

Hyper-parameters Imbalanced Data 
(Original Data) 

Balanced Data (SMOTE) 

Regularization Type L2 (Ridge) L2 (Ridge) 

Regularization Strength (𝜆) 0.01 0.02 

Optimization Algorithm Stochastic Gradient 
Descent (SGD) 

Stochastic Gradient Descent 
(SGD) 

Convergence Tolerance 0.0001 0.0001 

Solver L-BFGS L-BFGS 

*Default values were set for other hyperparameters. The optimization algorithm is based 
on a quasi-Newton method that approximates the Limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) algorithm, which belongs to quasi-Newton methods. The 
regularization strength (𝜆) was selected using 5-fold cross-validation on a validation set. 

 


