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A B S T R A C T 

Generative AI tools powered by Large Language Models (LLMs) 
have demonstrated advanced capabilities in understanding and 
articulating legal facts closer to the level of legal practitioners. 
However, scholars hold contrasting views on the reliability of the 
reasoning behind a decision derived from LLMs due to its black-box 
nature. Law firms are vigilant in recognizing the potential risks of 
violating confidentiality and inappropriate exposure of sensitive 
legal data through the prompt sent to Generative AI. This research 
attempts to find an equilibrium between responsible usage and 
control of human legal professionals over content produced by 
Generative AI through regular audits. It investigates the potential of 
Generative AI in drafting correspondence for pre-litigation decisions 
derived from an eXplainable AI (XAI) algorithm. This research 
presents an end-to-end process of designing the architecture and 
methodology for a blockchain-based auditing system. It detects 
unauthorized alterations of data repositories containing the decisions 
by an XAI model and automated textual explanation by Generative 
AI. The automated auditing by blockchain facilitates responsible 
usage of AI technologies and reduces discrepancies in tracing the 
accountability of adversarial decisions. It conceptualizes the two 
algorithms. First, strategic on-chain (within blockchain) and off-
chain (outside blockchain) data storage in compliance with the data 
protection laws and critical requirements of stakeholders in a legal 
firm. Second, auditing by comparison of the unique signature as 
Merkle roots of files stored off-chain with their immutable 
blockchain counterpart. A case study on liability cases under tort law 
demonstrates the system implementation results. 

 

1. Introduction 

1.1 Background 

The formulation and execution of laws entail information processing, logical reasoning, decision-
making, and communication of legal decisions. Multiple levels of information processing make the legal 
sector an optimal domain for the application of Artificial Intelligence (AI) technologies (Prakken & Sartor, 
2015). The substantial progress made in eXplainable AI (XAI) techniques and data accessibility has 
empowered the development of legal decision-support systems. These systems assist in legal decision-
making without necessitating the replacement of lawyers with AI algorithms (Collenette, et al., 2023). A 
recent launch of Large Language Models (LLMs) such as Generative Pre-trained Transformer (GPT) by 
OpenAI (OpenAI, 2023) and Google Bard based on the Language Model for Dialogue Applications 
(LaMDA) by Google AI (Collins & Ghahramani, 2021) have stimulated significant interest in the legal 
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sector. The capacity of Generative AI technologies to produce human-like text has demonstrated the 
potential as indispensable tools for legal practitioners (Dwivedi, et al., 2023).   

Law has emerged as a rich testing ground and a key area for Generative AI deployment. Scholars have 
tested ChatGPT’s (version GPT-3.5) capabilities in passing actual law school examinations (Choi, et al., 
2023). It exhibited a performance equivalent to a student averaging a C+ grade. Another study indicated 
that GPT-4 successfully cleared the Uniform Bar Exam, indicating that its automated legal reasoning is 
getting closer to human legal practitioners (Katz, et al., 2023). In light of these breakthroughs, legal 
educators are formulating strategies to confront the challenges brought by open-source Generative AI 
tools in legal education and professional practices (Ajevski, et al., 2023). 

An investigative study on the legal drafting capabilities of ChatGPT has presented supportive results 
on its advanced capabilities in understanding simple facts and articulating the legal foundation of a case 
(Iu & Wong, 2023). The law upholds justice and societal stability. An algorithm cannot be held 
accountable for potential errors in high-stakes legal judgments. The legal community cannot proceed 
without resolving the complexities in the ownership and accountability of AI-generated content before it 
is considered seriously for legal drafting assistance and legal decision-making in the foreseeable future.  

1.2 Data Security Concerns in Legal Practices  

Legal firms are actively seeking an in-depth understanding of operational functionality and data usage 
strategy proposed for Generative AI tools developed by AI research laboratories such as Open AI and 
Google AI. Law firms are acutely aware of the potential risks of data breaches with the increased adoption 
of Generative AI technologies. The firms have raised three main concerns regarding its implementation: 
the inability to emulate legal reasoning, the potential fabrication of legal facts, and the mismanagement of 
confidential data and its misuse by malicious actors. In response to these concerns, law firms in the UK, 
USA, Canada, and several European countries have imposed restrictions on their lawyers’ usage of tools, 
such as ChatGPT and Google Bard, as assistance in legal drafts or other queries (Reuters, 2023). 
Disclosing client-specific information, such as information of defendants, claimants, and other 
stakeholders, would violate the duty to maintain the confidentiality of the data subject’s information. Legal 
professionals are explicitly advised against uploading client-specific case data onto AI platforms to 
prevent potential violations of confidentiality due to inappropriate exposure of sensitive data. This caution 
extended to other domains beyond the legal sector, such as finance (Bushard, 2023) and tech firms (Van 
Dis, et al., 2023).  

The rise of Generative AI prominence has triggered the discussion on conflict of interest and ethics in 
the acquisition, storage, and utilization of user data, in addition to concerns surrounding data breaches due 
to unauthorized access to personally identifiable information. Establishing secured protocols for 
maintaining confidential information, including clear guidelines on its usage and association with users’ 
accounts and identities, is crucial to engender trust in Generative AI tools (Dwivedi, et al., 2023).  

Sensitive data is exposed through the prompt sent to Generative AI in two primary ways: user 
interaction through chatbots and APIs for direct access to a specific Generative AI algorithm. Platforms 
like ChatGPT and Google Bard provide options to delete chat activities; however, they automatically 
enroll users into their data collection system. According to the API data usage policy of OpenAI, the data 
transmitted through a code such as Python script is not used to train the LLMs. Despite these policies, data 
usage by Generative AI tools is still a relatively new and ambiguous area that requires further investigation 
and clarity. 
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1.3 Motivation on Implementation of a Blockchain-based Auditing System for AI 

1.3.1 Repurpose Usability of Generative AI Tools 

This research examines the practical usability of Generative AI to assist lawyers in brainstorming ideas 
while drafting legal correspondences. These correspondences communicate probable pre-litigation (out-
of-court settlements) decisions derived from an XAI algorithm that supports lawyers in processing 
complex legal decisions. The rise of Generative AI raises two questions: Can these tools truly replace 
humans or specialized XAI algorithms trained for a specific application? Irrespective of their potential as 
replacements, how can we address the data security concerns, particularly data breaches due to sensitive 
data exposure through prompts?  

The rationale behind the decisions by Generative AI powered by LLMs cannot be trusted entirely due 
to its black-box nature, and researchers hold contrasting views on its reasoning capabilities (Biever, 2023). 
At the same time, the probabilistic decisions by XAI, such as rule-based (expert systems) or data-driven 
models, are interpreted in terms of the importance of the features and activated rules. Lawyers are 
anticipated to comprehend the algorithmic output to make an informed legal decision, even when results 
are presented visually on front-end dashboards. It requires validation by the end users (Galanti, et al., 
2023). Given these dynamics, this research repurposes the use of Generative AI tools in transforming the 
legal judgments derived by an XAI decision-support system into coherent textual explanations rather than 
direct handling of legal evidence and factual information. It anonymizes sensitive information in the 
decisions derived from the XAI model before sending it as a prompt to Generative AI. The generated 
textual explanations could assist lawyers in drafting legal correspondence within a law firm. 

1.3.2 Integrity and Accountability for Responsible AI 

The rapid advancements in AI require focused research efforts directed at ensuring its responsible 
application and enforcement of human authority over the deployment of these sophisticated technologies. 
Regular audits could confirm the control of human legal professionals over the usage of content by 
Generative AI tools and alignment of XAI decision-support systems with the established legal principles.  

One potential way to accomplish this is by preserving the integrity of data repositories containing 
algorithmic decisions and textual explanations produced by Generative AI tools for future auditing by 
utilizing blockchain's immutability feature (permanent storage) to determine the accountability of 
incorrect legal decisions. For instance, misuse of AI tools could trace accountability back to human 
lawyers; lapses in algorithmic system maintenance and testing could point toward the negligence of data 
scientists or developers; and the occurrence of third-party malicious attacks indicates failure in data 
security.  

1.4 Contribution   

This research has presented an innovative end-to-end process for designing the architecture and 
conceptualizing the methodology for a blockchain-based auditing system. The system’s primary objective 
is to detect unauthorized alterations of data repositories containing the metadata of decisions by an XAI 
model and content produced by Generative AI tools. Figure 1 summarizes the motivation and contribution. 
The auditing practice helps to monitor the human usage of AI technologies and ensures data integrity to 
avoid discrepancies in tracing the accountability of adversarial legal decisions. It attempts to make the 
following contributions: 
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Fig. 1. Summarized Contribution and Motivation to Design Blockchain-Based Auditing System for AI 

 

(a) Architectural Requirement of Blockchain-Based Auditing System: Requirement analysis is 
conducted to align stakeholders within a legal firm with the core design principles of the blockchain-
centric auditing framework. It is a structured pathway for the identification of crucial objectives on 
compliance with data protection laws, the confidentiality of sensitive legal data, security through regular 
audits, and responsible usage of open-source Generative AI tools. 

(b) Conceptualization of Blockchain-Based Auditing Process: The research conceptualizes the 
blockchain-based auditing process through two algorithms. The first algorithm presents a comprehensive 
strategy for on-chain (within blockchain) and off-chain (outside blockchain) storage of legal data in 
compliance with the data protection laws. The second algorithm outlines the auditing process, which 
compares the Merkle root (unique signature) of files stored in an off-chain location, such as Cloud storage, 
with its corresponding immutable Merkle root stored chronologically in a blockchain network.  

(c) Explainable Legal Reasoning by Evidential Reasoning: An integrated explainable model based 
on Individual & Conjunctive Maximum-Likelihood Evidential Reasoning (I-MAKER & C-MAKER) is 
proposed to process ambiguous legal facts and heuristics to establish a causal relationship between 
evidence and the final hypothesis (decision).  

(d)  Case Study to Demonstrate System Implementation by Multiple Technology Integration: 
The proposed system’s implementation results are demonstrated through a case study on vicarious liability 
arising from workplace accidents. The blockchain-based auditing framework is evaluated on two 
blockchain platforms: Ethereum (a public platform) and Hyperledger Fabric (a private platform). The 
optimal functionality and robust security of the auditing system are achieved through the integration of 
multiple technologies to mitigate each other shortcomings. The case study exemplifies the potential for 
responsible usage and trustworthy adoption of AI tools and emerging technologies in legal tasks.  
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1.5 Structure of the Paper  

The rest of the paper is organized as follows. Section 2 presents the literature review on existing XAI 
frameworks on legal reasoning and proposed blockchain-based auditing techniques. Section 3 presents an 
end-to-end process of developing a blockchain-based auditing system to detect unauthorized alterations 
of data repositories containing metadata of decisions by an XAI model and automated textual explanation 
by Generative AI tools by malicious actors. Section 4 demonstrates the results of technological integration 
utilized to implement the proposed system in a case study based on employer liability cases arising from 
workplace accidents. The framework to audit the decisions derived from the XAI algorithm and their 
textual explanations produced by Generative AI tools is evaluated on two distinct blockchain platforms: 
Ethereum and Hyperledger Fabric. Section 5 addresses the limitations of the proposed system and its scope 
for future improvements. The paper is concluded in Section 6. 

2. Literature Review 

2.1 XAI Frameworks for Legal Knowledge Representation  

AI researchers in the field of law have employed a logic-based structure for the representation of legal 
knowledge, particularly in legal argumentation. An in-depth survey illuminated the intersection of law 
and logic as a means to address legal reasoning ambiguities by natural language expression (Prakken & 
Sartor, 2015). Furthermore, it discussed the application of logic programming for the development of a 
legal knowledge-base. A computational argumentation model for explainable legal decision-support 
based on Abstract Dialectical Frameworks (ADF) is proposed for predicting judgment violation in the 
context of the European Court of Human Rights (Collenette, et al., 2023). ADF is a directed graph that 
represents and reasons with complex legal argumentation structures. This study compared the primary 
approach of legal reasoning based on HYPO (Rissland & Ashley, 1987), CATO (Aleven, 1997), and IBP 
(Bruninghaus & Ashley, 2003) with ADF (Al-Abdulkarim, et al., 2014). The HYPO, CATO, and IBP are 
pseudo-acronyms.  

The Bayesian approach aligns with intuitive legal reasoning to link a single hypothesis and piece of 
evidence. However, real-world legal arguments have multiple hypotheses and evidence characterized by 
intricate causal dependencies (Fenton, et al., 2016). A study introduced a Bayesian model to address this 
issue (Neil, et al., 2019). It integrates independent legal arguments of two parties to express the guilt and 
innocence of the defendant. Further, a Bayesian network has been proposed for the articulation of legal 
syllogistic reasoning within the framework of statutory law interpretation (Constant, 2023). 

An explainable deep-learning model was proposed for legal text summarisation by highlighting the 
relevant text based on attention score (Norkute, et al., 2021). However, it lacks comparative results on 
the interpretation of the highlighted text by model-agnostic methods such as (Local Interpretable Model-
Agnostic Explanations) LIME (Ribeiro, et al., 2016) and Shapley additive explanations (SHAP) 
(Lundberg & Lee, 2017), as well as model-specific methods for deep learning such as Layer-Wise 
Relevance Propagation (LRP) (Binder, et al., 2016) and Deep Taylor decomposition (Montavon, et al., 
2017). These interpretation methods are typically employed post hoc after the model has undergone 
training. 

Despite AI advancements, a fully data-driven AI model, such as a deep neural network for legal 
reasoning, is not common due to the lack of explicit representation of legal facts and the need for 
explainability in high-stakes legal decisions. In legal claim handling, this gap was addressed by a hybrid 
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rule-based method, which assimilates human expert knowledge and data-driven training to offer 
transparent decisions for tort liability claims (Sachan, et al., 2021). It utilized the evidential reasoning 
(ER) approach to aggregate multiple belief rules activated by the circumstances of a legal case. ER is 
based on Dempster–Shafer (DS) theory of evidence, a general extension of Bayesian theory (Du & 
Zhong, 2021). This paper utilizes the I-MAKER & C-MAKER approach to process ambiguous legal 
evidence jointly (Sachan, et al., 2021).  

2.2 Data Integrity Audit by Blockchain 

Auditing data integrity through a centralized trusted Third-Party Auditor (TPA) poses reliability 
concerns due to single points of failure (Wu, 2016). Utilizing a TPA in dynamic environments, such as 
the Industrial Internet of Things (IIoT) and AI systems, which frequently interact with external technology 
service providers and various clients, is inadequate because of compromised data confidentiality and 
susceptibility to attacks (Liu, et al., 2017). The Provable Data Possession (PDP) mechanism proposed for 
the integrity verification of metadata poses issues with verification limits and high storage costs (Shah, et 
al., 2008). Another study introduced a similar mechanism for data verification and recovery (Juels & 
Kaliski Jr, 2007). However, PDP is vulnerable to attacks due to the centralized storage of user metadata. 
A study employed the Boneh–Lynn–Shacham signature mechanism to produce homomorphic verifiable 
signatures to reduce communication overhead and facilitate public auditing (Shacham & Waters, 2013). 
However, it falls short of guaranteeing user data privacy. Another integrity framework for Cloud storage 
failed to assure data confidentiality and security (Nepal, et al., 2011). A Cloud-based IoT data management 
scheme reduced the computational overhead of hash functions during the signature process but utilized 
random masking to maintain data privacy (Zhu, et al., 2019). These frameworks operate under the 
presumption of TPA’s trustworthiness; however, in practice, the failure of a single TPA node can 
compromise the entire system (Wu, 2016).  

The adoption of blockchain technology in industrial distributed ledger applications is driven by its 
immutability feature, and its implementation depends on three factors: scalability, performance, and 
maintenance (Siddiqui & Haroon, 2023) (Yang, et al., 2021). A blockchain-enabled method ensured data 
integrity verification by data owners and users, eliminating the dependence on TPA (Liu, et al., 2017). 
However, it lacks details on accomplishing data confidentiality. Another study introduced a hashing 
method to verify data integrity and emphasized the difficulties of maintaining data confidentiality on the 
blockchain (Zikratov, et al., 2017). But, it does not provide a strategy to maintain data confidentiality. 

Another study introduced the decentralized collaborative verification system for multiple peers (Hao, 
et al., 2020). Each peer in the system keeps a complete verification record in the blockchain. Users can 
approach the collaborative network to retrieve verification outcomes by exploring their local blockchain. 
Despite these features, it persists in utilizing TPA for data integrity assessments and does not truly achieve 
decentralization. A study suggested the adoption of Merkle trees for data integrity verification for secured 
tamper-proof forest fire prediction communication from source to decision (Datta & Sinha, 2023). It does 
not address strategies for maintaining data confidentiality due to the non-sensitive nature of real-time 
forest fire prediction data. A study enhanced data confidentiality in a blockchain-based auditing system 
by leveraging Paillier homomorphic encryption for IIOT data (Zhang, et al., 2022). However, it does not 
address the on-chain and off-chain data storage strategies in compliance with the data protection laws and 
lacks details on cryptographic key management. 
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 The framework presented in this research addresses both off-chain and on-chain data storage strategies 
for sensitive data and cryptographic keys. It robustly ensures data confidentiality by utilizing data 
encryption and hashing techniques. 

2.3 Integration of Blockchain and AI 

A literature review on accounting with blockchain technology and AI has recognized the impact of 
combining both technologies to develop a coherent ecosystem for advanced auditing systems. The 
auditing system can leverage blockchain's immutable and verifiable features and AI’s ability to learn from 
data to apply augmented decision-making (Han, et al., 2023). A comprehensive bibliometric and literature 
analysis review concerning the application of blockchain as a security layer for AI-based systems 
recognized the need for more in-depth research on the effective implementation of successful and stable 
integration of blockchain within AI systems (Shinde, et al., 2021). 

A theoretical framework proposed a complex AI system for decentralized consensuses of multiple XAI 
predictors managed by a smart contract to reach a final decision (Nassar, et al., 2020). A study proposed 
auditing XAI decisions by storing in IPFS due to storage limitations on Ethereum. However, it failed to 
demonstrate the robustness test with a use case and the experimental results on blockchain performance 
metrics such as throughput and latency (Malhotra, et al., 2021 ). A study introduced an integrated approach 
combining blockchain technology with an Explainable Deep Neural Network (x-DNN) for use in medical 
indemnity insurance. This system employed blockchain to securely document the consent for sharing 
medico-legal data among various entities, such as insurance companies, law firms, and hospitals. The 
aggregated data from the blockchain then feeds into the x-DNN for “lawyer-in-the-loop” decisions. 
Lawyers interpreted the decision by analyzing the visual interpretation of x-DNN decisions by LRP, 
LIME, and SHAP (Sachan & Muwanga, 2023). Another research employed blockchain to integrate the 
knowledge of multiple experts to formulate lending criteria for small business loans. This approach aimed 
at reliable lending decisions to ensure financial inclusivity for underserved communities (Sachan, et al., 
2023).  

Centralized AI systems are susceptible to cyber-attacks. Minor modifications to machine learning 
algorithm parameters can potentially compromise the AI system's performance. A research study 
employed the intrinsic immutability of blockchain technology to create a secure storage and auditing 
system specifically for the parameters of convolutional neural networks designed to identify defects in 
manufacturing processes (Song & Moon, 2021). A paper proposed a similar principle for future research 
direction on integrating Blockchain and AI for robust protection of Autonomous Vehicles against 
malicious attacks (Bendiab, et al., 2023). Furthermore, another study employed blockchain's capabilities 
to ensure resilience against malicious activities and handle conflicting traffic incident event reports (Philip 
& Saravanaguru, 2023). A dual-stage Long Short-Term Memory (LSTM) for event prediction and 
Bayesian for event conflict resolution model was proposed to resolve conflicts arising from trusted event 
sources. The system thoroughly cross-references and authenticates the event before transmitting it to a 
blockchain as evidence. 

Table 1 presents the definitions of the key blockchain concepts used in this paper for clear 
understanding across diverse communities, such as legal professionals, AI researchers, and blockchain 
enthusiasts.  
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Table 1: Key Blockchain Concepts for Blockchain-Based Auditing 
Concept Definition   

On-Chain Data The data is stored and verified directly in a blockchain network as a transactional record.   

Off-Chain Data 
The data is not stored directly in a blockchain network. Instead, it is stored in external systems 
or databases.  

Hashing 

Hashing is a computational process that transforms data into a unique, fixed-size string of 
characters known as a hash. The slightest modification to the data changes the hash value, 
indicating a potential tampering attempt by a malicious actor (Ünsal, et al., 2023). 

Encryption 

Encryption is the process of converting sensitive data into a ciphertext form using an encryption 
algorithm and secret keys. It is used in blockchain to secure sensitive data by making it 
unreadable to unauthorized parties (Das, et al., 2021) (Joe & Raj, 2021) (Agyekum, et al., 2021). 

Smart Contract 
It is a self-executable contract with predefined rules and conditions written as a code inside 
blockchain (Taherdoost, 2023) (Kushwaha, et al., 2022).  

IPFS 
(Interplanetary 
File System) 

IPFS is a decentralized file system that stores and shares off-chain data, like metadata and 
images, across a peer-to-peer network (Muralidharan & Ko, 2019). It achieves decentralization 
by loading content from thousands of peers instead of relying on a single centralized server. 
This distributed approach eliminates single points of failure and control. Each piece of data in 
IPFS is cryptographically hashed into a secure content identifier (CID) to ensure data integrity, 
uniqueness, and reliable content retrieval and verification.  

Difference 
between IPFS and 

Blockchain 

IPFS is a decentralized file system and content-addressable network protocol designed to replace 
Hypertext Transfer Protocol (HTTP) for efficient file storage and sharing. It focuses on content-
based addressing. In contrast, blockchain is a distributed ledger technology used for maintaining 
a decentralized record of transactions with consensus mechanisms and smart contract 
functionality (Nizamuddin, et al., 2018) (Kang, et al., 2022). Both contribute to decentralization 
but have different architectures and purposes. 

Blockchain Nodes 

Every blockchain is composed of multiple nodes. A node is a computer with an IP address that 
creates, sends, and receives blockchain data. Users engage with the network through these 
nodes, which serve as communication endpoints. Following are the three main node types:   

(a) Full Nodes: A blockchain node typically refers to a full node by default. It connects 
to the blockchain server of a decentralized network (Ray, et al., 2020). It validates new 
blocks and maintains a blockchain’s transaction history, stores, copies, and distributes 
data (transaction) across the network.  

(b) Pruned Full Nodes: Pruned nodes support a full node and prioritize security over 
storage (Huang, et al., 2022). It first downloads the entire blockchain to its hard drive, 
then gradually deletes older data blocks, starting from the earliest.  

(c) Archival Full Nodes: An archival full node hosts the complete blockchain database 
(Ray, et al., 2020). It preserves the entire history of the blockchain network to ensure 
that all data is readily available to users for queries. 

3. Methodology 

   This section presents an end-to-end process of designing architecture and conceptualizing the 
automated blockchain-based auditing system. It leverages the immutability feature of blockchain, which 
detects tampering in legal decisions by XAI and monitors content produced by Generative AI tools to 
promote responsible AI practices. 
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3.1 Architectural Requirement of Blockchain-Based Auditing System for Legal Practices 

Figure 2 presents the architecture of a blockchain-centric framework to audit the data files containing 
decisions derived from XAI models and automated content produced by Generative AI tools. It is designed 
to safeguard the data from potential tampering and monitor the application of AI-generated content to 
assist human lawyers in drafting legal correspondences. These correspondences can be emails, letters, or 
system updates within a law firm to outline the expected decision of a legal case against a defendant. The 
requirement analysis for the successful integration of multiple technologies with blockchain platforms 
from the stakeholders’ perspective in a legal firm is shown in Table 2. It demonstrates the importance of 
the architecture’s compliance with data protection laws applicable to blockchain deployments and AI 
models. It points out the objectives such as confidentiality of sensitive legal data, quality assurance and 
security through regular audits, and reliable usage of open-source Generative AI tools. 

 
Table 2: Requirement Analysis for Blockchain-Based Auditing System 

Key 
Requirements 

Design Aims 

R1: Compliance 
with Data 
Protection Laws 

Compliance with Article 5(1)(c) of the General Data Protection Regulation (GDPR), 
known as the "Data Minimization Principle," ensures the retention of only the necessary 
sensitive data (GDPR Article 5, 2023).  

Compliance with the GDPR’s Article 17, “Right to be Forgotten,” ensures the right to the 
permanent removal of personal data and prohibits data retention without explicit consent 
(Union, 2016) (Finck, M., 2019) 

Compliance with the California Privacy Rights Act 2020 (CPRA), particularly regarding 
the “Right to Rectification,” aligns with the principles of GDPR (Sunyaev, 2020) 
(Karisma & Moslemzadeh Tehrani, 2023). 

Compliance with GDPR’s Article 22, “Right to explanation,” ensures transparency in 
algorithmic decisions by providing meaningful logic behind each decision (Union, 2016). 

R2: Confidentiality 
and Integrity Secure storage of the primary stakeholder's identity in the law firm 

Secure storage and control mechanisms for legal data access 

R3:Quality 
Assurance 

Regular audits or spot checks to verify the authority of human lawyers in the usage of 
automated content created by Generative AI tools 
Verification of the usage of AI-based systems in alignment with the legal principles and 
precedents 

R4: Robustness and 
Security 

Robust model architecture to withstand adversarial attacks 

Regular monitoring of the XAI system   

Maintain detailed records of algorithmic parameters and architecture. 

R5: Regulatory 
Audits 

Support for the collaboration between internal and external audits.  

R6: Scalability and 
Efficiency 

Scalable architecture designed to meet current and future demands by optimizing 
throughput and latency for increased transaction volumes. 

  
The proposed architecture has three core components: a front-end web application, a back-end API 

server encompassing multiple modules, and a hybrid on-chain (within blockchain) and off-chain (outside 
blockchain) data storage mechanism. 
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Fig. 2. Architecture for blockchain-based auditing system 

 
3.1.1 Front-end Application: A front-end application is an interactive dashboard for users such as 
lawyers and legal analysts within a law firm. It functions as an information management tool that 
communicates with the API server to handle user authentication, data consent and monitor data usage 
activities (Sachan, et al., 2023). It presents the content produced by Generative AI tools, a visual analysis 
of decisions made by an XAI model, and a set of legal facts of a case. This research primarily concentrates 
on the management and regulatory compliance related to the storage of on-chain & off-chain data and 
access control mechanisms of XAI and Generative AI. 

 

3.1.2 Back-end API Server: The API server ensures interoperability between multiple services: a 
front-end application, a blockchain platform, cryptographic-key storage service providers, secure Cloud 
data storage service providers, and an IPFS service providers to store encrypted and anonymized metadata 
of XAI algorithm and content produced by the Generative AI tools.  

The Proxy Re-Encryption (PRE) scheme is employed for the encryption and decryption of data by 
legitimate users without revealing any information to intermediaries (Manzoor, et al., 2021) (Hasan, et al., 
2020). A data file of a legal case after the completion of a decision-making task aided by an XAI model 
and content from a Generative AI tool is denoted by 𝐷 ,  where 𝑥 represents a legal case and ℎ represents 

a human lawyer. In the PRE scheme, a human lawyer acts as a delegator, and an internal or external auditor 
serves as a delegate, denoted by 𝑎. 
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The pair of public and secret keys for both the delegator and delegate is represented as (𝑝𝑘 , 𝑠𝑘 ) and 
(𝑝𝑘 , 𝑠𝑘 ), respectively. The data file (𝐷 , ) is encrypted by the delegator’s public key, yielding 𝐷 , =

𝐸𝑛𝑐 𝑝𝑘 , 𝐷 , . This encrypted data is subsequently uploaded to an off-chain database. An auditor as 

delegate requests decryption permission from the delegator by notifying his public key (𝑝𝑘 ). A re-
encryption key (𝑟𝑘 → ) is generated specifically for a delegate if a delegator approves the access of legal 

files of a case. It is sent to a proxy module to re-encrypt the previously encrypted data; 𝐷 , =

𝑅𝑒𝐸𝑛𝑐 𝑟𝑘 → , 𝐷 , . The delegate (auditor) then receives this re-encrypted data and uses their secret key 

to decrypt it to obtain the original data; 𝐷 , = 𝐷𝑒𝐶𝑟 𝑠𝑘 , 𝐷 , .  

Cryptography key management is a challenge in blockchain applications. The responsibility of key 
management falls on the users themselves. Blockchain networks rely on third-party storage providers for 
cryptographic key protection (Wöhrer & Zdun, 2021) (Hasan, et al., 2020). The API server is connected 
to the third-party cryptographic storage service provider and hosts a support services module for user 
registration and management. For instance, we used Azure Key Vault to test the proposed system.  The 
back-end API server has an additional module to manage data access logs. It hosts AI-based modules for 
legal facts and statutes management, centralized access control to Generative AI APIs, and XAI algorithms 
within a legal firm. 

 
3.1.3 Off-Chain and On-Chain Data Storage: This architecture integrates a hybrid off-chain and on-
chain data storage strategy to ensure compliance with data protection laws to overcome the problem of 
permanent storage of sensitive data in an immutable ledger. 

In this framework, IPFS serves as a repository for encrypted and anonymized metadata of XAI models 
and content generated by Generative AI. It is a decentralized and distributed file storage system designed 
to replace HTTP for more efficient file storage and sharing. Each data chunk in the IPFS system is 
cryptographically hashed, generating a secure Content Identifier (CID) for data integrity and uniqueness.  
Generally, IPFS files are paired with blockchain implementations for off-chain storage of actual files, 
while only hash pointers to those files are kept on the blockchain because it can hold large-sized files 
compared to the blockchain. 

 The data in both IPFS and Blockchain is immutable.  The efficient protocols for delegated content 
erasure from IPFS files are proposed to align it with the critical data protection laws (Politou, et al., 2020) 
(Politou, et al., 2022). However, the decision to upload only encrypted and anonymized data in the IPFS 
is to support the risk appetite of legal firms. 

In this framework, encrypted keys, user IDs, and legal case IDs are stored in an external Cloud key 
storage service, whereas secure Cloud data storage services handle the law firm’s internal data. The copy 
of data in the Cloud is stored in IPFS; only hash pointers of Cloud and IPFS files are stored on the 
blockchain for audit purposes, as shown in Table 3. The blockchain environment is designed with two 
independent full nodes: the hash storage node and the audit node.  

 
(a) Hash Storage Node: The hash storage node is responsible for storing the hash values of decisions 

by XAI, algorithmic metadata, and content produced by Generative AI tools for a legal case.  
(b) Audit Node: The audit node maintains records of the tampered state of the files as the outcome of 

the regular automated auditing by blockchain. 
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Each node maintains its own copy of data on the blockchain network to ensure audit integrity and 
promote the scalability of the blockchain application. The partitioning of data in multiple nodes manages 
computational and storage workloads.  

Table 3: Off-chain and On-chain Storage 
Storage 
Location 

Storage 
Medium 

Data Type Functionality 

Off-chain Cloud Encrypted Data Cloud data is accessed frequently by internal stakeholders 
such as developers and domain experts (legal 
professionals). However, it is vulnerable to unintentional 
tampering and malicious attacks. 

Cloud Key 
Management 

Cryptographic Keys, 
user IDs, and legal 
case IDs 

Utilizes external Cloud service providers to safeguard 
cryptographic keys and essential IDs (User and case 
credentials). 

IPFS Encrypted and 
Anonymized Data 

IPFS files store the XAI algorithmic decisions & 
parameters and Generative AI responses. IPFS files are 
paired with the Cloud and Blockchain as a scalable 
solution for storing large off-chain data and recovery of 
original untampered files if Cloud storage is 
compromised. It enables robust auditing for data integrity 
checks and accountability in AI decisions. 

On-chain Blockchain Hash values of files Only the Hash pointers of files in IPFS and Cloud are 
stored in the blockchain for data integrity audits for 
protection against misuse of AI.  

A detailed process of auditing the tampering of data from Generative AI tools and XAI algorithms will 
be discussed in Section 3.4. Before this, the methodology for formulating legal decisions using XAI and 
secure usage of Generative AI tools is presented in Sections 3.2 and 3.3. 

3.2 Legal Decisions by MAKER Approach  

3.2.1 Introduction to Legal Knowledge Representation by MAKER 

The implementation of logic within legal contexts is driven by the need for an explicit and accurate 
representation of legal norms compared to its conveyance in commonly used natural language by legal 
practitioners such as lawyers, legislators, and jurists. Logic acts as a tool for resolving inherent ambiguities 
in the natural language expression of legal arguments by representing it into a set of logical axioms for 
unambiguous relations (Prakken & Sartor, 2015). For instance, the logical-linguistic structure of legal 
facts in an employer liability case: “An employer is liable for a workplace accident if they failed to provide 
protective equipment and/or a witness testifies to the accident,” can be represented by clear and 
unambiguous logic as:  

(𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑣𝑒 𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡(𝑥) = 𝑁𝑜) ∨ (𝑊𝑖𝑡𝑛𝑒𝑠𝑠 𝑇𝑒𝑠𝑡𝑖𝑚𝑜𝑛𝑦(𝑥) = 𝑌𝑒𝑠) → 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑥)     (1.1) 

(𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑣𝑒 𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡(𝑥) = 𝑁𝑜) ⋀ (𝑊𝑖𝑡𝑛𝑒𝑠𝑠 𝑇𝑒𝑠𝑡𝑖𝑚𝑜𝑛𝑦(𝑥) = 𝑌𝑒𝑠) → 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑥)     (1.2) 

In Expressions (1.1) & (1.2), the logic connective “∨” and “⋀” represents the “AND” and “OR” 

operations, respectively. These logical syntaxes are also called legal syllogisms, where categorical 
syllogisms of premises are used to infer a conclusion (Constant, 2023).   The logical syntax shown in 
Expression (1.1) represents an organization (defendant) denoted by 𝑥 , liability towards its employee 
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(claimant) for a workplace accident if they failed to provide protective equipment “AND” a witness 
testifies to the accident. Alternatively, Expression (1.2) points to the ultimate hypothesis of an 
organization’s liability, if they failed to provide protective equipment “OR” a witness testifies to the 
accident.  

The Evidential Reasoning (ER) (Yang & Xu, 2013) (Fu, et al., 2015) based framework is employed to 
capture legal facts and heuristics to facilitate the establishment of a causal relationship between evidence 
and the final hypothesis or conclusion. ER is based on Dempster–Shafer's theory of evidence (Dempster, 
2008). The Individual Maximum-Likelihood Evidential Reasoning (I-MAKER) methodology is utilized 
to quantify the extent to which a specific piece of legal evidence supports the state of a legal fact by 
considering the strength of the evidence.  A legal fact is represented by 𝑞 such that 𝑞 ∈ {1, … , 𝑄} and each 
legal fact can have 𝑉  number of categorical values to represent the legal circumstances such that 𝑣 ∈

{1, … , 𝑉 }. Therefore, the piece of evidence is denoted by 𝑒 , . A decision, in legal terms a final verdict or 

ultimate hypothesis, is represented by 𝜃.  

The strength of the evidence is assessed by two crucial parameters: the weight and reliability of the 
evidence toward a conclusion. The weight of evidence refers to the importance of evidence for a given 
decision, denoted by 𝑤 , , . The reliability of the evidence refers to the credibility of the source of 

evidence for a given decision, denoted by 𝑟 , , . The integration of the weight and reliability concept of 

ER adopted in the MAKER framework provides a comprehensive explanation of decisions (Liu, et al., 
2019). The I-MAKER and C-MAKER extend the MAKER framework to pre-process ambiguous evidence 
(Sachan, et al., 2021).  

The I-MAKER is utilized to process an individual piece of ambiguous legal evidence, and the C-
MAKER combines multiple pieces of evidence to draw a decision by estimating the joint probability mass. 
For instance, C-MAKER can estimate the joint probability mass of evidence for 
𝑃𝑟𝑜𝑡𝑒𝑐𝑡𝑖𝑣𝑒 𝐸𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 = 𝑁𝑜 and 𝑊𝑖𝑡𝑛𝑒𝑠𝑠 𝑇𝑒𝑠𝑡𝑖𝑚𝑜𝑛𝑦 = 𝑌𝑒𝑠 in Expression (1.1) for a final liability 
decision. Table 4 provides the preliminary definitions of terms used for legal reasoning in the context of 
the MAKER model. 

 
Table 4: Preliminary Definitions for Legal Reasoning by MAKER 

Legal facts (𝑞) It is the data or information used by lawyers as a foundation for their 
arguments for legal precedents and statutes. The establishment of facts 
is based on the evaluation of evidence.  

Conclusion or 
decision (𝜃) 

It is the set of decisions or ultimate verdicts of a legal case.  
 

Evidence (𝑒 , ) Evidence encompasses the data or information used to validate the 
facts supporting a legal argument. It helps to determine whether the 
facts are sufficient, insufficient, or inconclusive for the case at hand. 

Weight of evidence 
(𝑤 , , ) 

It is the significance or importance of a piece of evidence in shaping a 
conclusion or final decision. 

Reliability of legal 
evidence (𝑟 , , ) 

It is the credibility or trustworthiness of the source from which a piece 
of legal evidence originates. 

Probability mass to 
evidence (𝑚 , , ) 

It is the extent of support for a legal fact by a piece of evidence toward 
a conclusion.  
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3.2.2 Processing of Legal Evidence by I-MAKER  

A dataset has N number of legal cases with 𝑞, 𝑞 ∈ {1, … , 𝑄} attributes for legal fact representation to 
evaluate the legal liability. Each attribute has  𝑣 ∈ {1, … , 𝑉 } referential values to represent the legal fact 

circumstances. The target attribute (𝜃) is a set of possible decisions defined as the frame of discernment 
Θ = {𝜃 , … , 𝜃 , … , 𝜃 , 𝑧 ∈ {1, … , 𝑍}} . These decisions are mutually exclusive and collectively 
exhaustive. The decision by MAKER is provided over the power set of the frame of discernment: 

 𝑃(Θ) = {∅, {𝜃 }, … , {𝜃 }, … , {𝜃 , … , 𝜃 }, Θ}                                 (2) 

Uncertainty of a piece of evidence is quantified by the number of samples supporting a decision. The 
degree of support for a decision is called the belief-degree. The belief-degree for a piece of evidence is 

obtained by estimating the probability mass for a 𝑣  circumstance of a 𝑞  legal fact for a decision 𝜃 ∈

𝑃(Θ). Evidence 𝑒 ,  is profiled over a belief distribution and the sum of belief is equal to one, as 

follows: 

𝑒 , = 𝑒 , , , 𝑚 , , , ∀𝜃 ∈ 𝑃(Θ)                                                       (3.1) 

∑ 𝑚 , ,∈ ( ) = 1                                                                (3.2) 

The probability mass normalized by weight and reliability of evidence for a given legal claim is:  

𝑚 , , =

⎩
⎪
⎨

⎪
⎧

0                          𝜃 = ∅ 
, ,

( , , , , )
          𝜃 ⊆ Θ, 𝜃 ≠  ∅      

, ,

( , , , , )
        𝜃 = 𝑃(Θ)           

                                      (4) 

Here, 𝑚 , ,  is the basic probability mass and 𝑚 , ,  is the normalized probability mass of evidence 

𝑒 ,  for a decision 𝜃. The basic probability mass is calculated by the normalization of the likelihood of 

evidence (Sachan, et al., 2021). The weight and reliability of evidence could be a subjective judgment of 
lawyers. It can be trained by data-driven optimization. The objective function to optimize the weight and 
reliability of each piece of evidence is: 

: , , , , ,  ∑ ∑ ( , , , , , )∈ ( )

:  , ,  ,  , ,  
                                           (5) 

The observed probability for an instance 𝑥  is denoted by 𝑚 and 𝑚(𝑤 , , , 𝑟 , , ) is the estimated 

normalized probability mass. 

3.2.3 Aggregation for Legal Evidence by C-MAKER 

A single piece of evidence processed by I-MAKER is aggregated by the C-MAKER approach to infer 
a final decision (Sachan, et al., 2020) (Liu, et al., 2019). The normalized joint probability mass of joint 
pieces of evidence from two mutually exclusive attributes of legal facts 𝑞  and 𝑞  is denoted by 

𝑚 , , ,where 𝑣 ∈ 𝑉  and 𝑣 ∈ 𝑉  denote the 𝑣  and 𝑣 , such that 𝑞 ≠ 𝑞  and 𝑞, 𝑞 ∈ {1, … , 𝑄}. The 

interrelation index between two evidences 𝑒 ,  and 𝑒 ,  pointing to class ℎ  and ℎ , with ℎ ∩ ℎ =

𝜃, ∀𝜃 ∈ 𝑃(𝛩), respectively, is given as follows: 
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𝜓 , , =

0     ; 𝑖𝑓  𝑚 , , = 0 𝑜𝑟 𝑚 , , = 0

, ,

, ,    , ,

              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒     
                                         (6) 

In the above Expression (6), two pieces of evidence are deemed independent if 𝜓 , , = 1 and disjoint 

if 𝜓 , , = 0. The joint probability mass (𝑚 , , ) for a decision 𝜃 is supported by evidence 𝑒 ,  and 

𝑒 ,  is given by: 

𝑚 , , =
0                             𝜃 = ∅

, ,

∑ , ,   , ,  , ,∈ ( )

 ∀𝜃 ∈ 𝑃(𝛩), 𝜃 ≠ ∅                                        (7a) 

𝑚 , , = [(1 − 𝑟 , , ) 𝑚 , , + (1 − 𝑟 , , ) 𝑚 , , ] +  ∑ 𝛾 , , ,  𝜓 , , ,∩  𝑚 , ,  𝑚 , ,       (7b) 

The normalized joint probability mass, presented in Equation (7a), is derived from Equations (7b).  

and (7c). The Expression 𝑚 , ,  𝑚 , ,  in Equation (7a) is the residual support of the power set. The 

parameter 𝛾 , , ,  known as the reliability ratio, is the proportion of the joint reliability of the two pieces 

of evidence to the product of their individual reliabilities (Sachan, et al., 2020).  

The decision generated by the MAKER algorithm is articulated in a structured, human-readable text 
format, encapsulated within a JSON (JavaScript Object Notation) file, an example shown in Figure 3. An 
anonymized text version of a legal case’s explanation is merged with a fixed prompt to send in a 
Generative AI tool to get a response. 

 

 

Fig. 3. Example of decision generated by I-MAKER & C-MAKER model in a text format  

 

3.3  Drafting XAI Decisions by Generative AI 

The XAI model generates an explanation denoted as 𝐸  for a legal case against an individual or 
defendant 𝑥 . This explanation is subsequently formatted into a text file, denoted by 𝐸 . To preserve 
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privacy, an anonymized version of the file is created by removing the data subject’s identifiable 
information and substituting it with placeholder or dummy data. The data subject could be the defendant 

and the respective law firm. The anonymized text file denoted by 𝐸  is concatenated with a standardized 
prompt, denoted by 𝑃 . An example of an anonymized text file is shown in Figure 3. The standardization 
implies the removal of any identifiable or internal information related to the law firm in the prompt 
statement, such as queries originating from internal email communications. The content generated as a 
response to the prompt through the OpenAI API and Google Bard-API is denoted as 𝑅 . Figure 4 
illustrates the dialogue between the prompt and the Generative AI API’s response. 

A sequence of prompts is dispatched to the API of four prominent large-language models: Bard, gpt-
text-davinci-003, gpt-text-davinci-002, and GPT-4 to generate content. This action is executed by a 
programming language code (for example, a Python script), which utilizes unique API keys to obtain 
responses. The ethical premises and assumptions for the application of Generative AI tools in legal firms 
are: 

(a) Confidentiality of Prompt Data: The limitations on prompt data are enforced to maintain 
confidentiality by anonymizing sensitive information. Ethical data handling practices and privacy is 
maintained by anonymizing the output of the XAI model used for content generation, which excludes 
personal data, precise case specifics, and third-party information. This approach safeguards the 
transmission of sensitive information in the Generative AI platforms. 

(b) Restriction on Lawyer’s Direct Access: Computing devices managed by law firms restricts the 
direct access of advanced chatbots such as ChatGPT and Google Bard. Instead, the content is generated 
by API initiated at a lawyer’s request to ensure the anonymity of prompt information. This restriction 
circumvents the potential misuse of open-source AI tools. 

 

3.4 Blockchain for Auditing XAI Decisions and AI-Created Content 

The concept of an ‘immutable ledger’ represents the unalterable and tamper-resistant feature of 
blockchain technology. The record of a cryptographic hash of the information into the blockchain creates 
a unique and irreversible footprint of the actual data stored outside the blockchain. The hash of algorithmic 
decisions by XAI and content produced by large-language models supported by Generative AI tools is 
stored in the blockchain. The data stored outside the blockchain on a firm’s centralized server is 
susceptible to tampering by malicious actors. 

The immutability of a blockchain ledger serves as a trustworthy repository to provide documented 
evidence of sequential activities. It provides a reliable referencing of the prompt and its corresponding 
text produced by Generative AI tools, thereby allowing for meticulous examination of AI-produced 
content employed by a lawyer. The verification process can pinpoint which portion of the generated text 
was incorporated or excluded by the lawyer during the drafting of correspondence. This scrutiny can help 
answer questions like, “To what extent did the lawyer use the AI-generated text?”.  
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Fig. 4. Blockchain-based auditing process for legal drafting and response management  
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Additionally, blockchain technology can improve accountability and trust in legal decisions made by 
XAI models by maintaining algorithmic data integrity. Figure 4 illustrates the three processes. First, 
obtaining legal decisions by the XAI model and its usage in producing a textual explainable of decisions 
by Generative AI tools, such as GPT and Bard. Second, off-chain and on-chain storage mechanisms. Third, 
blockchain-based the auditing procedure.  

The on-chain & off-chain data storage and auditing processes are subdivided into algorithm 1 (Table 
5) and algorithm 2 (Table 6), respectively. Algorithm 1 records data in the hash node, and algorithm 2 in 
the audit node of a blockchain network. Both nodes are registered in a blockchain network. A successful 
transaction to record data in a node requires node authentication by a smart contract (or chain code). The 
authentication ID is denoted by 𝑆𝑡𝑜𝑟𝑒𝑑_𝐴𝑢𝑡ℎ_𝐼𝐷. It can be generated by creating the hash of node ID and 
digital signature: 

𝑆𝑡𝑜𝑟𝑒𝑑_𝐴𝑢𝑡ℎ_𝐼𝐷 =  𝑆𝐻𝐴256(𝑁𝑜𝑑𝑒 , 𝐷 )                                     (8) 

 
Here, 𝑁𝑜𝑑𝑒  is the hash value of the node ID and 𝐷  is the digital signature of a valid user. A smart 

contract validates a node by comparing its authentication ID with a regenerated hash value. The hash value 
is calculated by the SHA256 hashing algorithm (Martino & Cilardo, 2020).  

 
3.4.1 Algorithm 1 

Algorithm 1 in Table 5, presents the steps to store anonymized and encrypted legal decisions from XAI 
and its corresponding response by Generative AI tools to an off-chain (𝛼) and on-chain (𝛽) data storage 
platforms to facilitate the process of automated auditing by blockchain. The chosen off-chain platforms 
are Cloud and IPFS. The on-chain data is stored in blockchain networks such as Ethereum and 
Hyperledger. 

Step 1: Anonymize XAI Decision File 

The MAKER model generates an explanation (𝐸 )  for a decision (𝜃)  for a legal case against a 
defendant (𝑥). This explanation is then saved as a JSON file (𝐸 ). The choice of the XAI model may 
differ among law firms; in this research, MAKER is utilized to provide explainable legal decisions. The 
JSON file is anonymized by substituting the identifiable information with a piece of dummy information 

𝐸,  to ensure compliance with the data protection law against permanent storage in decentralized 

platforms such as IPFS and leakage of sensitive information to Generative AI tools.   

Step 2: Send Anonymized Prompt to Generative AI 

The plain text of the anonymized JSON file is concatenated with the standardized prompt statement 
(𝑃 ) to prepare a query for Generative AI. The prompt is sent to the API of Generative AI rather than 
copy-paste to their chatbots for better control and customization to obtain a response (𝑅 ).  

Step 3: Encrypt and Anonymize Data for Off-chain Storage 

The original data files are stored in an encrypted format within IPFS files and the Cloud for centralized 
control. Only the respective hash values of these files are retained in the blockchain. For Cloud storage, a 
data file is prepared by combining the hash of a legal claim ID (𝐻 ), the non-anonymized JSON file of 
explanation, and the response obtained from the Generative AI query as {𝐻 , 𝐸 , 𝑅 }  into a single JSON 
file (𝜙 ). In parallel, the data intended for IPFS is compiled by merging the hash of a legal claim ID, the 
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anonymized JSON explanation file, and the response to the Generative AI’s query as {𝐻 , 𝐸 , 𝑅 }, into 
another unique JSON file (𝜙 ). Then, the hash value of the files: 𝜙  and 𝜙  is generated, denoted as 𝐻  
and 𝐻 , respectively.  

Step 4: Compute Merkle root and Hash to Prepare On-chain Data Storage 

Merkle tree is the authentication tree that creates the unique signature of the independent data stored 
chronologically in the blockchain (Datta & Sinha, 2023) (Hariharasitaraman & Balakannan, 2019). It 
validates the integrity of data stored within an individual block and across a series of blocks within the 
chain. The Merkle Tree is a binary tree where each node can have zero, one, or two child nodes. It first 
forms the hash of the leaf nodes in pairs, and the next tree level is created by hashing the concatenated 
hashes of two child nodes. This process continues until a single node remains at the top of the tree called 
Merkle root. 

 

 

Fig. 5. Merkle Tree with even and odd numbers of files stored in the hash storage node 

 

A Merkle root for both Cloud and IPFS is calculated for each 𝑥  legal file associated with a defendant. 
This computation utilizes the hash values of previous IPFS and Cloud files stored sequentially in the 
blockchain, where the previous file number in the sequence can be represented as {1, … , 𝑥 − 1}. A Merkle 
root is a combination of hash values of off-chain data stored on the blockchain up to legal case 𝑥. An 
illustration of a Merkle tree with an odd and even number of files is presented in Figure 5. The hash value 
is duplicated if a Merkle tree has an odd number of nodes at any level. The Merkle root derived by 

computing the Merkle tree of the hashed Cloud file and hashed IPFS files is denoted as 𝑚𝑘  and 𝑚𝑘 , 

respectively. These Merkle roots for Cloud and IPFS are distinct due to the differing nature of data storage. 
The data held on IPFS is anonymized, unlike that on Cloud, resulting in distinct hash values, which provide 
different Merkle roots. 

Step 5: Encode Off-chain and On-chain data 
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The hash value of data stored in the Cloud (𝐻 )  and hash value of data stored in the IPFS file (𝐻 ), 

Merkle root of Cloud 𝑚𝑘  and IPFS 𝑚𝑘  are consolidated into a single JSON file. This file is then 

converted into the BASE64 format to prepare the data for on-chain storage 𝐷 . The data 𝐷  is pushed 

inside a block of the hash storage node of a blockchain network, and a successful transaction (i.e. data 
upload) returns the transaction ID, represented as 𝑇𝐻 _ .  

The conversion of data to BASE64 text format is a common practice, as it is compatible with the 256-
bit slot available in both IPFS and Blockchain. The BASE64 can encode binary streams such as images, 
videos, and text for reliable transmission of binary information. Encryption and decryption are used to 
hide something (a secret message) while encoding and decoding are used to bring a piece of information 
into a specific form. 

Step 6: Upload Prepared Data to Off-chain and On-chain Storage 

Once the fingerprint of off-chain data as hash values is securely stored in the blockchain, the 
corresponding files of a legal case, both pre-anonymized and post-anonymized, are saved respectively in 
the Cloud and IPFS. As an additional security measure, the files residing in the Cloud and IPFS are first 
encoded into the BASE64 text format and then encrypted using the data owner’s public keys under the 
PRE scheme. The resulting off-chain encrypted files, 𝐷  and 𝐷  are uploaded to the Cloud and IPFS, 

respectively. A successful upload to IPFS will return a file identifier, denoted as 𝐶𝐼𝐷 . 

 

3.4.2 Algorithm 2 

Algorithm 2 in Table 6, presents the procedure to audit the integrity of data files by ensuring the 
consistency of off-chain data files in the Cloud and IPFS. The key principle of the algorithm is to compare 
the locally recomputed Merkle roots of the files in off-chain storage facilities (IPFS and Cloud) with their 
corresponding Merkle root stored on the blockchain.  

Step 1: Initialization 

The algorithm runs for a series of 𝑋 legal cases, recorded chronologically on the blockchain, where 
each case is represented by a specific index 𝑥 ∈ {1, … , 𝑋}. The audit process begins with the first legal 
file (𝑥 = 1) in the block after the genesis block and proceeds sequentially up to the last block containing 
the most recent legal file (𝑥 = 𝑋). 

The process begins with the initialization of three empty lists: ‘𝑇𝑎𝑚𝑝𝑒𝑟𝑒𝑑 ’ for any files found 

tampered, ‘𝑐𝑙𝑜𝑢𝑑 ’ and ‘𝐼𝑃𝐹𝑆 ’ for recalculated hash values of the files in the Cloud and IPFS, 
respectively.  

Step 2: Retrieve and Decrypt  Off-chain Encrypted Data 

For every legal case file 𝑥 ∈ {1, … , 𝑋} the algorithm first retrieves the encrypted and encoded files 

stored in secure Cloud storage (𝐷 )  and the IPFS 𝐷 . With the data owner’s (such as the case 

processing lawyer) permission, these files are decrypted and decoded to extract the Cloud and IPFS files 
(𝜙  and 𝜙 ).  

Step 3: Hash and Merkle Root Recomputation 
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The SHA256 hash value of these decrypted files is recalculated to generate hashes for the Cloud data 

files 𝐻 and the IPFS files 𝐻 . These hashes are then appended to their respective lists: ‘𝑐𝑙𝑜𝑢𝑑_ℎ𝑎𝑠ℎ’ 

for Cloud files and ‘𝐼𝑃𝐹𝑆_ℎ𝑎𝑠ℎ’ for IPFS files. The recalculated hash values of the files retrieved from 

the Cloud and IPFS are added to their respective lists: 𝑐𝑙𝑜𝑢𝑑_ℎ𝑎𝑠ℎ ← 𝐻 , … , 𝐻 , 𝐻   and IPFS files: 

𝐼𝑃𝐹𝑆_ℎ𝑎𝑠ℎ ← 𝐻 , … , 𝐻 , 𝐻 . The hash values in these lists are utilized to recompute the Markle root 

for the files stored in the Cloud and IPFS denoted as 𝐶𝑙𝑜𝑢𝑑_𝑚𝑘  and 𝐼𝑃𝐹𝑆_𝑚𝑘 , respectively.  

Step 4: Validate Data Integrity by Merkle Root Comparison 

The previously stored Merkle Roots for the Cloud data 𝑚𝑘  and IPFS files 𝑚𝑘  are retrieved 

from the full hash node of the blockchain. The data of an 𝑥  legal case in the full hash node is located by 

the transaction ID 𝑇𝐻 _  returned by Algorithm 1. Also, entire data transmitted by a full node 

can be downloaded from the computer acting as the server.  

Any discrepancies between the newly computed Merkle root and its blockchain counterpart, indicate 
potential data tampering with the off-chain data, indicating a breach of data integrity. Whereas, strict 
equality between Merkle roots, affirms data integrity. The tampering state can be represented as: 

𝜏 =  
1, 𝑚𝑘 = 𝐶𝑙𝑜𝑢𝑑_𝑚𝑘  and 𝑚𝑘 = 𝐼𝑃𝐹𝑆_𝑚𝑘  

0, 𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒
                                     (9) 

In Expression (8), 𝜏  represents the tampering state. This condition provides a binary flag for data 
integrity, with ‘1’ signifying data is intact and ‘0’ signifying potential tampering. After all the files have 
been checked, the algorithm proceeds to document the legal data’s integrity status in the audit node. This 
creates a permanent record of an audit outcome for a given legal case. The audit node within the blockchain 
maintains an immutable and traceable historical record of audit activities with timestamps to provide a 
means to retrospectively verify the integrity of data at any given point in the past. 

The audit process for the metadata of the algorithmic parameters follows an identical procedure. The 
blockchain-based verification allows continuous monitoring of the algorithm.  Regular auditing by cross-
referencing the metadata of an XAI model, such as parameters, enables the detection and prevention of 
adversarial attacks. 

3.4.3 Computational Complexity  
(a) Algorithm 1: The execution time of the tasks in an algorithm is defined by Big O notation. The 

legal decision is derived from pre-trained I-MAKER and C-MAKER by pre-processing each attribute in 
the data and estimating joint probability mass, respectively. The computation complexity of I-MAKER is 
𝑂(𝑄) and C-MAKER is 𝑂(𝑄!) (Sachan, et al., 2021). Here, 𝑄 is the number of attributes in a dataset and 
𝑄! represents the joint pieces of evidence across multiple attributes. Data anonymization, concatenating 
anonymized data with a prompt statement, API call to generate text, a hash of fixed-size input data, 
encryption-decryption, and off-chain storage processes are scaled linearly, operate in constant time 𝑂(1). 
The time complexity in computer science refers to how the runtime of an algorithm grows relative to its 
input size. The time required to store data in the blockchain depends on network latency and throughput. 
Detailed experiments on Ethereum and Hyperledger networks are documented in Section 4. The time 

complexity to compute the Merkle Root from a Merkle Tree is 𝑂 𝐿𝑜𝑔(𝑛) , where n is the number of 

nodes (hashes) in the tree. The significant time complexity of this algorithm is the execution of C-
MAKER, 𝑂(𝑄!).  
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(b) Algorithm 2: The initialization step has a constant time complexity 𝑂(1). This loop runs 𝑋 times 
where 𝑋 is the number of legal case files in the blockchain network. Retrieval of encrypted JSON data 
from Cloud storage and IPFS, decryption of each file, and computation of SHA256 for each file have a 
constant time complexity 𝑂(1)  because each JSON formatted file has approximately the same size. 
Similarly, a comparison of two Merkle Root has a constant time 𝑂(1).  

For auditing, the Merkle tree for Cloud and IPFS file data is reconstructed and computed locally, then 
compared with the immutable Merkle root stored in the blockchain. The Merkle Tree time complexity is 

𝑂 𝐿𝑜𝑔(𝑛) , where 𝑛 is the number of nodes (hashes) in the tree. The total time complexity to compute 

Merkle Root for an auditing iterative loop increases with the increases in the number of hashed files as 

𝑂 𝑋 ∗ 𝐿𝑜𝑔(𝑋) . Therefore, the most significant time complexity of algorithm 2 is 𝑂 𝑋 ∗ 𝐿𝑜𝑔(𝑋) . 

 

Table 5: Algorithm 1 
Algorithm 1: Store XAI Decisions and Responses by Generative AI to IPFS file (off-chain), secured Cloud (off-
chain), and a blockchain (on-chain) 
Input:  
Decision 𝜃 for a legal case 𝑥 by an XAI algorithm 
Prompt statement represented as 𝑃𝑟𝑜𝑚𝑝𝑡_𝑆𝑡𝑎𝑡𝑚𝑒𝑛𝑡 
Legal case ID as 𝑥  
Hash value of data files stored in the blockchain before legal case 𝑥: {𝐻 , … , 𝐻 } 
Authentication ID provided by a user trying to access the network: 𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑_𝐴𝑢𝑡ℎ_𝐼𝐷  
 
Output: 
On-chain data in Hash Storage Node: ID of successful transaction in blockchain (𝑇𝐻 _ )  
Off-chain data: Content identifier of the IPFS file (𝐶𝐼𝐷 )  
 

1.  // Generate an explanation 𝐸  of the decision of a legal case 𝑥 by XAI model  
𝐸 = XAI (𝑥, 𝜃) 

2.  // Convert the explanation 𝐸  into a JSON file for structured storage 
𝐸 = 𝐽𝑆𝑂𝑁(𝐸 )  

3.  // Remove sensitive information from the JSON file for privacy  
𝐸 , = 𝐽𝑆𝑂𝑁(𝐸 , ) 

4.  // Create a comprehensive prompt by concatenating the anonymized JSON file to the given prompt 
statement 
𝑃 ← 𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝑃𝑟𝑜𝑚𝑝𝑡_𝑆𝑡𝑎𝑡𝑚𝑒𝑛𝑡, 𝐸 , ) 

5.  // Generate a response from Generative AI by passing the 𝑃  to API 
𝑅 ← 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑣𝑒_𝐴𝐼_𝐴𝑃𝐼(𝑃 ) 

6.  // Calculate a SHA256 hash of the legal case’s unique identifier 
𝐻 ← 𝑆𝐻𝐴256(𝑥 ) 

7.  //Cloud (𝜙 ) and IPFS file (𝜙 ) preparation: Merge the information into a single JSON file 
𝜙 ← 𝑚𝑒𝑟𝑔𝑒_𝑖𝑛𝑡𝑜_𝐽𝑆𝑂𝑁{𝐻 , 𝐸 , 𝑅 } 
𝜙 ← 𝑚𝑒𝑟𝑔𝑒_𝑖𝑛𝑡𝑜_𝐽𝑆𝑂𝑁{𝐻 , 𝐸 , 𝑅 } 

8.  // Compute SHA256 hash of merged JSON files for Cloud and IPFS 
𝐻 ← 𝑆𝐻𝐴256(𝜙 ) 
𝐻 ← 𝑆𝐻𝐴256(𝜙 ) 

9.  // Compute the Merkle Root using hash values of previous IPFS and Cloud files stored chronologically 
in the blockchain along with the hash of current legal case files 

𝑚𝑘 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑀𝑒𝑟𝑘𝑙𝑒_𝑅𝑜𝑜𝑡(𝐻 , … , 𝐻 , 𝐻 )  

𝑚𝑘 = 𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑀𝑒𝑟𝑘𝑙𝑒_𝑅𝑜𝑜𝑡(𝐻 , … , 𝐻 , 𝐻 )  
10.  // Prepare data for blockchain storage 

𝐷 ← 𝐵𝐴𝑆𝐸64 𝑚𝑒𝑟𝑔𝑒_𝑖𝑛𝑡𝑜_𝐽𝑆𝑂𝑁 𝐻 , 𝐻 , 𝑚𝑘 , 𝑚𝑘  

11.  IF 𝑆𝑡𝑜𝑟𝑒𝑑_𝐴𝑢𝑡ℎ_𝐼𝐷 ==  𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑_𝐴𝑢𝑡ℎ_𝐼𝐷 THEN: 

12.   // Store the BASE64 encoded data to the blockchain and retrieve the ID of the successful 
transaction 
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𝑇𝐻 _ ← 𝑺𝒕𝒐𝒓𝒆_𝒕𝒐_𝑩𝒍𝒐𝒄𝒌𝒄𝒉𝒂𝒊𝒏_𝑯𝒂𝒔𝒉_𝑺𝒕𝒐𝒓𝒂𝒈𝒆_𝑵𝒐𝒅𝒆(𝐷 ) 

13.  ELSE:  
14.   Invalid Transaction and Potential Attack by Malicious Actor 

15.  END  

16.  // Encode Cloud (𝜙 ) and IPFS (𝜙 ) data in BASE64 format for universal data transfer 
𝛼 ←  𝐵𝐴𝑆𝐸64(𝜙 ) 
𝛼 ←  𝐵𝐴𝑆𝐸64(𝜙 ) 

17.  // Encrypt the BASE64 encoded JSON file using the owner’s cryptographic keys for additional security 
𝐷 ←  𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝛼 ) 
𝐷 ←  𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝛼 ) 

18.  // Upload encrypted files to secure Cloud storage and IPFS, and retrieve the unique content identifier 
(CID) of the IPFS file 
𝑥 ← 𝑺𝒕𝒐𝒓𝒆_𝒕𝒐_𝑪𝒍𝒐𝒖𝒅(𝐷 ) 
 𝐶𝐼𝐷 ← 𝑺𝒕𝒐𝒓𝒆_𝒕𝒐_𝑰𝑷𝑭𝑺(𝐷 )  

19.  // Return the transaction ID and CID of the IPFS file 
RETURN 𝑇𝐻 _ , 𝐶𝐼𝐷  

20.  END 

 

Table 6: Algorithm 2 

Algorithm 2: Blockchain-based Audit Trail for Data Integrity 

Suppose we have 𝑋 legal case files stored as hash values in the blockchain network, where x ∈ {1, … , X}. An 
auditor’s task is to monitor the integrity of these files using a blockchain-based audit trail. 
  
Input:  
Content identifier of IPFS file: 𝐶𝐼𝐷   
Legal case ID stored in the Cloud: 𝑥   
Authentication ID provided by a user trying to access the network: 𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑_𝐴𝑢𝑡ℎ_𝐼𝐷  
 
Output:  
List of Tampering files: 𝑇𝑎𝑚𝑝𝑒𝑟𝑒𝑑_𝑓𝑖𝑙𝑒𝑠 
Blockchain transaction ID for successfully recording the tampered state of files: 𝑇𝐻 _  

1.  // Initialization: Create empty lists for the tampered files and recalculated hash of files in the Cloud 
and IPFS 
𝑇𝑎𝑚𝑝𝑒𝑟𝑒𝑑_𝑓𝑖𝑙𝑒𝑠 ← [] 
𝑐𝑙𝑜𝑢𝑑_ℎ𝑎𝑠ℎ ← [] 
𝐼𝑃𝐹𝑆_ℎ𝑎𝑠ℎ ← [] 

2.  For 𝑥 = 1 𝑡𝑜 𝑋 do: 

3.   // Retrieve data from Cloud storage and IPFS using respective IDs 
𝐷  ←  𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒_𝐶𝑙𝑜𝑢𝑑_𝑓𝑖𝑙𝑒(𝑥 ) 
𝐷  ←  𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒_𝐼𝑃𝐹𝑆_𝑓𝑖𝑙𝑒(𝐶𝐼𝐷 ) 

4.   // Decrypt the Cloud and IPFS files with the data owner’s permission 
𝛼  ←  𝐷𝑒𝑐𝑟𝑦𝑝𝑡 𝐷𝑒𝑐𝑜𝑑𝑒(𝐷 )  

𝛼  ←  𝐷𝑒𝑐𝑟𝑦𝑝𝑡 𝐷𝑒𝑐𝑜𝑑𝑒 𝐷  

5.   // Extract data files from decrypted and decoded Cloud and IPFS files 
𝜙  ←  𝑟𝑒𝑡𝑟𝑖𝑣𝑒(𝛼 ) 
𝜙  ←   𝑟𝑒𝑡𝑟𝑖𝑣𝑒(𝛼 ) 

6.   // Recalculate the hash of retrieved files to recompute the Merkle root 
𝐻 ← 𝑆𝐻𝐴256(𝜙 ) 

𝐻 ← 𝑆𝐻𝐴256(𝜙 ) 
7.   // Append recalculated SHA256 hash values of files retrieved from Cloud and IPFS to 

respective lists 
𝑐𝑙𝑜𝑢𝑑_ℎ𝑎𝑠ℎ ← 𝑎𝑝𝑝𝑒𝑛𝑑 𝐻  

𝐼𝑃𝐹𝑆_ℎ𝑎𝑠ℎ ← 𝑎𝑝𝑝𝑒𝑛𝑑 𝐻  
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8.   // Recompute the Merkle Root using hashes of all Cloud and IPFS files up to the 𝑥  file: 
𝐶𝑙𝑜𝑢𝑑_ℎ𝑎𝑠ℎ ← 𝐻 , … , 𝐻 , 𝐻   and IPFS files: 𝐼𝑃𝐹𝑆_ℎ𝑎𝑠ℎ ← 𝐻 , … , 𝐻 , 𝐻  
 
𝐶𝑙𝑜𝑢𝑑_𝑚𝑘 ← 𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑀𝑒𝑟𝑘𝑙𝑒_𝑅𝑜𝑜𝑡(𝑐𝑙𝑜𝑢𝑑_ℎ𝑎𝑠ℎ) 
𝐼𝑃𝐹𝑆_𝑚𝑘 ← 𝑟𝑒𝑐𝑜𝑚𝑝𝑢𝑡𝑒_𝑀𝑒𝑟𝑘𝑙𝑒_𝑅𝑜𝑜𝑡(𝐼𝑃𝐹𝑆_ℎ𝑎𝑠ℎ) 

9.   // Get the Merkle Roots of IPFS files and Cloud data of 𝑥  instance stored in the blockchain  

𝑚𝑘 , 𝑚𝑘  ←  𝑔𝑒𝑡_𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛_𝐻𝑎𝑠ℎ_𝑆𝑡𝑜𝑟𝑎𝑔𝑒_𝑁𝑜𝑑𝑒(𝑇𝐻 _ ) 
10.   // Validate the computed Merkle root against the Merkle root retrieved from the blockchain 

IF 𝑚𝑘  = 𝐶𝑙𝑜𝑢𝑑_𝑚𝑘  and 𝑚𝑘  = 𝐼𝑃𝐹𝑆_𝑚𝑘  THEN: 

11.    // If the Merkle roots match, flag the case as not tampered 
𝜏 = 1 

12.   ELSE: 

13.    // If the Merkle roots do not match, flag the case as a tampering event 
𝜏 = 0 

14.    // Store identification of tampered legal files: hash value of legal file ID and CID of 
IPFS file 
𝑇𝑎𝑚𝑝𝑒𝑟𝑒𝑑_𝑓𝑖𝑙𝑒𝑠 ← 𝑎𝑝𝑝𝑒𝑛𝑑([𝐻 , 𝐻 ])    

15.   END  

16.  END   

17.  IF 𝑆𝑡𝑜𝑟𝑒𝑑_𝐴𝑢𝑡ℎ_𝐼𝐷 ==  𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑑_𝐴𝑢𝑡ℎ_𝐼𝐷 THEN: 

18.   // Store the latest tampering state of the legal data to audit the node of the blockchain 
𝑇𝐻 _ ← 𝑆𝑡𝑜𝑟𝑒_𝑡𝑜_𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛_𝐴𝑢𝑑𝑖𝑡_𝑁𝑜𝑑𝑒(𝑇𝑎𝑚𝑝𝑒𝑟𝑒𝑑_𝑓𝑖𝑙𝑒𝑠) 

19.  ELSE: 

20.   Invalid Transaction and Potential Attack by Malicious Actor 

21.  RETURN 𝑇𝑎𝑚𝑝𝑒𝑟𝑒𝑑_𝑓𝑖𝑙𝑒𝑠, 𝑇𝐻 _  

22.  END 

 

3.5 Security and Integrity Evaluation of Blockchain-Based Audit Framework 

Blockchain stores the hash pointers of the files stored in Cloud and IPFS, which contain encrypted and 
anonymized metadata of AI outcomes. Blockchain platforms inherently possess commendable security 
features. However, no technology is entirely immune to cyber threats. The following lemma presents proof 
of the robustness of the proposed Blockchain-based auditing framework:  
 

(a) Challenge 1: How credible are blockchain-audit outcomes, especially when malicious actors 
intend to tamper with data stored within the blockchain, such as the hash pointers of Cloud and IPFS files? 

Lemma 1: The proposed framework resists tampering with on-chain data against any unauthorized 
modifications 

Proof of High Tampering Complexity: The architecture of a blockchain is characterized by a series 
of blocks interconnected by the cryptographic hash value of the preceding block. This creates an 
immutable link, where each block is connected to all its previous blocks in the chain. Each network 
participant needs an authentication ID, which is the joint hash of the Node ID and digital signature of a 
valid user, as shown in Expression (8), to confirm a successful transaction (or data record) within a block. 
An external secured Cloud Key Service Provider manages these IDs and cryptographic keys.  

If malicious actors attempt to tamper with the data within a block, they would need to modify all 
subsequent blocks linked in the blockchain. Even if they succeed in changing all the blocks, the digital 
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signature will become invalid, and peers in the network will receive a notification on the data irregularity. 
The cost and complexity of tampering with block data increase proportionally to the blockchain’s length. 

Unlike traditional centralized systems, a blockchain operates under a decentralized model. It is 
distributed across peer-to-peer networks of nodes, which are continuously synchronized and updated. It 
lacks a single point of failure and is immune to changes made from a single computer. Massive 
computational power is required to successfully access and manipulate a chain of data in the blockchain 
network.   

For instance, there are 𝑏  number of blocks after the 𝑥  block in a blockchain, and there are 𝑗 nodes 
managing this blockchain. The computational power required by malicious entities to tamper the 𝛵  
number of blocks stored in the distributed network of nodes is:   

𝛵 = 𝑗 + 𝑗 + ⋯ + 𝑗 =                                                    (10) 

For example, if there are 8 blocks after the 5  block (𝑏 = 8) in a network of 21 nodes (𝑗 = 21), 
the malicious entities would have to alter approximately 3.97𝑒  blocks to successfully tamper with the 
data. 
 

(b) Challenge 2: Can the system withstand attempts by malicious actors who can synthetically 
engineer hash collisions with authentic blockchain hash values to bypass the audit process? 

Lemma 2: The utilized hashing function has a strong defense against collision scenarios. 

Proof of Negligent Hash Collision Risks: The proposed framework conducts the data integrity audit 
by comparing the Merkle root of the files retrieved from the off-chain storage (IPFS and Cloud) with the 
Merkle root stored on the blockchain. The Merkle root is derived from the combination of the hash values 
of the preceding files stored chronologically in the blockchain. The security of the hash function largely 
depends on the ability to resist collisions. A collision happens when two distinct data, 𝐷 and 𝐷 , 𝐷 ≠ 𝐷 , 
generate an identical hash output, such that ℎ𝑎𝑠ℎ(𝐷) = ℎ𝑎𝑠ℎ(𝐷 ).  

Off-chain data is susceptible to unauthorized alterations. However, the proposed audit mechanism can 
detect tampering with off-chain data, which compares the locally computed Merkle root with the Merkle 
root retained in the blockchain. Audit failure will occur if the hash value of two distinct off-chain collides 
with on-chain data and vice versa. Therefore, the security of the hash function must be thoroughly 
evaluated to check whether an attacker could locate a pair of hash collisions due to the weakness of the 
hash function. 

Birthday Attack Evaluation: The birthday attack is named after the birthday paradox. It can be used to 
approximate the probability of encountering collisions in a hash function during random attack attempts 
(Conrad, et al., 2016). Assume a hash function that produces an 𝑚-bits message digest, and the maximum 
possible number of unique hashes that it can generate equals is 𝑛 = 2 . If 𝑋 random values are generated, 
then the probability of getting at least one pair of a hash collision by birthday paradox is: 

𝑃(𝑋, 𝑛) = 1 − 𝑒
( )

                                                          (11) 

For instance, if a 22-bit hash value is generated 300 trillion times, the probability of experiencing a 
hash collision is approximately one in 100 billion (Zhang, et al., 2022). However, this framework uses the 
SHA-256 hash function, which produces a 64-bit hash value. The potential for hash collisions with a 64-
bit hash is significantly lower than with a 22-bit hash. Given the enormous space of its possibilities, the 
likelihood of a collision is virtually negligible. 
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4. Pilot Test Implementation on Liability Cases 

4.1  Explainable Legal Decisions by I-MAKER and C-MAKER Approach  

A tort is defined as a civil wrong that inflicts harm upon a claimant (Seavey, 1942). Under tort law, 
employers can be held liable for negligence of duty toward the physical and psychological well-being of 
the employees during their course of employment (Torrey & McIntyre, 2015). This case study 
demonstrates the application of the proposed methodology on employer liability cases arising from 
workplace accidents.  

The legislation has formulated the general abstract term for legal norms to understand the 
circumstances of a legal claim (Prakken & Sartor, 2015). Three fundamental elements ascertain an 
organization’s liability towards its employees. First, “duty of care” requires employers to maintain a safe 
working environment (Davies, 1989). Second, a “breach of duty” occurs when an employer’s actions or 
inactions deviate from the expected standard of care (Sykes, 1988) (Bell, 2013). Third, “causation” is the 
proof of negligence (Morris, 1952). It is established when the employee experiences injury or financial 
loss as a direct result of the employer’s breach of duty. These three fundamental elements are applicable 
across a broad spectrum of tort categories. Therefore, the proposed technique can be adapted to economic, 
property, dignitary, strict & absolute liability, and nuisance torts claims. 

 

 

Fig. 6. Structure of integrated I-MAKER and C-MAKER model with the 
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Figure 6 demonstrates the hierarchical structure of the integrated I-MAKER and C-MAKER model 
designed for pre-litigation liability decisions in the context of an employer (defendant) facing allegations 
from an employee (claimant). The individual legal pieces of evidence are processed by the I-MAKER 
approach. Subsequently, these pieces of evidence are combined by C-MAKER to yield a decision as a 
joint probability mass for each outcome within the power set of the frame of discernment (Θ) to 
incorporate uncertainty. For instance, the power set of possible decisions for “duty of care” is: 𝑃(𝛩) =

{{𝐷𝑢𝑡𝑦}, {𝑁𝑜 𝐷𝑢𝑡𝑦}, Θ = {𝐷𝑢𝑡𝑦, 𝑁𝑜 𝐷𝑢𝑡𝑦}}, which can be represented simply as {𝐷𝑢𝑡𝑦, 𝑁𝑜 𝐷𝑢𝑡𝑦, Θ}. 
Similarly, the power sets for “breach of duty” and “causation” are represented as {𝐵𝑟𝑒𝑎𝑐ℎ, 𝑁𝑜 𝐵𝑟𝑒𝑎𝑐ℎ, Θ} 
and {𝐸𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑒𝑑, 𝑁𝑜𝑡 𝐸𝑠𝑡𝑎𝑏𝑙𝑖𝑠ℎ𝑒𝑑, Θ}, respectively. Three fundamental elements of employer liability 
are combined to provide a final liability decision for a given case.  

The MAKER algorithm’s ultimate decision on the acceptance or denial of liability relies on the 
accuracy of features representing the three principal elements of employer liability. The dataset had 3585 
instances of past liability legal cases. Figure 7 illustrates the Area Under the Curve (AUC) and F1 scores 
from the 3-fold cross-validation sets for all fundamental elements of employer liability, along with the 
final liability decision. 

 

  

Fig. 7. ROC curve demonstrating AUC Score for employee liability decisions by integrated I-MAKER 
and C-MAKER model 
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The model intends to assist lawyers in comprehending the probable consequences of the legal facts of 
a case. Figure 8 and Figure 9 present the local explainability as the weight of the most relevant evidence 
for two distinct liability scenarios. These figures highlight a high joint probability mass towards the 
“Liability” decision for Case 1 and a slightly high joint probability mass for the “No-liability” decision 
for Case 2. These plots are generated from the data in a JSON file of a liability case, which is stored in an 
anonymized and encrypted format in the IPFS file system, with its hash value preserved in the blockchain 
for automated auditing. 

 

Fig. 8. Weight of most relevant evidence for an employee liability case, highlighting a high joint 
probability mass of “Liability” attributed to the employer negligence  

 

 

Fig. 9. Weight of most relevant evidence for an employee liability case, highlighting a minimal joint 
probability mass of “No-liability” attributed to the employer negligence 
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Figure 8 illustrates the weight of evidence examined in an employee liability case. It shows the ultimate 
decision of an employer’s ‘Liability’ towards its employee. It emphasizes the interdependent relationship 
between the status of the employee - specifically an ‘on-site worker’ with valid ‘employment status’, 
‘contract type’, and ‘job description’ - and the employer’s responsibility to provide a safe working 
environment. In this case, the employer has breached his duty of care, primarily due to an inadequate ‘new 
starter induction’ and subpar ‘Regular Staff Training’. This allegation is substantiated by compelling 
testimony from a ‘witness’, which further tilts the balance in the employee’s favor. The link between the 
employer’s breach of duty and the resulting injury to the employee is established through the ‘Temporary 
Injury’ sustained by the employee. The injury necessitated ‘recovery support’, as validated by the 
‘Liability Medical Report’. Therefore, the compiled evidence convincingly points towards a strong case 
for employer liability, highlighting the employer’s failure to fulfill its duty of care, which resulted in 
significant harm to the employee.  

On the contrary, Figure 9 presents a legal situation where the negligence of the employer could not be 
established. Despite the employer’s duty of care towards its employee, there was insufficient evidential 
support to prove a breach of this duty or causation arising from the accident reported by the claimant 
(employee). 

This section provided an introductory overview of the MAKER model’s application to employer 
liability cases. It aimed to lay a foundation of understanding for the subsequent sections of the case study 
on the production and usability of legal content by Generative AI tools and the adoption of blockchain 
technology for auditing. 

 

4.2  Generative AI for Textual Explanations of Legal Decisions by XAI 

Multiple versions of large language models by OpenAI’s models - GPT-3.5 (“text-davinci-003” and 
“text-davinci-002”) and GPT-4 (“gpt-4”), and by Google Bard (“Bard”) can be accessed by their 
respective APIs. Prompts were dispatched through a Python script in a loop to generate text for the legal 

decision rendered for each 𝑥  defendant by an XAI algorithm. The decision by the XAI algorithm is 
stored and organized in a JSON format. In this case study, a defendant is an organization held responsible 
for the injury or loss suffered by its employee. Throughout this experiment, the structure of each input 
prompt transmitted through the loop by the Python script remains consistent as a string datatype. Figure 
10 presents an instance of a prompt submitted for processing by the GPT-4 model, along with the resultant 
output. It presents a textual explanation of a legal decision obtained by the MAKER model for an employer 
liability case. 
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Fig. 10.   An example of a prompt for the GPT-4 model and the corresponding response based on the 
explanation provided by the integrated I-MAKER and C-MAKER model 

 

4.2.1 Text Usability Evaluation 

An experimental study was conducted to assess the usability of text generated by Google Bard and 
three OpenAI models. In this investigation, 50 final-year law school students were selected to participate 
in the task of drafting legal decisions on employer liability cases. The students were divided into two 
groups - an experimental and a control group, each comprising 25 students. The students in the 
experimental group utilized automated textual explanations of legal decisions by Generative AI tools to 
draft liability decision letters. In contrast, the control group students composed their decision letters 
without the aid of Generative AI. The information on a general summary of the study’s characteristics is 
shown in Table 7. 

Table 7. Characteristics of Experimental Study 
Study Aspect Detail 
Participants 50 final-year law students 

Group Division 
Experimental group (25 students with Generative AI assistance); 
Control group (25 students without Generative AI assistance) 

Assessors faculty of law school (Lecturers) 

Task Drafting liability decision letters 

Measurement Tool Turnitin plagiarism software (used to measure the utilization score) 
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Generative AI 
Models Evaluated 

Google Bard: “Bard”, GPT-4: “gpt-4”, GPT 3.5: “text-davinci-
003”, “text-davinci-002” 

 
 

The law school faculty assessed the quality of the letters drafted by the students. Each letter was graded 
on a scale from 0 to 100. The Turnitin plagiarism software was employed to determine the extent of textual 
similarity, termed the utilization score, between student-composed drafts and the text generated by 
OpenAI and Google Bard algorithms. The draft composed by the control and experimental group students, 
along with text generated by the AI tools, was uploaded to the university course submission page.  

Turnitin was chosen for this task due to its proficiency in assessing the level of similarity between the 
examined work and other written pieces (Manley, 2023). The experiment excluded the similarity 
percentages derived from external web sources to focus solely on the AI-generated texts. The results in 
Figure 11 show that the GPT-4 model excelled in generating high-quality content, with 58.5% of its output 
being utilized to draft legal documents. The "Bard” utilization score was inferior to “gpt-4”. Conversely, 
the law students opted to use 31.3% and 19.5% of the content produced by the “text-davinci-003” and 
“text-davinci-002” models, respectively.  

In terms of drafting time, drafting a letter using the “text-davinci-002” model took a slightly longer 
average time than the control group. However, the “gpt-4” model expedited the drafting process, with an 
average letter completion time of just 6 minutes. It outperformed "Bard", which required an average of 8 
minutes. The grades assigned by the law faculty for the letters produced by the control group and those 
utilizing the "Bard" and "gpt-4" models fell within a similar range of 73 to 75. This indicates that the 
quality of the letters produced across these groups maintained a consistent standard, irrespective of the 
model. However, the time required to draft a letter varies depending on the generative AI tool employed. 
For instance, "gpt-4" stands out as an exemplary tool that generates high-quality content and shortens the 
time needed to draft the letter. On the other hand, "text-davinci-002" presents a contrasting scenario; its 
output is of lesser quality and demands a longer drafting period. 

 

 

Fig. 11. Usability test of generative AI models 
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4.3 Experimental Results on Auditing by Blockchain  

A comparative experimental evaluation of the proposed framework is conducted on two distinct 
blockchain networks: Ethereum 2.0 and Hyperledger Fabric 2.0. Ethereum can support a public 
permissionless Mainnet or a private network, known for its principle of anonymity. Hyperledger Fabric is 
designed for private consortiums where identity authentication and access rights validation are critical. 
Ethereum provides a mass audience and is more decentralized than Hyperledger Fabric. The assessment 
does not lean towards any network type. It provides a balanced examination of the framework's 
capabilities across different blockchain environments. 

Experimental Setup: Table 8 (a) demonstrates the test characteristics of the environment designed to 
evaluate the proposed blockchain-based auditing framework. Two identical machines hosted distinct 
blockchain nodes: the hash storage and audit nodes. Both machines operated on Ubuntu 19.04 with an 8-
core CPU, 16 GB RAM, and 700 GB of available disk space. The complete copy of the ledger data of 
Ethereum was stored in LevelDB and Hyperledger Fabric in CloudDB.  

Table 8 (b) demonstrates technology specification. Microsoft Azure Key Vault was employed for the 
secured storage of encryption keys, node IDs, and digital signatures for an added layer of security. The 
encrypted and anonymized metadata derived from the XAI algorithm and Generative AI tools were stored 
within Pinata (IPFS service provider). The data in IPFS is stored as a copy of data in the Cloud. Azure 
Blob Cloud storage was utilized to store the encrypted but deanonymized legal information to maintain 
centralized control.  

Test Aim: Multiple users access the data stored in the Cloud and IPFS in an organization, which 
increases the susceptibility to intentional or unintentional tampering. In response to this vulnerability, a 
blockchain-based auditing system is implemented to verify the integrity of the data stored in the Cloud 
and IPFS. 

 

Table 8 (a): Environment Specifications 
Component Environment 
Test Machines Operating System: Ubuntu 19.04 

Hardware 8-Core CPU, 16 GB RAM, 700 GB Disk Space 

Ledger Data Storage Ethereum: LevelDB, Hyperledger Fabric: CouchDB 
API FastAPI, a high-performance web framework for building REST APIs 
API Server Postman to get and send response to API endpoints  
Broadband Internet Speed 433Mbps to 1.3Gbps 

 

Table 8 (b): Technology Specifications 
Technology Service Provider 

Blockchain Network (On-
chain Data Storage) 

Hyperledger Fabric (Version 2.0): Permissioned, private network 

Ethereum (Version 2.0): Permissionless, public network 

Cryptographic Key 
Management 

Azure Key Vault: A Cloud service provided by Microsoft Azure for 
secure storage and management of cryptographic keys, node IDs, and 
digital signatures. 
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Off-chain Data Storage 

IPFS by Pinata: Pinata is an IPFS pinning service provider. It is 
utilized to store the encrypted and anonymized metadata of the XAI 
algorithm and content produced by Generated AI tools. 
Azure Blob Storage: Centralized, secure storage of legal data 

 

The blockchain network performance is assessed by throughput, latency, and resource consumption 
(Kuzlu, et al., 2019) (Pongnumkul, et al., 2017). Throughput is the number of valid transactions the 
blockchain commits per unit of time (usually in seconds). It is also called the transaction per second (TPS) 
rate. Latency is the time required for a transaction to be confirmed, or in other words, the time a blockchain 
network takes to broadcast a transaction once it is dispatched to a node administered by an organization. 

The increase in throughput decreases the latency. The trade-off between throughput and latency is 
uneven. Latency goes up sharply when the load to record data approaches its maximum throughput. We 
managed this by utilizing the batch operation approach that sends multiple transactions within a block. 
Utilizing a single block to register a transaction associated with a specific legal case could potentially lead 
to a decrease in throughput and a corresponding rise in transaction costs because there is a fixed 
transactional cost involved in recording data in a single block of the blockchain. A batch operation waits 
for the arrival of multiple transactions before it is released in the network to get recorded in a block. 
Sending multiple transactions as a batch within a single block could significantly improve throughput and 
save transaction fees.  

Table 9: Network Parameters to Test Performance  

Hyperledger Fabric Parameters Parametric Setting 

Scenario 1 Scenario 2 

Batch Timeout: This is the wait time after the first transaction's arrival 
during which additional transactions can be added before a block is 
finalized. 

5 seconds 10 seconds 

Max Message Count: The upper limit for the permitted number of 
transactions in a batch allowed to be recorded in a block.  

5 10 

Absolute Max Bytes: This is the maximum limit on the number of 
bytes permitted for serialized messages within a batch. Any transactions 
that exceed this size are rejected. 

10 MB 10 MB 

Preferred Max Bytes: It is the optimal maximum size of a batch, 
represented as the maximum number of bytes allowed for serialized 
messages within it. A batch continues to fill with transactions until this 
size, the max message count, or the batch timeout is reached. If adding a 
new message (or transactions) causes the batch to exceed the preferred 
max bytes, the current batch is then finalized, committed to a block, and 
a new batch is initiated with the new message. If a single message 
exceeds the preferred max bytes, it is assigned its own unique batch. 

512 KB 512 KB 

Ethereum Parameters Parameter Value 
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Gas Limit: The maximum amount of Gas consumed by sending and 
executing a transaction by an Ethereum Virtual Machine that operates 
the nodes. 

100,000 100,000 

Gas Used by Transaction: The estimated amount of Gas required to 
execute a transaction.  

40,000 80,000 

 

(a) Performance  

The performance of the proposed blockchain-based audit framework was evaluated using two different 
parametric settings of Hyperledger Fabric and the Ethereum network. The average size of on-chain legal 
data, which includes hash and Merkle root recorded on the blockchain, ranged between 0.01 MB and 0.25 
MB. The performance of Hyperledger was analyzed by adjusting the parameters on batch timeout, max 
message count, absolute max bytes, and preferred max bytes. These parameters determine the number of 
transactions in a batch and the time required to broadcast a batch inside a block of the Hyperledger 
network. The batch timeout denotes the interval following the arrival of the initial legal case after the prior 
block broadcast, during which additional independent cases can be gathered. These accumulated cases are 
then recorded collectively as a batch within a single block. 

In Hyperledger Fabric, the default preferred maximum bytes are 512 KB, and an absolute maximum 
byte is set at 10 MB. We experimented on Hyperledger Fabric in two separate batch timeouts: 5 and 10 
seconds and maximum message counts: 5 and 10. This implies that a block can accommodate a batch of 
5 legal cases with a batch timeout of 5 seconds or a batch of 10 legal cases with a batch timeout of 10 
seconds. 

The number of legal cases to be recorded as a batch in the Ethereum network depends on the max 
amount of gas consumed by sending and receiving the data in a block and the amount of gas required to 
execute a transaction for an individual legal case successfully. The maximum Gas limit in Ethereum is set 
to be 100,000. This limit is the maximum amount the user is willing to pay in the event of gas price 
fluctuations. We tested the proposed framework with two different Gas values per Ethereum transaction: 
40,000 and 80,000. Table 9 defines these parameters and their respective test values.  

Figure 12 illustrates the throughput and latency of Hyperledger and Ethereum while varying the 
number of transactions from 1 to 10,000 under the two distinct parametric configurations. It can be 
observed that the increase in batch timeout from 5 secs to 10 secs and maximum message count from 5 to 
10 improved the throughput of the Hyperledger Fabric. Similarly, the increase in gas cost for a transaction 
from 40,000 to 80,000 improved the throughput of Ethereum. However, both networks experienced an 
increase in network latency with expanded capacity to handle larger batches. The observed latency is 
marginal compared to the volume of legal cases a law firm handles in a typical working day. This suggests 
that the firm can prioritize throughput and cost savings without compromising overall efficiency.        

Hyperledger Fabric demonstrated better performance compared to Ethereum. It exhibits higher 
throughput and reduced latency in both parametric settings. This performance gap becomes increasingly 
noticeable with the increase in the number of transactions.  

Both the hash storage node and the audit node keep their individual copies of data on the blockchain 
network. It augments the computational and storage scalability of the blockchain application, as no single 
node is overwhelmed with the responsibility of managing the entire network's transactions. The data 
partitioning across multiple nodes enhances data security.  



36 

 

 

   
Fig. 12. Performance of Ethereum and Hyperledger Fabric: Latency and Throughput 

 

The volume of requests for updating information in a blockchain platform tends to grow concurrently 
with the increase in the number of users and nodes (servers). We further assessed the scalability of 
Ethereum and Hyperledger by systematically increasing the number of nodes from 4 to 28. The 
transactions (network traffic) were distributed evenly across all nodes.   

The parameters for the scalability test were maintained consistent with scenario 1, discussed in the 
previous section.  This controlled setting provided a clear comparison between the performance metrics 
of Ethereum and Hyperledger, highlighting their capacity to manage escalated loads with the growth in 
the number of servers. Figure 13 illustrates the resulting throughput and latency as we scaled the workload 
by increasing the number of nodes. In both networks, throughput decreased, and latency increased beyond 
12 nodes. Moreover, Hyperledger Fabric failed to process all transactions beyond 20 nodes, indicating a 
potential limitation in its scalability under these settings. 
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Fig. 13. Latency and Throughput in response to the node scaling 

 

(b) Memory and CPU Consumption  

The smart contract in Ethereum and the chain code in Hyperledger Fabric carry out two fundamental 
tasks. The 'Open' function is responsible for creating an account within the participating nodes, and the 
'Query' function probes the peer ledger for the extraction of on-chain data to audit off-chain files. Figure 
14 illustrates the average memory consumption and CPU usage of both functions across both platforms. 
There is a significant disparity in memory consumption between both networks. Ethereum consumes 
nearly seven times more memory than Hyperledger Fabric. Similarly, the average computational power 
used by Ethereum’s CPU is comparatively higher than that of Hyperledger Fabric. 

 

Fig. 14. Average memory consumption and CPU usage 
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(c) Auditing to Detect Tampered Files  

The efficiency of our audit methodology was evaluated by introducing random manipulations in 
2% to 16% of legal case files stored in off-chain mediums. To pass auditing the Merkle root of off-chain 
storage mediums: IPFS and Cloud must match with their respective Merkle root stored permanently in a 
blockchain platform (on-chain). The IPFS possesses a high level of security because any change in IPFS 
files will result in a change to its CID. IPFS acts as a secure storage for large files unsuitable for on-chain 
storage and a supplementary backup to Cloud storage. However, these off-chain files are frequently 
accessed by multiple organizational users, which increases the likelihood of intentional or unintentional 
tampering. The widespread accessibility heightens the system's vulnerability to the tampering of files by 
internal or external malicious actors. 

 

Fig. 15. Auditing time of data block  

The rigorous auditing process ensures that all files remain consistent from the moment a legal case 
was processed in the past, and the case files were securely stored in both off-chain and on-chain 
repositories. Automated blockchain-based auditing verifies the integrity of both off-chain and on-chain 
data files. It can effectively eliminate any inconsistencies in tracing the accountability of adversarial legal 
decisions. Tampering and questionable decisions indicate deviations from ethical standards.  

The duration of the auditing process escalates with the increase in the proportion of tampered files, as 
shown in Figure 15. The hashed identifier corresponding to each detected tampered file is recorded within 
the hash node as a permanent, unalterable audit report. The frequency of the blockchain-based automated 
auditing activity can be adapted to the firm's needs, varying from weekly reviews to numerous audits 
within a week. 

(d) Comparative Analysis  

The comparative analysis benchmarks the proposed blockchain-based audit technique against two 
similar methods for performance evaluation. First is the Blockchain Audit Trail (BAT) algorithm, which 
utilizes Merkle Tree authentication to verify data integrity in monitoring forest fires (Datta & Sinha, 2023). 
Second, auditing of XAI decisions by storing the hash of an IPFS file on the Ethereum blockchain to avoid 
large file storage in the blockchain (Malhotra, et al., 2021 ). The proposed method under scrutiny in this 
study utilizes Merkle root for audit trails and IPFS to store large off-chain legal files in an anonymized 
and encrypted format.   

The comparative analysis was conducted on Hyperledger Fabric with the parameters set out in Scenario 
1, as illustrated in Table 9. The results show that the proposed technique exhibits a higher throughput and 
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marginally less audit time. It outperforms Method 1, based on the Merkle root authentication approach by 
Datta & Sinha (2023), and Method 2, the use of IPFS and blockchain for auditing XAI decisions by 
Malhotra et al. (2021), as shown in Figure 16. The high throughput of the proposed approach in this 
research can be attributable to batch processing, which accumulates transactions for five seconds or until 
five transactions are queued, whichever comes first, before broadcasting the batch to the network. 
Additionally, the architecture separates responsibilities across two distinct nodes: one dedicated to hash 
storage and the other to auditing tasks to balance the computational and storage demands. Overall, the 
proposed method achieved a 23.65% and 21.67% higher throughput than Method 1 and Method 2, 
respectively. Similarly, the audit time of the proposed method was 16.36% and 9.38% lower than Method 
1 and Method 2, respectively.       

 

 

Fig. 16. Comparative results on throughput and auditing time 

5. Limitations and Future Improvements 

In this research, the nodes were self-deployed and self-managed by machines that met the minimum 
hardware requirements essential for the successful deployment of the nodes. Operating physical nodes in 
companies requires expertise in hardware management, an unrestricted broadband connection, and robust 
onsite security measures to safeguard the equipment. However, blockchain service providers resolve 
technical issues and manage all the necessary tasks and activities to keep the blockchain infrastructure 
operational. In the future, we intend to leverage the services of specialized node providers who offer access 
to the nodes. 

This paper advances the formulation of evidential reasoning (ER) for legal knowledge representation 
to process ambiguous legal facts. Legal syllogistic reasoning typically employs Bayesian methods. 
However, ER is based on Dempster–Shafer's theory of evidence, an extension of Bayesian theory. We 
acknowledge that the automation of legal decisions through AI has limitations due to the complex and 
dynamic nature of law. We propose the future development of a 'Lawyer-in-the-Loop' augmentation 
framework to facilitate an active knowledge exchange between legal practitioners and AI systems. 
Advanced techniques such as knowledge distillation (Xiao, et al., 2023) can be incorporated to transfer 
insight from complex, high-level legal concepts to more specific, low-level legal concepts. The ER 
approach is demonstrated in tort law. It can be adapted to diverse branches of law, such as constitutional 
law, criminal law, corporate law, intellectual property law, and contract law.  
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6. Conclusion 

We explored the promising potential of Generative AI tools in brainstorming ideas to draft 
correspondence for pre-litigation decisions. This research has presented an innovative end-to-end process 
for designing architecture and methodology for a blockchain-based auditing system. The system maintains 
the integrity of data repositories containing the decisions by an XAI model and textual explanation of 
legal cases obtained through a prompt sent to the API of Generative AI. Automated auditing enhances 
data security, enforces responsible usage of AI technologies, and reduces discrepancies in tracing the 
accountability of adversarial legal decisions. The system utilizes the immutable nature of blockchain – a 
feature that is invaluable in auditing but may fall short in data protection laws. The proposed system's 
architecture aligns with critical data protection laws.   

The research conceptualizes the blockchain-based auditing process through two algorithms. The first 
algorithm presents a comprehensive strategy for on-chain and off-chain storage of legal data. The second 
algorithm outlines the auditing process based on the principle of comparing locally recomputed Merkle 
roots of files stored in off-chain storage with their corresponding immutable Merkle root stored in a 
blockchain network. The security analysis validates the robustness of the blockchain-based auditing 
system's potential to resist malicious actors' attempts to manipulate on-chain data to bypass the auditing 
process. 

The paper advances the formulation of an integrated I-MAKER & C-MAKER model to methodically 
capture ambiguous legal facts and heuristics to establish a causal relationship between evidence and the 
final hypothesis (or decision). The explainable algorithmic decisions from this model are anonymized to 
safeguard sensitive legal information by substituting the data subject's identifiable information with a 
dummy placeholder to ensure the confidentiality and privacy of prompts sent to the APIs of Generative 
AI tools. The drafted correspondence for legal decisions was generated through APIs that grant access to 
LLM algorithms by Generative AI tools. The study tested four distinct LLMs: Google's Bard ("Bard"), 
GPT-4 ("gpt-4"), and GPT 3.5 ("text-davinci-003" and "text-davinci-002"). Results from an experimental 
study at a law school revealed the GPT-4 model's proficiency in producing high-quality content and 
significantly speeding up the drafting process compared to other models. The practical implementation of 
the proposed framework is demonstrated through a case study based on liability cases arising from 
workplace accidents. The proposed technique can be adapted to tort claims such as economic, property, 
dignitary, strict & absolute liability, and nuisance.  

The blockchain-audit algorithm was tested to audit the on-chain files containing the decisions derived 
from the XAI algorithm based on MAKER and its textual explanations produced by Generative AI. This 
assessment was conducted on two distinct blockchain platforms: Ethereum, a public platform, and 
Hyperledger Fabric, a private platform. The off-chain data (outside blockchain) was stored within IPFS 
files facilitated by Pinata, an IPFS service provider, and secured Cloud by Azure Blob. Microsoft Azure 
Key Vault was utilized for the secure storage of encryption keys, node IDs, and digital signatures. The 
integrated use of multiple technologies to test the proposed system highlights the inherent complexity of 
a blockchain application, which leans on the support and collaboration of technology service providers 
for optimal functionality and security.  

This research illustrates the profound implications of integrating cutting-edge technologies in the legal 
industry, particularly in fostering responsible usage of AI-generated content and AI-assisted decision-
making for lawyers. The findings support the potential for widespread adoption of these technologies to 
pave the way for a more transparent and reliable future in the legal industry. The blockchain-based data 
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integrity audit methodology presented in this study can be extended to other domains. Organizations 
interested in monitoring Generative AI usage can adapt the proposed framework to fit their specific 
requirements. 
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