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Abstract
Understanding the decentralized formation of public opinion is in-
creasingly important to communication research. Although many key
determinants cannot be observed empirically, we argue they can be
explored through theoretical modeling. Building on an existing agent-
basedmodel of opinion dynamics, our study introducesmore complex,
but theoretically interesting and realistic, agent behavior. We model
distinct opinion tendencies which represent individuals’ diversity of
belief, as well as external influences such as new information. Diversity
increases the extremity of opinion in simulated consensus, radicaliza-
tion andpolarization. Simulation of new information demonstrates the
ability of a minority group to shift majority opinion significantly in the
long term, even with transient changes in behavior. Opposingminority
groups do not counteract each other when their actions are delayed
and may in fact amplify the original effect. We argue that modeling
can help researchers and other stakeholders understand how these
outcomes could arise in the real world, and thereby explore potential
mitigations or exploitations.

Keywords: opinion dynamics, agent-based model, public opinion,
polarization, radicalization, echo chambers, social network, social me-
dia, social influence, exogenous effects, opinion tendency, minority
group, attitude, belief, identity

Introduction

Social media enables public opinion to develop and spread at scale through
largely self-organizing networks (Neubaum and Krämer 2017). It therefore
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provides opportunities to strengthen and democratize public discourse,
but also has the potential to spread harmful information with minimal
safeguards or scrutiny (Gayo-Avello 2015; Wang et al. 2020; Lorenz-Spreen et
al. 2020). Given the increasing significance of social media to society, and
the apparent shortcomings in its regulation, it is important to understand
how it can shape public opinion (Napoli 2015; Hitkul et al. 2021; Del Vicario
et al. 2016). An important aspect of this is how external events can both
affect and be affected by social media activity, as demonstrated by examples
such as the Covid-19 infodemic, the January 6th American Capitol attack,
and the collapse of Silicon Valley Bank (Cinelli et al. 2020; Suresh et al. 2023;
Yerushalmy 2023).

Agent-based models (ABMs) provide a way to bridge the gap between data
and theory in communication research, and have particular potential for
computational communication researchers to understand the dynamics of
public opinion (Waldherr andWettstein 2019; Waldherr et al. 2021). ABMs ex-
plicitly represent individual social actors and their communications, thereby
offering a tractable and realistic representation of how public opinion forms
(Banisch, Lima, and Araújo 2012). Temporal, spatial and stochastic effects
can all be incorporated in ABMs, and emergent phenomena result from
the collection of individual behaviors, thus providing a natural transition
from themicro- to macro-scale (Bonabeau 2002). ABMs can offer a valuable
complement to surveys and text analysis to understand and predict opinion
dynamics, taking a system-level view of input-output relationships based
around causality, rather than simply a correlational one offered by statis-
tics andmachine learning (Baker et al. 2018; Noorazar 2020; Acemoglu and
Ozdaglar 2011; Das, Gollapudi, andMunagala 2014).

Opinion dynamics models originate from the field of social physics, where
ontological parsimony is prioritized (Jusup et al. 2022). Such models do
not seek to represent all aspects of the system, meaning that important
real-world details may be simplified or excluded (Anderson and Ye 2019).
The aim is to enable more detailed forms of analysis and obtain insights
into the system by isolating individual factors in a way which is hard to
achieve empirically. For these reasons, opinion dynamics models have been
adopted by researchers outside social physics, including in communica-
tion and behavioral sciences, to complement both traditional and big-data
approaches in the study of public opinion (Song and Boomgaarden 2017).

The term ‘public opinion’ is used in the present study to mean an aggregate
of separatelyheldopinions, as commonlyobtainedusing surveymethods, al-
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though we are interested in finer-grained details than are generally possible
empirically, especially at the temporal level, but also in terms of individual
social influence. A range of alternative interpretations of its meaning ex-
ist, include polling outcomes, and discursive consensus in public spaces
(Herbst 1993). However, we interpret public opinion as a continual and di-
verse process, rather than a single fixed outcome, hence we do not restrict
our interpretation to be the majority opinion expressed in polls (Crespi
1997). Furthermore, while our focus is on how public discourse gives rise to
aggregated opinion, we recognize there are other factors involved, includ-
ing belief and communication beyond a particular public sphere. We also
recognize there is potential for multiple meaningful aggregates of opinion,
hence we do not restrict our interpretation to that of consensus.

Echo chambers are popularly associated with social media, and have been
argued to arise where users interact primarily with others who share similar
opinions to their own (Jasny, Waggle, and Fisher 2015; Cinelli et al. 2021).
Some authors have claimed echo chambers are central to opinion polar-
ization, but their existence has also been found to be overstated in many
contexts and their connection to polarization less straightforward than often
assumed (Dubois and Blank 2018; Fletcher, Kalogeropoulos, and Nielsen
2021; Bail et al. 2018). Radicalization is related to opinion polarization, but
referring to a single pole (McCauley and Moskalenko 2017; Della Porta 2018).
Although both polarization and radicalization long predate social media,
the scale and algorithmic influence of social media platformsmake them
particularly salient today (Törnberg 2022; Kubin and von Sikorski 2021; Geiß
et al. 2021).

Due to the multiple sources of complexity in opinion dynamics, opinions
tend to bemodeled in a 1-dimensional space, where each opinion canbe rep-
resented either as a discrete choice, or a scalar value on a continuum, such
as for the left-right political spectrum. The dissemination of 1-dimensional
opinions can be inferred from social media data by observing links to dif-
ferent information sources in users’ posts and analyzing the network of
interactions based around these (Cinelli et al. 2021).

Many contentious and divisive political issues of recent times have been
accompanied by extreme online opinions, including Brexit in the UK, and
support for President Trump in theUS (Del Vicario et al. 2017; Guo et al. 2020;
Swol, Lee, andHutchins 2022). When a single issue dominates current affairs,
the assumption of a 1-dimensional opinion space becomes increasingly
suitable, hence opinion dynamics models have an effective role to play in
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the study of extreme opinions, despite their simplified nature (Podobnik
et al. 2017). This is perhaps most significant in cases of military conflict,
where social media is increasingly influential, including the use of bots as
influencing agents (Prier 2017; Ali and Fahmy 2013; Sacco and Bossio 2015).

In decentralized networks, as are common with social media, opinion dy-
namics tend to be driven either by a likeminded critical mass, or a highly
confident minority (Baran 1964; Moussaïd et al. 2013). There are several fac-
tors which affect how opinions spread, including cultural, psychological and
linguistic (Mckeown and Sheehy 2006; Centola and Baronchelli 2015; Wolf,
Doorn, andWeissing 2008; Neubaum and Krämer 2017). There is extensive
evidence from public opinion survey research that personal characteristics
such as gender are important in opinion formation, driving tendencies and
thereby affecting public opinion (Herek 2002; Kite, Whitley, and Wagner
2023).

ABMs typically focus onhomophily and consensus-seekingbasedoncurrent
opinions, termed bounded-confidence models, but consideration has also
been given to the role of memory, disagreement, and multidimensional
opinions (Becchetti et al. 2023; Gargiulo and Gandica 2017; Minh Pham et al.
2020; Kozitsin 2023; Flache andMacy 2011; Parsegov et al. 2016).

Baumann et al. (2020) published an ABM of opinion dynamics where the
emergence of consensus, radicalization and polarization was found to be
governed by twomain parameters, namely the controversy of the subject be-
ing discussed, and the level of homophily in the network. These parameters
have recognizable real-world meanings. Controversy is treated abstractly
and would manifest in culturally dependent ways, but it typically relates
to the strength of feeling people have on a given topic, and the scope for
disagreement. Homophily reflects both the desire and ability for individuals
to engage with others they agree with, combining social, physical, techno-
logical and personal factors.

Themodel ofBaumannet al. (2020)differed frompreviousbounded-confidence
models of continuous opinion dynamics by allowing multiple social influ-
ences to occur simultaneously, unlike models derived from the influential
model of Deffuant et al. (2000). It focused on rates of change in opinion
rather than the opinions themselves, unlike models derived from another
influential bounded-confidence model of Hegselmann and Krause (2002).
Homophily wasmodeled probabilistically based on opinion differences rela-
tive to others in the network, rather than using a fixed threshold common to
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standard bounded-confidence models. Most usefully for the present study,
themodel formulation distinguished individual and social influences clearly,
thus making it suitable for further development to explore these compet-
ing effects, and so reflect the theoretical importance of selective exposure
(Song and Boomgaarden 2017; Stroud 2010). An unstructured network was
assumed, where node connections were updated in line with current opin-
ions. This approach reflects the fluid nature ofmany online networks, where
platform algorithms are particularly instrumental, and connections may
not even be directly between individuals but, rather, ephemeral content
they produce and consume. This is unlike offline social networks, which
are typically based onmore meaningful and less changeable interpersonal
relationships. Weak social ties have been observed to be particularly im-
portant to extreme opinions, so are a suitable focus for study (Fan, Xu, and
Zhao 2020). The number of connections for nodes in the fluid network de-
fined by Baumann et al. (2020) has statistical properties closer to real-world
data than is represented in many opinion dynamics models based on static
networks (Moinet, Starnini, and Pastor-Satorras 2015).

Baumann et al. (2020) validated the model against Twitter data and found it
to be in good agreement. Their study considered long-running topics, such
as gun control and abortion, in the absence of exogenous effects, i.e. influ-
ences fromoutside the social network. Theonlymodeled sources of diversity
were the initial opinions of agents, their message rates, and stochasticity. In
the absence of social interaction, all agents were assumed to tend towards
the same central opinion. Links to news sources were effectively able to be
shared between agents by the messages they sent, but the effect of develop-
ing newswas not considered. By ignoring exogenous effects, themodel does
not reflect real-time external influences, which are known to be important
to real-world opinion dynamics (Page, Shapiro, and Dempsey 1987).

Exogenous influences on opinion dynamics have previously been investi-
gated with binary issues using ABMs, including media environments in a
Swiss referendum, and belief in climate change based on levels of internet
access in the US (Wettstein 2020; Sikder et al. 2020). For continuous opin-
ions, exogenous influences have been explored by extending the model of
Hegselmann and Krause (2002) to treat external events similarly to other
agents’ opinions, finding that opinion polarization relied on these external
events (Condie and Condie 2021). However, more recent work also built
on Hegselmann and Krause (2002) to find that external events were not
required to generate polarization, and could instead be produced by dif-
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ferences between privately and publicly held opinions (Lim and Bentley
2022).

To model exogenous effects, we use the work of Baumann et al. (2020) as
a starting point due to its clear distinction between individual and social
influences, and its ability to simulate observed real-world behaviors, such
as polarization, independently of any external influences. Our updated
model represents real-time exogenous influences in a way which is more
closely coupled to continuous opinion dynamics than for the snapshot
binary topics considered by Wettstein (2020) and Sikder et al. (2020), and
it avoids the contested assumptions required to generate polarization in
models derived fromHegselmann and Krause (2002). Our model therefore
provides a plausible representation of social and exogenous influences on
opinion dynamics, and enables meaningful examination of how micro-
scale behaviors could produce macro-scale effects on public opinion under
realistic scenarios. We have tested the wider generalizability of our model
by using a sensitivity analysis, included in the Online Appendix1.

We hope that the present study is useful both in advancing the state of the
art of opinion dynamicmodeling, and also in highlighting the opportunities
that mathematical modeling can offer computational communication re-
searchers to examine and triangulate the assumptions underpinning their
empirical models. We further hope the model provides useful insights into
the effects of decentralized communication on public opinion by extending
existing knowledge and complementing other research approaches, which
may benefit stakeholders beyond communication research.

Background

Modeling overview

Models of multi-agent systems which explicitly represent individual com-
ponents and their interactions are termed ABMs. These typically involve
discrete time steps to simulate agent behaviors, and can include a range of
mathematical and computational techniques. ABMs are often based around
discrete state transitions of agents, such as with Markov chains, but we use
ordinary differential equations (ODEs) to describe changes in the continu-
ous opinions of agents. This is a form of dynamical systemmodeling which
takes a bottom-up rather than top-down approach. ODEs are differential
equations with a single independent variable, in this case time. The opinion
of each agent is represented by a single ODE, and the ODEs are coupled,

6 VOL. 6, NO. 1, 2024



COMPUTATIONAL COMMUNICATION RESEARCH

i.e. interdependent. The approach has similarities to vector autoregressive
modeling, but without relying on statistical fitting.

Baumann et al. (2020) model

To provide context, the model of Baumann et al. (2020) is summarized in
Equation 1 - Equation 3. A social actor in the model is described as an agent,
identified by index 𝑖 . The opinion of agent 𝑖 is represented as 𝑥𝑖 , which
is a function of time 𝑡 . The model is simulated using discrete time steps
in which agents can send and receive messages representing their current
opinions, and update their opinions accordingly. The social network in the
model is defined by the exchange of messages, rather than agents holding
fixed connections. The model imposes a limit of𝑚 messages that can be
received by each agent during a time step. Most individuals in a typical
social network have relatively few connections, while a small number are
highly connected, as determined by preferential attachment (Dorogovtsev
2010). This property holds at all scales, and it is thus termed a scale-free
network. These are well approximated by a power law distribution for agent
node connections, represented by the message rate in the fluid network of
Baumann et al. (2020), i.e. the probability of an agent being able to send a
message at each time step (Moinet, Starnini, and Pastor-Satorras 2015). The
power law probability density function 𝐹 for agent message rate 𝑎 is:

𝐹 (𝑎) = 1 −𝛾
1 − 𝜀1−𝛾

𝑎1−𝛾 (1)

where𝛾 is a parameter which governs the shape of the power-law distribu-
tion, and 𝜀 is the minimum permitted message rate, i.e. the lowest possible
message rate for an agent to be considered part of the network, preventing
an abundance of uncommunicative agents. Prior to simulation, each agent
is assigned a fixed message rate according to Equation 1. This is a conve-
nient way to generate scale-free network behavior, while allowing agents to
choose their own connections based on homophily.

Messages are sent probabilistically in the model according to agents’ mes-
sage rates. At each time step in the simulation, theopinionof agent 𝑖 changes
at a rate ¤𝑥𝑖 , balancing the agent’s tendency towards 0 opinion, and the influ-
ences it receives from other agents 𝑗 :
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¤𝑥𝑖 = −𝑥𝑖 + 𝐾
𝑁∑︁
𝑗≠𝑖

𝐴𝑖 𝑗 tanh(𝛼𝑥𝑗 ) (2)

where𝑁 is the number of agents in the network, 𝐾 is a sociality parameter
representing the level of attention agents give to other agents’ opinions,
𝐴𝑖 𝑗 is the adjacency matrix value for agents 𝑖 and 𝑗 (which is time-varying,
described further below), and 𝛼 is the level of controversy for the topic being
communicated.

The tanh function in Equation 2 is the hyperbolic tangent, often termed a
sigmoid or logistic curve. Its role is to moderate the opinion of other agents,
as observed experimentally (Jayles et al. 2017). The nature of tanh means
all influencing opinions are constrained to be between ±1, before being
scaled by 𝐾 . The value of 𝛼 gives the gradient of the function at the origin,
so 𝛼 > 1 amplifies opinions close to 0, thus making transitions sharper
between opposing opinions.

The first term in Equation 2 moves the opinion of agent 𝑖 towards 0, i.e. a
common central tendency for all agents. The social summation term ag-
gregates the moderated opinion of influencing agents at the current time
step.

Parameter 𝐾 effectively includes a factor of 1
𝑚
, hence the summation pro-

vides an average of other agents’ opinions, similar to DeGroot learning
(DeGroot 1974). However, it differs in that the summation contributes to the
rate of change in opinion of agent 𝑖 , rather than giving the new opinion itself.
Furthermore, the adjacency matrix value 𝐴𝑖 𝑗 is either 1 or 0, depending on
whether agent 𝑖 receives a message from agent 𝑗 , unlike the matrix used by
DeGroot (1974) which weights opinions according to levels of trust.

The moderating effect of the tanh function assumes there is a common
central reference point of 0 for all agents, which in this case coincides with
the common central tendency. It is therefore only social influence which
moves agents away from 0 opinion, meaning the model allows an agent to
be radicalized by any opinion of the same sign as the one it already holds.
This is considered further in the Method. The adjacency matrix describes
connections between agents and is determined according to homophily.
Agents are more likely to communicate if they share similar opinions, and
ignore agents they have less in common with, in accordance with selec-
tive exposure. The probability of agent 𝑖 sending a message to agent 𝑗 is
calculated by:
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𝑝𝑖 𝑗 =
|𝑥𝑖 − 𝑥𝑗 |−𝛽

𝑁∑
𝑗≠𝑖

|𝑥𝑖 − 𝑥𝑗 |−𝛽
(3)

where 𝛽 is a parameter which represents the strength of homophily in the
network. If |𝑥𝑖 − 𝑥𝑗 | is small, it will tend to dominate the summation in
the denominator, hence 𝑝𝑖 𝑗 will approach 1, and if 𝛽 is large, the effect will
be increased. Equation 3 is calculated for each agent at each time step in
the simulation (noting 𝑖 and 𝑗 are reversed for use in Equation 2), and the
𝑚 most probable connections are chosen for each agent, from which the
adjacency matrix is obtained. There is a probability 𝑟 of agents sending
reciprocal messages, which is unconstrained by the limit𝑚.

Baumann et al. (2020) parameterized the original model to explore the
dependence of public opinion on social network behavior, using a sensitivity
analysis to explain parameter value choices. They found that more active
agents had more extreme opinions, and that agent opinions correlated with
those of agents they communicated with. Both these findings matched
well with social media data, as well as empirical evidence for the effect of
selective news exposure in online social networks (Bakshy, Messing, and
Adamic 2015).

Research aims

The Baumann et al. (2020) model successfully produces different qualitative
outcomes in opinion dynamics, specifically for consensus, radicalization
and polarization. It also matches well with social media data, particularly
for homophilous opinions.

However, the model assumes a common 0 tendency for all agents, i.e. the
opinion agents would reach in the absence of social interaction. As social
scientists we are interested in understanding the consequences of a model
which better reflects heterogenous opinion tendencies, i.e. the observation
that humans’ opinions are intrinsically diverse rather than tending towards a
single common norm. Enabling these tendencies to change over timewould
also allow new information from outside the network to be represented in
the model.

Using the new model functionality for agent tendencies, we first aim to
investigate the effects of diversity on opinion dynamics:
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RQ1 Can heterogeneous opinion tendencies change global opinion in con-
sensus, radicalization and polarization?

We then aim to investigate the effect of real-time news on opinion dynamics,
focusing onminority groups, whichmay have different information sources,
beliefs or agendas to the majority. Using an abrupt temporary shift in ten-
dencies to represent sudden events, and a gradual shift in tendencies to
represent slow-building stories, we will investigate howminority groups can
influence majority opinion:

RQ2 Can different changes in the tendencies of minority groups have dif-
ferent effects on majority opinion?

Method

Opinion tendencies

An explicit opinion tendency 𝑥𝑖 is introduced for each agent, which replaces
the implied 0 tendency in Equation 2. The tendency can either be constant
or a function of time, giving an updated model form of:

¤𝑥𝑖 = 𝑥𝑖 − 𝑥𝑖 + 𝐾
𝑁∑︁
𝑗≠𝑖

𝐴𝑖 𝑗 tanh(𝛼𝑥𝑗 ) (4)

Tendencybrings interestingand realistic possibilities to themodel, including
scope to represent prejudice, bias and belief, as well as the ability for agents
to change these in light of new information, experience and other external
influences. This represents the assumed distinction of public opinion and
public discourse, but also their interdependence.

Although the introduction of 𝑥𝑖 removes the assumption of a common 0
central tendency, there is still an implicit assumption of a common 0 central
reference point in how the tanh function is used, but there is no special
meaning to this value. If an arbitrary central reference point of 𝜇 were
assumed, the tanh functionwould be applied to𝑥𝑖−𝜇 instead of𝑥𝑖 . However,
since it has no bearing on the opinion dynamics being considered, we omit
this without loss of generality.

As with Baumann et al. (2020), the updated model assumes agent con-
nections are determined by current agent opinions, rather than long-term
relationships. The extent to which agents prioritize communication with
like-minded individuals is controlled by homophily 𝛽 , the level of attention
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they pay to the messages they receive is controlled by sociality 𝐾 , and the
relative effect of non-zero messages is controlled by controversy 𝛼. It would
be possible to estimate parameter values from real-world data, but this is be-
yond the scope of the present study. We outline a framework for harnessing
empirical data in the Discussion.

Computation

Wefirst reproduced themodel of Baumannet al. (2020) usingoriginal Python
code, before obtaining new results from the updated model2. Baumann et
al. (2020) used an explicit fourth-order Runge-Kutta method to integrate the
system of equations represented by Equation 2 numerically, using a time
step of 0.01 time units. We instead used a first-order Euler method to make
opinion changesmore clearly linked to incomingmessages, whichproduced
very similar results. The number of agents used by Baumann et al. (2020)
was 1000, but the present study used𝑁 = 500 to give shorter run times. In
practice, any sufficiently large𝑁 produced similar results. Simulations were
run for 1000 time steps, equivalent to 10 time units in Baumann et al. (2020).

To match Baumann et al. (2020), initial opinions of agents were randomly
sampled from a uniform distribution between −1 and 1. Message rate dis-
tribution parameter values were𝛾 = 2.1 and 𝜀 = 0.01, with message limit
𝑚 = 10, sociality parameter 𝐾 = 3, and reciprocal message probability
𝑟 = 0.5. Messaging at each time step was evaluated in randomized order.
The adjacency matrix was calculated probabilistically at each time step
based on Equation 3.

Baumann et al. (2020) presented results for (a) consensus towards the initial
central opinion, generated by low controversy and moderate homophily
(𝛼 = 0.05, 𝛽 = 2); (b) radicalization (i.e. collective movement away from the
initial central opinion in a single direction), generated by high controversy
and no homophily (𝛼 = 3, 𝛽 = 0); and (c) polarization (i.e. an equal split
away from the initial central opinion in opposing directions), generated by
high controversy and high homophily (𝛼 = 𝛽 = 3).

All opinion tendencies were first set as 0 to enable direct comparison of
results with Baumann et al. (2020). The direction of radicalization is random
in the model, but we present results with the radicalized opinion as positive
to make interpretation simpler. This was achieved by reversing the sign of
opinion dynamics if the mean final opinion was negative in the radicaliza-
tion simulations. Note that the term ‘radicalization’ is used for convenience,
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but may be misplaced in terms of social outcome, since it simply represents
a shift in the average opinion of the social network, as occurs with all kinds
of sociopolitical change. No position on the scale is modelled as inherently
better or worse than any other.

Model simulation andanalysiswereperformedusingNumPy, SciPy, random,
pandas and Joblib libraries in Python (Harris et al. 2020; Virtanen et al. 2020;
van Rossum 2020; McKinney 2010; Joblib 2023). Plotting was performed
using matplotlib and seaborn libraries in Python (Hunter 2007; Waskom
2021).

Model experiments

After comparison with Baumann et al. (2020), the updated model was used
to address the RQs. Unless otherwise specified, parameter values were the
same as stated above. The term ‘group’ is used as shorthand for agentswhich
shared particular properties, but communication with all other agents was
unaffected, i.e. there was no concept of insider or outsider status. This
enabled anonymous opinion-based communication to be directly simu-
lated – something hard to observe empirically, but which social media quite
uniquely enables – where, for example, experts, conspiracy theorists and
bots can appear equally credible (Luceri et al. 2019).

For RQ1, random constant tendencies of ±0.5 were used. These were chosen
to be inside the range of initial opinions, and to average as 0 (see Online
Appendix for a sensitivity analysis). They could represent differences in
intrinsic personal beliefs, or the time-invariant effect of influences outside
the network, such as an individual’s habitual newspaper choice. Agents were
randomly assigned −0.5 or +0.5 constant tendency prior to simulation, with
equal probability. Whenmaking radicalization results positive (as described
above), the tendency groups were correspondingly reversed.

For RQ2, time-dependent tendencies were applied to a minority group,
while all other agents had 0 constant tendency. Parameter values for high
controversy and high homophily were used (𝛼 = 𝛽 = 3), which would cause
symmetrical polarization in the absence of the minority group. Polarizing
conditions were chosen to explore the effects ofminority groups due to their
well-documented prevalence and importance to extreme opinion (Heltzel
and Laurin 2020). A square pulse function was used to provide an abrupt
temporary shift inminority group tendencies, for example news triggering a
bank run, while a linear ramp functionwas used to provide a gradual change
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in minority group tendencies, such as mounting evidence for a smoking
ban. All other agents were unaffected by these time-dependent tendencies,
other than through influences they received directly or indirectly from the
minority group. This was performed first with a single minority group, and
then with an opposing minority group of the same size, but with a delay in
the tendency function.

We constructed a minority group to hold tendencies significantly outside
the initial opinion range, using a tendency amplitude of 2. We wanted
the group to be small enough to plausibly represent a fringe opinion, but
large enough to have an influence on the broader population, so we used
a minority group size of 5% of all agents. The pulse had an onset time of
0, and a duration of 500 time steps, chosen to affect the initial stages of
opinion dynamics and finish well before the end of the simulation. The
ramp reached a tendency amplitude of 2 after 1000 time steps, chosen to
provide the same area under the curve as the transient pulse, and last for
the full simulation. The opposing pulse (i.e. −2 amplitude) had a time delay
of 100 time steps, chosen to provide rapid but not immediate opposition to
the original pulse. In practice, the results do not substantively depend on
these choices (see the Online Appendix for a sensitivity analysis).

Each model configuration is termed a trial. Results for each trial are pre-
sented from a single simulation, but to account for stochasticity, repeated
simulations (termed repetitions) were run, and the aggregated results are
also shown. Trials and parameter values are summarized in Table 1 and
Table 2. The effect of aggregating across repetitions is considered in the
Discussion.

For each trial, the outcome of interest was agent opinions, i.e. modeled
public opinion. The dynamics of these were plotted with related properties
such as the agent group. For statistical comparison of different trials and
groups, the final opinion of agents was used, i.e. their opinions at the end of
the simulation.

To answer the RQs, distributions of final opinions were compared between
trials by using a one-way analysis of variance (ANOVA) F -test, and a Kruskal-
Wallis (K-W) H-test. The ANOVA p value gives the probability of means
being the same between distributions, assuming normality, and the K-W p
value gives the probability of medians being the same, without assuming
normality (Johnson 2022). To provide more meaningful statistical compar-
isons for RQ1 with consensus and polarization, opinionmagnitudes were
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Trial 𝛼 𝛽 𝑇 Description

A 0.05 2 0 Consensus

B 3 0 0 Radicalization

C 3 3 0 Polarization

D 0.05 2 ±0.5 Trial A variant: opposing constant groups

E 3 0 ±0.5 Trial B variant: opposing constant groups

F 3 3 ±0.5 Trial C variant: opposing constant groups

G 3 3 0 Trial C variant: single pulse minority group

H 3 3 0 Trial C variant: single ramp minority group

I 3 3 0 Trial C variant: opposing pulse minority groups

Table 1: Model trials and baseline parameter values. For all trials, 𝐾 = 3, 𝑚 = 10, 𝑟 = 0.5,
𝛾 = 2.1 and 𝜀 = 0.01. Parameter𝑇 is the constant tendency magnitude for the majority group,
i.e. |𝑥𝑖 | in Equation 4. Baseline minority group parameter values are given in Table 2.

Parameter description Parameter value

Minority group size (fraction) 0.05

Pulse amplitude 2

Pulse time duration 500

Pulse onset time 0

Opposing pulse time delay (Trials G–H) N/A

Opposing pulse time delay (Trial I) 100

Table 2: Baseline parameter values for minority groups. Minority group size is expressed as a
fraction of all agents, where 0.002 is 1 agent in 500.

used for reasons of symmetry.

Results were aggregated over 32 repetitions of each trial for use in statistical
comparisons. They were also aggregated in plots of opinion dynamics with
a bootstrapped estimate of the mean and 95% confidence bands for each
tendency group.

Trials and analyses are summarized as follows:

• Figure 1: Opinion dynamics for consensus, radicalization and polar-
ization, with 0 tendency for all agents (Trials A–C).

• Figure 2: Opinion dynamics with heterogeneous constant opinion
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tendencies of ±0.5, using conditions for consensus, radicalization and
polarization (Trials D–F).

• Figure 3: Comparison of final global opinion between Trials A–C and
Trials D–F (RQ1).

• Figure 4: Opinion dynamics with time-dependent minority group
tendencies using square pulse and linear ramp functions (Trials G–H).

• Figure 5: Opinion dynamics with minority group tendencies as for
Trial G, but with an equally sized delayed opposing group (Trial I).

• Figure 6: Comparison of final majority opinion between Trial C and
Trials G–I, and between Trial G and Trial I (RQ2).

• Figure 7: Opinion dynamics aggregated by tendency and initial opin-
ion group for Trials G–I.

Results

Comparison with Baumann et al. (2020)

Results are shown in Figure 1 for consensus, radicalization and polarization
(Trials A–C), which closelymatch results presented by Baumann et al. (2020).
In Figures 1a - 1c, results are colored by initial opinion, showing that initial
opinion strongly determines the polarization of agents (Figure 1c), i.e. agents
with a positive initial opinionwill likely be polarized in the positive direction,
and vice versa for agents with a negative initial opinion. Conversely, agents
in both consensus and radicalization are relatively unaffected by their initial
opinion (Figures 1a - 1b).

In Figure 1d - 1f, results are colored by the number of messages received by
each agent. This number depends on the number of homophilous agents
present throughout the simulated time period, as well as themessage rate of
those agents, the message limit𝑚, and stochastic effects. It is evident that
agents which received the most messages generally had the most extreme
opinions. As all agents had an opinion tendency of 0 in Trials A–C, it was only
social influence which moved them away from 0 opinion, so it makes sense
that the most influenced agents tended to hold the most extreme opinions.
There is empirical evidence to support this, but it is also highly dependent
on other variables such as overall engagement, political context, and trust
(Amit, Mannan, and Islam 2020; Lorenz-Spreen et al. 2023).
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Figure 1: Opinion dynamics for (a) consensus, (b) radicalization and (c) polarization (Trials A–C)
from a reimplementation of the original model of Baumann et al. (2020). In plots (a-c), lines are
colored according to the initial opinion of agents, where polarization is strongly determined by
initial opinion. Plots (d-f) show equivalent results colored by the number of messages received
by agents, where the most extreme agents tend to have received the most messages. Results
in each plot are from a single simulation, matched between plots (a-c) and (d-f).
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Heterogeneous constant tendencies

Results for randomconstant tendencies of ±0.5 are shown in Figure 2, includ-
ing aggregated results frommultiple simulations to account for stochastic
effects. The aggregation distinguishes the tendency groups of agents.

In Figure 2a, agents reached separate group consensuses (‘split consensus’)
which corresponded to their respective tendencies, producing fragmenta-
tion of opinion instead of a single central consensus, i.e. distinct aggregates
of public opinion. There was a greater spread of final opinions within each
consensus group than before, due to the smaller subpopulations having a
slower process of consensus-reaching and a correspondingly weaker overall
cohesion. Figure 2d shows that consensuses were slightly more extreme
than the tendencies themselves, due to agents which had initial opinions
beyond their tendencies pulling others towards them. Otherwise, behavior
was similar to Figure 1a for a single central consensus. Although the effec-
tive polarization in Figure 2a appears in some ways to be greater than in
Figure 1c, this arises from the tendencies alone; note also the difference
both in opinionmagnitudes and underlying mechanisms. This is important
when considering polarization more generally, as behaviors which reflect
existing opinion variations are not in themselves evidence for a growth in
polarization through social effects.

For radicalization in Figure 2b, it is evident that agents were able to be
radicalized against their own tendency (‘divergent radicalization’), given a
sufficiently large sociality value . The two tendency groups were distinct in
their radicalization, reflecting the respective tendencies of agents, i.e. agents
with +0.5 tendency had a more positive final opinion than those with −0.5
tendency, and there was little mixing between the two groups. Figure 2e
shows that the two tendency groups initially began to diverge towards their
respective tendencies, before following a single radicalization direction,
while maintaining the opinion gap from divergence. Interestingly, the ini-
tial divergence was not caused by the echo-chamber effect, since without
homophily, all agents were equally likely to communicate with each other,
so divergence was driven only by tendency. As noted above for Figure 2a,
this mechanism differs to social polarization, although the outcome looks
similar.

Many agents in Figure 2c were polarized against their own tendency, similar
to the effect found for radicalization in Figure 2b. There was more intermix-
ing between the two tendency groups than for the radicalization in Figure 2b,
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Figure 2: Opinion dynamics with random constant tendencies of ±0.5 for (a) consensus, (b)
radicalization and (c) polarization (Trials D–F). Results in each plot (a-c) are from a single
simulation, with lines colored according to the opinion tendency of agents. Plots (d-f) show
corresponding aggregated results. Lines are colored according to the tendency groups (group
0 has −0.5 tendency, and group 1 has +0.5 tendency).

18 VOL. 6, NO. 1, 2024



COMPUTATIONAL COMMUNICATION RESEARCH

but agents with +0.5 tendency were more likely to be polarized positively,
andalso tobe at thehigher endofwhichever polarization group theybecame
part of, and vice versa for agents with −0.5 tendency (‘biased polarization’).
There were conflicts between tendencies and social influences for many
agents, which did not occur in the same way when all agents started from
a neutral position, where Figure 1c showed that initial opinion strongly de-
termined polarization. However, Figure 2f shows that tendency tended to
override initial opinion in determining the eventual polarization of agents.

RQ1

To answer RQ1, the final global opinion of agents was compared between
Trials A–C and Trials D–F, as shown in Figure 3. Note the difference between
tendency group, as shown in Figure 2f, and polarization group, as effectively
shown in Figure 3c from the magnitude of opinions.

Figure 3a shows that opinions in consensus diverged in line with agent ten-
dencies. This is unsurprising, but the influence of more extreme agents is
apparent in the average consensus exceeding the 0.5 tendency magnitude,
as suggested by Figure 2a and 2d. Despite the tendencies averaging as 0
and not exceeding the initial opinion range, and moreover all agents ini-
tially being intermixed, global average final opinion was significantly more
extreme than with 0 tendency (𝑝 < 0.005). Given that real-world opinion
tendencies are more broadly distributed than modeled here, this should
reduce expectations of howmuch consensus in public opinion to expect in
reality, even assuming low controversy and reasonable homophily.

Figure 3b shows that heterogeneous tendencies significantly increased aver-
age radicalization (𝑝 < 0.005). The separation of the two tendency groups
seen in Figure 2e is evident in the two peaks in Figure 3b. Even agents with
−0.5 tendencybecamesignificantlymore extreme thanwhenall agentshad0
tendency (𝑝 < 0.005, but group-specific comparison not shown for brevity).
This suggests that opposing tendencies are overridden by radicalization,
rather than serving to moderate it.

Figure 3c shows that the effect of diversity on polarization was to increase it
significantly (𝑝 < 0.005). All agents were intermixed in their initial opinions,
leading to many agents being polarized against their own tendency, with
conflicts between exogenous and social influences. Were agents initially
segregated, these conflicts would be reduced, suggesting a further increase
in polarization would occur. Intermixing of individuals could, therefore,
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Figure 3: Comparison of final agent opinions with 0 tendency and random ±0.5 tendency for (a)
consensus (Trials A and D), (b) radicalization (Trials B and E), and (c) polarization (Trials C and F).
Opinion magnitude was used in plots (a) and (c) for reasons of symmetry. Bars are offset in
each plot to avoid overlap, and colored by trial. Heterogeneous tendencies caused a significant
increase in extreme opinion in all cases (𝑝 < 0.005).
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help to mitigate the increase in polarization caused by diversity.

Please see Online Appendix, Figures A1-4, for a sensitivity analysis of RQ1,
which supports the findings presented above.

Time-dependent tendencies

Results for time-dependent tendencies in a minority group of agents are
shown in Figure 4 (Trials G–H). In the absence of the minority group, results
in Figure 4wouldbe the sameas Figure 1c for polarization (Trial C). Two time-
dependent functions were used, as described in the Method: a transient
square pulse (Figure 4a and 4c), and a gradual linear ramp (Figure 4b and
4d).
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Figure 4: Opinion dynamics in polarizing conditions, with time-dependent tendencies for a
minority group of agents, using (a) a square pulse function (Trial G), and (b) a linear ramp
function (Trial H). Results in each plot (a-b) are from a single simulation, and lines are colored
according to the tendency group of agents (group 0 is the majority group, and group 1 the
minority group). Straight lines represent the time-dependent tendency function for the minority
group. Plots (c-d) show corresponding aggregated results.

From Figure 4a and 4c, it is evident that a temporary change in tendency in
the minority group caused a lasting shift in majority opinion. The minor-
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ity group returned to the same 0 tendency as the majority group halfway
through the simulation, bywhich time themajority grouphadalreadymoved
to a stable positive overall opinion, despite its 0 tendency (‘shifted polariza-
tion’). It is notable that the minority group quickly exceeded the tendency
function, despite receiving social influence from all agents.

Figure 4b and 4d show that a gradual shift in minority tendencies exhibited
far greater variability both in the minority group and the majority, but that
on average, majority opinion appeared similarly affected to the pulse in
Figure 4a and 4c. The increased variability from the linear ramp may be
due to the minority agents being more susceptible to polarization in both
directions at the start of the simulation, unlike with the square pulse where
the initial tendency was distinctly positive.

The linear ramp was omitted from further consideration for simplicity, but
results with an equally sized delayed opposing square pulse minority group
are shown in Figure 5 (Trial I). It is evident the opposing group was unable
to counteract the effect of the first minority group, which is explored further
below.
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Figure 5: Opinion dynamics in polarizing conditions, with time-dependent tendencies for two
opposing minority groups of agents with a temporal offset in behaviors, using a square pulse
function (Trial I). Lines are colored according to the tendency group of agents (group 0 is the
majority group, group 1 the first minority group, and group 2 the delayed opposing minority
group). Plot (a) shows results from a single simulation, with lines colored according to the
tendency group of agents. Straight lines represent the time-dependent tendency functions for
the minority groups. Plot (b) shows corresponding aggregated results.

RQ2

To answer RQ2, the final majority opinion of agents was compared between
Trial C (i.e. polarizing conditions, with all agents having 0 tendency), Trials
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G–H (i.e. with pulse and ramp minority tendencies), and Trial I (i.e. with
delayed opposing pulse minority tendencies). Comparisons are shown
in Figure 6a - 6c for agents specifically in the majority group, i.e. agents
with constant 0 tendency in each trial. To explore further the effect of the
opposing minority groups, Trials G and I are compared directly in Figure 6d.
Unlike the polarization comparison in Figure 3c, results in Figure 6 do not
use opinion magnitudes, as there was no expectation of symmetry, due to
the presence of asymmetric minority groups.
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Figure 6: Comparison of final agent opinions for unbiased polarization (Trial C) with the unbiased
majority group under influence from (a) pulse function minority group (Trial G), (b) ramp function
minority group (Trial H), and (c) pulse function minority group with a delayed opposing group
of equal size (Trial I). Plot (d) shows an equivalent comparison between Trials G and I. Bars
are offset in each plot to avoid overlap and colored by trial. Plots show that the effect of the
minority groups was significant in all cases (𝑝 < 0.005). The delayed opposing group did not
significantly alter the effect of the first minority group (minimum 𝑝 = 0.34), though both the
mean and median were larger in the presence of the opposing minority group.

Figure 6a shows that the pulse minority group (Trial G) had a significant
effect on majority opinion (𝑝 < 0.005), demonstrating that minority groups
can significantly shift long-term majority opinion with only a transient
behavioral change. Figure 6b shows that gradual changes in the minority
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group (Trial H) are also able to have a significant effect on majority opinion,
seemingly at least as large as for the abrupt pulse. Figure 6c - 6d show that
the shift in majority opinion was not cancelled out by the delayed opposing
minority group (Trial I), and may even have increased the original effect,
although this was not found to be significant (minimum 𝑝 = 0.34).

Please see the Online Appendix, Figures A5-10, for a sensitivity analysis of
RQ2, which supports the findings presented above.

To illustrate further the effects of the minority groups, aggregated opinion
dynamics for Trials G–I are decomposed in Figure 7 by tendency group and
initial opinion group. It is notable that initial opinion strongly affects resul-
tant dynamics in each of Trials G–I. Minority group agents were initialized
with the same random spread of opinions as all other agents, but if they
had been aligned with their future tendencies, it is possible the effect of
their tendency would be even greater. This is useful to consider with real-
world examples, where changes in tendency may well correlate with initial
opinion.

Conclusion

With the aim of improving our understanding of online communication and
public opinion by using ABMs, we have extended the model of Baumann et
al. (2020) to account for individual opinion tendencies of agents, whichmay
be constant or time-dependent in response to external events. Results for
consensus, radicalization and polarization matched well with Baumann et
al. (2020) when all agents were given 0 tendency (Figure 1), which in turned
matched well with real-world social media data.

In answer to RQ1 (Figures 2 - 3), it was found that heterogeneous opinion
tendencies increased extreme opinions in consensus and polarization, in
both cases with average opinions greater than the tendency magnitudes
themselves. However, heterogeneous tendencies particularly increased the
extremity of opinion in radicalization, despite the average tendency being
0. As shown in the sensitivity analysis presented in the Online Appendix,
results were to some extent dependent on the choice of sociality parameter
value and tendency magnitude, but this does not affect overall findings for
RQ1, or understanding of the system in general terms.

In the real-world, these findings suggest that diverse tendencies encourage
greater disconnect between opposing groups, either due to the tendencies
themselves (split consensus), or the effects of homophily being amplified by
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Figure 7: Opinion dynamics for Trials G–I with aggregation of multiple repetitions decomposed
by tendency group and initial opinion group. Plot (a) shows results for Trial G, plot (b) for
Trial H, and plot (c) for Trial I. Lines are colored according to the tendency group of agents
(group 0 is the majority group, group 1 the first minority group, and group 2 the delayed
opposing minority group), and styled according to the initial opinion group (group 0 denotes
initial opinion ≤ 0, and group 1 denotes initial opinion > 0). In each case, majority opinion is
shifted by the minority, in accordance with the form of minority tendency function. The opinion
dynamics of agents are highly affected by the combination of initial opinion and tendency
group.
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opposing tendencies (biased polarization). Themost severe effect of diverse
tendencies appears to be in (divergent) radicalization, where tendencies
amplify the most extreme opinions, rather than moderating them. The
result is a greater likelihood of extremes in global opinion. There is also a
greater likelihood of entrenched and exaggerated opposing views arising
with diversity, either though split consensus or biased polarization. This
has the potential to be exploited for financial or political gain, which is
potentially concerning, especially given the effects algorithms can have on
homophily (Kaiser and Rauchfleisch 2020).

In answer to RQ2 (Figures 4 - 7), a minority group of 5% of agents with a
common time-dependent tendencywas observed to have a significant effect
on majority opinion (shifted polarization). This was found with both an
abrupt transient shift in tendencies and a gradual long-term one (Figure 6a -
6b). Exploring time-dependent tendencies further, a secondminority group
of the same size but with a delayed opposing tendency was found not to
counteract the first minority group (Figure 6c - 6d). This highlights the
power a small, coordinated group can have in decentralized social networks,
and how hard they can be to counteract (Vysotsky andMcCarthy 2017).

The timing and magnitude of the minority tendency shift was important to
these results, but the findings still generalize (see Online Appendix). Model-
ing suggests that long-term shifts in mainstream opinion can be caused by
transient changes in a minority of individuals if they act in a coordinated
way, with opinions that are in a suitable range for themajority to be receptive.
These results are consistent with Moussaïd et al. (2013) for a single static
social actor, and they also have relevance to the popular concept of the
Overton window, i.e. the movable range of opinions to which the majority
may be receptive (Szałek 2013).

Gradual changes in the minority group were found to affect majority opin-
ion in a similar way to the transient pulse, though with greater variability,
which is useful to note for slow-building issues such as evidence for long-
term health risks, and human-caused climate change. Althoughmajority
opinion can shift with gradual changes in the minority group, an abrupt
intervention has the potential to shift opinionmore quickly and consistently,
with similar effectiveness, even when the minority group behavior is not
sustained. These findings could help inform social and behavior change
communication, and also how to handle viral misinformation on social
media (Briscoe and Aboud 2012; Jahanbakhsh et al. 2021).
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It is noteworthy that agents in theminority groups were nomore active than
other agents, their initial opinions no different, their tendencies nomore
strongly held, and there was no difference in how they exerted or received
social influence. Although results were obtained only for a finite time period,
the effect of the temporary pulse was found to produce stable behavior in
the majority group for as long after the pulse as it was active for (Figure 4a
and 4c, but also see Online Appendix). How long this would continue has
not been established, but the scope for long-term effects resulting from
transient events has been credibly demonstrated in the model.

As with all models, the findings reflect the underlying assumptions. The
biggest simplification is treating opinion as a single numerical value, where
agents change their opinion to reduce disagreement with others. Another
important simplification is the global judgement made for homophily, al-
though this is treated as an effect of online platforms. Modeling multi-
dimensional opinions, willful disagreement, and different modalities of
communication would likely change at least some of the presented findings,
but this does not necessarily limit the insights gained here. The simplicity
of the model means that cultural, social and political contexts were not rep-
resented explicitly, and so generalizability is not bound by these. Similarly,
there are all kinds of real-world influences which the model did not seek to
represent, such as framing and psychology. A more complex model could
attempt to account for these, but would require greater integration with
empirical work and theory from other disciplines, and would lose some of
the advantages of parsimony.

The potential for a minority to shift opinions in the majority has previously
been found in experiments and modeling of closed social networks with
endogenous discrete choices (Centola et al. 2018). Previous work has also
investigated the role of exogenous network influences on opinion dynamics
with binary choices, as well as in a continuum using a model which relied
on exogenous events to generate polarization (Wettstein 2020; Sikder et al.
2020; Condie and Condie 2021). Huang andWen (2014) previously modeled
the influence of minority groups by combining group norms with concepts
of privately and publicly held opinions, as similarly used by Lim and Bentley
(2022) to model polarization. However, as far as we are aware, the present
study is the first to examine the role of exogenous influences on opinion
dynamics in a decentralized scale-free social network for opinions in a
continuumwhere polarization did not rely on exogenous factors, and also
to consider the influence of minority groups with access to new or changing
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information, without assumptions of fixed group attitudes or identities. The
relevance to real-world events such as those described in the Introduction
is hopefully clear.

In particular, we believe the present study has helped understand the effects
of new information during the Covid pandemic, where misinformation
was spread by a minority on social media in response to evolving news,
causing potentially life-threatening shifts in wider opinion (Cinelli et al.
2020). It also has relevance to the American Capitol attack, where a minority
of individuals with pre-existing beliefs were mobilized on social media in
sufficientnumbers to cause insurrection (Sureshet al. 2023). It is additionally
relevant to the Silicon Valley Bank run, where rumors fromaminority spread
rapidly on social media to shift public opinion enough to cause a terminal
loss of investor confidence (Yerushalmy 2023). In each of these examples,
there appears to be a crossover of private and public communication, as
well as pre-existing beliefs, which the present study has representedwith the
tendency term of the model. This has helped identify communication and
social mechanisms which can cause crucial shifts in public opinion through
minority influence. However, we acknowledge the generic and simplified
nature of the presented results, and do not claim to have modelled any of
these examples specifically.

Differences in personal characteristics have previously been empirically
observed as being important to public opinion (Herek 2002; Kite, Whitley,
and Wagner 2023). We have investigated how such differences may affect
consensus, radicalization and polarization at a theoretical level (Figures 1
- 3). Of these, polarization has previously received most attention (Kubin
and von Sikorski 2021). Building on this, the present study has helped dis-
tinguish homophily-driven polarization (Figure 1c) from tendency-driven
split consensus (Figure 2a). Both appear similar in outcome, but have dif-
ferent mechanistic causes in the model, which is pertinent to interpreting
polarization in the real world.

We believe these findings are relevant to stakeholders beyond communi-
cation researchers. For example, they could help journalists and politi-
cians gain a better understanding of observed polarization in society. The
present study suggests polarization may be produced by distinct mecha-
nisms, i.e. underlying beliefs and response to social influence, the effects
of which are likely to be amplified by their combination. Public discourse
and policy making could benefit from identifying these distinctions more
clearly.
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Regarding the process of opinion change, previous research has tended
to focus on how individuals engage with wider social narratives, where
civil protest andmedia coverage were found to be particularly important
(Collingwood, Lajevardi, and Oskooii 2018). The effect of minorities on
public opinion has been well studied, mainly concentrating on how an indi-
vidual’s sense of identity affects both publicly and privately held opinion
(Gardikiotis 2011). The present study adds a new perspective to these em-
pirical observations by reducing the modeled system to a small number of
tangible parameters which can replicate many observed qualitative behav-
iors and their hypothesized causes. Although the study does not imply that
more complex aspects of opinion dynamics are unimportant, including the
psychology of group behavior, it also shows how realistic outcomes can be
generated from relatively simple assumptions, which can be used as the
basis for further hypothesis testing.

In particular, the concept of group identity was not present in the model,
only the common tendencies and coordination of agents in the same group.
This nuance to the effect of identity on decentralized communication is
helpful formaking sense of real-world observations. Specifically, individuals
need not knowingly have anything in common to become an influential
minority group, and instead may simply share a news source to which the
majority is unaware, as may have occurred in the Silicon Valley Bank run,
or a prior belief or experience which causes them to respond differently to
news in the public domain, as may have occurred with Covid misinforma-
tion and the American Capitol attack. As with the different mechanisms of
polarization, we believe these examples have relevance beyond communi-
cation research, and could be helpful for politicians, journalists and social
media platforms to interpret and anticipate minority influence on public
opinion in response to new information. Importantly, minority groups need
not recognize themselves as such. Where minority influence could cause
harm, interventions may benefit from focusing less on identity, andmore
on how information is assimilated into the public sphere.

The present study did not make direct use of empirical data, but it is based
closely on the model of Baumann et al. (2020) which was validated against
social media data. Future work could focus on using empirical data both to
informmodeling at the micro-scale and to test it at the macro-scale. There
are some suggestions in the literature for how this could be achieved, and
we would advocate building on the news link-based approaches used by
Baumann et al. (2020) and Cinelli et al. (2021). Other possibilities include ex-
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periments using human participants, and linguistic analysis of social media
data, considering both the timing and sentiment of interactions (Bazarova,
Walther, andMcLeod 2012; Liu, Liu, and Chen 2020). This combination of
approaches could provide a framework both for parameter estimation and
model validation.

A key finding of the present study is that minority groups can shift the mod-
eled majority opinion in dynamic news contexts if they act in a coordinated
way. Furthermore, a delayed opposition groupmay not counteract the first
minority group, and could in fact serve to amplify the first group’s effect.
Beyond empirical validation of this, future work could explore further the
distinction between agent-level homophily decisions (e.g. personality and
relationship effects) and global-scale mediation (e.g. algorithmic and cul-
tural effects).

Some random effects were evident in the presented results, (e.g. the non-
zero average opinion for Trial C in Figure 6), but running multiple simu-
lations helped reduce the issue. However, there is more work to be done
in understanding the role of stochasticity, as although aggregating results
helped to identify general trends, this also has the risk of ironing out in-
teresting behavior, and conflating variability within and across repetitions.
The use of statistical tests was affected by the number of repetitions used,
and although keeping this constant made the comparisons fair, future work
could give more attention to effect size (Sawilowsky 2009). We recommend
further use of sensitivity analysis, including a global variance-basedmethod
to improve understanding of the model parameters and their interactions
(Saltelli and Annoni 2010). It would also be useful to explore the effects
of different network topologies, distributions and restructuring processes
(Sikder et al. 2020; Kan, Feng, and Porter 2023).

The model could be extended to include other forms of agent-specific and
time-dependent behavior, similar to the treatment of opinion tendencies in
the present study. This could involve anymodel parameters, but perhaps
most salient would be to apply a similar approach to the message rate of
agents in response to receiving messages they particularly agree with, as ob-
served empirically, and encouraged through common platform affordances
such as likes and shares (Myers and Leskovec 2014). To build on this, the
role of message virality would be another suitable consideration for future
work (Kim 2018).

Future work could also investigate more structured and stable networks, re-
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flecting, for example, friend and follower functionalities. This could include
investigation of heterophilous and parasocial interactions, where social
tension may be particularly relevant (Lozares et al. 2014; Dibble, Hartmann,
and Rosaen 2016). Tactics of opposing minority groups could also be investi-
gated with themodel, as well as the effect of multiple groups (Gallagher et al.
2018). The effect of network size could also be explored, including behaviors
within small private groups, which is an increasingly common and under-
analyzed usage of social media, and one where agent-basedmodeling could
be particularly informative (Dargahi Nobari et al. 2021).
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Notes

1See https://doi.org/10.5281/zenodo.10718505 for the Online Appendix.

2See https://github.com/markpogson/odmodel for the full code used in this paper.
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