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• A reliability method is proposed from the reinforcement learning perspective.

• Sequential experimental design is interpreted as a finite-horizon Markov decision process (MDP).

• Reward function in the MDP is defined in terms of the integrated probability of misclassification.
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Abstract

A Bayesian reinforcement learning reliability method that combines Bayesian inference for the failure prob-
ability estimation and reinforcement learning-guided sequential experimental design is proposed. The
reliability-oriented sequential experimental design is framed as a finite-horizon Markov decision process
(MDP), with the associated utility function defined by a measure of epistemic uncertainty about Kriging-
estimated failure probability, referred to as integrated probability of misclassification (IPM). On this ba-
sis, a one-step Bayes optimal learning function termed integrated probability of misclassification reduction
(IPMR), along with a compatible convergence criterion, is defined. Three effective strategies are imple-
mented to accelerate IPMR-informed sequential experimental design: (i) Analytical derivation of the inner
expectation in IPMR, simplifying it to a single expectation. (ii) Substitution of IPMR with its upper bound
IPMRU to avoid element-wise computation of its integrand. (iii) Rational pruning of both quadrature set
and candidate pool in IPMRU to alleviate computer memory constraint. The efficacy of the proposed ap-
proach is demonstrated on two benchmark examples and two numerical examples. Results indicate that
IPMRU facilitates a much more rapid reduction of IPM compared to other existing learning functions, while
requiring much less computational time than IPMR itself. Therefore, the proposed reliability method of-
fers a substantial advantage in both computational efficiency and accuracy, especially in complex dynamic
reliability problems.

Keywords: Reinforcement learning, One-step Bayes optimal learning function, Integrated probability of
misclassification reduction, Bayesian inference, Reliability analysis

Nomenclature

AK-SS adaptive Krigng-subset simulation
ALR Active learning reliability
BALR Bayesian active learning reliability
BRLR Bayesian reinforcement learning relia-

bility
CDF cumulative distribution function
COV coefficient of variation
ED experimental design
EIER expected integrated error reduction
IPM integrated probability of misclassifica-

tion
IPMR integrated probability of misclassifica-

tion reduction
IS importance sampling

LIF least improvement function
MCS Monte Carlo simulation
MDP Markov decision process
PDF probability density function
PM probability of misclassification
REIF reliability-based expected improve-

ment function
RLCB reliability-based lower confidence

bounding
SS subset simulation
SUR stepwise uncertainty reduction
VAIS variance-amplified importance sam-

pling

1. Introduction1

Engineering systems are inherently subject to uncertainties in the physical properties, external loads and2

operating conditions. Structural reliability analysis seeks to quantify the impact of these uncertainties by3
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computing the associated probability of failure of those systems concerning some predefined limit states,4

and it is paramount to the design, assessment and maintenance of complex engineering systems [1].5

In a probabilistic framework, the randomness associated with an engineering system is typically repre-6

sented by a d-dimensional vector of random variables Z = {Z1, . . . , Zd} ⊂ Z ∈ Rd, with a known joint7

probability density function (PDF) fZ(z). Then, the state of system is encoded by a performance function8

y = G(z), relying on the output of expensive-to-evaluate computational models, such as high-fidelity finite-9

element models. Conventionally, the system is deemed in a failed configuration when G(z) < 0, and the10

boundary between safe and failure domains is known as the limit state surface. The failure probability Pf11

is then defined as [1]12

Pf = P (G(Z) ≤ 0) =

∫
Z
1 (z) fZ(z)dz (1)

where P (·) denotes the probability operator; and 1 (·) is the failure indicator function given by13

1 (z) =

{
1, G(z) ≤ 0

0, otherwise
(2)

In most real-world scenarios, analytical solution to Eq. (1) is generally intractable. Consequently,14

researchers have developed a host of numerical reliability analysis methods in the literature, which often15

entail the repeated evaluation of performance function. A reliability method will be computationally efficient16

if it only requires a minimal number of performance function evaluations. Basically, existing reliability17

methods can be categorized into four groups. (i) Analytical approximation methods, e.g., first- and second-18

order reliability methods [2]; (ii) Sampling methods, e.g., Monte Carlo simulation (MCS) [3], importance19

sampling (IS) [4], directional sampling [5], subset simulation (SS) [6] and line sampling [7]; (iii) Numerical20

integration methods, e.g., moment methods [8] and probability density evolution method [9, 10]; (iv) Active21

learning reliability (ALR) methods, where two seminal contributions are efficient global reliability analysis22

[11] and adaptive Kriging Monte Carlo simulation [12].23

In the past decade, the ALR methods [13] have gained increasing popularity due to higher efficiency com-24

pared to the aforementioned categories. The core of the ALR methods lies in replacing the computationally-25

expensive performance function with a well-calibrated surrogate model, which is inexpensive to evaluate. In26

particular, the calibration of surrogate model and the estimation of failure probability are iteratively per-27

formed within the sequential experimental design process. Then, the accuracy of the surrogate-estimated28

failure probability is progressively improved until a relevant convergence criterion is met. For a more com-29

prehensive review, interested readers may refer to [13, 14].30

Commonly-used surrogate models in this context include Kriging [12], support vector regression [15],31

polynomial chaos expansion [16, 17], radial basis function [18], and ensemble of metamodels [19]. Kriging is32

arguably the most popular one, due to its Bayesian interpretation and uncertainty quantification capability.33

This advantage makes it well-suited for sequential experimental design. Therefore, we restrict our attention34

to Kriging. The combination of Kriging with MCS [12, 20], IS [21], SS [22], or probability density evolution35

method [23, 24] have been extensively explored in the literature. Notably, a Bayesian inference framework for36

Kriging-based failure probability estimation was recently developed in [25, 26, 27], where both the posterior37

mean and (upper-bound or exact) posterior variance of Kriging-estimated failure probability are derived.38

The former is considered as a desired estimate of failure probability, while the latter serves as a measure39

of epistemic uncertainty about Kriging-estimated failure probability, due to the limited training samples40

[28, 29]. This epistemic uncertainty measure can be reduced by sequentially adding informative training41

samples, and the sequential experimental design is terminated when this uncertainty measure falls below42

a predefined tolerance. This sub-category is collectively referred to as Bayesian active learning reliability43

(BALR) method.44

Sequential experimental design [30] is arguably the most distinctive feature of the ALR methods, in-45

volving a sequence of decisions on where to make the next performance function evaluation(s) based on the46

available data. This sequential process is often achieved by specifying a learning function that assigns a47

score to each candidate point in the input space commensurate with its propensity for aiding the reliability48

analysis task. In the combination of Kriging and those simulation methods, common learning functions49

include the expected feasibility function [11], U function [12], reliability-based lower confidence bounding50

(RLCB) [31], reliability-based expected improvement function (REIF) [32], and others. A notable feature51

of these learning functions is that their expressions are generally defined in terms of the posterior mean and52

variance of Kriging. This indicates that they essentially balance the proximity of posterior mean of Kriging53

to the limit state surface and the posterior variance of Kriging in a heuristic manner [33]. In the BALR54

methods, the measure of epistemic uncertainty about failure probability can be defined in terms of its upper-55

bound posterior variance [26] or expected misclassification probability [27], all expressed as integrals. Then,56
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their integrands are simply used as the corresponding learning functions, with typical ones including the57

upper-bound posterior variance contribution [26] or expected misclassification probability contribution [27].58

However, the new point featuring the greatest integrand does not necessarily lead to the biggest reduction59

of the corresponding epistemic uncertainty measure.60

Essentially, sequential experimental design involves solving a problem of sequential decision-making under61

uncertainty. Owing to the Bayesian nature of Kriging, this process exactly fits within a Bayesian decision-62

theoretic framework [28], where the optimal experimental design policy is built on maximizing specific utility63

functions in expectation. The utility function reflects preferences over different sample locations for the64

reliability analysis task. However, most of the aforementioned learning functions may fall short of realizing65

the promise of an optimal policy [33]. Although they are computationally efficient and yield reasonable66

empirical results, they may leave substantial room for improvement. Reinforcement learning [34] is a class67

of theoretically-sound and principled methods for finding an optimal policy for sequential decision-making.68

This is achieved by an agent learning a policy to maximize its expected cumulative reward function through69

interaction with the environment. Recently, it has demonstrated promising results in diverse fields, including70

robot control [35], Bayesian optimal experimental design [36], Bayesian optimization [37], and maintenance71

planning [38]. Importantly, this approach has also been explored in the reliability analysis task [39]; however,72

the associated learning function significantly deviates from the form of an expected accumulative reward73

function. To the best of the authors’ knowledge, a genuine implementation of reinforcement learning-guided74

reliability method has not been attempted before.75

In this work, a Bayesian reinforcement learning reliability (BRLR) method is developed. On one hand,76

Bayesian inference for the failure probability estimation is conducted to propagate and quantify the associ-77

ated epistemic uncertainty. On the other hand, reliability-oriented sequential experimental design is built78

from the reinforcement learning perspective, with the aim of maximally reducing this epistemic uncertainty79

per iteration. The primary contributions of this study are summarized as follows.80

• Sequential experimental design is framed as a finite-horizon Markov decision process (MDP) in the81

reinforcement learning framework with a Bayesian decision-theoretic setting. This allows gaining the82

theoretically-optimal sampling policy through dynamic programming.83

• The integrated probability of misclassification (IPM) is proved to be the upper bound for the absolute84

relative error of Kriging-estimated failure probability. Hence, it can serve as a measure of epistemic85

uncertainty about failure probability estimation.86

• Reward function in the MDP is specified in terms of IPM, leading to a one-step Bayes optimal learning87

function termed integrated probability of misclassification reduction (IPMR) and a compatible hybrid88

convergence criterion.89

• Cost-effective IPMR-based sequential experimental design is conducted through three critical workarounds.90

First, the inner expectation in IPMR is analytically derived, reducing it to a single integral; then, IPMR91

is substituted with its computationally-cheap upper bound IPMRU. Second, the pruning of quadrature92

set for IPMRU is conducted by exploring the locality of its integrand. Third, the candidate pool is93

pruned based on the preference of IPMRU over different candidate samples.94

The rest of this paper is organized as follows. Section 2 provides a review of basic concepts and outlines95

the primary objective of this study. Section 3 devotes to developing the reinforcement learning-guided96

learning function IPMR. Then, Section 4 details the workflow of the proposed BRLR. The efficacy of97

the proposed approach is demonstrated through four examples in Section 5. Finally, Section 6 presents98

concluding remarks.99

2. Preliminaries100

Given that the proposed BRLR method is set up in the standard normal space, the input random101

vector Z ∼ fZ(z) is transformed into the standard normal vector X = {X1, . . . , Xd} ∼ N (0, Id). The102

corresponding isoprobabilistic transform T is defined as103

X = T −1(Z) (3)

where T could be, for instance, Nataf or Rosenblatt transforms. Then, the original performance function in104

Eq. (1) can be reformulated as105

G (X) = G(T (X)) (4)
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where G = G ◦ T represents a performance function evaluated in the standard normal space.106

Section 2.1 provides an overview of the fundamentals of ALR. Section 2.2 attempts to frame the sequential107

experimental design as a finite-horizon MDP in the reinforcement learning framework. Finally, Section 2.3108

outlines the primary objective of this study.109

2.1. Active learning reliability analysis110

Fig. 1 illustrates the general flowchart of the ALR methods. The five main ingredients, i.e., the experi-111

mental design (ED) Dn = {Xn,Yn} =
{
(x(i), y(i))

}n
i=1

, the surrogate model Ĝn(x), the failure probability112

estimation P̂f,n, the stopping condition and the learning function, are sequentially assembled. This iterative113

process forms a closed loop that enables feedback and, thus, progressively refining the accuracy of P̂f,n.114

Bayesian inference

Start

Experimental
design
Dn

Surrogate
model
Ĝn(x)

Reliability
analysis
P̂f,n

Stopping
condition

Learning
function
x(n+1)

Enrichment
y(n+1) = G

(
x(n+1)

)

End

Posterior of Ĝn(x)

Posterior of 1̂n (x)

Posterior of P̂f,n

GP(µn(x), cn(x,x
′))

1̂n (x) =

{
1, Ĝn(x) ≤ 0

0, otherwise

P̂f,n =
∫
X 1̂n (x) fX(x)dx

µP̂f,n
andσ2

P̂f,n

Y

Nn = n+ 1

Figure 1: General framework of active learning reliability analysis

The basics of Kriging Ĝn(x) are outlined in Appendix A. Due to the Bayesian formalism of Kriging,115

Bayesian inference can be conducted for the failure probability estimation, resulting in the posterior mean116

and variance of P̂f,n. This workflow is briefly illustrated in the panel with yellow background in Fig. 1.117

Starting by assigning a GP prior over G (x) and specifying an ED Dn of size n, the probabilistic belief over118

G (x) is represented by the posterior distribution of Kriging Ĝn(x) ∼ GP (µn(x), cn(x,x
′)), as given by Eqs.119

(A.6), (A.7), (A.8). Then, according to Eq. (2), the posterior distribution of the estimator 1̂n (x) of the120

failure indicator function follows a generalized Bernoulli process [27]121

1̂n (x) ∼ GBP
(
µ
1̂n

(x), c
1̂n

(x,x′)
)

(5)

with the posterior mean µ
1̂n

(x) and covariance c
1̂n

(x,x′) expressed as [27]122

µ
1̂n

(x) = Φ

(
−µn(x)

σn(x)

)
(6)

c
1̂n

(x,x′) = F2

([
0
0

]
;

[
µn(x)
µn(x

′)

]
,

[
σ2
n(x), cn(x,x

′)
cn(x

′,x), σ2
n(x

′)

])
− Φ

(
−µn(x)

σn(x)

)
Φ

(
−µn(x

′)

σn(x′)

)
(7)

where Φ (·) denotes the cumulative distribution function (CDF) of a standard Gaussian variable; F2 (·;µ,C)123

denotes the CDF of a bivariate Gaussian vector with the mean vector µ and covariance matrix C.124

Substituting Eq. (5) into Eq. (1), the P̂f,n is expressed as125

P̂f,n =

∫
X
1̂n (x) fX(x)dx (8)

which is still a random variable, with the posterior mean and variance derived as [27]126

µP̂f,n
=

∫
X
Φ

(
−µn(x)

σn(x)

)
fX(x)dx (9)

σ2
P̂f,n

=

∫ ∫
X×X

F2

([
0
0

]
;

[
µn(x)
µn(x

′)

]
,

[
σ2
n(x), cn(x,x

′)
cn(x

′,x), σ2
n(x

′)

])
fX(x)fX(x′)dxdx′ − µ2

P̂f,n
(10)
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where µP̂f,n
can be used as an estimate of failure probability, and σ2

P̂f,n
serves as an uncertainty measure127

about µP̂f,n
. The latter reflects the epistemic uncertainty associated with P̂f,n, induced by using the Kriging128

Ĝn(x).129

Generally, Eqs. (9) and (10) need to be computed via a desired quadrature method. Notably, Eq.130

(10), containing a bivariate Gaussian CDF F2 (·; ·, ·) to be numerically computed element-wise, can be131

computationally expensive.132

2.2. Sequential experimental design as a Markov decision process133

Another critical aspect of the ALR methods lies in efficiently building the sequential experimental design.134

This problem can be interpreted from the reinforcement learning perspective, where an agent (or decision-135

maker) learns the optimal policy for sequential decision-making by interactions with an environment. As136

depicted in Fig. 2, this task is formulated as a MDP defined by a tuple < S,A, P,R > [34]:137

• S: The state space;138

• A: The action space;139

• P (s, a, s′): The probability of transitioning to s′ when taking action a at state s;140

• R(s, a, s′): The reward function when transitioning to state s′ after taking action a at state s.141

Agent

Environment
Ĝn(x) ∼ GP(µn(x), cn(x,x

′))

Rn+1

Sn+1

Reward Rn
State Sn:

Dn = {Xn,Yn}

Action An:
x(n+1) = argmax

x∈X
En [Rn+τ (Dn)]

Figure 2: Interpretation of reliability-oriented sequential experimental design as a MDP

A decision rule πt : S 7→ A maps states to actions at epoch t, and a policy π is a sequence of decision142

rules π = (π1, . . . , πN ). Given a policy π, an initial state sn, and a look-ahead horizon τ , the expected143

cumulative reward can be expressed as [35]144

V π
τ (s) = Esn,sn+1,...,sn+τ |π

[
τ−1∑
t=0

R (sn+t, πn+t(sn+t), sn+t+1) |s = sn

]
(11)

which is also referred to as value function; the expectation is defined with respect to the transition proba-145

bilities of states at each epoch. Note that both the discount factor and terminal reward are omitted in Eq.146

(11) for simplicity.147

The objective of solving a MDP is to design an optimal policy π∗ that maximizes the value function:148

π∗ =
{
π∗
n, . . . , π

∗
n+τ−1

}
= arg supπ∈ΠV

π
τ (s) (12)

where Π is the set of all feasible policies.149

Following Bellman’s principle of optimality, Eqs. (11) and (12) can be formulated using recursive dynamic150

programming [35]:151

V ∗
n+t(s) = max

a∈A
Es′
[
R(s, a, s′) + V ∗

n+t+1(s
′)
]

V ∗
n+π(s) = 0

(13)

for t = τ − 1, τ − 2, . . . , 0, where V ∗
n+t(s) denotes the optimal value function of π∗. Eq. (13) suffers from the152

‘curse of dimensionality’ raised from the uncountable state and action space when the look-ahead horizon τ153

is very significant. This challenge can be alleviated by some approximate dynamic programming methods,154

such as rollout or limited look-ahead strategies [35].155
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2.3. Problem statement156

Having covered the fundamentals of MDP in Section 2.2, we attempt to map them to their analogous157

counterparts in the ALR methods. Specifically,158

• S: The state space S = X×Y is all possible combinations of input and response spaces, and the ED159

Dn is the current state sn.160

• A: The action space A is the input space X, and the action corresponds to adding the next sample161

x
(n+1)
+ into Dn, i.e., an = πn(Dn) = x

(n+1)
+ .162

• P (s, a, s′): The transition probability from state Dn to state Dn+1, given an action x
(n+1)
+ , can be163

readily represented by the Kriging Ĝn(x) such that164

Y
(n+1)
+ = N

(
µn

(
x
(n+1)
+

)
, σ2

n

(
x
(n+1)
+

))
(14)

where the upper case highlights that Y
(n+1)
+ is a Gaussian random variable. Besides, the subscript ’+’165

intends to distinguish between the existing dataset and newly-added ones.166

• R(s, a, s′): According to Bayesian decision theory [35], denote U(Dn) as a real-valued utility function167

for the current state Dn. Higher utility indicates more favorable outcome for the reliability analysis168

task. Then, the reward function is expressed as169

R
(
Dn+t,x

(n+t+1)
+ ,Dn+t+1

)
= U(Dn+t+1)− U(Dn+t), t = 0, . . . , τ − 1 (15)

which represents the increase of the utility function, due to adding x(n+t+1) into Dn+t.170

Analogous to Eq. (11), the value function associated with the reward function R(·) in Eq. (15) is171

expressed as172

V π
τ

(
x
(n+1)
+ ;Dn

)
= E

Y
(n+1)
+ ,...,x

(n+τ)
+ ,Y

(n+τ)
+

[
τ−1∑
t=0

R
(
Dn+t,x

(n+t+1)
+ ,Dn+t+1

)]
= E

Y
(n+1)
+ ,...,x

(n+τ)
+ ,Y

(n+τ)
+

[U (Dn+τ )]− U(Dn)

(16)

where the expectation is taken with respect to all possible randomness during the whole look-ahead horizon,173

consisting of both Y
(n+1)
+ and

{
(x

(n+t)
+ , Y

(n+t)
+ )

}τ

t=2
.174

Then, in accordance with Eq. (13), there exists175

V ∗
τ (Dn) = max

x
(n+1)
+ ∈X

{
V1

(
x
(n+1)
+ ;Dn

)
+ E

Y
(n+1)
+

[
max

x
(n+2)
+ ∈X

Vτ−1

(
x
(n+2)
+ ;Dn+1

)]}
= max

x
(n+1)
+ ∈X

{
V1

(
x
(n+1)
+ ;Dn

)
+ E

Y
(n+1)
+

[
V ∗
τ−1 (Dn+1)

]} (17)

Hence, the optimal policy is expressed as176

x(n+1) = argmax
x

(n+1)
+ ∈X

{
V1

(
x
(n+1)
+ ;Dn

)
+ E

Y
(n+1)
+

[
V ∗
τ−1 (Dn+1)

]}
(18)

which involves a series of nested maximization and expectation operations. Hence, Eq. (18) is generally177

difficult to compute when τ > 2.178

For analytical tractability, we restrict our attention to the one-step look-ahead case, i.e., τ = 1. Moreover,179

since only a new point is considered at the current iteration, the notations x
(1)
+ and Y

(1)
+ can be simplified180

as x+ and Y+, without the risk of confusion. Then, Eq. (18) simplifies to181

x(n+1) = argmax
x+∈X

V1 (x+;Dn)

= argmax
x+∈X

{
EY+

[U(Dn+1)]− U(Dn)
} (19)

which is called one-step Bayes optimal policy.182
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Eq. (19) indicates that the best next point x(n+1) at the iteration n is the one achieving the greatest in-183

crease of utility function in expectation when added intoDn. Hence, the general expression
{
EY+

[U(Dn+1)]− U(Dn)
}

184

exactly corresponds to the one-step Bayes optimal learning function.185

The remaining concern is how to define a real-value utility function U(·) tailored for the reliability186

analysis task, so as to gain a theoretically sound and computationally affordable learning function. Eq. (10)187

indicates that σ2
P̂f,n

is a good measure of epistemic uncertainty about µP̂f,n
, and −σ2

P̂f,n
is thus a natural188

choice for the utility function in Eq. (19). However, σ2
P̂f,n

is too computationally demanding. It is more189

attractive to consider a computationally cheap utility function, which will be detailed in Section 3.190

Remark 1. The rationale behind the one-step look-ahead policy in Eq. (19) could be justified from the191

perspective of probabilistic model misspecification [40]. Eq. (18) underscores that the optimal policy is defined192

with respect to both the probabilistic model, say Kriging, of G (x) and the available dataset. Therefore,193

given the imperfection of our belief about G (x), especially with a limited dataset, a less reliance on the194

probabilistic model’s belief, i.e., limiting the look-ahead horizon, may gain better robustness, along with195

remarkable computational savings.196

3. The proposed integrated probability of misclassification reduction (IPMR)197

A computationally-efficient utility function, referred to as integrated probability of misclassification198

(IPM), is proposed in the reliability-oriented MDP, resulting in a one-step Bayes optimal learning function199

named integrated probability of misclassification reduction (IPMR), along with a compatible convergence200

criterion.201

Section 3.1 outlines the definition of IPM. Section 3.2 provides the basic expression for the resulting202

learning function IPMR, formulated as a double expectation. Then, the inner expectation in IPMR is203

analytically deduced in Section 3.3, simplifying IPMR to a single expectation. Given the computational204

challenges faced by IPMR, it is replaced by its upper bound IPMRU in Section 3.4. Then, the pruning of205

the quadrature set and candidate point in IPMRU are conducted in Sections 3.5 and 3.6, respectively.206

3.1. Basic definition of the integrated probability of misclassification (IPM)207

Proposition 1. Denote Hn as208

Hn := H(Dn) = EX [Pn(x)] =

∫
X
Pn(x)fX(x)dx (20)

where Pn(x) = Φ
(
− |µn(x)|

σn(x)

)
is the so-called probability of misclassification (PM), representing the probability209

of misclassifying the safe/failure state of x according to the sign of µn(x). Hence, Hn can be called integrated210

probability of misclassification (IPM). Then, P̂f,n and µP̂f,n
satisfy the following expression211

En

[∣∣∣P̂f,n − µP̂f,n

∣∣∣] ≤ 2Hn (21)

The proof of Proposition 1 is given in Appendix B.212

Eq. (21) implies that when Hn → 0, µP̂f,n
converges to Pf in expectation. Hence, Hn can be viewed as a213

measure of epistemic uncertainty about µP̂f,n
, and it should be reduced as much as possible. For illustration,214

consider the following bivariate performance function215

G (X) = 5− 0.5(X1 − 0.1)2 −X2 (22)

where X1 and X2 are two uniform variables within [−6, 6]. The grid of size 80× 80 is simply used as a set216

of quadrature points with equal weights.217

In Fig 3, the actual limit state is depicted as a black solid line, and the initial training samples D6 =218 {
(x(i), y(i))

}6
i=1

are marked as black solid circles. A Kriging Ĝ6(x) is trained, and significant values of P6(x)219

are observed around the approximated limit state, with the resulting H6 computed as 5.98 × 10−2 (Fig.220

3(a)). Then, a new point
(
x(7), y(7)

)
(red solid circle) is added into D6, forming D7 = D6

⋃(
x(7), y(7)

)
. The221

Kriging Ĝ7(x) is trained and the corresponding P7(x) is shown in Fig. 3(b). Much smaller values of P7(x)222

are observed in the vicinity of the limit state, and the resulting H7 is equal to 3.25× 10−2, which is far less223

than H6.224
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(a) P6(x) and H6 (b) P7(x) and H7

Figure 3: Illustration of IPM in a bivariate toy function

Therefore, −Hn is a favorable utility function U(·) for Dn. Then, following the one-step Bayes optimal225

policy in Eq. (19), the x(n+1) at iteration n is selected as226

x(n+1) = argmax
x+∈X

{
EY+

[−H(Dn+1)]− (−H(Dn))
}

= argmax
x+∈X

{
Hn − EY+

[H(Dn+1)]
} (23)

where H (Dn+1) represents the one-step look-ahead IPM, when a pair of new point and its response (x+, y+)227

is added into Dn, i.e., Dn+1 = Dn

⋃
(x+, y+). Then, the specific expression of the one-step Bayes optimal228

learning function
{
Hn − EY+

[H(Dn+1)]
}
will be derived in Section 3.2.229

3.2. General expression of IPMR230

Analogous to Eq. (20), the look-ahead IPM H (Dn+1) is expressed in terms of the posterior of Kriging231

Ĝn+1(x) calibrated from Dn+1. This can be readily provided by Kriging update formulas, as outlined in232

Appendix C.233

Specifically, when Dn is enriched with (x+, y+), the look-ahead posterior of Ĝn+1(x) can be directly234

obtained from the posterior of Ĝn(x), without needing to re-estimate its parameters, as expressed in Eqs.235

(C.1), (C.2) and (C.3). On this basis, the look-ahead IPM H (Dn+1) can be expressed as236

Hn+1 (x+, y+) := H(Dn+1) = EX [Pn+1 (x;x+, y+)] (24)

which is a function of x+, y+, with the current ED Dn omitted for simplicity; Pn+1(x;x+, y+) denotes the237

look-ahead PM and is given as238

Pn+1(x;x+, y+) =



{
Φ (a(x) + b(x)z+) , z+ ≤ zlim

1− Φ (a(x) + b(x)z+) , z+ > zlim
, cn(x,x+) > 0{

1− Φ (a(x) + b(x)z+) , z+ < zlim

Φ (a(x) + b(x)z+) , z+ ≥ zlim
, otherwise

(25)

where a(x) = µn(x)
σn+1(x)

, b(x) = cn(x,x+)
σn(x+)σn+1(x)

, z+ = y+−µn(x+)
σn(x+) , zlim = −σn(x+)µn(x)

cn(x,x+) . The detailed derivation239

of Eq. (25) is given in Appendix D.240

Recall that the actual performance function response y+ at x+ is unknown; hence, Pn+1 (x;x+, y+) in241

Eq. (25) and Hn+1 (x+, y+) in Eq. (24) are unknown as well. To remedy this bottleneck, the y+ is replaced242

by the Kriging prediction at x+, denoted as Y+ ∼ N
(
µn(x+), σ

2
n(x+)

)
, and Eq. (24) is thus transformed243

as244

Hn+1(x+) = EX [Pn+1(x;x+)] (26)
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in which245

Pn+1(x;x+) =



{
Φ (a(x) + b(x)Z+) , Z+ ≤ zlim

1− Φ (a(x) + b(x)Z+) , Z+ > zlim
, cn(x,x+) > 0{

1− Φ (a(x) + b(x)Z+) , Z+ < zlim

Φ (a(x) + b(x)Z+) , Z+ ≥ zlim
, otherwise

(27)

where Z+ = Y+−µn(x+)
σn(x+) is a standard normal variable. Obviously, both Pn+1(x;x+) in Eq. (27) and246

Hn+1(x+) in Eq. (26) become the functions of x+ solely. Notably, they are random quantities through Y+,247

or equivalently Z+.248

In accordance with Eq. (23), the one-step Bayes optimal learning function is expressed as249

IPMRn (x+) = Hn − EY+ [Hn+1 (x+)]

= Hn − EY+ [EX [Pn+1 (x;x+)]]
∗
= EX [Pn(x)]− EX

[
EY+ [Pn+1 (x;x+)]

]
= EX

[
Pn(x)− EY+ [Pn+1 (x;x+)]

]
= EX [In (x;x+)]

(28)

where the exchange of two expectations in the equality ‘
∗
=’ utilizes the Fubini-Tonelli theorem; In(x;x+) =250

Pn(x)− EY+
[Pn+1 (x;x+)] represents the inner expectation.251

Then, the best next point x(n+1) at iteration n is selected as252

x(n+1) = argmax
x+∈XC

IPMRn (x+) (29)

where XC denotes the candidate pool. Obviously, x(n+1) is the point achieving the maximum reduction of253

IPM in expectation. Hence, this one-step Bayes optimal learning function is called integrated probability of254

misclassification reduction (IPMR).255

Eq. (28) indicates that IPMR involves two expectations, i.e., the inner expectation In(x;x+) and256

the subsequent outer expectation EX [In(x;x+)]. They will be sequentially addressed in the following257

subsections.258

3.3. Inner expectation in IPMR259

Proposition 2. The inner expectation In(x;x+) in Eq. (28) is analytically expressed as260

In(x;x+) = Φ

−
|µn(x)|
σn(x)

|ρn(x,x+)|

− 2Φ2

 |µn(x)|
σn(x)

,−
|µn(x)|
σn(x)

|ρn(x,x+)|
;− |ρn(x,x+)|

 (30)

where ρn(x,x+) =
cn(x,x+)

σn(x)σn(x+) denotes the the posterior correlation coefficient of Kriging Ĝn(·) between x261

and x+; Φ2 (h1, h2; r) is the CDF of a standard bivariate Gaussian vector with a correlation coefficient r.262

Proposition 3. The lower and upper bounds of In(x;x+) are expressed as263

ILn (x;x+) = 0

IUn (x;x+) = Φ

 − |µn(x)|
σn(x)

|ρn(x,x+)|

 (31)

The proof of Proposition 2 is provided in Appendix E. Then, the proof of Proposition 3 is provided in264

Appendix F.265

According to Eqs. (28) and (31), the upper bound of IPMRn(x+) is naturally given as266

IPMRU
n (x+) = EX

[
IUn (x;x+)

]
(32)

The remaining single expectations in both IPMRn(x+) and IPMRU
n (x+) generally have no analytical so-267

lution. Therefore, they need to be numerically computed via some favorable quadrature methods, such as268

variance-amplified importance sampling (VAIS), which will be detailed in Section 3.4.269
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3.4. Computational challenge encountered by the outer expectation in IPMR270

Taking the VAIS-based computation of IPMRn(x+) as an example, it can be rewritten as271

IPMRn(x+) =

∫
X
In (x;x+)

fX(x)

hX(x)
hX(x)dx (33)

where hX(x) is the importance sampling density. The optimal importance sampling density is generally272

unavailable, due to the lack of exact knowledge about the quantity to be estimated. The VAIS takes a simple273

but effective approach: hX(x) is constructed by amplifying the standard deviation of X, while keeping the274

mean vector unchanged, that is, hX(x) = ϕ
(
x;0, α2Id

)
, where α(> 1) is the amplification coefficient of275

standard deviation. Although different amplification coefficients can be assigned to distinct dimensions, only276

a single value of α is set for all dimensions of X.277

Then, Eq. (33) can be numerically computed as278

IPMRn(x+) ≈
1

Q

Q∑
i=1

[
In(x

(i);x+)
fX(x(i))

hX(x(i))

]
(34)

where XQ = {x(i)}Qi=1 is a set of Q quadrature points (e.g., Sobol sequence) drawn from hX(x). Similarly,279

IPMRU
n (x+) in Eq. (32) can be approximated as280

IPMRU
n (x+) ≈

1

Q

Q∑
i=1

[
IUn (x(i);x+)

fX(x(i))

hX(x(i))

]
(35)

When IPMRn(·) is used to select the best next point x(n+1) from a candidate pool XC of size C, an281

identical quadrature set XQ is usually used to approximate IPMRU
n (x+),∀x+ ∈ XC, for convenience. This282

means that the matrix
[
In(x

(i),x(j))
]
1≤i≤Q,1≤j≤C

at XQ ×XC needs to be computed, as illustrated in Fig.283

4(a). If Q and C are too significant, this will confront two fatal issues.284

• Computer memory crashing. The Kriging Ĝn(x) has to provide the correlation coefficient matrix285 [
ρn(x

(i),x(j))
]
1≤i≤Q,1≤j≤C

, or equivalently the posterior covariance matrix
[
cn(x

(i),x(j))
]
1≤i≤Q,1≤j≤C

,286

at XQ ×XC, posing high demands on the computer memory if this matrix size is too large.287

• Element-wise computation. In In(x;x+), the Φ2 (·, ·; ρ) with different values of ρ have to be computed288

element-wise, indicating that a total of Q × C evaluations of In(x
(i);x(j)) need to be sequentially289

conducted. Even resorting to parallel computing, this process is still time-consuming.290

(a) computation of IPMRn at XC (b) comparison of running time

Figure 4: Comparison between IPMR and IPMRU

For illustration, assume that the sample size C of XC is 5000, and the sample size Q of XQ ranges from291

1000 to 10000 at intervals of 1000. Parallel computation of IPMRn(·) at XQ ×XC is conducted on an Intel292

Xeon Gold CPU processor with 20 cores, 3 GHz, and 64G RAM. The corresponding computational time is293

shown in Fig. 4(b). Notably, when Q ≥ 5000, IPMRn(·) consumes at least 100 s, far greater than that of294

common learning functions, like U function.295
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To address the second challenge regarding element-wise computation, it is feasible to substitute IPMRn(·)296

(Eq. (34)) with IPMRU
n (·) (Eq. (35)). Unlike the In(x;x+) in IPMRn(·), the IUn (x;x+) in IPMRU

n (x+) only297

contains the univariate Gaussian CDF Φ (·), which can be efficiently computed using vectorization in MAT-298

LAB. Fig. 4(b) shows that the computational time of IPMRU
n (·) is comparable to that of common learning299

functions, significantly less than that of IPMRn(·). Therefore, only IPMRU
n (·) is considered hereinafter.300

Nevertheless, IPMRU
n (·) still suffers from the first challenge of potential computer memory issue, par-301

ticularly when Q ≥ O(104) and C ≥ O(104). To address this challenge, both Q and C are preferred to be302

pruned, which will be discussed in Sections 3.5 and 3.6, respectively.303

3.5. Pruning of quadrature points in IPMR304

To prune the quadrature points needed by IPMRU
n (x+) in Eq. (35), the locality of the integrand305

IUn (x;x+) is explored here. Fig. 5(a) depicts IUn (x;x+) as a function of both |µn(x)|
σn(x)

and |ρn(x,x+)|.306

Notably, IUn (x;x+) achieves its maximum value across the entire limit state
{
x ∈ X : |µn(x)|

σn(x)
= 0
}
. Then,307

IUn (x;x+) decays rapidly with the increasing of |µn(x)|
σn(x)

. Importantly, apart from the limit state, IUn (x;x+)308

remains significant only when |µn(x)|
σn(x)

is small and |ρn(x,x+)| is large. This observation is further clarified309

in Fig. 5(b). When |µn(x)|
σn(x)

≥ 3, IUn (x;x+) becomes negligible, regardless of the magnitude of |ρn(x,x+)|.310

(a) IUn (x;x+) as a function of
|µn(x)|
σn(x)

and |ρn(x,x+)| (b) IUn (x;x+) w.r.t.
|µn(x)|
σn(x)

Figure 5: Locality of the integrand IUn (x;x+) in IPMRU
n (x+)

Therefore, the region with significant IUn (x;x+) in the input space can be defined as311

XQT =

{
x ∈ X :

|µn(x)|
σn(x)

≤ λ

}
(36)

where the pruning coefficient λ(≤ 3) controls the span of XQT. Then, the quadrature points within XQT are312

denoted as313

XQT =

{
x(i) ∈ XQ :

∣∣µn(x
(i))
∣∣

σn(x(i))
≤ λ

}
(37)

with size QT.314

In this way, it is sufficient to only consider XQT, rather than XQ, in the numeric computation of315

IPMRU
n (x+). Consequently, Eq. (35) further reduces to316

IPMRU
n (x+) ≈

1

Q

QT∑
i=1

[
IUn (x(i);x+)

fX(x(i))

hX(x(i))

]
(38)

Three parameters have not yet been specified: the amplification coefficient α, the quadrature size Q, and317

the pruning coefficient λ. These will be further discussed in Section 4.3.318
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3.6. Pruning of candidate points in IPMR319

To prune the candidate pool XC in IPMRU
n (·), let’s shed light on what kind of candidate point x+ is320

more likely to attain the maximum value of IPMRU
n (x+).321

Eq. (31) indicates that IUn (x;x+) is a function of |µn(x)|
σn(x)

and |ρn(x,x+)|, with only the latter encoding322

the impact of x+. Fig. 5 illustrates that the quadrature point x with great value of IUn (x;x+) has the323

following two characteristics simultaneously: (1) the x is located in XQT, i.e.,
|µn(x)|
σn(x)

is as small as possible;324

(2) the |ρn(x,x+)| is sufficiently great. Therefore, in order to gain a significant value of IPMRU
n (x+), the325

candidate point x+ should have high correlation with the quadrature points in XQT, particularly those in326

the close vicinity of the limit state. Generally, when x+ is close to x, a great value of ρn(x,x+) will be327

obtained. Therefore, the x+ is preferred to be close to those quadrature points in XQT, implying that the328

x+ with a great value of Pn(x+) is more likely to achieve a high value of IPMRU
n (x+).329

For illustration, consider again the toy bivariate analytical function in Eq. (22) with the initial ED D6.330

Two different candidate points, x
(a)
+ and x

(b)
+ , are of interest, marked as red and purple solid circles in Fig.331

6(b), respectively. x
(a)
+ is very close to the limit state, while x

(b)
+ is the opposite. Therefore, Pn(x

(a)
+ ) is332

greater than Pn(x
(b)
+ ).333

Figure 6: Comparison of IPMRU
n (x+) at two different candidate points

Fig. 6(a) illustrates ρ6(x,x
(a)
+ ) within the input space, and the regions with

∣∣∣ρ6(x,x(a)
+ )
∣∣∣ ≥ 0.8 are334

enclosed by yellow dotted lines, implying high correlation with x
(a)
+ . Significant values of ρ6(x,x

(a)
+ ) are335

primarily observed in regions around x
(a)
+ . Fig. 6(d) shows the corresponding IU6 (x;x

(a)
+ ) in the input space,336

and the XQT with λ = 1.5 is enclosed by magenta dashed lines. There is a substantial overlap between the337

yellow dotted lines and magenta dashed lines, indicating regions with significant values of IU6 (x;x
(a)
+ ).338
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In comparison, Fig. 6(c) depicts ρ6(x,x
(b)
+ ) within the input space, and the regions with great values339

of ρ6(x,x
(b)
+ ) are generally around x

(b)
+ , surrounded by yellow dotted lines. This region only has a minor340

overlap with XQT, as illustrated in Fig. 6(f), and the corresponding IU6 (x;x
(b)
+ ) is very minor across the341

entire input space. Consequently, IPMRU
6 (x

(b)
+ ) is much smaller than IPMRU

6 (x
(a)
+ ), as depicted in Fig. 6(e).342

According to IPMRU
6 (·), x

(a)
+ is preferable to x

(b)
+ .343

On this basis, it is feasible to compute IPMRU
n (·) only on those highly probable candidate points, rather344

than the entire candidate pool XC. To this end, the XC is pruned to a set of CT points having the greatest345

values of Pn(x), denoted as346

XCT = {x+ ∈ XC : Pn(x+) ≥ pT} (39)

where pT is the CT-th greatest value in {Pn(x
(i))}Ci=1. CT is specified as 5000, proven to be reasonable in347

various numerical examples.348

Finally, Eq. (29) further reduces to349

x(n+1) = argmax
x+∈XCT

IPMRU
n (x+) (40)

Remark 2. The PM Pn(x) can be directly used as a learning function, as given in Eq. (H.1). The advantages350

of the proposed IPMRU over PM are clarified as follows. The PM only considers the information of |µn(x)|
σn(x)

351

in the input space, and any point x+ satisfying µn(x+) = 0 can be selected as the best next point x(n+1), as352

plotted by the red dashed line in Fig. 3(a). However, IPMRU
n (x+) accounts for both |µn(x)|

σn(x)
and |ρn(x,x+)|,353

with the latter encoding the impact of adding x+. Therefore, IPMRU
n (x+) varies on the limit-state surface354

{x+ ∈ X : µn(x+) = 0}, as depicted by the red dashed line in Fig. 6(e). Furthermore, the points belonging to355

{x+ ∈ X : µn(x+) = 0} do not necessarily produce the biggest reduction of IPM. Compared to PM, IPMRU
356

quantifies the impact of adding x+ on the reduction of IPM. Besides, IPMRU just consumes comparable357

running time to PM, owing to the pruning of both the quadrature set and candidate pool. Actually, the358

proposed IPMRU can be viewed as a learning function derived from combining reinforcement learning and PM359

to some extent. Hence, comparisons between them may highlight the benefit of incorporating reinforcement360

learning paradigm, which will be shown in Section 5.361

Remark 3. Two existing learning functions, least improvement function (LIF) [41] and expected integrated362

error reduction (EIER) [42], were developed with the same objective of maximizing the reduction of IPM.363

Taking EIER as an example (refer to Appendix H), the advantages of the proposed IPMR over EIER are364

three-fold. (1) Eq. (H.4) shows that EIER can be viewed as a crude version of IPMR. Different from EIER365

resorting to the crude MCS to approximate the inner expectation and performing the retraining of Kriging366

via complex block matrix inversion (Eq. (H.5)), the proposed IPMR obtains the analytical expression of367

In(x;x+) in Eq. (30), with the aid of Kriging update formulas. Furthermore, In(x;x+) is substituted by368

its upper bound IUn (x;x+) in Eq. (31), supporting fast computation. (2) In IPMR, the non-negativity of369

the integrand In(x;x+) has been proved in Appendix F, eliminating the need for the max(·, 0) operation370

in Eq. (H.5). This leads to a theoretically rigorous and mathematically concise expression. (3) The double371

summation in EIER makes it computationally unaffordable when a large-size candidate pool is considered. By372

contrast, owing to the pruning of both the quadrature set and candidate pool, IPMR comes with a comparable373

computational cost to those common learning functions, e.g., U function.374

4. Bayesian reinforcement learning reliability method375

Apart from Bayesian inference of P̂f,n (Section 2.1) and the learning function IPMRU in Section 3,376

another two components of the proposed BRLR method need to be specified. Section 4.1 presents the initial377

ED, and Section 4.2 elucidates the convergence criterion. Then, the setting of VAIS is discussed in Section378

4.3. Finally, the implementation of the proposed BRLR method is given in Section 4.4.379

4.1. Initial experimental design380

To obtain a well-behaved Kriging at the initial stage, the initial ED is preferred to be as uniformly as381

possible. The ’four-sigma’ rule is considered, where the upper and lower bounds for each dimension of the382

sampling domain Xs are set as383

x±
k = F−1

Xk

(
Φ (±4)

)
, k = 1, . . . , d (41)
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where FXk
(·) is the CDF of the kth component Xk in X. Then, the Xs is assembled by the following384

tensorization385

Xs =

d∏
k=1

[x−
k , x

+
k ] (42)

Finally, the Latin centroidal Voronoi tessellation technique [43] is employed to generate the uniform386

points Xn0
= {x(i)}n0

i=1 within Xs, with n0 = max(d+ 1, 10).387

4.2. Convergence criterion388

A hybrid convergence criterion considering two individual ones simultaneously is developed here. First,389

recall that the IPM Hn in Eq. (20) measures the epistemic uncertainty about µP̂f,n
, and the primary goal of390

IPMR is to reduce the IPM at most per iteration. Hence, the Hn itself can be used to check the convergence391

of sequential experimental design process. For compatibility, the metric Hn

µP̂f,n

is used in the first convergence392

criterion, defined as393

∆Hn
=

Hn

µP̂f,n

max
n0≤i≤n

(
Hi

µP̂f,i

) ≤ εH (43)

which stipulates that Hn

µP̂f,n

should fall below εH times its highest ever value. Eq. (21) indicates that Hn394

is the upper bound for the absolute relative error of µP̂f,n
in expectation, but the specific level of excess may395

vary with the problems at hand. Here, the tolerance εH is specified as 0.4 and 0.5 in static and dynamic396

reliability problems, respectively.397

The second convergence criterion is defined based on the stabilization of µP̂f,n
, given by398

∆Pf,n
=

∣∣∣µP̂f,n
− µP̂f,n−1

∣∣∣
µP̂f,n−1

≤ εPf
(44)

where the tolerance εPf
is set as 5× 10−3.399

Finally, the hybrid convergence criterion requires that400

(∆Hn
≤ εH)

⋂(
∆Pf,n

≤ εPf

)
(45)

within two successive iterations.401

4.3. Settings of VAIS in the IPMR-based sequential experimental design402

During the IPMR-based sequential experimental design process, a total of three single integrals, i.e., µP̂f,n
403

in Eq. (9), Hn in Eq. (20), and IPMRU
n (x+),∀x+ ∈ XCT (Eq. (38)), need to be numerically estimated via404

the VAIS. Notably, the former two integrals only involve a single computation at each iteration, while the405

last one entails a total of CT runs of computation at XCT.406

With respect to µP̂f,n
and Hn, the corresponding VAIS-based estimates are expressed as407

µ̃P̂f,n
=

1

Q1

Q1∑
i=1

[
Φ

(
−µn(x

(i))

σn(x(i))

)
fX(x(i))

hX(x(i))

]
(46)

H̃n =
1

Q2

Q2∑
i=1

[
Φ

(
−
∣∣µn(x

(i))
∣∣

σn(x(i))

)
fX(x(i))

hX(x(i))

]
(47)

respectively. Then, the variances of µ̃P̂f,n
and H̃n are expressed as408

V
[
µ̃P̂f,n

]
=

1

Q1(Q1 − 1)

Q1∑
i=1

[
Φ

(
−µn(x

(i))

σn(x(i))

)
fX(x(i))

hX(x(i))
− µ̃P̂f,n

]2
(48)

V
[
H̃n

]
=

1

Q2(Q2 − 1)

Q2∑
i=1

[
Φ

(
−
∣∣µn(x

(i))
∣∣

σn(x(i))

)
fX(x(i))

hX(x(i))
− H̃n

]2
(49)
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respectively. In this way, their coefficient of variation (COV)s are given as COV
[
µ̃P̂f,n

]
=

√
V
[
µ̃P̂f,n

]
µ̃P̂f,n

and409

COV
[
H̃n

]
=

√
V[H̃n]
H̃n

, respectively.410

For convenience, set Q1 = Q2 = Q, and the Q is considered to be sufficient when the following expression411

is satisfied412 (
COV

[
µ̃P̂f,n

]
≤ εQ

)⋂(
COV

[
H̃n

]
≤ εQ

)
(50)

where the tolerance εQ is set as 5%.413

The VAIS-based estimators in Eqs. (46) and (47) are conducted in an adaptive manner during the414

sequential experimental design process. Specifically, set the amplification coefficient α as 1.5, and the initial415

quadrature size Qseq as 2× 105. At the beginning of the sequential experimental design process, Eqs. (46)416

and (47) are computed based on XQ =
{
x(i)

}Qseq

i=1
; then, if the current values of COV

[
µ̃P̂f,n

]
and COV

[
H̃n

]
417

fail to satisfy Eq. (50), another set of Qseq quadrature points is sequentially added into the current XQ418

until Eq. (50) is fulfilled. Notably, the quadrature size at the current iteration is taken as the initial419

quadrature size at the next iteration during the sequential experimental design process. Generally, after420

several iterations, the quadrature size will remain unchanged at subsequent iterations. Moreover, since the421

integrand In(x;x+) in IPMRU
n (x+) is similar to the integrand in Hn, the quadrature size Q for IPMRU

n (·)422

is directly set to be equal to that of µP̂f,n
and Hn at each iteration.423

Remark 4. The transformation of input random vector Z to standard normal vector X in Eq. (3) is mainly424

attributed to the usage of VAIS in the numeric computation of µP̂f,n
, Hn and IPMRU

n (x+). Therefore, if425

other favorable integration methods conducted in the original input space are available, such transformation426

is unnecessary.427

For illustration, the performances of VAIS in two different examples are shown in Appendix G. It is428

observed that the quadrature set XQ whose size Q determined by Eq. (50) provides stable results of µ̃P̂f,n
429

and H̃n. Then, the pruning coefficient λ = 1.5 is a very favorable choice for IPMRU.430

To summarize, an identical quadrature set XQ is used in the computation of µP̂f,n
,Hn, and IPMRU

n (x+),∀x+ ∈431

XCT, with the quadrature size Q determined by Eq. (50). The pruning coefficient λ in IPMRU
n (·) is set as432

1.5 for reassurance. Consequently, the size QT of the pruned quadrature set XQT in IPMRU
n (·) is generally433

O(103), and very minor running time is consumed by IPMRU
n (·) per iteration. Besides, XQ serves as the434

candidate pool XC for selecting the best next point x(n+1) via IPMRU.435

Finally, Algorithm 1 presents the workflow of a single iteration during the IPMR-based sequential experi-436

mental design. Thanks to the three workarounds, i.e., substituting IPMR by its upper bound IPMRU (Steps437

7 and 8), the pruning of XQ (Step 4), and the pruning of XC (Step 5), IPMR-based sequential experimental438

design comes with a comparable running time to those common learning functions.439

Algorithm 1 IPMR-based sequential experimental design

Input: Kriging Ĝn(x) and the quadrature set XQ of size Q at iteration n.
1: Set XC = XQ.

2: Kriging Ĝn(x) provides posterior mean µn(x) and variance σ2
n(x) at XQ. ▷ Eqs. (A.6) and (A.7)

3: Compute the PM Pn(x) at XQ. ▷ Eq. (H.1)
4: Obtain the pruned quadrature set XQT of size QT from XQ. ▷ Eq. (37)
5: Obtain the pruned candidate pool XCT of size CT from XC. ▷ Eq. (39)

6: Kriging Ĝn(x) provides posterior covariance matrix
[
cn(x

(i),x(j))
]
1≤i≤QT,1≤j≤CT

at XQT ×XCT. ▷

Eq. (A.8)
7: Compute

[
IUn (x(i);x(j))

]
1≤i≤QT,1≤j≤CT

at XQT ×XCT. ▷ Eq. (31)

8: Compute IPMRU
n (x

(j)),∀x(j) ∈ XCT. ▷ Eq. (38)
9: Select the best next point x(n+1) from XCT. ▷ Eq. (40)

Output: The x(n+1) at iteration n.

Remark 5. A learning function called stepwise uncertainty reduction (SUR) was derived from the upper440

bound of σ2
P̂f,n

[28] and is outlined in Appendix H. Similar to the integrand In(x;x+) in IPMRn(x+),441

SURn(x+) also involves the bivariate Gaussian CDF F2 (·; ·, ·) that has to be computed element-wise, as442
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given in Eq. (H.8). Besides, the locality of the integrand in SURn(·) and the explicit impact of x+ on443

SURn(·) are actually difficult to explore. Hence, the pruning of both quadrature set and candidate pool did444

not be conducted in the existing literature. Obviously, compared to IPMRU, SUR suffers from intensive445

computational burden.446

4.4. Implementation447

The implementation of the proposed BRLR method is outlined in Fig. 7, and the main steps are448

summarized as follows.449

(1) Initialization. Generate a set of input samples Xn0 and evaluate the performance function on Xn0 to450

obtain Yn0
, forming the initial ED Dn0

= {Xn0
,Yn0

} (Section 4.1); then, set n = n0.451

(2) Kriging. Train a Kriging Ĝn(x) based on the current ED Dn, as detailed in Appendix A.452

(3) Failure probability. Estimate the posterior mean µP̂f,n
(Eq. (46)) and the IPM Hn (Eq. (47)) using453

VAIS, with the quadrature size Q determined according to Eq. (50). Meanwhile, the corresponding454

quadrature set XQ serves as the candidate pool XC at this iteration.455

(4) Convergence criterion. If Eq. (45) is satisfied, skip to Step 7; otherwise, continue to Step 5.456

(5) Learning function. Compute IPMRU
n (·) at XCT and select the best next point x(n+1), as detailed in457

Algorithm 1.458

(6) Enrichment. Evaluate the performance function on x(n+1), that is, y(n+1) = G
(
x(n+1)

)
. Then, Dn+1 =459

Dn

⋃(
x(n+1), y(n+1)

)
, n = n+ 1, and go back to Step 2.460

(7) End. The µP̂f,n
at Step 3 is considered the final result of this algorithm.461

Start

Initialization. Generate the initial ED Dn0
= {Xn0

,Yn0
}, and set n = n0.

Training. Train a Kriging Ĝn(x) based on the current ED Dn.

Failure probability. Compute µP̂f,n
(Eq. (46)) and Hn (Eq. (47))

via VAIS, with the quadrature size Q determined by Eq. (50).

Convergence criterion.
Eq. (45) is satisfied ?

Learning function. Select the
best next point x(n+1) based
on IPMRU

n (·); see Algorithm 1.

Enrichment.

y(n+1) = G
(
x(n+1)

)
,

Dn+1 = Dn

⋃(
x(n+1), y(n+1)

)
.

Finalization. The µP̂f,n
at Step

3 is taken as the final result.

End

N

n = n+1

Y

Figure 7: Flowchart of the proposed Bayesian reinforcement learning reliability (BRLR) method

To avoid confusion, ‘the proposed method’ exclusively refers to the BRLR method equipped with462

IPMRU
n (·), while ‘the proposed method (exact)’ specifically denotes the one incorporating IPMRn(·).463

5. Numerical examples464

The performance of the proposed reliability method is demonstrated through four examples of varying465

complexity. The MCS is conducted to provide the reference failure probability P̂MCS
f . For comparison,466

several existing reliability methods are conducted, including adaptive Krigng-subset simulation (AK-SS) and467

the BALR methods with several existing learning functions. AK-SS is built following the recommendations468

from [14]: the sample size of each subset and the conditional probability in SS are set as 105 and 0.15,469

respectively; the learning function PM (Eq. (H.1)) is considered; the convergence criterion is defined in470

terms of the combination of ’β-bound’ and ’β-stable’ criteria, with β the reliability index; the tolerances471

for the two criteria are set as 15% and 0.1%, respectively, The initial ED and convergence criterion in the472
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BALR methods are set consistent with the proposed reliability method (Fig. 7) for comparison purposes.473

Five existing learning functions, including PM [44], RLCB [31], REIF [32], EIER [42] and SUR [28], are474

outlined in Appendix H. As elucidated in Remarks 3 and 5, both EIER and SUR suffer from unaffordable475

computational burden, due to their inherent limitations. For computational cost considerations, they are not476

conducted in those examples and only IPMRn(·) will be compared with IPMRU
n (·) in Section 5.4. Besides,477

results from other reliability methods available in the literature are provided for comparison.478

In a reliability method, the total number Ncall of performance function evaluations and the estimated479

failure probability P̂f are taken as the metrics of computational efficiency and accuracy, respectively. Then,480

the ALR, BALR, and BRLR methods are repeated 10 times to gain the means and COVs of Ncall and P̂f .481

Further, the relative error of P̂f,mean with respect to P̂MCS
f is computed as482

δP̂f
=

∣∣∣P̂f,mean − P̂MCS
f

∣∣∣
P̂MCS
f

× 100% (51)

Besides, the mean of the computational time Tc of each reliability method is provided in the last two483

numerical examples.484

5.1. A four-branch function485

The first example considers a four-branch problem [12, 13], which is a prevalent benchmark in structural486

reliability analysis. The performance function G (X) is expressed as487

G (X) = min



a+ 0.1(X1 −X2)
2 − X1 +X2√

2

a+ 0.1(X1 −X2)
2 +

X1 +X2√
2

(X1 −X2) +
b√
2

(X2 −X1) +
b√
2


(52)

where X1 and X2 are two independent, standard Gaussian random variables; the two constants a and b488

govern the order of magnitude of Pf . Two different cases are considered: a = 3 and b = 6 in the first one;489

a = 5 and b = 9 in the second one.490

5.1.1. Case 1: a = 3 and b = 6491

The failure probability P̂MCS
f = 4.416 × 10−3 provided by MCS is taken as the reference result. Fig. 8492

illustrates the performance of one run of the proposed reliability method for the four-branch function (Case493

1). The initial samples, as marked as blue circles, are scattered across the entire input space, and most494

new training samples added by IPMRU, as plotted as red diamonds, are located in the close vicinity of the495

limit state, as shown in Fig. 8(a). During the IPMR-informed sequential experimental design process, the496

IPM Hn gradually shrinks (Fig. 8(b)), implying that the epistemic uncertainty about µP̂f,n
is significantly497

reduced. Consequently, it is evident from Fig. 8(c) that the µP̂f,n
produced by the proposed method498

gradually converges to the reference value.499

Table 1 providess a comparison of the results obtained from various reliability methods for the four-500

branch function (Case 1). It is observed that most reliability methods provide accurate estimates of failure501

probability, with relative errors below 2%. Compared to other reliability methods, the proposed approach502

requires much fewer calls to the performance function.503

5.1.2. Case 2: a = 5 and b = 9504

The failure probability P̂MCS
f = 7.09× 10−6 produced by MCS is regarded as the reference result. Table505

2 provides a comparison of the results of various reliability methods for the four-branch function (Case 2).506

In the BALR methods, PM achieves favorable performance in terms of P̂f and Ncall. However, RLCB and507

REIF provide biased estimates of the failure probability, with relative errors above 4%. By contrast, the508

proposed reliability method provides comparable accuracy of P̂f to PM, while requiring a smaller number509

of calls to the performance function.510
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Figure 8: Illustration of the proposed reliability method in the four-branch function (Case 1)

Table 1: Reliability results in the four-branch function (Case 1)

Method
Ncall P̂f δP̂f

(%)
Mean COV(%) Mean (×10−3) COV(%)

MCS [12] 106 - 4.416 - -

AK-MCS

U [12] 96 - 4.416 - -
LIF [41] 38 - 4.380 - 0.815
REIF [32] 146.8 - 4.455 4.730 0.883
LAKSE [45] 65.6 - 4.065 4.950 7.948
Refined U [46] 76 - 4.432 - 0.362

KO [47] 90 - 4.182 4.880 5.299
WKO [47] 71.4 - 4.448 4.730 0.725

PAK-Bn [48] 76.8 - 4.422 - 0.136
AK-KBn [48] 74.7 - 4.419 - 0.068

BALR
PM 42.4 9.447 4.370 1.457 1.047

RLCB 51.1 14.095 4.397 2.235 0.424
REIF 57.4 13.942 4.346 2.514 1.587

AK-SS 52.2 21.290 4.472 2.963 1.274
Proposed 37 18.063 4.371 0.690 1.027

Table 2: Reliability results in the four-branch function (Case 2)

Method
Ncall P̂f δP̂f

(%)
Mean COV(%) Mean (×10−6) COV(%)

MCS 108 [27] - 7.090 - -
AK-MCMC [27] 139.5 - 7.100 1.370 0.141

PA-BFPL (k=5) [27] 60 - 7.040 2.170 0.705
BALR (PM) 37.5 10.536 7.147 0.875 0.806

BALR (RLCB) 45.7 12.466 7.421 2.339 4.674
BALR (REIF) 49.4 9.552 7.382 1.143 4.116

AK-SS 40.6 28.279 7.306 17.519 3.049
Proposed 34.5 12.272 7.038 1.650 0.738

5.2. A two-dimensional truss under vertical loads511

Consider the static reliability analysis of a two-dimensional truss, which is also a common benchmark512

in structural reliability analysis [44, 13]. Fig. 9 shows that this truss is composed of 23 bars and 13 nodes.513

The random input vector is assembled as Z = {E1, E2, A1, A2, P1, . . . , P6}, where A1 and E1 are the cross514

section and Young’s modulus of horizontal bars, respectively; A2 and E2 are the cross section and Young’s515

modulus of diagonal bars, respectively; P1, . . . , P6 are the vertical loads applied on the upper nodes of the516

truss. The statistical information for those parameters is listed in Table 3.517
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Figure 9: Illustration of a planar truss structure

Table 3: Statistical information of input variables in the planar truss

Variable Unit Distribution Mean Standard deviation

E1, E2 Pa Lognormal 2.1× 1011 2.1× 1010

A1 m2 Lognormal 2.0× 10−3 2.0× 10−4

A2 m2 Lognormal 1.0× 10−3 1.0× 10−4

P1, · · · , P6 N Gumbel 5.0× 104 7.5× 103

Finite-element analysis of this truss is conducted by an in-house MATLAB code. The vertical deflection518

of the mid-span node, denoted as U(Z), is of interest. The maximum allowable mid-span deflection is set519

to 14 mm. Then, the performance function G (Z) is defined as520

G(Z) = 14− U(Z) (53)

and the failure probability P̂MCS
f = 3.45× 10−5 offered by MCS is taken as the reference result.521

Fig. 10 illustrates the comparison of three learning functions, i.e., the proposed IPMRU, PM and RLCB,522

in the planar truss example. Overall, the IPM Hn (Eq. (20)) is substantially reduced by all three learning523

functions, but their rates of decrease differ significantly. IPMRU enables reducing the IPM Hn to the524

targeted level with only 35 runs of finite-element analysis. By contrast, PM requires approximately 60 runs525

of finite element analysis to achieve the targeted reduction of IPM Hn. RLCB entails approximately 130526

calls to performance function but with a worse estimate of the failure probability.527

The significant differences between the three learning functions can be attributed to their individual528

objectives. RLCB (Eq. (H.2)) aims to empirically balance the closeness of the Kriging mean to the limit529

state and the Kriging variance, independently of the IPM. Consequently, RLCB struggles to efficiently530

reduce the IPM Hn. PM selects the point maximizing the PM value as the best next point per iteration,531

but it does not explicitly quantify the impact of adding a new point on the reduction of IPM. Hence, the532

new point added by PM may not necessarily yield the maximum reduction of IPM. In contrast, the new533

point selected by IPMRU is optimal with respect to reducing the IPM per iteration, leading to the fastest534

reduction of IPM.535

Table 4 presents the results obtained from different reliability methods for this planar truss example.536

Both RLCB and REIF produce biased estimates of the failure probability but require a significant number of537

finite element analysis, due to the mismatch between their objectives and IPM. In both BALR and AK-SS,538

PM provides fair accuracy of P̂f , with δP̂f
approximately 2%. Compared to PM, the proposed IPMRU

539

achieves a 33.2% reduction in Ncall.540

5.3. A reinforced concrete frame under earthquakes541

A three-bay, six-story planar reinforced concrete frame subject to earthquake excitation is considered542

here. Fig. 11 illustrates the basic geometry of the frame, along with the reinforcement details of columns543

and beams. The concrete slab at each floor has a thickness of 100 mm. The finite-element model of this544

frame is built using the OpenSees software [50]. Both columns and beams are modeled using force-based545

elements with fiber-discretized cross sections. The uniaxial constitutive relationships of concrete and rebar546

are represented by the Concrete-01 and Steel-01 material models, respectively. The in-plane stiffness of547

the concrete slab is simply described by the ’RigidLink’ command, and the self-weights of these concrete548

slabs are treated as uniformly-distributed loads applied on the beams beneath them. Rayleigh damping is549

adopted with the damping ratio of 5%.550

A simple unidirectional earthquake ground motion model is considered, given by [18]551

üg(t) = A1üNS(t) +A2üWE(t) (54)
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Figure 10: Comparison between IPMRU, PM and RLCB in the planar truss example

Table 4: Reliability results in the planar truss example

Method
Ncall P̂f δP̂f

(%)
Mean COV(%) Mean (×10−5) COV(%)

MCS 106 - 3.450 - -
AK-MCS(U) [44] 124 - 3.700 - 7.246
AK-MCS(LIF) [41] 121 - 3.31 - 4.058

AKEE-SS [49] 80 - 3.247 - 5.884
BALR (PM) 67.7 12.241 3.377 6.815 2.110

BALR (RLCB) 137.4 7.534 1.969 12.141 42.938
BALR (REIF) 167.8 5.336 1.987 11.319 42.420

AK-SS 69.6 14.544 3.534 6.017 2.425
Proposed 45.2 11.973 3.447 2.883 0.097

where üNS(t) and üWE(t) are the amplitude-normalized components of El-Centro accelerogram in N-S and552

W-E directions, respectively, as show in Figs. 12(a) and 12(b); A1 and A2 are the corresponding amplitude553

coefficients.554

The random input vector is assembled by both material parameters and amplitude coefficients, that is,555

Z = {fcc, εcc, fcu, εcu, fc, εc, fu, εu, fy, E0, b, A1, A2}. Then, statistic information for those random variables556

is given in Table 5. When those random variables take their means, the typical uniaxial stress-strain curves557

of concrete and rebar at the end section of the leftmost bottom column are shown in Figs. 13(a) and 13(b),558

respectively. Meanwhile, the typical hysteretic curve of the leftmost bottom column is illustrated in Fig.559

13(c). Clearly, both material- and structure-level nonlinearity are observed.560

The inter-story drift of this frame is of interest, and the threshold is set as 72 mm. Then, system failure561
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Figure 11: A planar reinforced concrete frame under earthquakes
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Figure 12: El-Centro accelerograms in two orthogonal directions

Table 5: Statistical information of random variables in the reinforced concrete frame [20]

Variable Unit Description Distribution Mean COV

fcc MPa Maximum strength of confined concrete Lognormal 35 0.1
εcc - Strain at maximum strength of confined concrete Lognormal 0.005 0.05
fcu MPa Crushing strength of confined concrete Lognormal 25 0.1
εcu - Strain at crushing strength of confined concrete Lognormal 0.02 0.05
fc MPa Maximum strength of unconfined concrete Lognormal 27 0.1
εc - Strain at maximum strength of unconfined concrete Lognormal 0.002 0.05
fu MPa Crushing strength of unconfined concrete Lognormal 10 0.1
εu - Strain at crushing strength of unconfined concrete Lognormal 0.006 0.05
fy MPa Yield strength of rebar Lognormal 400 0.1
E0 MPa Initial Young’s modulus of rebar Lognormal 200 0.1
b - Strain-hardening ratio of rebar Lognormal 0.007 0.05
A1 - Amplitude coefficient Gaussian 2 0.1
A2 - Amplitude coefficient Gaussian 2 0.1

probability is defined as562

Pf = P

(
6⋃

i=1

|Ui(Z, t)| ≥ 72

)
(55)

where Ui(Z, t), i = 1, . . . , 6, denotes the inter-story drift between the (i− 1)-th and i-th floor. In this way,563
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Figure 13: Nonlinear behaviors of the reinforced concrete frame

the system performance function is defined as564

G(Z) = 72− max
1≤i≤6

(
max

t∈[0,20s]
|Ui(Z, t)|

)
(56)

The P̂MCS
f offered by MCS is equal to 2.967× 10−5.565

Fig. 14 illustrates the comparison of the three learning functions, IPMRU, PM and RLCB, for the566

reinforced concrete frame example. IPMRU achieves convergence at the cost of 102 runs of dynamic analysis567

of the frame. By comparison, PM requires over 200 runs of finite element analysis to achieve the targeted568

reduction of IPM. RLCB reduces the IPMHn very slowly, with only a minor reduction gained when n reaches569

300. For computational cost considerations, RLCB-based sequential experimental design is terminated at570

the iteration of n = 300, and the resulting Pf deviates significantly from the reference value P̂MCS
f . It is571

evident that, unlike PM and RLCB, IPMRU effectively addresses the challenge posed by nonlinear dynamic572

reliability problem.573

Table 6 lists the results obtained from different reliability methods for the reinforced concrete frame574

example, along with their computational times for comparison. Since the convergence criterion of AK-575

SS involves computing the failure probability and its upper and lower bounds, three runs of SS must576

be performed on Kriging per iteration. In this regard, despite AK-SS requiring a comparable Ncall to577

BALR(PM), its total computational time far exceeds that of BALR(PM). In comparison to PM, the proposed578

IPMRU only needs 41.94% of Ncall, showcasing its high computational efficiency. Evidently, the advantage579

of the proposed BRLR method over the existing BALR methods becomes more significant when dealing580

with dynamic reliability problems.581

Table 6: Reliability results in the reinforced concrete frame example

Method
Ncall P̂f δP̂f

(%) Tc(s)
Mean COV(%) Mean (×10−4) COV(%)

MCS 5× 105 - 2.967 - - 2.926× 106

BALR (PM) 248 8.038 4.075 8.357 37.359 3.896× 103

BALR (RLCB) > 300 - 14.067 28.444 374.2 > 4.593× 103

BALR (REIF) > 300 - 53.711 43.061 17104.8 > 4.499× 103

AK-SS 280.6 5.392 2.824 5.195 4.822 1.112× 104

Proposed 104.9 12.294 2.938 8.064 0.952 1.989× 103

5.4. A cable-stayed bridge under vehicle loads582

The final example considers the Sutong cable-stayed bridge that connects Suzhou and Nantong cities in583

China. As depicted in Fig. 15, it is a double-pane, twin-pylon, box-girder bridge with a main span of 2088 m.584

The deck is a streamlined, steel-box girder with a width of 41 m. The heights of the two inverted-Y pylons585

are 300 m. The stay cables are composed of parallel steel-wire strand and are arranged in double-inclined586

cable planes, giving rise to 272 cable members.587
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Figure 14: Comparison between IPMRU, PM and RLCB in the reinforced concrete frame example

Finite-element model of this bridge is constructed using the commercial software ANSYS [51], as il-588

lustrated in Fig. 16. The steel-box girders, towers, and piers are modeled using the BEAM-4 element, a589

conventional 3D beam element. The steel-box girder is discretized into many segments based on the sus-590

pended points of the stayed cables, and the MASS-21 element is employed to consider the mass of each591

segment. The stayed cables are represented by the LINK-10 element, a 3D tension-only truss element. Piers592

are assumed to be fixed to the foundation without considering soil-structure interaction. The vehicle loads593

(5-wheel heavy-duty vehicles) are considered as a moving concentrated load acting on the bridge deck, with594

the velocity set as 50 km/h. Finally, this finite-element model consists of 2929 nodes and 3707 elements.595

The basic input vector is specified as Z = {E1, D2, E3, D4, E5, D6, F7}, where E1 and D2 are the Young’s596

modulus and density of the steel-box girder, respectively; E3 and D4 are the Young’s modulus of the597

steel-wire strand, respectively; E5 and D6 are the Young’s modulus and density of concrete in the tower,598

respectively; F7 represents the moving vehicle load. Then, statistical information for those random variables599

is provided in Table 7.600

Table 7: Random variables in the cable-stayed bridge

Variables Units Distribution Mean COV

E1 Pa Lognormal 2.0594× 1011 0.1
D2 kg/m3 Lognormal 9.0810× 103 0.1
E3 Pa Lognormal 1.9123× 1011 0.1
D4 kg/m3 Lognormal 8.606× 103 0.1
E5 Pa Lognormal 3.4323× 1010 0.15
D6 kg/m3 Lognormal 3.7020× 103 0.15
F7 N Weibull 5.5× 105 0.1

Of interest is the maximum mid-span deflection V (Z) of the main girder, and the threshold is set as 90601
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Figure 15: Pictures of the Sutong bridge

Figure 16: Finite-element model and typical deformation response of the Sutong bridge

mm. Then, the corresponding performance function G (Z) is defined as602

G (Z) = 90− V (Z) (57)

The failure probability P̂MCS
f = 3.414× 10−5 provide by MCS serves as the reference result.603

Fig. 17 illustrates a single run of the proposed reliability method for the cable-stayed bridge. As n604

increases, the Hn shrinks (Fig. 17(a)), and µP̂f,n
gradually aligns with the reference value (Fig. 17(b)).605
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More importantly, Fig. 17 (c) shows the ‘index’ of the best next point selected at each iteration, and the606

index ‘k’ corresponds to the candidate point with the k-th greatest PM value among XCT. Unlike PM,607

which selects the point with the greatest PM value (i.e., index = 1) per iteration, the index of the best next608

point selected by IPMRU generally ranges from 1 to 4000. This suggests that the point with the greatest609

PM value does not necessarily achieve the biggest reduction of IPM. Moreover, these indexes are relatively610

far away from CT = 5000, highlighting the rationale behind the setting of CT.611

(a) H̃n
µ̃
P̂f,n

(b) µ̃
P̂f,n

(c) index of new samples

Figure 17: Illustration of the proposed method in the real-world stayed-cable bridge example

Fig. 18 presents a single run of the proposed reliability method (exact), denoted as the BALR method612

equipped with IPMRn(·) instead of IPMRU
n (·), in this cable-stayed bridge example. Compared to Fig. 17,613

IPMRn(·) comes with a slightly smaller number of finite element analysis. Fig. 18(c) presents the running614

time of IPMRn(·) per iteration, with the computational time of a single run of finite element analysis615

of this bridge (14s) included for reference. As highlighted in Section 3.3, IPMRn involves computing its616

integrand
[
In(x

(i);x(j))
]
1≤i≤QT,1≤j≤CT

at XQT ×XCT in an element-wise manner (Fig. 4(a)). Therefore,617

the running time of IPMRn exceeds 100s in the latter stages. Conversely, the running time of IPMRU
n618

consistently remains below 10 s per iteration, underscoring the substantial efficiency advantage of IPMRU.619

(a) H̃n
µ̃
P̂f,n

(b) µ̃
P̂f,n

(c) running time of IPMR vs. IPMRU

Figure 18: Illustration of the proposed method (exact) in the stayed-cable bridge example

Table 8 summarizes the results of various reliability methods in the cable-stayed bridge. Compared to620

PM, IPMRU gains comparable accuracy of P̂f , while requiring only approximately 72% of Ncall. Although621

IPMR needs the fewest finite element analysis, its total computational time far exceeds that of those BALR622

methods. In contrast, IPMRU requires a comparable number of finite-element analysis to IPMR but with623

significantly less computational time, just 17.3%. Overall, the proposed BRLR method equipped with624

IPMRU exhibits significant advantages in terms of both Ncall and Tc.625
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Table 8: Reliability results in the real-world cable-stayed bridge example

Method
Ncall P̂f δP̂f

(%) Tc(s)
Mean COV(%) Mean (×10−5) COV(%)

MCS 5× 105 - 3.414 - - 7.112× 106

BALR (PM) 86.1 13.031 3.398 5.819 0.462 1.181× 103

BALR (RLCB) 131 9.575 3.924 8.923 22.608 1.793× 103

BALR (REIF) 144.7 10.537 4.357 15.714 27.631 2.228× 103

AK-SS 89.9 14.288 3.394 6.048 0.593 2.213× 103

Proposed 62 10.860 3.389 3.439 0.732 8.923× 102

Proposed (Exact) 60.7 4.531 3.405 4.132 0.283 5.133× 103

6. Concluding remarks626

A Bayesian reinforcement learning reliability (BRLR) method is proposed, incorporating both Bayesian627

inference and reinforcement learning. On one hand, Bayesian inference for the failure probability estimation628

is conducted. On the other hand, unlike the computationally-intensive posterior variance of failure proba-629

bility, a computationally-cheap measure of epistemic uncertainty about failure probability, as referred to as630

IPM, is proved to be the upper bound for the absolute relative error of estimated failure probability in ex-631

pectation and is used as the reward function in the MDP. Then, a one-step Bayes optimal learning function632

termed IPMR, along with a compatible convergence criterion, is defined. Three effective workarounds are633

devised to facilitate the IPMR-based sequential experimental design. The efficacy of the proposed BRLR634

method is demonstrated on four examples of varying complexity. Some concluding remarks are given as635

follow.636

(1) Thanks to the substitution of IPMR by its upper bound IPMRU and the pruning of both the quadrature637

set and candidate pool, IPMRU-based sequential experimental design avoids both the element-wise638

computation of bivariate Gaussian CDF and the computer memory constraint, resulting in much less639

computational time than IPMR itself.640

(2) The common learning function PM is unable to explicitly quantify the impact of adding a new point on641

the reduction of IPM. In contrast, IPMRU allows selecting the optimal new point with the biggest ex-642

pected reduction of IPM, leading to superior computational efficiency, particularly in dynamic reliability643

problems.644

(3) The advantages of IPMR and IPMRU are context-dependent. In cases where the performance function645

involves extremely expensive computational model evaluations, IPMR is preferable due to its slightly646

smaller number of required performance model evaluations. Otherwise, IPMRU is superior to IPMR as647

it involves much less additional time.648

It is admitted that only the single-point sequential experimental design is developed here. With the649

prevalence of parallel computing in reliability analysis, the batch-point version of IPMR will be investigated650

in the near future. Besides, exploring the extension of IPMR to the k(≥ 2)-step Bayes optimal criterion will651

be considered.652
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Appendix A. Basics of Kriging664

Kriging interprets the performance function G (x) as one realization of a Gaussian process, defined by665

[52]666

G (x) ≈ Ĝn(x) = β⊤f(x) + σ2Z (x) (A.1)

where β⊤f(x) is the trend function, and universal Kriging assumes that β⊤f(x) =
∑P

i=1 βifi(x), with667

{fi(x), i = 1, . . . , P} a set of P basis functions and β = {βi, i = 1, . . . , P}⊤ a set of unknown coefficients. A668

special case of universal Kriging, i.e., linear trend function, is considered: β⊤f(x) = β0 +
∑d

k=1 βkxk. σ
2 is669

the variance of Gaussian process; Z (x) is a stationary Gaussian process with zero mean, unit variance, and670

a known correlation function. Matern-3/2 correlation function is given as [52]671

RM (x,x′;θ) =

d∏
k=1

(
1 +

|xk − x′
k|

θk

)
exp

(
−
√
3
|xk − x′

k|
θk

)
(A.2)

where θ = {θk > 0}dk=1 is a set of unknown parameters.672

Assume an ED Dn = {Xn,Yn} is provided, both β and σ2 can be estimated as673

β̂ =
(
F⊤R−1F

)−1
F⊤R−1 Yn (A.3)

σ̂2 =
1

n
(Yn −Fβ)⊤R−1(Yn −Fβ) (A.4)

where F := (fj(x
(i)))1≤i≤n,1≤j≤P ; R :=

(
RM(x(i),x(j);θ)

)
1≤i,j≤n

. Both β̂ and σ̂2 depend on θ, and θ can674

be estimated as [52]675

θ̂ = argmin
θ∈Θ

σ̂2 |R|
1
n (A.5)

where Θ is the support of θ.676

Finally, the Kriging predictor conditioned onDn is still a Gaussian process, i.e., Ĝn(x) ∼ GP(µn(·), cn(·, ·)),677

with the posterior mean µn(x), variance σ2
n(x) and covariance cn (x,x

′) defined as [44]678

µn(x) = f(x)⊤β̂ + r(x)⊤R−1
(
Yn −F β̂

)
(A.6)

σ2
n(x) = σ̂2

(
1− r(x)⊤R−1r(x) + u(x)⊤

(
F⊤R−1F

)−1
u(x)

)
(A.7)

cn (x,x
′) = σ̂2

(
R (x,x′)− r(x)⊤R−1r(x′) + u(x)⊤

(
F⊤R−1F

)−1
u(x′)

)
(A.8)

where the subscript n indicates that these quantities condition onDn; r(x) =
[
RM

(
x,x(1)

)
, . . . , RM

(
x,x(n)

)]⊤
;679

u (x) = F⊤R−1r (x) − f (x). Note that µn(x) is usually taken as the Kriging prediction, and σ2
n(x) =680

cn (x,x).681

Appendix B. Proof of Proposition 1682

Proof. First, according to Eq. (8) and (9), there exists683

En

[∣∣∣P̂f,n − µP̂f,n

∣∣∣] = En

[∣∣∣∣∫
X
1̂n (x) fX(x)dx−

∫
X
Φ

(
−µn(x)

σn(x)

)
fX(x)dx

∣∣∣∣]
= En

[∣∣∣∣∫
X

[
1̂n (x)− Φ

(
−µn(x)

σn(x)

)]
fX(x)dx

∣∣∣∣]
≤
∫
X
En

[∣∣∣∣1̂n (x)− Φ

(
−µn(x)

σn(x)

)∣∣∣∣] fX(x)dx

=

∫
X
En

[∣∣∣∣1̂n (x)− ηn(x) + ηn(x)− Φ

(
−µn(x)

σn(x)

)∣∣∣∣] fX(x)dx

≤
∫
X

{
En

[∣∣∣1̂n (x)− ηn(x)
∣∣∣]︸ ︷︷ ︸

1○

+En

[∣∣∣∣ηn(x)− Φ

(
−µn(x)

σn(x)

)∣∣∣∣]︸ ︷︷ ︸
2○

}
fX(x)dx

(B.1)
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where ηn(x) =

{
1, µn(x) ≤ 0

0, otherwise
; |·| denotes the absolute-value operator; En [·] denotes the expectation with684

respect to Kriging predictor Ĝn(x).685

Then, the bracketed term in the expression 1○ is further given as686

∣∣∣1̂n (x)− ηn(x)
∣∣∣ = {1, Ĝn(x) ≥ 0 ∩ µn(x) ≤ 0 or Ĝn(x) ≤ 0 ∩ µn(x) ≥ 0

0, otherwise
(B.2)

Hence, the expression 1○ is given as687

1○ = En

[∣∣∣1̂n (x)− ηn(x)
∣∣∣] =

P
(
Ĝn(x) ≥ 0

)
, µn(x) ≤ 0

P
(
Ĝn(x) ≤ 0

)
, otherwise

=

Φ
(

µn(x)
σn(x)

)
, µn(x) ≤ 0

Φ
(
−µn(x)

σn(x)

)
, otherwise

= Φ

(
−|µn(x)|

σn(x)

)
= Pn(x)

(B.3)

Obviously, Pn(x) quantifies the probability of misclassifying the failure/safe state of x according to the sign688

of µn(x). Hence, it is called PM in [44].689

Similarly, the bracketed term in the expression 2○ is further deduced as690

∣∣∣∣ηn(x)− Φ

(
−µn(x)

σn(x)

)∣∣∣∣ =

∣∣∣1− Φ

(
−µn(x)

σn(x)

)∣∣∣ , µn(x) ≤ 0∣∣∣0− Φ
(
−µn(x)

σn(x)

)∣∣∣ , otherwise
=

Φ
(

µn(x)
σn(x)

)
, µn(x) ≤ 0

Φ
(
−µn(x)

σn(x)

)
, otherwise

= Φ

(
−|µn(x)|

σn(x)

)
= Pn(x)

(B.4)

Then, the expression 2○ is still equal to Pn(x).691

Finally, substituting Eqs. (B.3) and (B.4) into Eq. (B.1), Eq. (21) can be proved.692

Appendix C. Kriging update formulas693

When a new point and its response (x+, y+) are added to the current ED Dn, Kriging update formulas694

provide the look-ahead posteriors of Kriging Ĝn+1(x) as follows [53]695

µn+1(x) = µn(x) +
cn (x,x+)

σ2
n (x+)

(y+ − µn (x+)) (C.1)

σ2
n+1(x) = σ2

n(x)−
c2n (x,x+)

σ2
n (x+)

(C.2)

cn+1(x,x
′) = cn(x,x

′)− cn(x,x+)cn(x
′,x+)

σ2
n(x+)

(C.3)

which are directly obtained based on the current posteriors of Ĝn(x) in Eqs. (A.6), (A.7) and (A.8).696

Therefore, Kriging update formulas are computationally cheap and differ from the re-training of the697

parameters {β, σ2,θ} of Kriging Ĝn+1(x) according to the augmented ED Dn+1 = Dn

⋃
(x+, y+) [20].698

Moreover, it can be observed that µn+1(x) depends on the future outcome y+ at x+, while both σ2
n+1(x)699

and cn+1(x,x
′) are independent of y+. Since y+ is unknown without evaluating the computational model700

on x+, these quantities depending on it are actually random quantities.701

Appendix D. Derivation of Eq. (25)702

Analogous to the PM Pn(x), the look-ahead PM Pn+1(x;x+, y+) is expressed as703

Pn+1 (x;x+, y+) = Φ

(
−|µn+1 (x)|

σn+1 (x)

)
=


Φ

(
µn+1 (x)

σn+1 (x)

)
︸ ︷︷ ︸

A○

, µn+1 (x) ≤ 0︸ ︷︷ ︸
B○

1− Φ
(

µn+1(x)
σn+1(x)

)
, otherwise

(D.1)
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where the associated components are detailed below.704

First, substitute Eqs. (C.1) and (C.2) into the expression A○ in Eq. (D.1), yielding705

A○ = Φ

(
µn+1 (x)

σn+1 (x)

)

= Φ

µn(x) +
cn(x,x+)
σ2
n(x+) (y+ − µn(x+))

σn+1(x)


= Φ

(
µn(x)

σn+1(x)
+

cn(x,x+)

σn(x+)σn+1(x)
· y+ − µn(x+)

σn(x+)

)
= Φ(a(x) + b(x)z+)

(D.2)

where a(x) = µn(x)
σn+1(x)

and b(x) = cn(x,x+)
σn(x+)σn+1(x)

are two variables unrelated to the response y+; z+ =706

y+−µn(x+)
σn(x+) is the only variable depending on y+.707

Then, plug Eq. (C.1) into the condition B○ in Eq. (D.1), yielding708

B○ ⇒ µn+1(x) ≤ 0

⇒ µn(x) +
cn(x,x+)

σn(x+)
· y+ − µn(x+)

σn(x+)
≤ 0

⇒ µn(x) +
cn(x,x+)

σn(x+)
z+ ≤ 0

⇒ cn(x,x+)

σn(x+)
z+ ≤ −µn(x)

⇒

{
z+ ≤ −σn(x+)µn(x)

cn(x,x+) , cn(x,x+) > 0

z+ ≥ −σn(x+)µn(x)
cn(x,x+) , otherwise

⇒

{
z+ ≤ zlim, cn(x,x+) > 0

z+ ≥ zlim, otherwise

(D.3)

where the variable zlim = −σn(x+)µn(x)
cn(x,x+) is unrelated to y+.709

Substitute Eqs. (D.2) and (D.3) into Eq. (D.1), resulting in710

Pn+1 (x;x+, y+) =


Φ (a(x) + b(x)z+) ,

{
z+ ≤ zlim, cn(x,x+) > 0

z+ ≥ zlim, otherwise

1− Φ (a(x) + b(x)z+) ,

{
z+ > zlim, cn(x,x+) > 0

z+ < zlim, otherwise

=



{
Φ (a(x) + b(x)z+) , z+ ≤ zlim

1− Φ (a(x) + b(x)z+) , z+ > zlim
, cn(x,x+) > 0{

1− Φ (a(x) + b(x)z+) , z+ < zlim

Φ (a(x) + b(x)z+) , z+ ≥ zlim
, otherwise

(D.4)

which comprises a total of four distinct cases.711
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Appendix E. Proof of Proposition 2712

Proof. In the In(x;x+) in Eq. (28), the second term EY+ [Pn+1 (x;x+)] can be expanded as713

EY+
[Pn+1 (x;x+)]

=

∫ +∞

−∞
Pn+1 (x;x+, y+) fY+

(y+)dy+

1
=

∫ +∞

−∞
Pn+1 (x;x+, y+)

1

σn(x+)
ϕ

(
y+ − µn(x+)

σn(x+)

)
dy+

2
=

∫ +∞

−∞
Pn+1 (x;x+, y+)ϕ (z+) dz+

=



∫ zlim

−∞
Φ (a(x) + b(x)z+)ϕ (z+) dz+ +

∫ +∞

zlim

[1− Φ (a(x) + b(x)z+)]ϕ (z+) dz+︸ ︷︷ ︸
1○

, cn(x,x+) > 0

∫ zlim

−∞
[1− Φ (a(x) + b(x)z+)]ϕ (z+) dz+ +

∫ +∞

zlim

Φ (a(x) + b(x)z+)ϕ (z+) dz+︸ ︷︷ ︸
2○

, otherwise

(E.1)

where the equality ‘
1
=’ uses the expression of the PDF fY+(y+) of Y+, and ϕ (·) represents the PDF of a714

standard Gaussian variable; the equality ‘
2
=’ utilizes the change of variables: Z+ = Y+−µn(x+)

σn(x+) . The two715

mutually exclusive cases in Eq. (E.1) are discussed below.716

First, when cn(x,x+) > 0, the expression 1○ in Eq. (E.1) is derived as717

1○ =

∫ zlim

−∞
Φ (a(x) + b(x)z+)ϕ (z+) dz+ +

∫ +∞

zlim

ϕ (z+) dz+ −
∫ +∞

zlim

Φ (a(x) + b(x)z+)ϕ (z+) dz+

1
=

∫ zlim

−∞
Φ (a(x) + b(x)z+)ϕ (z+) dz+ +Φ(−zlim)−

[
Φ

(
a(x)√

1 + b2(x)

)
−
∫ zlim

−∞
Φ (a(x) + b(x)z+)ϕ (z+) dz+

]

= 2

∫ zlim

−∞
Φ (a(x) + b(x)z+)ϕ (z+) dz+ +Φ(−zlim)− Φ

(
a(x)√

1 + b2(x)

)
2
= 2Φ2

(
a(x)√

1 + b2(x)
, zlim;

−b(x)√
1 + b2(x)

)
+Φ(−zlim)− Φ

(
a(x)√

1 + b2(x)

)

= 2Φ2

(
µn(x)

σn(x)
,
σn(x+)µn(x)

−cn(x,x+)
;
−cn(x,x+)

σn(x+)σn(x)

)
+Φ

(
σn(x+)µn(x)

cn(x,x+)

)
− Φ

(
µn(x)

σn(x)

)
(E.2)

where Φ2 (h1, h2; r) is the CDF of a standard bivariate Gaussian vector with a correlation coefficient r,718

i.e., Φ2 (h1, h2; r) = F2

([
h1

h2

]
;

[
0
0

]
,

[
1 r
r 1

])
. The equalities ‘

1
=’ and ‘

2
=’ adopt the formulas with indexes719

10010.8 and 10010.1 in [54], respectively.720

Regarding Φ2 (h1, h2; r), the following three relationships always hold [55]721 
Φ2 (h1,−h2;−r) = Φ (h1)− Φ2 (h1, h2; r)

Φ2 (−h1, h2;−r) = Φ (h2)− Φ2 (h1, h2; r)

Φ2 (−h1,−h2; r) = Φ2 (h1, h2; r)− Φ (h1)− Φ (h2) + 1

(E.3)

Then, according to the first expression in Eq. (E.3), Eq. (E.2) is equivalent to722

1○ = 2

[
Φ

(
µn(x)

σn(x)

)
− Φ2

(
µn(x)

σn(x)
,
σn(x+)µn(x)

cn(x,x+)
;

cn(x,x+)

σn(x+)σn(x)

)]
+Φ

(
σn(x+)µn(x)

cn(x,x+)

)
− Φ

(
µn(x)

σn(x)

)
= Φ

(
σn(x+)µn(x)

cn(x,x+)

)
+Φ

(
µn(x)

σn(x)

)
− 2Φ2

(
µn(x)

σn(x)
,
σn(x+)µn(x)

cn(x,x+)
;

cn(x,x+)

σn(x+)σn(x)

)
(E.4)
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Second, when cn(x,x+) < 0, the expression 2○ in Eq. (E.1) is derived as723

2○ =

∫ zlim

−∞
ϕ (z+) dz+ −

∫ zlim

−∞
Φ (a(x) + b(x)z+)ϕ (z+) dz+ +

[
Φ

(
a(x)√

1 + b2(x)

)
−
∫ zlim

−∞
Φ (a(x) + b(x)z+)ϕ (z+) dz+

]

= Φ(zlim) + Φ

(
a(x)√

1 + b2(x)

)
− 2

∫ zlim

−∞
Φ (a(x) + b(x)z+)ϕ (z+) dz+

= Φ(zlim) + Φ

(
a(x)√

1 + b2(x)

)
− 2Φ2

(
a(x)√

1 + b2(x)
, zlim;

−b(x)√
1 + b2(x)

)

= Φ

(
σn(x+)µn(x)

−cn(x,x+)

)
+Φ

(
µn(x)

σn(x)

)
− 2Φ2

(
µn(x)

σn(x)
,
σn(x+)µn(x)

−cn(x,x+)
;
−cn(x,x+)

σn(x+)σn(x)

)
(E.5)

Therefore, the unified expression of EY+
[Pn+1 (x;x+)] can be obtained by assembling Eqs. (E.4) and724

(E.5), that is,725

EY+
[Pn+1 (x;x+)] = Φ

(
σn(x+)µn(x)

|cn(x,x+)|

)
+Φ

(
µn(x)

σn(x)

)
− 2Φ2

(
µn(x)

σn(x)
,
σn(x+)µn(x)

|cn(x,x+)|
;

|cn(x,x+)|
σn(x+)σn(x)

)
(E.6)

Then, two additional simplifications are performed on Eq. (E.6).726

First, denote727

ρn(x,x+) =
cn (x,x+)

σn(x)σn(x+)
∈ (−1, 1) (E.7)

as the posterior correlation coefficient of Kriging Ĝn(·) between x and x+; then, substitute Eq. (E.7) into728

Eq. (E.6), giving rise to729

EY+ [Pn+1 (x;x+)] = Φ

 µn(x)
σn(x)

|ρn(x,x+)|

+Φ

(
µn(x)

σn(x)

)
− 2Φ2

µn(x)

σn(x)
,

µn(x)
σn(x)

|ρn(x,x+)|
; |ρn(x,x+)|

 (E.8)

Second, if µn(x)
σn(x)

in Eq. (E.8) is replaced by its negative counterpart, i.e., −µn(x)
σn(x)

, there exists730

EY+
[Pn+1 (x;x+)]

∣∣∣∣−µn(x)
σn(x)

= Φ

 −µn(x)
σn(x)

|ρn(x,x+)|

+Φ

(
−µn(x)

σn(x)

)
− 2Φ2

−µn(x)

σn(x)
,

−µn(x)
σn(x)

|ρn(x,x+)|
; |ρn(x,x+)|


∗
= 1− Φ

 µn(x)
σn(x)

|ρn(x,x+)|

+ 1− Φ

(
µn(x)

σn(x)

)

− 2

Φ2

µn(x)

σn(x)
,

µn(x)
σn(x)

|ρn(x,x+)|
; |ρn(x,x+)|

− Φ

 µn(x)
σn(x)

|ρn(x,x+)|

− Φ

(
µn(x)

σn(x)

)
+ 1


= Φ

 µn(x)
σn(x)

|ρn(x,x+)|

+Φ

(
µn(x)

σn(x)

)
− 2Φ2

µn(x)

σn(x)
,

µn(x)
σn(x)

|ρn(x,x+)|
; |ρn(x,x+)|


= EY+

[Pn+1 (x;x+)]

∣∣∣∣µn(x)
σn(x)

(E.9)

where the equality ‘
∗
=’ utilizes the third expression in Eq. (E.3). Eq. (E.9) indicates that EY+

[Pn+1(x;x+)]731

is an even function with respect to µn(x)
σn(x)

.732

Therefore, EY+
[Pn+1(x;x+)] is finally expressed as733

EY+
[Pn+1 (x;x+)] = Φ

 |µn(x)|
σn(x)

|ρn(x,x+)|

+Φ

(
|µn(x)|
σn(x)

)
− 2Φ2

 |µn(x)|
σn(x)

,

|µn(x)|
σn(x)

|ρn(x,x+)|
; |ρn(x,x+)|

 (E.10)
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which is a function of |ρn(x,x+)| and |µn(x)|
σn(x)

.734

Finally, according to Eq. (28), the In(x;x+) is expressed as735

In(x;x+) = Pn(x)− EY+
[Pn+1(x;x+)]

= 1− Φ

(
|µn(x)|
σn(x)

)
− Φ

 |µn(x)|
σn(x)

|ρn(x,x+)|

− Φ

(
|µn(x)|
σn(x)

)
+ 2Φ2

 |µn(x)|
σn(x)

,

|µn(x)|
σn(x)

|ρn(x,x+)|
; |ρn(x,x+)|


= 1− Φ

 |µn(x)|
σn(x)

|ρn(x,x+)|

− 2Φ

(
|µn(x)|
σn(x)

)
+ 2Φ2

 |µn(x)|
σn(x)

,

|µn(x)|
σn(x)

|ρn(x,x+)|
; |ρn(x,x+)|


= Φ

−
|µn(x)|
σn(x)

|ρn(x,x+)|

− 2

Φ( |µn(x)|
σn(x)

)
− Φ2

 |µn(x)|
σn(x)

,

|µn(x)|
σn(x)

|ρn(x,x+)|
; |ρn(x,x+)|


⊕
= Φ

−
|µn(x)|
σn(x)

|ρn(x,x+)|

− 2Φ2

 |µn(x)|
σn(x)

,−
|µn(x)|
σn(x)

|ρn(x,x+)|
;− |ρn(x,x+)|


(E.11)

where the equality ‘
⊕
=’ adopts the first expression in Eq. (E.3). In this way, the analytical expression of736

In(x,x+) in Eq. (30) can be proved.737

Appendix F. Proof of Proposition 3738

Proof. First, the upper bound of In(x;x+), denoted as IUn (x;x+), in Eq. (31) is naturally obtained based739

on the fact that the second term in the right-hand side of Eq. (30) is non-negative.740

Second, the lower bound of In(x;x+), denoted as ILn (x;x+), in Eq. (31) is derived as follows. For741

brevity, the two terms, |µn(x)|
σn(x)

and |ρn(x,x+)|, in In(x;x+) are simplified as two non-negative variables,742

A ∈ [0,+∞) and B ∈ [0, 1), respectively. Then, In(x;x+) in Eq. (30) is reformulated as743

In(x;x+) = Φ

(
−A

B

)
− 2Φ2

(
A,−A

B
;−B

)
(F.1)

With respect to Φ2 (h1, h2; r), its partial derivatives with respect to the three components are expressed744

as [56]745 
∂Φ2(h1,h2;r)

∂h1
= ϕ (h1) Φ

(
h2−rh1√

1−r2

)
∂Φ2(h1,h2;r)

∂h2
= ϕ (h2) Φ

(
h1−rh2√

1−r2

)
∂Φ2(h1,h2;r)

∂r = 1
2π

√
1−r2

exp
(
−h2

1−2rh1h2+h2
2

2(1−r2)

) (F.2)

Then, according to Eq. (F.2), ∂In(x;x+)
∂B can be obtained from chain rule such that746

∂In(x;x+)

∂B
= ϕ

(
−A

B

)
A

B2
− 2

[
ϕ

(
−A

B

)
Φ

(
A− (−B)

(
−A

B

)
√
1−B2

)
A

B2

+
1

2π
√
1−B2

exp

(
−
A2 − 2(−B)A

(
−A

B

)
+ A2

B2

2(1−B2)

)
× (−1)

]

=
A

B2
ϕ

(
A

B

)
− 2

[
A

2B2
ϕ

(
A

B

)
− 1

2π
√
1−B2

exp

(
−
A2( 1−B2

B2 )

2(1−B2)

)]

=
A

B2
ϕ

(
A

B

)
− A

B2
ϕ

(
A

B

)
+

2√
2π

√
1−B2

1√
2π

exp

(
−
(AB )2

2

)

=
2√

2π
√
1−B2

ϕ

(
A

B

)
≥ 0

(F.3)

which equals 0 only when B = 0. Therefore, In(x;x+) is a monotonically increasing function with respect747

to |ρn(x,x+)|.748
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When r = 0, Φ2 (h1, h2; r) = Φ (h1) Φ (h2). Therefore, if |ρn(x,x+)| → 0, In(x;x+) reduces to749

In(x;x+) = Φ

−
|µn(x)|
σn(x)

|ρn(x,x+)|

− 2Φ

−
|µn(x)|
σn(x)

|ρn(x,x+)|

Φ

(
|µn(x)|
σn(x)

)
(F.4)

Further, there exists750

|ρn(x,x+)| → 0 ⇒ −
|µn(x)|
σn(x)

|ρn(x,x+)|
→ −∞

⇒ Φ

−
|µn(x)|
σn(x)

|ρn(x,x+)|

→ 0

⇒ In(x;x+) → 0

(F.5)

Consequently, the lower bound of In(x;x+), denoted as IUn (x;x+), is 0.751

Appendix G. Performances of VAIS in two examples752

Fig. G.19 illustrates the performances of VAIS during the IPMR-based sequential experimental design753

in two examples: the planar truss example in Section 5.2 and the cable-stayed bridge example in Section754

5.4.755

In Fig. G.19(a), the quadrature size Q increases to 6 × 105 according to Eq. (50), as enclosed by red756

dashed lines. The corresponding quadrature set XQ provides stable estimates of µP̂f,n
, Hn, and IPMRU

n (x+).757

When the pruning coefficient λ > 1.0, the IPMRU
n (x+) value computed based on the pruned quadrature758

set XQT is highly consistent with that based on the full XQ. Therefore, λ can be reassuringly set as 1.5.759

Moreover, when λ = 1.5, the ratio QT

Q is approximately 6× 10−3. Hence, QT is roughly 3.6× 103, and the760

total running time of IPMRU
n (x+),∀x+ ∈ XCT, is just 2s, as shown in Fig. 4(b).761

Similarly, Fig. G.19(b) shows that the quadrature size Q increases to 4× 105 according to Eq. (50), and762

such quadrature size yields favorable results for the three integrals. Then, when λ = 1.5, the corresponding763

value of IPMRU
n (x+) aligns well with that based on the full XQ. Additionally, the sample size QT of the764

pruned quadrature set XQT is only 1.4 × 103, and IPMRU
n (x+),∀x+ ∈ XCT, just consumes almost 1s, as765

illustrated in Fig. 4(b).766

Appendix H. Five existing learning functions767

An overview of five existing learning functions, namely PM [44], RLCB [31], REIF [32], EIER [42] and768

SUR [29], is provided for comparison.769

(1) PM770

The PM is expressed as [44]771

PMn(x) = Φ

(
−|µn(x)|

σn(x)

)
(H.1)

then, the best next point is selected as x(n+1) = argmaxx∈XC
PMn(x).772

(2) RLCB773

The RLCB is expressed as [31]774

RLCBn(x) = |µn(x)| − ϕ

(
µn(x)

σn(x)

)
σn(x) (H.2)

then, x(n+1) = argminx∈X c
RLCBn(x) .775

(3) REIF776

The REIF is defined as [32]777

REIFn(x) = µn(x)

[
1− 2Φ

(
µn(x)

σn(x)

)]
+ σn(x)

[
2−

√
2

π
exp

(
−1

2

µ2
n(x)

σ2
n(x)

)]
(H.3)

then, x(n+1) = argmaxx∈XC
REIFn(x).778

(4) EIER779
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(a) the 38-th iteration of IPMR in the planar truss example

(b) the 9-th iteration of IPMR in the cable-stayed bridge example

Figure G.19: Illustration of sequential VAIS on two examples

EIER is defined with the aim similar to the proposed IPMR, given as [42]:780

EIERn(x+) = EX

[
EY+

[max (Pn(x)− Pn+1(x;x+, Y+), 0)]
]

= EX

[
EY+

[
max

(
Φ

(
−|µn(x)|

σn(x)

)
− Φ

(
−|µn+1(x,x+, Y+)|

σn+1(x;x+, Y+)

)
, 0

)]]
(H.4)
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then, x(n+1) = argmaxx+∈XC
EIERn(x+).781

Due to the lack of analytical solutions for both two expectations in Eq. (H.4), EIERn(x+) is approxi-782

mated using a double summation [42]:783

EIERn(x+) ≈
1

N ×Q

N∑
i=1

Q∑
j=1

max

Φ(− ∣∣µn(x
(j))
∣∣

σn(x(j))

)
− Φ

−

∣∣∣µn+1

(
x(j);x+, y

(i)
+

)∣∣∣
σn+1

(
x(j);x+, y

(i)
+

)
 , 0

 (H.5)

where
{
x(j)

}Q
j=1

denotes a set of Q quadrature points drawn from fX(x);
{
y
(i)
+

}N

i=1
denotes a set of N784

Kriging realizations evaluated at x+. For each y
(i)
+ , the retraining of Kriging is performed via complex785

block matrix inversion to provide both µn+1(·) and σ2
n+1(·). When Q and N are significant, this double786

summation can lead to substantial computational burden.787

(5) SUR788

In SUR, the uncertainty measure HSUR
n is defined in terms of the upper bound of σ2

P̂f,n
in Eq. (10),789

given by790

HSUR
n =

∫
X
Φ

(
µn(x)

σn(x)

)(
1− Φ

(
µn(x)

σn(x)

))
fX(x)dx (H.6)

Then, the basic expression of SUR is defined as [28]791

SURn(x+) = EY+

[
HSUR

n+1 (x+)
]

(H.7)

and the best next point is selected as x(n+1) = argminx+∈XC
SURn(x+).792

Utilizing Kriging update formulas, the double integral in SUR can be reduced to a single one [29]:793

SURn(x+) =

∫
X
F2

([
a(x)
−a(x)

]
;

[
0
0

]
,

[
c(x), 1− c(x)

1− c(x), c(x)

])
fX(x)dx (H.8)

where a(x) = µn(x)
σn+1(x)

and c(x) =
σ2
n(x)

σ2
n+1(x)

. Further, it can be approximated based on VAIS as794

SURn(x+) ≈
1

Q

Q∑
i=1

F2

([
a(x(i))
−a(x(i))

]
;

[
0
0

]
,

[
c(x(i)), 1− c(x(i))

1− c(x(i)), c(x(i))

])
fX(x(i))

hX(x(i))
(H.9)

Similar to IPMRn(x+) in Eq. (E.11), SURn(x+) involves computing the bi-variate Gaussian CDF795

F2 (·; ·, ·) at XQ ×XC, which has to be conducted element-wise. Moreover, it is more challenging to explore796

the locality of the integrand in Eq. (H.8). Therefore, the pruning of XQ and XC has not yet conducted in797

the existing literature. Obviously, SUR suffers from intensive computational time.798
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