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Revolutionizing Intrusion Detection in Industrial
IoT with Distributed Learning and Deep Generative
Techniques

Djallel Hamouda, Mohamed Amine Ferrag, Nadjette Benhamida, Hamid Seridi, Mohamed Chahine Ghanem

Abstract—In response to escalating cyber threats and privacy
issues within the Industrial Internet of Things (IIoT), this
research presents FedGenID, an advanced Federated Generative
Intrusion Detection System, to safeguard IIoT networks. Our
approach introduces a three-model framework: 1) a federated
generative model, incorporating a Conditional Generative Ad-
versarial Network (cGANs) for data augmentation, emphasizing
only generator model updates to be shared among clients. This
model uses a Wasserstein loss function with Gradient Penalty to
amplify sample diversity, indicative of varying cyber threats. Con-
currently, we address the issues of imbalanced and distributed
data and deploy a data curation technique to align generated
data within specific constraints. 2) A secondary model fine-tunes
local Critics for enhanced resilience and detection of various
adversarial attacks. 3) The third model focuses on precise cyber
threat identification, leveraging augmented data for improved
training under a synthetic federated learning schema, bolstering
detection capability, especially against zero-day threats. Our
evaluation of FedGenlD, utilizing a novel industrial cybersecurity
dataset, highlights its efficacy in non-IID, multi-class cyber threat
detection and its resilience to adversarial attacks. Furthermore,
we demonstrate how FedGenlID can mitigate the negative impact
of differential privacy-enhanced FL on model performance.
The findings underscore FedGenID’s proficiency in detection
accuracy, surpassing traditional FedID by 10% in the presence
of zero-day attacks and high privacy regimes.

Index Terms—Cybersecurity, Generative AI, GAN, Intrusion
Detection, Industrial IoT.

I. INTRODUCTION

Driven by the demand for increased automation, autonomy,
and business reliability, the industrial Internet of Things (IoTs)
exemplifies an emergent paradigm that enables a seamless
connection between machinery and the digital sphere. This
facilitates data acquisition and processing using emerging
technologies, including cloud/fog computing, 5G/6G wireless
networks, and big data analytics for the functioning of the
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smart factory. However, cyber-criminals are leveraging the
inherent security weaknesses of internet-connected systems,
besides the insecure-by-design industrial communication pro-
tocols [1], to breach valuable assets and conduct severe cyber
attacks, including denial of service and privacy intrusions
[2]. Consequently, the industry and security researchers are
developing new cybersecurity strategies to protect privacy and
secure industrial networks and control systems from large-
scale cyber threats. As an effective countermeasure, intrusion
detection systems (IDS) have been successfully applied to
provide security monitoring to identify any possible cyber-
attacks in progress. The system’s role in network security is
to detect abnormal activities based on behavior analysis of
generated network traffic data [3]-[5].

Recently, machine learning (ML) and deep learning (DL)
classification approaches have been effectively employed in
this field to treat and handle the required cyber attack be-
haviors, degrees of difficulty, and complexity [6]. However,
these approaches are computationally intensive, and their
effectiveness is constrained by the availability of high-quality
training data, which is crucial for defending against zero-day
attacks. These constraints have implications for the security
of industrial IoTs, where data is heterogeneous and may not
cover the required quantity for efficient detection; data privacy
is a top priority and major concern; and industrial systems are
resource-constrained, which restricts available resources for
IDS computation [7]. In this context, a novel distributed learn-
ing paradigm called "Federated Learning" (FL) has emerged
to overcome these limitations, improving the performance of
IDS in terms of detection accuracy and resource utilization for
the security of industrial IoTs [6], [8]. It enables many edge
devices, where data is generated and resides, to jointly train a
global model through transfer learning in each synchronized
round of local training without data sharing, thus ensuring
data privacy protection. However, a significant challenge that
compromises the efficacy of FL depends on the frequency of
non-iid (non-independent and identically distributed) data.

In addition, recent studies have demonstrated the vulnera-
bility of ML and DL models to adversarial attacks, primarily
attributed to the issue of data inaccessibility [9]. These attacks
exploit the vulnerabilities in FL’s training and inference pro-
cesses, compromising model integrity and data privacy. During
training, adversaries employ poisoning attacks to manipulate
the model’s learning process and compromise performance
[10]. To respond to these threats, researchers are exploring se-
cure aggregation and authentication schemes to ensure model



reliability. In the inference stage, adversaries employ evasion
attacks by manipulating the data during the operational phase.
Their objective is to deceive a previously trained model by
providing misleading inputs known as adversarial examples
[11]. This deceptive data can lead to incorrect detection of
cyber threats, as adversaries may employ zero-day attack
techniques that mimic the behavior of adversarial examples
and evade detection [12], [13].

Our study is focused on enhancing the effectiveness and
resilience of FL-based cyber threat detection in the inference
stage. We aim to address limited and non-IID data challenges
and mitigate the threat landscape of zero-day and adversarial
evasion attacks. In this context, we recognize the emergence of
deep generative models (DGMs) as a promising approach that
enhances data augmentation and enables robust optimization to
effectively counter adversarial threats without predetermined
assumptions about the capabilities of potential adversaries
[11]. This study investigates the following research question:
how generative models contribute to the effectiveness and
resilience of DL-based IDS and explores the potential of
federated generative models to address privacy concerns and
challenges associated with imbalanced and non-IID data in
the IIoT. Specifically, we propose a novel privacy-preserving
and secure framework that leverages FL and generative ad-
versarial networks (GANs) to secure industrial IoT networks.
Our framework includes a three-model approach using 1) a
federated generative model for data augmentation to limit the
attack surface for potential zero-day and adversarial attacks.
2) A secondary model fine-tunes GAN-Ceritics for enhanced
resilience and detection of various adversarial attacks, and 3)
The classifier model focuses on precise cyber threat identifica-
tion, leveraging augmented data for improved training under a
synthetic FL. schema, ultimately enhancing the efficiency and
reliability of cyber threat detection.

Our contributions are as follows:

« We introduce a novel security framework that lever-
ages federated learning and conditional-GAN approach
(FedGenlID) to augment distributed and multi-class cyber
threats and ensure the security of IIoT networks. The
framework consists of a three-model approach that uti-
lizes a federated generative model, a local discriminator
model, and a classifier model for efficient and robust
cyber threat detection.

o Through meticulous analysis of the generated data, we
propose a data curation method to align the generated
data with the original data’s constraints and traffic feature
boundaries, ensuring consistency and reliability in the
synthetic data.

« We thoroughly evaluate the efficiency of our pro-
posed FedGenID framework with a new industrial IoTs
network-based dataset (EdgelloTset 2022) for non-1ID
and multi-class cyber threat detection and robustness
against zero-day and adversarial attacks. In addition, we
demonstrate how FedGenID can mitigate the negative
impact of differential privacy-enhanced FL on detection
accuracy.

The remainder of this paper is organized as follows. Section

IT provides essential concepts for the proposed framework.
We review related works in Section III. We overview our
proposed framework in Section IV. Section V demonstrates
experimental results and the effectiveness of the proposed
framework. Finally, we conclude our work in Section VI.

II. BACKGROUND

Generative models, including Generative Adversarial Net-
works (GANSs), Variational Autoencoders (VAEs), and Au-
toregressive Models (ARMSs) have been commonly applied
to provide high-quality and diverse data to alleviate data
scarcity in many application fields [14], [15]. While these
models differ in their approach to generating new data, they all
aim to capture the contextual representation of real data and
produce high-quality samples. Recently, GANs have shown
promise in their efficiency in generating high-quality and
diverse data distribution and their potential application in data
augmentation and privacy protection.

A. Deploying GANs for Cyber Threat Detection

To overcome challenges facing ML and DL-based cyber
threat detection like privacy concerns, limited data availabil-
ity, imbalanced data, and vulnerability to adversarial attacks,
GANs have shown promise in addressing these challenges
[14]. These models can produce high-quality new data similar
to original training data, thereby addressing the issue of data
availability and privacy protection by learning the underlying
data distribution without memorizing sensitive individual data
[15]. Furthermore, the adversarial training nature of GANs
enhances the robustness and resilience of cyber threat detec-
tion, enabling models to defend against zero-day and emergent
adversarial attacks. Although different GAN models employ
different approaches to generate new data, their common
objective is to capture the feature representation of real data
and generate high-quality and diverse data samples. The GAN
structure incorporates two deep learning models: the generator
G generates new data similar to the training data, and the
discriminator D differentiates between generated and original
data. The training process of GAN can be formulated as a
minimax game between G and D:

mé'n max = [log(D(X)] + [log(1 = D(X)] e}

Where D tries to maximize the objective function by correctly
classifying real and synthetic data, while G tries to minimize
the objective function by deceiving the discriminator. How-
ever, GANs are computationally demanding [16] and suffer
from various training issues, such as undesirable convergence
properties that may lead to the mode collapse phenomenon,
which occurs when the generator produces limited variants of
the same set of samples, resulting in a lack of diversity in the
generated data [17]. These concerns have led to researchers
investigating other loss functions, model architectures, and
training procedures to alleviate these issues.



B. Zero-day and Adversarial attacks in the field of cyber threat
detection

Zero-day attacks exploit unknown vulnerabilities in soft-
ware or hardware, consequently producing novel behaviors
making them difficult to detect and identify, especially in
scenarios where training data are scarce [18] Various methods
have been proposed to simulate and detect zero-day attacks.
For instance, some researchers have used GANs to simulate
these attacks by generating similar but slightly different be-
haviors from known attack variants [19]-[21].

. Adversarial attacks, on the other hand, refer to techniques
employed to generate false data inputs, known as adversarial
examples, that closely resemble authentic data to deceive
classification models when classifying them. In the context
of cyber threat detection, cyber criminals may leverage these
techniques to conduct complex cyber attacks that replicate the
behavior of adversarial examples and evade detection by well-
trained IDS classifier models [22]. Notably, these adversarial
attacks may be generated intentionally or accidentally through
software or hardware errors, raising concerns about the relia-
bility of detection in real-world scenarios. Adversarial attacks
can be categorized into black-box and white-box attacks.
Black-box attacks involve limited knowledge about the target
model’s internal structure and parameters, while white-box at-
tacks assume complete knowledge of the target model. Popular
white-box attack techniques include the Fast Gradient Sign
Method (FGSM), Basic Iterative Method (BIM), DeepFool,
Carlini & Wagner attacks, and Jacobian-based Saliency Map
Attack (JSMA). These attacks can cause misclassifications and
compromise the reliability and security of ML and DL-based
intrusion detection models [23]. Understanding and mitigating
these attacks is crucial for enhancing the robustness and
trustworthiness of DL-based cyber threat detection.

ITII. RELATED WORKS

The advent of generative adversarial networks (GANs)
marks a promising breakthrough in the realm of DL applica-
tions due to their unique ability to generate synthetic data for
augmentation and enable robust optimization. Consequently,
researchers are now exploring their potential to address chal-
lenges related to cyber threat detection [11]-[13], [24]-[31].
In this section, we review previous studies of GAN application
and their integration with the emergent FL training paradigm
for cyber threat detection.

A. GAN Applications for Cyber Threat Detection

GANSs introduced new possibilities in this field, either to
treat data shortages or improve the resilience of IDS by
detecting the zero-days and adversarial attacks that could
deceive the detection module [11]. In [25], The authors
proposed two variants of GAN models, an Encoder-GAN and
a Bidirectional-GAN ()to detect and classify network attacks.
The authors claimed the effectiveness of both methods in terms
of classification metrics. However, their dataset has a limited
set of features, and their approach can be computationally
intensive, which could limit the effectiveness of the proposed
model. Similarly, in [24], Kaplan et al. proposed two methods

to improve the BiGAN training by adding extra steps for the
generator. This includes minimizing the mean squared error
between input and output, starting with a pre-trained generator,
and enhancing the training process. In [26], Wu et al. proposed
a deep convolutional GAN for intrusion detection. The authors
addressed the limited resources of edge devices and proposed a
feature reduction technique using the fuzzy method. Then, the
GAN was proposed to augment the training data with synthetic
samples and to optimize the discriminative CNN network
for detecting various types of attacks. However, their method
may not be able to detect some sophisticated or adversarial
attacks that can evade detection, especially if the attackers can
manipulate the network data or the generator. To detect data-
tampering threats in the controller area network, Xie et al. [27]
proposed an enhanced GAN discriminator. They implemented
a traditional GAN model by feeding it improved attack data
to supplement the insufficient training samples, consequently
improving discriminator efficiency in detecting intrusions and
data-tampering threats. The authors claimed their GAN model
can generate more diverse and realistic attacked samples than
existing methods. However, their model lacks rigorous analysis
and guarantees on its convergence, stability, and general-
ization properties. Siniosoglou et al. [28] proposed a GAN
architecture as an Auto-Encoder unified model for detecting
anomalies and classifying attacks in a smart grid environment.
The authors used the generator model as a decoder to produce
synthetic samples and the discriminator model as an encoder to
validate generated samples and detect and classify anomalies.
The authors combine two different loss functions for this
objective. However, they did not provide proof of training
stability, convergence, and validity of generated data.

Although the above studies present compelling findings,
they exhibit certain drawbacks. Notably, they tend to be com-
putationally intensive, potentially limiting their applicability
in IoT environments. An important challenge overlooked is
privacy preservation, which is a significant concern in the IoT
given the potential for data breaches. To address these issues,
recent studies have also employed GANs training within the
emerging federated learning framework (FL), taking advantage
of its features for efficient computation and data privacy
preservation.

B. Federated generative adversarial networks

In recent works, Zhang et al. [12] proposed a FL-GAN
framework with a Mix-Generator module to handle Non-IID
data issues at the edge. They divided the generator into two
layers: the sharing layer extracts common features across all
datasets, and the personalizing layer extracts unique features
specific to each dataset. However, their approach is prone to
GAN stability issues and poor generalization. In a related
effort, Chuenbubpha et al. [13] introduced a federated GAN to
address non-IID data distribution in FL. The authors trained
a conditional GAN model to augment each client’s local
data with synthetic images per class and then started the
FL process with augmented data for classification. However,
their framework is computationally intensive and lacks privacy
preservation because both GAN models are shared between



clients. Similar in [32], Rasouli et al. studied federated GAN
training (fedGAN) across non-IID sources, addressing privacy
concerns. Their FedGAN uses local generators and discrimi-
nators at each source, periodically synchronizing them with a
server node. The authors evaluated fedGAN’s efficiency using
benchmark image datasets, showing promising communica-
tion efficiency and synthetic data quality results. However,
they did not consider adding noise or differential privacy
mechanisms to enhance privacy protection. In contrast, [33],
Xin et al. introduced a federated GAN for image generation
with enhanced privacy, using a serial training method where
each client updates the same model’s parameters sequentially,
adding noise to the discriminator’s gradient to prevent sensitive
information leakage. Although this is difficult and involves
carefully selecting the differential privacy settings to balance
privacy and GAN utility, the authors found that their proposed
approach generates high-quality synthetic data. In [34], Li et
al. trained a GAN model using the FL procedure for renewable
scenario generation, using FL as a data privacy strategy. They
proposed a least squares loss function to generate high-quality
data, avoiding vanishing gradients and mode collapse prob-
lems. However, this framework assumes similar computing
power and data distribution, which may not be feasible in
realistic scenarios.

In the context of cyber threat detection, Tabassum et al. [29]
trained federated GAN to tackle limited and unbalanced data
on IoT devices. They trained generators and discriminators
locally and synchronously, using gradient exchange and model
updates. However, there’s no loss function for evaluating the
generator’s output, and training the discriminator on a mix
of data distributions might reduce classification performance.
Additionally, sharing GAN models could expose client data.
In a different study, Zang et al. [30] introduced a GAN-
based approach as an attack model, aiming to generate ar-
tificial samples for the backdoor and label-flipping attacks.
Notably, the authors utilized the exchanged updates between
the server and clients to update a Discriminator architecture
without prior knowledge of the training data. Based on this
updated architecture, they successfully trained a generator. In
[31], the authors introduced FL-GAN with differential privacy
as an enhanced security and data privacy mechanism for
IDS. Additionally, they proposed a Long Short-Term Memory
(LSTM) architecture for both conditional GAN models, aiming
to address the challenges posed by imbalanced and insufficient
data samples in the context of effective IDS. However, they did
not consider the validation of the consistency of the generated
network traffic data.

Despite the promising potential demonstrated by previous
studies on GANSs, their application in securing Industrial
IoTs against emerging cyber threats, including zero-days and
adversarial attacks, is still in its early stages. Furthermore, the
exploration of the feasibility of deploying privacy-preserving
federated GANSs, especially in handling imbalanced and non-
IID, is not well discovered. Several research gaps necessitate
attention. In addition, there is a notable absence of rigorous
analysis regarding the consistency and validity of the synthetic
IDS samples, questioning model accuracy in reflecting real
cyber threat behaviors. Furthermore, an oversight of adversar-

ial attack advancements, like white-box attacks, raises doubts
about model robustness. This paper addresses these gaps by
presenting an advanced Federated Generative IDS specifically
tailored for the Industrial IoT. We propose a three-model
framework employing a well-designed conditional GAN net-
work, addressing non-IID data and adversarial attacks. At the
same time, the third model focuses on precise zero-day and
cyber threat identification.

IV. FEDGENID

A. Overview

Central Aggregator
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Generator
Classifier

Share

 Local Training —_ _ Local Training —
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>
Private data
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P

Fig. 1: The proposed Federated Generative Intrusion Detection
System (FedGenID)

In this paper, we propose a novel framework for enhanc-
ing the efficiency and robustness of DL-based cyber threat
detection named (FedGenlID), through the incorporation of
federated learning (FL) and Conditional Generative Adver-
sarial Networks (cGANs). Figure 1 illustrates the workflow
of our framework. Specifically, we employ FL to address
privacy concerns and the computation efficiency of industrial
IoTs, allowing models to train on distributed data locally
on user devices while only exchanging model updates. In
addition, we propose a generative framework to overcome
limited data, imbalanced, and non-IID data challenges and
enhance adversarial resilience, allowing robust and efficient
cyber threat detection.

In this context, we design a three-model paradigm consisting
of a federated generative model (i.e., cGAN Generator), a
Discriminator model (i.e., cGAN Critic), and a Classifier
model. The federated generative model generates (FGM) di-
verse artificial samples, the Discriminator (D) learns to distin-
guish between artificially generated and real samples, and the
Classifier (C) trains on both original and artificially generated
data for efficient and robust cyber threat identification. In the



federation proceeding of FedGenlD, we propose to share both
the cGAN Generator and Classifier models between clients,
where the cGAN Discriminator resides on the client side. This
arrangement is motivated by the need to enhance the stability
and privacy preservation of distributed GAN training, which
is also susceptible to adversarial attacks. By leveraging the
¢GAN Discriminator locally, clients can detect and flag such
adversarial attacks for further analysis. In addition, this will
improve communication efficiency and privacy considerations
of FL. By sharing the Generator, clients can generate diverse
artificial samples locally and augment their local datasets,
which helps identify zero-day and sophisticated adversarial
attacks.

On the other hand, the global Classifier, shared between
clients, undergoes updates that are also influenced by the
artificial samples generated using the global Generator instead
of only relying on local updates contributed by individual
participants. This allows the classifier to train on large and
diverse data sets. Consequently, the classifier would generalize
and perform very well in identifying various attacks based
on their characteristics, providing valuable insights for threat
analysis and response. Moreover, this methodology aims to
improve the overall resilience of the model and mitigate
the potential risks associated with learning attacker-induced
patterns from poisoned updates.

B. Conditional-GAN training procedure

Our training objective is to achieve an equilibrium point
where the generator produces diverse and realistic samples.
At the same time, the critic accurately distinguishes between
real and generated data, providing meaningful feedback to the
generator to produce samples that align with the specified
condition (i.e., the target class label). Our implementation of
the Conditional-GAN capitalizes on the capabilities of deep
convolutional neural networks (CNNs) to effectively extract
salient features from the conditioning input samples :

o The Discriminator model (D): depicted in Figure 2, and
composed of four convolutional layers with a rectified
linear unit (ReLU) activation function. It takes in both
generated and real data samples and outputs the estimated
Wasserstein distance between the fake and the real data
distribution as a loss function for training objectives,
providing improved feedback to the generator and guiding
it to produce samples that closely resemble the real data
distribution while matching the specified condition on
target classes. In addition, D also performs fine-tuning
for adversarial attack prediction in the post-GAN training
phase. To achieve this, we incorporate a Dense layer that
applies binary cross-entropy loss with Sigmoid function
on its outputs to quantify the discrepancy between the
predicted and ground truth values of real and generated
data samples. By employing this approach, we aim to
enhance the Critic’s ability to discern and classify adver-
sarial attacks effectively.

The Generator model (G): depicted in Figure 2, and
composed of four transposed convolutional layers with
batch normalization and ReLU activation function. G

Discriminator
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Fig. 2: The proposed three-model approach for efficient and
robust cyber threat detection

takes in random samples picked from a uniform latent
space denoted as z € R? where d is the dimension of
the feature, along with a condition vector of class labels
denoted as y. The aim is to produce the required labeled
examples. The generator’s output is passed through a
Sigmoid activation function to map the generated features
into normalized values between 0 and 1, according to the
real data distribution.

The Classifier Model (C): an independent CNN model
designed explicitly for multi-class classification tasks.
By leveraging augmented data for training, C effectively
captures real-world data’s intricate variations and com-
plexities. Consequently, C demonstrates proficiency in
identifying a wide range of attack classes, showcasing
its robustness and resilience when manipulated with ad-
versarial attempts.

Federated learning Objective: The objective of the FL
is to update the global Generator model, denoted as G
and the global Classifier, denoted as C, using K local
models from corresponding clients. To achieve this, we
employ an averaging algorithm, which can be expressed
as follows:

1 & 1 &
QHE;@,C&E;Q

Averaging allows for consolidating knowledge from mul-
tiple clients and collaborative learning in a distributed
setting, enhancing model performance and generalization.
Local Training Objective: The training objective of
cGAN at the client side involves alternately updating
the critic and the generator networks. We integrated the
Wasserstein loss function to both models’ goals [35],
which represents the approximation functions that mea-
sure how closely generated and real data distributions are



based on how much one distribution needs to be moved
to create the other. The goal is to prevent the generator
from collapsing into one mode and ensure the generated
samples are realistic. The Wasserstein loss is defined as
follows:

min max (B, [D(+1)] - Be-r, [DGE]) @)

where P, represents the noise distribution and generates
synthetic data samples. D(:|-) the critic function, also
known as the critic, which evaluates and distinguishes
between real data samples x drawn from the real data
distribution P, and the generated samples produced by
the generator function G(-|-).

Intuitively, the critic aims to distinguish diverse real data
from fake data conditioned on the given labels. At the
same time, the generator tries to fool the critic by produc-
ing as realistic data as possible given the target labels. For
better stability of cGAN, we added the gradient penalty
(GP) to the previous loss (eq ) as an approximation for
enforcing the 1-Lipschitz continuity on the critic gradient
norm to be one almost everywhere. The implementation
of GP is as follows :

. 1< . 2

min max 2+4- o ; [||V)3L.D(xi|yi)||2 - 1] 3)
Where, A is the hyper-parameter controlling the strength
of the gradient penalty, X; is a sample randomly interpo-
lated between real data x; and generated data G(z;|y;),
and Vg D(X;|y;) represents the gradient of the critic’s
output concerning x;.
Furthermore, for better performance, the critic indepen-
dently applies the binary cross-entropy loss expressed as:

min (1 3 log(D (xil1)) +log(1 - D<G<Zi|y,~>|0>)])
=

D
“
Where D(.|1) and D(.|0) represent the D’s prediction
for the input data sample as real or fake, respectively,
compared to the ground truth values (0,1).
On the other hand, for updating the classifier for multi-
class classification, the objective can be formulated as:

n C
min (-% 30> yielog(C(x))

i=1 c=1

®

where C is the classifier, x; is the augmented data sample,
¥i,c is the ground truth label for class ¢, and C(x;) is the
predicted probability distribution over the classes.

C. FedGenID Complexity Analysis

While our proposed federated approach offers scalability,
privacy, and distributed resource utilization crucial in IoT
environments, we further formulate the computational and
communication complexities of the proposed FedGenID ap-
proach against the traditional centralized approach. Our Fed-
GenlD incorporates both federated conditional GAN training

6

TABLE I: Notation

Symbol Description

K A set of participating clients
1 Local iterations

E Global epochs

m Local batch size

aG Learning rate of Generator
ap Learning rate of Critic

a Penalty

G Global Generator

D Global Critic

P, Noise distribution

D(-|) Critic function

G(-]") Generator function

P, Real data distribution

X Real data sample

z Noise vector

y Random label

X Interpolated sample

VD (x|y) | Gradient of critic’s output with respect to X
Leen Generator loss

Laisc Critic loss

Algorithm 1 FedGenID : conditional-GAN Training

Require: a set of clients K, Local iterations /, global epochs
E, local batch size m, learning rate of Critic a@p, learning
rate of Generator a¢, gradient penalty A

Ensure: Trained Critic D and Generator G

1: Initialize Generator G with random weights
2: for r =1to R do

3 Parallel. For client k € |K]|

4 for r =1to E do

5: Train Local Critic D,, on client n using Alg. 3

6

7

8

9

Train Local Generator G,, on client n using Alg. 2
Check convergence condition: if distance between
fake and real predictions < 0.1 then break

end for
10: end
11: Update Global Generator G by averaging local gener-
ators:
12 G — 1 21K G
13: return Trained Generator G to Clients
14: end for

(Algorithm 1) and the subsequent federated classifier training
phases. We evaluate this process’s resource requirements,
scalability, and efficiency, considering both phases and the
involvement of multiple IoT devices k.

« Computation Complexity :

O (21 - |m| - (lwgil + |wai| + IM) - E
+2Ichn - Im| - lwcnnl - Econ - K)

« Communication Complexity :

O(I - (Jwgi| + IcnN - |wenn| - K)

Where, [ represents the local iterations, 2/ is for the forward
and backward operations, m is the local batch size, |wg,l
and |wy;| are the sizes of the generator and discriminator
parameter sets, /M accounts for floating-point operations, E
is the total global training. Similarly, we add the complexity
of the federated CNN-classifier training.



Algorithm 2 FedGenlD: Local Generator Training

Require: Local iterations I, local batch size m, learning rate
of Generator ag, penalty A4
Ensure: Trained Generator G
1: Upload Generator G from Server
2: fori=1to I do
3: Sample m noise vectors {zj,z2,. .
distribution P,

.,Zm} from noise

4 Sample m random labels {yi, y2, ..., V»} from clients

5: Generate synthetic samples:
{G(z1ly1), G(z2ly2), - - .. G (zmlym)}

6 Compute generator loss using Wasserstein loss:

7 Laen = 3; X%y D(G (zily0))

8: Update Generator weights using gradient descent:

9 QHQ—QG'VQLgen

10: end for

11: return Trained Generator G

Algorithm 3 FedGenID: Local Critic Training

Require: Local iterations I, local batch size m, learning rate
of Critic ap, penalty A
Ensure: Trained Critic D
1: Initialize Critic © with random weights
2: fori=1to I do

3: Sample m real data samples {xj,x2,...,x,} from
clients

4 Sample m noise vectors {z1,22, .. .,Zm} from uniform
distribution P,

5: Sample m random labels {yy, y2,. ..,y } from clients

6: Generate synthetic samples:
{G(z1ly1), G(z2ly2), . . . G(zmlym)}

7: Sample m random interpolation factors
{ay,as,...,ay,} from a uniform distribution

8: Compute interpolated samples: {%j,%2,...,%n} =
aixi + (1 - a;)G(zily:)

9: Compute critic loss using Wasserstein loss with gra-

dient penalty:
1 m
Laie = — > [D(ilyi) = D(G(zily)
Mo

10:
2
4 (Vs DGyl 1)’
11: Update Critic weights using gradient descent:
12: D « D -ap - VoL
13: end for

Our approach optimizes resource efficiency by distribut-
ing training across multiple IoT devices, while a centralized
approach may be limited by server capacity, especially for
large-scale devices. However, our FedGenID may have higher
communication overhead due to model parameters exchange
during FL-cGAN and CNN learning phases. In contrast,
the centralized approach may entail uploading a substantial
amount of data to the centralized server for training.

Binary Features

http.response | tcp.flags.ack

Real sample 0 1
Artificial sample 0.04 0.7
Corrected 0 1
Out-Of-Range Features (Example : mqtt.conflags Min = 0, Max = 1)
Real sample 0.1 0.2 0.0 0.188 0.1
Artificial sample |0.001| 0.2 0.01 0.2 0.01
Corrected 0.001| 0.2 0.01 0.2 0.01

One-Hot Encoded Features (Example : Http.Request)

Get | Options |PropFind| Put Search | Trace
Real sample 0 0 0 1 0 0
Artificial sample |0.001] 0.2 | 0.01 | 0.2 |0.0001 [0.001
Corrected 0 1 0 0 0 0

Fig. 3: Example of Data Curation for Artificial Network Traffic
samples

D. Validity of generated traffic data

The data generated by the conditional GAN requires addi-
tional processing and validation to align with the constraints
and traffic feature boundaries of the original data. Algorithm
4 aims to ensure the correctness of generated data that may
contain errors or discrepancies, particularly in specific traf-
fic feature categories. To address these issues, we consider
features that contain out-of-range values, incorrect values for
binary features, and incorrect values for one-hot encoded
features. For out-of-range features, we identify samples where
the synthetic data falls outside the valid range defined by
the original data and clip their values to the real range. We
rectify these values for binary features by rounding them to
the nearest integer. Finally, for one-hot encoded features, the
algorithm finds the index of the highest value in the one-hot
encoded feature vector and sets all other values to 0. This
approach can effectively guide researchers to address errors
and discrepancies in synthetic data generated by GANs for
network traffic data, enabling the generation of more consistent
and reliable synthetic datasets for network-based cyber threat
detection.

Figure 3 illustrates an example of cleaning artificial samples
based on selected one-hot encoded features. For instance, a
feature like ‘mgqtt.conflags’ should only have values of O or
1, while a feature like ‘Http.Request’ should only be one of
the six predefined categories. Furthermore, features within the
range of real examples remain unchanged.

V. PERFORMANCE EVALUATION AND ANALYSIS

Our experiment with the proposed FedGenlD security
framework was conducted on Google Collaboratory using
PyTorch and Tesla-T4 GPU accelerators. We equipped partic-
ipating clients with non-iid datasets, as demonstrated in Table.
IV. We initially established the federated cGAN and proceeded



Algorithm 4 Curation of Generated Data

Require: Original data O with n instances and d features,
synthetic data S with the same shape as O and d features,
indices R of features that need to be corrected for out-
of-range values, indices B of binary features that need
to be corrected for incorrect values, indices C of one-hot
encoded features that need to be corrected for incorrect
values

Ensure: Corrected synthetic data S” with the same shape as

S
: procedure CORRECTDATA(O, S, R, B,C)

1

2: S S > Create a copy of synthetic data

3: for i € R do > Correct out-of-range values

4 Vmin,i €< min(O;,i)

5 Vmax,i < max(0. ;)

6: S;,’i — max(min(S:,i, Vmax,i)s vmin,i)

7: end for

8: for i € B do > Correct binary values

9: Sicomecti & (Sii #0) A (S, # 1) > Identify
incorrect values

10: Sémeeted‘i « | Sincorrect,i | > Round incorrect values
to nearest integer

11 Séorrected,i A SC"‘TEClEd’i‘Si/ncorrect,i+siﬁi. (ﬁSi,ncorrect,i)

> Replace incorrect values with corrected values
12: end for
13: for i € C do > Correct one-hot encoded values
14: h; « argmax(S.;) » Find index of highest value

15: Sl —ep > Set all but highest value to 0
16: end for
17: return S’ > Return corrected synthetic data

18: end procedure

with training. Subsequently, we leverage the federated gener-
ative model to enhance the training of the federated classifier
model by providing augmented data. After that, we introduced
deferential privacy training [8] for the global classifier model
and evaluated how augmented data in synthetic FL alleviated
the negative effects of DP and improved robustness against
zero-day attacks.

Moreover, it is essential to note that each client maintains
its critic model, which is utilized as a discriminator for
detecting adversarial examples. Details regarding the experi-
mental settings and learning parameters employed in this study
can be found in Table II. Figure 4 illustrates the flowchart
of our proposed framework for robust and resilient cyber
threat detection using a distributed framework. To evaluate
the impact of security constraints on the learning process,
we have employed various metrics to evaluate both detection
efficiency and effectiveness. These metrics include Accuracy,
Precision, Detection Rate, false positive rate and false negative
rate. By analyzing these measures, we aim to gain insights into
the performance and robustness capabilities of our proposed
framework for detecting zero-day cyber threats. Furthermore,
we aim to understand the influence of security constraints,
including distributed learning and DP training, on its efficacy.

o Accuracy (Acc): given by:

TP+TN
TP+FP+TN+FN

Acc = where : 6)
TP: refers to the count of negative samples that are
accurately classified.

TN: refers to the count of negative samples that are
accurately classified.

FP: refers to the count of positive samples that are
incorrectly categorized.

FN: refers to the count of negative samples that are
incorrectly categorized.

o Precision (Pr): denotes the proportion of proper attack

classifications (TP) attack predictions to the total amount
of predicted attack results and given by :

TP

- 7
"TTPYFP @

Detection rate (Dr): denotes the proportion of proper
attack classifications (TP) relative to the overall count of
all samples that ought to have been identified as attacks
and given by :

TP

Dr = ———
TP+FN

®

False positive rate (FPR) represents the proportion of
incorrectly categorized negative samples (FP) relative to
the overall count of all samples that should have been
classified as negatives. It is calculated using the following
formula:

FPR = _FP 9

" FP+TN .
False negative rate (FNR): represents the proportion of
incorrectly categorized positive samples (FN) relative to
the overall count of all samples that should have been
classified as positives. It is calculated using the following
formula:

FN
FNR = ——— 1
FN+TP (19)

TABLE II: Experimental settings

Parameter Values
cGAN Generator Refer to 2
c¢GAN Critic Refer to 2
Local cGAN epochs 10
Federated cGAN Critic repeats fl())r one epoch 2
Learning rate 0.0002
Local Batch_size 32
Global rounds 5
Classifier CNN 15-class
. Local Batch_size 64
Federated Classifier Global Tounds 15
Learning rate 0.001
Epsilon (€) 1
Differential privacy | Delta () 1.5e-5
Gradient norm bound (C) 1.2
* Optimizer Adam
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Fig. 4: Flowchart of FedGenlID framework aggregation, train-
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TABLE III: Edge-IloTset Data distribution.

Classes Original Train Count | Original Test Count
Normal 1046926 323129
Backdoor 19890 4972
Vulnerability_scanner 40088 10022
DDoS_ICMP 93149 23287
Password 40122 10031
Port_Scanning 18051 4513
DDoS_UDP 88027 22007
Uploading 30107 7527
DDoS_HTTP 39929 9982
SQL _injection 40962 10241
Ransomware 8740 2185
DDoS_TCP 40050 10012
XSS 12732 3183
MITM 320 80
Fingerprinting 801 200

A. Data Selection and Processing:

Our proposed framework uses the new Edge-IloTset [6],
which exhibits characteristics of both imbalanced and non-
[ID datasets. This dataset comprises fourteen labeled network
attacks. Our data preprocessing involved removing duplicates
and handling missing values by dropping instances with
’NAN’ or "INF’ values. Additionally, irrelevant traffic features
like IP addresses and payload information (e.g., frame.time,
ip.src_host, ip.dst_host, arp.src.proto_ipv4, arp.dst.proto_ipv4,

http.file_data, http.request.full_uri, icmp.transmit_timestamp,
http.request.uri.query, tcp.options, tcp.payload, tcp.srcport,
tcp.dstport, udp.port, mgqtt.msg) were excluded. Categor-
ical features such as ’http.request.method’, ’http.referer’,
“http.request.version’, ’dns.qry.name.len’, *mgqtt.conack.flags’,
’mqtt.protoname’, and mgqtt.topic’ were encoded using one-
hot encoding, resulting in a total of 95 features. The data was
then standardized using min-max scaling. Finally, a hold-out
split strategy was applied to partition the data into Training
and Test Sets. The initial distribution of the dataset is depicted
in Table III.

To emulate the distribution heterogeneity and nature in
FL, we divided the training set into non-IID partitions and
allocated them to ten clients. For this, we implemented a
label partition method, ensuring that each client has a random
subset of labels with the same feature vector of training data,
assuming that each client has partial knowledge of the total
classes involved in the problem, as demonstrated in Table IV.

B. FedGenlD: Federated cGAN Training

A series of comprehensive experiments were conducted to
uncover the ideal hyperparameter setup for training stability
of our designed federated cGAN scheme. Our findings reveal
that utilizing several local epochs with fewer federated rounds
improves stability. Figures 5 demonstrate the local training
loss of Federated cGAN using the Wasserstein distance with
gradient penalty (Wass-GP) reported in predetermined training
steps. Both cGAN models are directly related to the Wasser-
stein distance, where the Critic loss represents the approximate
negative of the Wasserstein distance. As demonstrated, unlike
regular loss functions, Wass-GP is unbounded and can output
any number. This feature enhances the critic without suffering
from the vanishing gradient problem. We can see that the
critic’s loss starts at a relatively high value and gradually
decreases over time. This signifies an improvement in the
Critic’s ability to distinguish between actual and generated
samples. Conversely, the generator loss starts at a lower value
and slightly increases over time. This can be attributed to
the enhanced performance of the Critic, which poses a more
challenging adversarial objective for the generator. Notably,
as the training progresses, a convergence pattern becomes
evident, where the losses associated with both the generator
and Critic tend to approach each other and ideally converge.

C. FedGenlD: Adversarial Attack Detection

The resilience of IDS to sophisticated adversarial attacks
is a critical aspect often overlooked. Relying on a single
model to defend against all adversarial and zero-day attacks
presents a potential vulnerability. To enhance the resilience
and adaptability of our framework against continually evolving
adversarial attacks, we enhance the capability of local critics
to detect adversarial examples by adjusting their decision
threshold by applying the Sigmoid function. It is noteworthy
that Critic models were trained using the Wasserstein loss
that maximizes the distance between real and fake inputs.
Therefore, if we applied an activation function, we could



TABLE IV: Non-IID Data Distribution

Client 1 Client 2 Client 3 Client 4 Client 5
Attack classes | Count Attack classes | Count Attack classes | Count Attack classes | Count Attack classes | Count
Normal 5914 Normal 8420 Normal 5145 Normal 2902 Normal 4340
Backdoor 3023 Backdoor 4066 Backdoor 2600 Vul_scanner 4274 Backdoor 2215
DDoS_ICMP 14121 Vul_scanner 10069 Vul_scanner 6080 DDoS_ICMP 14369 DDoS_UDP 12777
Password 6031 Uploading 7422 DDoS_UDP 15119 DDoS_UDP 8500 Uploading 3808
Port_Scan 2659 SQL_injection | 10164 Uploading 4597 Uploading 2696 DDoS_HTTP 7154
DDoS_UDP 13223 Ransomware 2121 SQL_injection | 6293 DDoS_TCP 2841 SQL_injection | 5308
DDoS_HTTP 6016 DDoS_TCP 8401 DDoS_TCP 5200 DDoS_TCP 4428
DDoS_TCP 6009
Client 6 Client 7 Client 8 Client 9 Client 10
Attack classes | Count Attack classes | Count Attack classes | Count Attack classes | Count Attack classes | Count
Normal 4862 Normal 1364 Normal 1143 Normal 892 Normal 5018
Backdoor 2952 Vul_scanner 2020 Backdoor 843 Backdoor 659 Backdoor 3532
Vul_scanner 7395 DDoS_ICMP 10430 DDoS_ICMP 9041 Vul_scanner 1628 Ransomware 4680
Uploading 4340 Port_Scanning | 2566 Port_Scanning | 2177 DDoS_ICMP 7122 XSS 12732
SQL _injection | 7210 DDoS_UDP 6195 DDoS_UDP 5278 Password 5255 MITM 320
DDoS_TCP 4870 Uploading 1140 Uploading 985 DDoS_UDP 4209 Fingerprinting | 801
SQL_injection | 1923 DDoS_HTTP 4398 SQL_injection | 1610
Ransomware 1100 DDoS_TCP 1126 Ransomware 839
DDoS_TCP 1376
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Fig. 5: Local cGAN training: Loss vs Training Steps

predict adversarial examples and evaluate them against a cor-
responding ground truth value. Nevertheless, our experiments
revealed that our cGAN-Critic models exhibited limitations in
generalization to other persistent adversarial inputs, thereby
reducing the practicality of the defense mechanism in real-
world scenarios. To address this issue, we further fine-tune

the critic models using data from the global generator and
data from more sophisticated attack methods to increase the
adversarial diversity. To this end, we refined our approach by
fine-tuning each local cGAN-Critic. Specifically, we added a
linear layer and trained using genuine data from the clients’
datasets in combination with data from the global generator
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Fig. 6: Fine-tuning Loss for Clients Critic for adversarial attack
detection

TABLE V: Performance Comparison of Proposed individual
Detector against the three evaluated adversarial attacks

Attacks Clients Accuracy % | DR % | FPR %
Worst client : 2 92.05 98.64 15.76

FGSM gt client 8 96.74 9729 | 0457
BIM ‘Worst glient 0 10 92.97 98.96 18.52
Best client : 9 98.04 98.92 04.01

DeepFool ‘Worst (-:lient 12 92.12 98.82 15.76
Best client: 9 98.79 100 04.01

and more sophisticated adversarial inputs obtained from the
FGSM attack. Figure 6 illustrates the fine-tuning history of
Clients Critic for 15 epochs. The results are reported in Table
V.

D. FedGenlD: Zero-day Attack Detection

We expand our framework’s robustness evaluation against
zero-day attacks, addressing the dynamic nature of these
threats. Our non-IID setup simulates the unpredictability of
these threats by excluding specific attack classes from cer-
tain clients’ datasets. Additionally, we simulate these attacks
by augmenting the TestSet to include variations and novel
instances, leveraging the global generator. We denote the
combined original TestSet and the generated zero-day attack
samples as the Augmented TestSet. We removed any duplicate
records to ensure its integrity and labeled the generated zero-
day attack samples with their corresponding known attack la-
bels. Furthermore, our data curation approach ensures that the
samples are realistic and represent the real data distribution.
Figure 8 and Table VIII demonstrate performance results in
detecting and identifying Zero-day attacks.

E. FedGenID: Numerical results

Figure 7 demonstrates the class distribution of generated
augmented train data using our proposed federated generative
model (FGM). Notably, our FedGenlD incorporates class-
conditioned labels, which; although not immune to ensuring
label accuracy, significantly enhances data diversity. Our in-
vestigation produced a dataset comprising 50,000 instances for
each distinct attack class. However, following the application

of our data curation methodology, which introduces marginal
modifications to feature values, a mismatch was detected
between the initially specified target classes and the resulting
predicted labels upon employing a well-trained DL classifier.
In the scope of our research, we proceed with this labeling
technique using the DL classifier with 96% accuracy on the
original train data to rectify the labeling discrepancies. How-
ever, it is worth noting that techniques such as self-supervised
learning could be investigated in prospective studies.

The results demonstrate that the approach successfully cap-
tures the underlying patterns and features of classes such as
Normal, XSS, Fingerprinting, Portscanning, and Password, as
indicated by their relatively high sample counts (Figure 7).
These results highlight the Wasserstein conditional GAN’s
ability to generate synthetic data that faithfully exhibits the
distinct characteristics associated with each class. However,
it is worth noting that certain classes, including Backdoor,
HTTP, and DDoS_UDP, exhibit relatively low counts, sug-
gesting the presence of fewer distinctive patterns or features,
posing challenges for an accurate generation. Nevertheless,

Normal 305020 0o 0 0 0 0 O O O O O O 0 O
Back 0 90 O 0 0 0 0 0 0 0 0 0 0 0 0
Scan 0 0 32404 0 0 0 0 0 0 0 0 0 0 0 0
ICMP 0 0 0 41070 O 0 0 0 0 0 0 0 0 0 0
Pass 0 0 0 0 58227 0 0 0 0 0 0 0 0 0 0
Port 0 0 0 0 0 64601 0 0 0 0 0 0 0 0 0
UP 0 O O O O 01870 0 0O O O O 0O O

Upload O O O O O O 020000 0 0 0 0 0 0
HTTP 0 0 0 0 0 0 O ©0 98 0 0 0 0 0 0
sQL 0 0 0 0 0 0 0 0 0 18403 0 0 0 0 0
Rans 0 0 0 0 0 0 0 0 0 0 23715 0 0 0 0
TCP 0 0 0 0 0 0 0 0 0 0 0 4209 0 0 0
XSS 0 0 0 0 0 0 0 0 0 0 0 0 103731 0 0
MITM 0 0 0 0 0 0 0 0 0 0 0 0 0 3903 0
Fing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 70258
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Fig. 7: Confusion matrix depicting the class distribution of

generated traffic. The classes are labeled using the FedID
classifier

by integrating these generated samples into the local training
process of participating clients, we aim to enhance robustness
and classification efficiency against adversarial and zero-day
cyber attacks.

After the fine-tuning of clients’ critics, table V presents
a performance comparison of the proposed individual detec-
tor against three evaluated sophisticated adversarial attacks.
The results demonstrate that individual critics exhibit varying
performance levels against different adversarial attacks, with
some clients achieving higher accuracy and better detection
rates while keeping false positive rates relatively low. For
instance, in the case of the FGSM attack, the best-performing
client (Client 8) achieved a detection rate of 97.29% and a
false positive rate of 4.57%. Conversely, the worst-performing
client (Client 2) achieved a false positive rate of 15.76%.
Client 9 generally emerges as the top-performing client across
the evaluated attacks, displaying impressive detection rates
and accuracy. These findings emphasize the potential of the
proposed fine-tuning individual critics to discern sophisticated
adversarial attacks effectively instead of relying on a single



TABLE VI: Per-class performance using different evaluation aspects

Original TestSet Augmented TestSet
Classes Metrics Precision Detection rate Precision [ Detection rate
Settings | FedID | FedGenID FedGenID | FedID | FedGenID | FedID | FedGenID
Normal
Backdoor

Vulnerability_scan

DDoS_ICMP

Password

0.50
0.07

Port_Scanning

DP 0.00 0.58

0.00

0.86
0.58

0.00
0.00

0.70
0.03

0.03 0.14

DDoS_UDP
Uoloadin ) 3 0.36 0.76 3 )
ploading DP 0.45 0.57 0.42 0.37 0.17 0.57 0.41 0.37
NoDP | 0.64 0.79 0.30 0.64 0.79 031
DDoS_HTTP - —pp— 75 0.87 0.52 0.25 0.49 0.87 0.51 0.25
SOL_injection NoDP 041 0.48 0.41 0.48 0.65 0.89
—Injectt T DP 040 0.41 0.40 0.41 0.59
Ransomware No-DP 0.0 0.85 0.11 0.00 0.85 0.00 0.57
0.06 0.00 0.30
DDoS_TCP
XSS
MITM g'gg
Finzerorintin NoDP __ 0.00 0.00 0.00 0.00 0.86
gerprinting DP 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00
FedID: Federated Intrusion detection; FedGenID : Federated Generative Intrusion detection;

No-DP : No differentially private training; DP : with differentially private training.

0.00 0.000.000.000.010.000.000.000.000.000.000.000.000.00
0.010.290.000.000.010.370.020.060.000.000.060.010.030.000.14
0.030.00(¢R:%30.000.000.000.000.000.000.000.010.000.080.000.02
0.050.000.00(¢&:¥40.020.000.000.000.000.000.000.000.000.000.05
0.050.000.000.01[eX:4:]0.000.000.010.000.020.000.000.000.000.02
0.020.000.000.000.00{¢%e:)0.000.000.000.000.010.000.010.000.01
0.020.000.000.030.010.00[¢&:%30.000.000.000.020.010.060.010.00
0.030.000.000.000.040.040.00[¢R:E]0.000.020.010.000.000.000.03
0.010.000.050.000.000.000.000.00{¢584]0.01 0.000.000.330.000.00
0.060.000.010.000.040.000.000.010.00[¢X:%)0.020.000.000.000.01
0.020.000.020.000.000.050.000.000.000.01{0}¢f0.010.090.000.02
0.020.000.000.000.000.180.010.000.000.000.01 [¢4=¥40.08 0.000.02
0.030.000.010.000.000.020.000.000.000.000.010.00[¢4E]0.000.00
0.100.000.010.010.010.010.000.000.000.010.020.000.03[0}ge]0.01
0.020.000.010.030.010.040.000.000.000.000.010.000.000.00[¢K:¥)

=1 ~ c o w + o el o - v o (%] = o
© U g = @9 o © o € O 0 c

© c 9 © |
g & § & &= 5 ¢ ']:: w8 F X E &
z =)

(a) Federated Generative Intrusion Detection (FedGenID)

0.00 0.090.000.000.000.010.010.000.000.000.110.000.000.00
0.130.010.090.190.000.000.130.090.000.000.00[2§0.00 0.000.00
0.29 0.000.02 0.000.000.030.010.000.000.000.130.000.000.00
(08:¥10.000.100.060.000.000.050.030.000.000.000.250.000.000.00
(0X:%40.000.010.070.000.000.030.120.000.000.000.160.000.000.00
1082%10.000.080.07 0.000.000.050.040.000.000.000.310.000.000.00

0.010.05 0.000.000.060.020.000.000.000.160.000.000.00
\914710.000.000.140.000.000.050.240.000.000.000.150.000.000.00
0.09 0.000.06 0.000.000.040.010.000.000.00/0:340.000.000.00
SQL 0.00 0.030.050.000.000.030.130.000.000.000.220.000.000.00

Rans 0.320.000.120.050.000.000.070.030.000.00 0.000.00 0.000.00
TCP 0.260.00(0%%10.040.000.000.100.010.000.000.000.100.000.000.00
XSS W0.0 £10.010.000.000.020.010.000.000.000.17 0.000.000.00

0.290.00(94:0.050.000.000.040.06 0.000.000.000.130.000.000.00
0.00 0.110.100.000.000.050.050.000.000.000.280.000.000.00

~
v}
©
o

o
=
S

v o o 4 v a un
s o 0O ': o 5 O 0
a & D o

o
c
0 = X

=

Normal
Scan
Upload
MITM

(b) Federated Intrusion Detection (FedID)

Fig. 8: The effectiveness of FedGenID over FedID in the context of zero-day attacks

model to defend against all attacks. Furthermore, our design
differs from conventional methods by utilizing another clas-
sifier detection model to investigate undetected adversarial
inputs. Consequently enhancing the overall system robustness.

Figure 9 illustrates a comparative analysis of validation
accuracy between FedGenlD and FedID over time, consid-
ering both scenarios with and without DP. The evaluation is
performed on the Original Real-TestSet. While our synthetic
FL approach offers a degree of privacy preservation, the intro-
duction of DP training shows promise for further enhancing

privacy protection despite its potential negative impact on
model performance. Our results demonstrate that incorpo-
rating DP incurs a training overhead for both frameworks,
with FedGenID displaying a comparatively lower increase
in computational time attributable to its data augmentation
approach. Furthermore, our analysis reveals that FedGenID
achieves performance levels nearly comparable to those of
FedID without DP while outperforming it under DP train-
ing conditions. This underscores the potential of FedGenID
as a more cost-effective solution when considering privacy



TABLE VII: Comparison with related GAN-based IDS

Study Main Idea

Dataset

Features

Name

Settings

Federated
Learning

Data
Curation

Adversarial
Attacks

Differential
Privacy

Features
Diversity

Kaplan et al. 2020
[24]

Two methods for improving | KDD99 1ID
BiGAN training include mini-
mizing the mean squared error
between the generator input
and output and starting with a

pre-trained generator

Low No No No No

BiGAN model to detect un-
known anomalies, as a form of
defense against novel or zero-
day

Aabdalgawad et al. ToT-23

2021 [25]

1ID

No

CIC-DDOS2018

Wu et al. 2021 [26] CIC-DD0S2019

Feature reduction and a deep 1ID
convolutional GAN,
addressing limited resources
and optimizing the
discriminative CNN network
with synthetic samples.

Medium No No No No

a GAN-discriminator to de- | N/A
tect potential data tampering
threats in controller area net-
works by incorporating en-
hanced synthetic attack data.

Xie et al. 2021 [27]

N/A

Medium

KDD99,
NSL-KDD,
UNSW-NBI5

Federated GAN for IoT de-
vices using gradient exchange
and model updates.

Tabassum et al.
2022 [29]

1ID

Medium No

NSL-KDD,

CIC-IDS-2018 1D

Gu et al. 2023 [36] Self-attention WGAN, and fo-
cal loss DNN to improve the
detection performance of rare

and unknown attack

Medium No No No No

He et al. 2022 [31] FL-GAN with differential pri-
vacy for enhanced security and

data privacy in IDS

CIC-IDS2017 1ID

Medium No

a self-attention-based condi- | WSN-DS
tional variational auto-encoder
GAN, combining advanced
techniques to adapt to network
dynamics, and accurately iden-

tify intusions

Meenakshi et al.
2024 [37]

1ID

Medium No No No No

Our Study FL-GAN with a 3-model IDS
framework comprising a gen-
erative model, local discrim-
inator, and classifier models,
for robust detection of zero-

day and adversarial attacks

EdgelloTSet2022

Non-IID

FGSM,
BIM,
DeepFOOL

High Yes Yes

Without Deferential privacy training With Deferential privacy training
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Fig. 9: An Examination of Validation Accuracy in FedGenID
Compared to Standalone FedID with and without Differential
Privacy Training on the Original Test Data

preservation. Notably, even when both strategies are combined
to boost privacy protection, FedGenID excels in mitigating
the adverse effects of DP by enhancing the diversity and
coverage of the data, and improving the model’s robustness
and generalization. These findings reinforce the robustness
and efficiency of our proposed framework, emphasizing its
practical applicability in privacy-sensitive settings.
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Fig. 10: Comparative analysis of cyber threat detection per-
formance and robustness using our proposed FedGenID and
Standalone FedID

Figure 10 illustrates a comparative study between FedGenID
and FedID, when also considering the impact of DP training
on the classification accuracy of both frameworks on both test
sets. The results demonstrate the potential of our proposed
FedGenID and its ability to maintain competitive accuracy



levels across different TestSets, with FedGenID achieving
92.72% and 92.47% accuracy without and with DP-training in
the original TestSet. Despite a slight drop with DP-training,
FedGenID maintains commendable performance, surpassing
FedID in the "Augmented-TestSet" by 14% and 10% without
and with DP training, respectively. These findings position
FedGenlD as a robust and adaptable privacy-preserving IDS,
addressing the evolving challenges of cyber threat detec-
tion in privacy-sensitive IoT environments. done Table VI

TABLE VIII: Evaluating FedGenlD and FedID against zero-
day attacks

Classes FedID FedGenID
Recall | Fpr Fnr | Recall | Fpr Fnr
Normal 0.78 039 | 0.14 0.98 0.25 | 0.10
Back 0.01 0.00 | 0.00 0.29 0.00 | 0.01
Scan 0.53 0.20 | 0.03 0.84 0.05 | 0.09
ICMP 0.06 0.05 | 0.08 0.87 0.06 | 0.09
Pass 0.00 0.00 | 0.12 0.88 0.06 | 0.11
Port 0.00 0.00 | 0.13 0.95 0.17 | 0.05
UDP 0.06 0.04 | 0.00 0.84 0.01 | 0.00
Upload 0.24 0.05 | 0.03 0.83 0.02 | 0.06
HTTP 0.00 0.00 | 0.00 0.59 0.00 | 0.01
SQL 0.00 0.00 | 0.04 0.83 0.04 | 0.05
Rans 0.00 0.00 | 0.05 0.78 0.06 | 0.09
TCP 0.10 0.27 | 0.01 0.67 0.02 | 0.02
XSS 0.00 0.00 | 0.21 0.93 0.14 | 0.13
MITM 0.00 0.00 | 0.01 0.79 0.01 | 0.01
Fing 0.00 0.00 | 0.14 0.87 0.11 | 0.16

Accuracy | 35.27% \ 92.17%

Fpr: False Positive Rate, Fnp : False Negative Rate

demonstrates per-class performance results to evaluate the
effectiveness of FedGenID in enhancing the precision and
recall of detecting and identifying various types of cyber
threats and robustness against zero-day attacks. Both FedID
and FeGenID achieve high precision and recall without DP
in detecting the ’Normal’ traffic for threat detection. With
DP, precision drops slightly, while recall remains competitive
in all experiments. Regarding specific attack categories, the
precision and recall scores of FedGenID and FedID ex-
hibit notable distinctions across different privacy settings. In
scenarios like 'DDoS_ICMP’, 'DDoS_UDP’, "MITM’, and
’Password’, FedGenID achieves performance levels nearly
equivalent to or better than FedID without DP. When both
privacy-enhancing strategies are combined, FedGenID exhibits
robust performance, especially in scenarios involving zero-day
attacks. These results underscore the potential of FedGenID as
a valuable tool for privacy-preserving FL in security-sensitive
contexts. However, while FedGenID demonstrates promising
results in accuracy, resilience, and generalization, there are
specific classes where further refinement may enhance preci-
sion and recall.

Figure 8 and Table VIII compare the performance of
FedGenlID and FedID in detecting and identifying zero-day
attacks. The results demonstrate that FedGenID exhibits sig-
nificantly higher performance metrics, with high recall rates
for most attack classes and lower false positive (FPR) and false
negative rates (FNR). For instance, FedGenID achieves low
FPR and FNR for the "Normal’ class, ensuring robust security
against zero-day attacks by minimizing the misclassification of
benign traffic as malicious. Additionally, FedGenID achieves

low FNR across different attack classes, demonstrating its abil-
ity to detect and identify malicious traffic instances accurately,
thereby reducing the risk of undetected attacks. These findings
emphasize the importance of leveraging synthetic FL with
data augmentation to enhance robustness against emerging and
evolving cyber threats.

Overall, our proposed FedGenID framework presented a
novel contribution to federated generative intrusion detection
and demonstrated its efficiency in addressing challenges posed
by privacy preservation, zero-day attacks, and emerging cyber
threats in industrial IoT applications.

In table VII, we compare our FedGenID framework and
recent state-of-the-art GAN-based security frameworks. The
scope of the comparison covers the GAN-based intrusion
detection application, specifically tailored to enhance cyber
threat detection performance. We distinguish our FedGenID
framework by opting for a recent and real-world industrial IoT
dataset with various network traffic features, providing a more
realistic representation of challenges than previous studies.
In addition, we distinctively opt for a federated generative
model that undergoes training without the exchange of local
critics to enhance the adaptability of FL against data chal-
lenges, followed by a synthetic federated classifier learning
approach to improve robustness against zero-day cyber threats.
Furthermore, our research underscores the significance of data
curation in assessing the consistency of the generated traffic
data, a crucial factor often missed in earlier works. Also
included is the adversarial defense against three sophisticated
attacks to boost the resilience of IDS in the face of adversarial
attempts, a consideration often overlooked in prior works.
Moreover, our study sets itself apart by incorporating DP-
training, which provides an additional layer of data privacy
during collaborative learning.

Overall, our comparative study offers novel contributions,
including a recent dataset choice, the adoption of FL and
DP, and meticulous attention to data curation, addressing gaps
observed in prior research.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced an innovative FL frame-
work named FedGenlD. Specifically, we proposed an im-
proved federated generative framework to generate synthetic
data and blend it with actual client data. Thus overcoming
imbalanced and distributed data challenges while improving
the efficiency and robustness against cyber threats. The results
conducted on a recent industrial cyber security dataset demon-
strated the efficiency of our proposed security framework
while maintaining data privacy. However, secure aggregation
and authentication of model sharing are still required to ensure
the integrity and trustworthiness of our framework. Future
studies will focus on addressing this limitation. Furthermore,
we aim to explore ensemble learning approaches for collective
decision-making and self-supervised learning methodologies
to enhance generative model capabilities.
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