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evolutionizing Intrusion Detection in Industrial
T with Distributed Learning and Deep Generativ

Techniques
jallel Hamouda, Mohamed Amine Ferrag, Nadjette Benhamida, Hamid Seridi, Mohamed Chahine Ghanem

stract—In response to escalating cyber threats and privacy
within the Industrial Internet of Things (IIoT), this

ch presents FedGenID, an advanced Federated Generative
sion Detection System, to safeguard IIoT networks. Our
ach introduces a three-model framework: 1) a federated
ative model, incorporating a Conditional Generative Ad-
rial Network (cGANs) for data augmentation, emphasizing
generator model updates to be shared among clients. This
l uses a Wasserstein loss function with Gradient Penalty to
fy sample diversity, indicative of varying cyber threats. Con-
ntly, we address the issues of imbalanced and distributed
and deploy a data curation technique to align generated

ithin specific constraints. 2) A secondary model fine-tunes
Critics for enhanced resilience and detection of various
sarial attacks. 3) The third model focuses on precise cyber
t identification, leveraging augmented data for improved
ng under a synthetic federated learning schema, bolstering
ion capability, especially against zero-day threats. Our

ation of FedGenID, utilizing a novel industrial cybersecurity
et, highlights its efficacy in non-IID, multi-class cyber threat
ion and its resilience to adversarial attacks. Furthermore,
monstrate how FedGenID can mitigate the negative impact
fferential privacy-enhanced FL on model performance.
findings underscore FedGenID’s proficiency in detection
acy, surpassing traditional FedID by 10% in the presence
o-day attacks and high privacy regimes.

ex Terms—Cybersecurity, Generative AI, GAN, Intrusion
tion, Industrial IoT.

I. INTRODUCTION

iven by the demand for increased automation, autonomy,
usiness reliability, the industrial Internet of Things (IoTs)
plifies an emergent paradigm that enables a seamless
ction between machinery and the digital sphere. This

tates data acquisition and processing using emerging
ologies, including cloud/fog computing, 5G/6G wireless
rks, and big data analytics for the functioning of the
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smart factory. However, cyber-criminals are leveraging
inherent security weaknesses of internet-connected syst
besides the insecure-by-design industrial communication
tocols [1], to breach valuable assets and conduct severe c
attacks, including denial of service and privacy intrus
[2]. Consequently, the industry and security researchers
developing new cybersecurity strategies to protect privacy
secure industrial networks and control systems from la
scale cyber threats. As an effective countermeasure, intru
detection systems (IDS) have been successfully applie
provide security monitoring to identify any possible cy
attacks in progress. The system’s role in network securi
to detect abnormal activities based on behavior analys
generated network traffic data [3]–[5].

Recently, machine learning (ML) and deep learning
classification approaches have been effectively employe
this field to treat and handle the required cyber attack
haviors, degrees of difficulty, and complexity [6]. How
these approaches are computationally intensive, and
effectiveness is constrained by the availability of high-qu
training data, which is crucial for defending against zero
attacks. These constraints have implications for the sec
of industrial IoTs, where data is heterogeneous and may
cover the required quantity for efficient detection; data pri
is a top priority and major concern; and industrial system
resource-constrained, which restricts available resources
IDS computation [7]. In this context, a novel distributed le
ing paradigm called "Federated Learning" (FL) has eme
to overcome these limitations, improving the performanc
IDS in terms of detection accuracy and resource utilizatio
the security of industrial IoTs [6], [8]. It enables many
devices, where data is generated and resides, to jointly tr
global model through transfer learning in each synchron
round of local training without data sharing, thus ensu
data privacy protection. However, a significant challenge
compromises the efficacy of FL depends on the frequenc
non-iid (non-independent and identically distributed) data

In addition, recent studies have demonstrated the vuln
bility of ML and DL models to adversarial attacks, prim
attributed to the issue of data inaccessibility [9]. These att
exploit the vulnerabilities in FL’s training and inference
cesses, compromising model integrity and data privacy. Du
training, adversaries employ poisoning attacks to manip
the model’s learning process and compromise perform
[10]. To respond to these threats, researchers are explorin
cure aggregation and authentication schemes to ensure m
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ility. In the inference stage, adversaries employ evasion
s by manipulating the data during the operational phase.
objective is to deceive a previously trained model by

ding misleading inputs known as adversarial examples
This deceptive data can lead to incorrect detection of
threats, as adversaries may employ zero-day attack

iques that mimic the behavior of adversarial examples
vade detection [12], [13].
r study is focused on enhancing the effectiveness and
nce of FL-based cyber threat detection in the inference

. We aim to address limited and non-IID data challenges
itigate the threat landscape of zero-day and adversarial

on attacks. In this context, we recognize the emergence of
generative models (DGMs) as a promising approach that
ces data augmentation and enables robust optimization to
ively counter adversarial threats without predetermined
ptions about the capabilities of potential adversaries
This study investigates the following research question:
generative models contribute to the effectiveness and
nce of DL-based IDS and explores the potential of

ated generative models to address privacy concerns and
nges associated with imbalanced and non-IID data in
oT. Specifically, we propose a novel privacy-preserving
ecure framework that leverages FL and generative ad-
rial networks (GANs) to secure industrial IoT networks.
ramework includes a three-model approach using 1) a

ated generative model for data augmentation to limit the
surface for potential zero-day and adversarial attacks.

secondary model fine-tunes GAN-Critics for enhanced
nce and detection of various adversarial attacks, and 3)
lassifier model focuses on precise cyber threat identifica-
leveraging augmented data for improved training under a
etic FL schema, ultimately enhancing the efficiency and
ility of cyber threat detection.
ontributions are as follows:

e introduce a novel security framework that lever-
ges federated learning and conditional-GAN approach
FedGenID) to augment distributed and multi-class cyber
hreats and ensure the security of IIoT networks. The
ramework consists of a three-model approach that uti-
izes a federated generative model, a local discriminator
odel, and a classifier model for efficient and robust

yber threat detection.
hrough meticulous analysis of the generated data, we
ropose a data curation method to align the generated
ata with the original data’s constraints and traffic feature
oundaries, ensuring consistency and reliability in the
ynthetic data.
e thoroughly evaluate the efficiency of our pro-

osed FedGenID framework with a new industrial IoTs
etwork-based dataset (EdgeIIoTset 2022) for non-IID
nd multi-class cyber threat detection and robustness
gainst zero-day and adversarial attacks. In addition, we
emonstrate how FedGenID can mitigate the negative
mpact of differential privacy-enhanced FL on detection
ccuracy.

e remainder of this paper is organized as follows. Section

II provides essential concepts for the proposed framew
We review related works in Section III. We overview
proposed framework in Section IV. Section V demonst
experimental results and the effectiveness of the prop
framework. Finally, we conclude our work in Section VI

II. BACKGROUND

Generative models, including Generative Adversarial
works (GANs), Variational Autoencoders (VAEs), and
toregressive Models (ARMs) have been commonly ap
to provide high-quality and diverse data to alleviate
scarcity in many application fields [14], [15]. While t
models differ in their approach to generating new data, the
aim to capture the contextual representation of real data
produce high-quality samples. Recently, GANs have sh
promise in their efficiency in generating high-quality
diverse data distribution and their potential application in
augmentation and privacy protection.

A. Deploying GANs for Cyber Threat Detection

To overcome challenges facing ML and DL-based c
threat detection like privacy concerns, limited data avail
ity, imbalanced data, and vulnerability to adversarial atta
GANs have shown promise in addressing these challe
[14]. These models can produce high-quality new data sim
to original training data, thereby addressing the issue of
availability and privacy protection by learning the underl
data distribution without memorizing sensitive individual
[15]. Furthermore, the adversarial training nature of G
enhances the robustness and resilience of cyber threat d
tion, enabling models to defend against zero-day and emer
adversarial attacks. Although different GAN models em
different approaches to generate new data, their com
objective is to capture the feature representation of real
and generate high-quality and diverse data samples. The G
structure incorporates two deep learning models: the gene
𝐺 generates new data similar to the training data, and
discriminator 𝐷 differentiates between generated and ori
data. The training process of GAN can be formulated
minimax game between 𝐺 and 𝐷:

𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

= [𝑙𝑜𝑔(𝐷 (𝑋)] + [𝑙𝑜𝑔(1 − 𝐷 (𝑋 ′)]

Where 𝐷 tries to maximize the objective function by corr
classifying real and synthetic data, while 𝐺 tries to mini
the objective function by deceiving the discriminator. H
ever, GANs are computationally demanding [16] and s
from various training issues, such as undesirable converg
properties that may lead to the mode collapse phenome
which occurs when the generator produces limited varian
the same set of samples, resulting in a lack of diversity in
generated data [17]. These concerns have led to researc
investigating other loss functions, model architectures,
training procedures to alleviate these issues.
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ro-day and Adversarial attacks in the field of cyber threat
tion

ro-day attacks exploit unknown vulnerabilities in soft-
or hardware, consequently producing novel behaviors
g them difficult to detect and identify, especially in

rios where training data are scarce [18] Various methods
been proposed to simulate and detect zero-day attacks.
nstance, some researchers have used GANs to simulate
attacks by generating similar but slightly different be-

rs from known attack variants [19]–[21].
dversarial attacks, on the other hand, refer to techniques
yed to generate false data inputs, known as adversarial

ples, that closely resemble authentic data to deceive
fication models when classifying them. In the context
ber threat detection, cyber criminals may leverage these
iques to conduct complex cyber attacks that replicate the
ior of adversarial examples and evade detection by well-
d IDS classifier models [22]. Notably, these adversarial
s may be generated intentionally or accidentally through
are or hardware errors, raising concerns about the relia-
of detection in real-world scenarios. Adversarial attacks
e categorized into black-box and white-box attacks.
-box attacks involve limited knowledge about the target
l’s internal structure and parameters, while white-box at-
assume complete knowledge of the target model. Popular
-box attack techniques include the Fast Gradient Sign
od (FGSM), Basic Iterative Method (BIM), DeepFool,
i & Wagner attacks, and Jacobian-based Saliency Map

k (JSMA). These attacks can cause misclassifications and
romise the reliability and security of ML and DL-based
ion detection models [23]. Understanding and mitigating
attacks is crucial for enhancing the robustness and
orthiness of DL-based cyber threat detection.

III. RELATED WORKS

e advent of generative adversarial networks (GANs)
s a promising breakthrough in the realm of DL applica-
due to their unique ability to generate synthetic data for
entation and enable robust optimization. Consequently,
rchers are now exploring their potential to address chal-
s related to cyber threat detection [11]–[13], [24]–[31].
s section, we review previous studies of GAN application
heir integration with the emergent FL training paradigm
ber threat detection.

AN Applications for Cyber Threat Detection

Ns introduced new possibilities in this field, either to
data shortages or improve the resilience of IDS by

ting the zero-days and adversarial attacks that could
ve the detection module [11]. In [25], The authors
sed two variants of GAN models, an Encoder-GAN and
irectional-GAN ()to detect and classify network attacks.
uthors claimed the effectiveness of both methods in terms
ssification metrics. However, their dataset has a limited
f features, and their approach can be computationally
ive, which could limit the effectiveness of the proposed
l. Similarly, in [24], Kaplan et al. proposed two methods

to improve the BiGAN training by adding extra steps fo
generator. This includes minimizing the mean squared
between input and output, starting with a pre-trained gener
and enhancing the training process. In [26], Wu et al. prop
a deep convolutional GAN for intrusion detection. The au
addressed the limited resources of edge devices and propos
feature reduction technique using the fuzzy method. Then
GAN was proposed to augment the training data with synt
samples and to optimize the discriminative CNN netw
for detecting various types of attacks. However, their me
may not be able to detect some sophisticated or advers
attacks that can evade detection, especially if the attackers
manipulate the network data or the generator. To detect
tampering threats in the controller area network, Xie et al.
proposed an enhanced GAN discriminator. They impleme
a traditional GAN model by feeding it improved attack
to supplement the insufficient training samples, consequ
improving discriminator efficiency in detecting intrusions
data-tampering threats. The authors claimed their GAN m
can generate more diverse and realistic attacked samples
existing methods. However, their model lacks rigorous ana
and guarantees on its convergence, stability, and gen
ization properties. Siniosoglou et al. [28] proposed a G
architecture as an Auto-Encoder unified model for dete
anomalies and classifying attacks in a smart grid environm
The authors used the generator model as a decoder to pro
synthetic samples and the discriminator model as an encod
validate generated samples and detect and classify anoma
The authors combine two different loss functions for
objective. However, they did not provide proof of trai
stability, convergence, and validity of generated data.

Although the above studies present compelling find
they exhibit certain drawbacks. Notably, they tend to be c
putationally intensive, potentially limiting their applicab
in IoT environments. An important challenge overlooke
privacy preservation, which is a significant concern in the
given the potential for data breaches. To address these is
recent studies have also employed GANs training within
emerging federated learning framework (FL), taking advan
of its features for efficient computation and data pri
preservation.

B. Federated generative adversarial networks

In recent works, Zhang et al. [12] proposed a FL-G
framework with a Mix-Generator module to handle Non
data issues at the edge. They divided the generator into
layers: the sharing layer extracts common features acros
datasets, and the personalizing layer extracts unique fea
specific to each dataset. However, their approach is pron
GAN stability issues and poor generalization. In a re
effort, Chuenbubpha et al. [13] introduced a federated GA
address non-IID data distribution in FL. The authors tra
a conditional GAN model to augment each client’s
data with synthetic images per class and then started
FL process with augmented data for classification. How
their framework is computationally intensive and lacks pri
preservation because both GAN models are shared betw
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s. Similar in [32], Rasouli et al. studied federated GAN
ng (fedGAN) across non-IID sources, addressing privacy
rns. Their FedGAN uses local generators and discrimi-

s at each source, periodically synchronizing them with a
r node. The authors evaluated fedGAN’s efficiency using
mark image datasets, showing promising communica-

efficiency and synthetic data quality results. However,
did not consider adding noise or differential privacy
anisms to enhance privacy protection. In contrast, [33],
t al. introduced a federated GAN for image generation
enhanced privacy, using a serial training method where
client updates the same model’s parameters sequentially,
g noise to the discriminator’s gradient to prevent sensitive
ation leakage. Although this is difficult and involves
lly selecting the differential privacy settings to balance

cy and GAN utility, the authors found that their proposed
ach generates high-quality synthetic data. In [34], Li et
ined a GAN model using the FL procedure for renewable
rio generation, using FL as a data privacy strategy. They
sed a least squares loss function to generate high-quality
avoiding vanishing gradients and mode collapse prob-
However, this framework assumes similar computing

r and data distribution, which may not be feasible in
tic scenarios.
the context of cyber threat detection, Tabassum et al. [29]
d federated GAN to tackle limited and unbalanced data
T devices. They trained generators and discriminators
y and synchronously, using gradient exchange and model
es. However, there’s no loss function for evaluating the
ator’s output, and training the discriminator on a mix
ta distributions might reduce classification performance.
ionally, sharing GAN models could expose client data.
different study, Zang et al. [30] introduced a GAN-
approach as an attack model, aiming to generate ar-

l samples for the backdoor and label-flipping attacks.
ly, the authors utilized the exchanged updates between

erver and clients to update a Discriminator architecture
ut prior knowledge of the training data. Based on this
ed architecture, they successfully trained a generator. In
the authors introduced FL-GAN with differential privacy

enhanced security and data privacy mechanism for
Additionally, they proposed a Long Short-Term Memory
M) architecture for both conditional GAN models, aiming
ress the challenges posed by imbalanced and insufficient
amples in the context of effective IDS. However, they did

onsider the validation of the consistency of the generated
rk traffic data.

spite the promising potential demonstrated by previous
s on GANs, their application in securing Industrial
against emerging cyber threats, including zero-days and
sarial attacks, is still in its early stages. Furthermore, the
ration of the feasibility of deploying privacy-preserving
ated GANs, especially in handling imbalanced and non-
s not well discovered. Several research gaps necessitate
ion. In addition, there is a notable absence of rigorous
sis regarding the consistency and validity of the synthetic
samples, questioning model accuracy in reflecting real
threat behaviors. Furthermore, an oversight of adversar-

ial attack advancements, like white-box attacks, raises do
about model robustness. This paper addresses these gap
presenting an advanced Federated Generative IDS specifi
tailored for the Industrial IoT. We propose a three-m
framework employing a well-designed conditional GAN
work, addressing non-IID data and adversarial attacks. A
same time, the third model focuses on precise zero-day
cyber threat identification.

IV. FEDGENID

A. Overview

Central Aggregator

Generator

Local Training

Discriminator

...
Private data

Generator

Classifier
Share

Generator

Classifier

Model Broadcast

Model Updates

Synthetic data

Generator

Local Training

Discrimin

Private Synthetic data

Classifier

Fit

Classifier

Fit

Fig. 1: The proposed Federated Generative Intrusion Dete
System (FedGenID)

In this paper, we propose a novel framework for enh
ing the efficiency and robustness of DL-based cyber t
detection named (FedGenID), through the incorporatio
federated learning (FL) and Conditional Generative Ad
sarial Networks (cGANs). Figure 1 illustrates the work
of our framework. Specifically, we employ FL to add
privacy concerns and the computation efficiency of indu
IoTs, allowing models to train on distributed data lo
on user devices while only exchanging model updates
addition, we propose a generative framework to overc
limited data, imbalanced, and non-IID data challenges
enhance adversarial resilience, allowing robust and effi
cyber threat detection.

In this context, we design a three-model paradigm consi
of a federated generative model (i.e., cGAN Generato
Discriminator model (i.e., cGAN Critic), and a Clas
model. The federated generative model generates (FGM
verse artificial samples, the Discriminator (D) learns to di
guish between artificially generated and real samples, and
Classifier (C) trains on both original and artificially gene
data for efficient and robust cyber threat identification. In
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ation proceeding of FedGenID, we propose to share both
GAN Generator and Classifier models between clients,

the cGAN Discriminator resides on the client side. This
gement is motivated by the need to enhance the stability
rivacy preservation of distributed GAN training, which
o susceptible to adversarial attacks. By leveraging the

Discriminator locally, clients can detect and flag such
sarial attacks for further analysis. In addition, this will
ve communication efficiency and privacy considerations
. By sharing the Generator, clients can generate diverse
ial samples locally and augment their local datasets,

helps identify zero-day and sophisticated adversarial
s.
the other hand, the global Classifier, shared between

s, undergoes updates that are also influenced by the
ial samples generated using the global Generator instead
ly relying on local updates contributed by individual
ipants. This allows the classifier to train on large and

se data sets. Consequently, the classifier would generalize
erform very well in identifying various attacks based

eir characteristics, providing valuable insights for threat
sis and response. Moreover, this methodology aims to
ve the overall resilience of the model and mitigate
otential risks associated with learning attacker-induced
ns from poisoned updates.

onditional-GAN training procedure

r training objective is to achieve an equilibrium point
the generator produces diverse and realistic samples.

e same time, the critic accurately distinguishes between
nd generated data, providing meaningful feedback to the
ator to produce samples that align with the specified
tion (i.e., the target class label). Our implementation of
onditional-GAN capitalizes on the capabilities of deep
lutional neural networks (CNNs) to effectively extract
t features from the conditioning input samples :
he Discriminator model (𝐷): depicted in Figure 2, and
omposed of four convolutional layers with a rectified
inear unit (ReLU) activation function. It takes in both
enerated and real data samples and outputs the estimated
asserstein distance between the fake and the real data

istribution as a loss function for training objectives,
roviding improved feedback to the generator and guiding
t to produce samples that closely resemble the real data
istribution while matching the specified condition on
arget classes. In addition, 𝐷 also performs fine-tuning
or adversarial attack prediction in the post-GAN training
hase. To achieve this, we incorporate a Dense layer that
pplies binary cross-entropy loss with Sigmoid function
n its outputs to quantify the discrepancy between the
redicted and ground truth values of real and generated
ata samples. By employing this approach, we aim to
nhance the Critic’s ability to discern and classify adver-
arial attacks effectively.
he Generator model (𝐺): depicted in Figure 2, and
omposed of four transposed convolutional layers with
atch normalization and ReLU activation function. 𝐺
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Fig. 2: The proposed three-model approach for efficient
robust cyber threat detection

takes in random samples picked from a uniform l
space denoted as 𝑧 ∈ R𝑑 where 𝑑 is the dimensio
the feature, along with a condition vector of class la
denoted as 𝑦. The aim is to produce the required lab
examples. The generator’s output is passed throu
Sigmoid activation function to map the generated fea
into normalized values between 0 and 1, according to
real data distribution.

• The Classifier Model (𝐶): an independent CNN m
designed explicitly for multi-class classification t
By leveraging augmented data for training, 𝐶 effect
captures real-world data’s intricate variations and c
plexities. Consequently, 𝐶 demonstrates proficienc
identifying a wide range of attack classes, showca
its robustness and resilience when manipulated with
versarial attempts.

• Federated learning Objective: The objective of th
is to update the global Generator model, denoted a
and the global Classifier, denoted as C, using 𝐾
models from corresponding clients. To achieve this
employ an averaging algorithm, which can be expre
as follows:

G ← 1
𝐾

𝐾∑︁
𝑘=1

𝐺𝑘 , C ← 1
𝐾

𝐾∑︁
𝑘=1

𝐶𝑘

Averaging allows for consolidating knowledge from
tiple clients and collaborative learning in a distrib
setting, enhancing model performance and generaliza

• Local Training Objective: The training objectiv
cGAN at the client side involves alternately upd
the critic and the generator networks. We integrated
Wasserstein loss function to both models’ goals
which represents the approximation functions that
sure how closely generated and real data distribution
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ased on how much one distribution needs to be moved
o create the other. The goal is to prevent the generator
rom collapsing into one mode and ensure the generated
amples are realistic. The Wasserstein loss is defined as
ollows:

min
𝐺

max
𝐷

(
E𝑥∼𝑃𝑟 [𝐷 (𝑥 |𝑦)] − E𝑧∼𝑃𝑧 [𝐷 (𝐺 (𝑧 |𝑦))]

)
(2)

here 𝑃𝑧 represents the noise distribution and generates
ynthetic data samples. 𝐷 (·|·) the critic function, also
nown as the critic, which evaluates and distinguishes
etween real data samples 𝑥 drawn from the real data
istribution 𝑃𝑟 and the generated samples produced by
he generator function 𝐺 (·|·).
ntuitively, the critic aims to distinguish diverse real data
rom fake data conditioned on the given labels. At the
ame time, the generator tries to fool the critic by produc-
ng as realistic data as possible given the target labels. For
etter stability of cGAN, we added the gradient penalty
GP) to the previous loss (eq ) as an approximation for
nforcing the 1-Lipschitz continuity on the critic gradient
orm to be one almost everywhere. The implementation
f GP is as follows :

min
𝐺

max
𝐷

(
2 + 𝜆 · 1

𝑛

𝑛∑︁
𝑖=1

[

∇𝑥𝑖𝐷 (𝑥𝑖 |𝑦𝑖)

2 − 1
]2

)
(3)

here, 𝜆 is the hyper-parameter controlling the strength
f the gradient penalty, 𝑥𝑖 is a sample randomly interpo-
ated between real data 𝑥𝑖 and generated data 𝐺 (𝑧𝑖 |𝑦𝑖),
nd ∇𝑥𝑖𝐷 (𝑥𝑖 |𝑦𝑖) represents the gradient of the critic’s
utput concerning 𝑥𝑖 .
urthermore, for better performance, the critic indepen-
ently applies the binary cross-entropy loss expressed as:

min
𝐷

(
1
𝑛

𝑛∑︁
𝑖=1
[log(𝐷 (𝑥𝑖 |1)) + log(1 − 𝐷 (𝐺 (𝑧𝑖 |𝑦𝑖) |0))]

)

(4)
here 𝐷 (.|1) and 𝐷 (.|0) represent the D’s prediction

or the input data sample as real or fake, respectively,
ompared to the ground truth values (0,1).
n the other hand, for updating the classifier for multi-

lass classification, the objective can be formulated as:

min
𝐶

(
−1
𝑛

𝑛∑︁
𝑖=1

𝐶∑︁
𝑐=1

𝑦𝑖,𝑐 log(𝐶 (𝑥𝑖))
)

(5)

here 𝐶 is the classifier, 𝑥𝑖 is the augmented data sample,
𝑦𝑖,𝑐 is the ground truth label for class 𝑐, and 𝐶 (𝑥𝑖) is the
redicted probability distribution over the classes.

dGenID Complexity Analysis

ile our proposed federated approach offers scalability,
cy, and distributed resource utilization crucial in IoT
onments, we further formulate the computational and
unication complexities of the proposed FedGenID ap-

h against the traditional centralized approach. Our Fed-
incorporates both federated conditional GAN training

TABLE I: Notation

Symbol Description
𝐾 A set of participating clients
𝐼 Local iterations
𝐸 Global epochs
𝑚 Local batch size
𝛼𝐺 Learning rate of Generator
𝛼𝐷 Learning rate of Critic
𝜆 Penalty
G Global Generator
D Global Critic
𝑃𝑧 Noise distribution
𝐷 ( · | · ) Critic function
𝐺 ( · | · ) Generator function
𝑃𝑟 Real data distribution
𝑥 Real data sample
𝑧 Noise vector
𝑦 Random label
𝑥̃ Interpolated sample
∇𝑥̃𝐷 ( 𝑥̃ |𝑦) Gradient of critic’s output with respect to 𝑥̃
Lgen Generator loss
Ldisc Critic loss

Algorithm 1 FedGenID : conditional-GAN Training

Require: a set of clients K, Local iterations 𝐼, global ep
𝐸 , local batch size 𝑚, learning rate of Critic 𝛼𝐷 , lear
rate of Generator 𝛼𝐺 , gradient penalty 𝜆

Ensure: Trained Critic D and Generator G
1: Initialize Generator G with random weights
2: for 𝑟 = 1 to 𝑅 do
3: Parallel. For 𝑐𝑙𝑖𝑒𝑛𝑡 𝑘 ∈ |K|
4: for 𝑡 = 1 to 𝐸 do
5: Train Local Critic D𝑛 on client 𝑛 using Alg.
6: Train Local Generator G𝑛 on client 𝑛 using A
7: Check convergence condition: if distance betw
8: fake and real predictions ≤ 0.1 then break
9: end for

10: end
11: Update Global Generator G by averaging local ge

ators:
12: G ← 1

|K |
∑ |K |
𝑛=1 G𝑛

13: return Trained Generator G to Clients
14: end for

(Algorithm 1) and the subsequent federated classifier trai
phases. We evaluate this process’s resource requirem
scalability, and efficiency, considering both phases and
involvement of multiple IoT devices 𝑘 .
• Computation Complexity :

Θ
(
2𝐼 · |𝑚 | · ( |𝜔𝑔𝑖 | + |𝜔𝑑𝑖 | + 𝐼𝑀) · 𝐸
+2𝐼Cnn · |𝑚 | · |𝜔Cnn | · 𝐸Cnn · 𝐾)

• Communication Complexity :

Θ(𝐼 · ( |𝜔𝑔𝑖 | + 𝐼CNN · |𝜔CNN | · 𝐾)
Where, 𝐼 represents the local iterations, 2𝐼 is for the for
and backward operations, 𝑚 is the local batch size,
and |𝜔𝑑𝑖 | are the sizes of the generator and discrimin
parameter sets, 𝐼𝑀 accounts for floating-point operation
is the total global training. Similarly, we add the compl
of the federated CNN-classifier training.
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ithm 2 FedGenID: Local Generator Training

ire: Local iterations 𝐼, local batch size 𝑚, learning rate
f Generator 𝛼𝐺 , penalty 𝜆
re: Trained Generator G
pload Generator G from Server

or 𝑖 = 1 to 𝐼 do
Sample 𝑚 noise vectors {𝑧1, 𝑧2, . . . , 𝑧𝑚} from noise

istribution 𝑃𝑧
Sample 𝑚 random labels {𝑦1, 𝑦2, . . . , 𝑦𝑚} from clients
Generate synthetic samples:

𝐺 (𝑧1 |𝑦1), 𝐺 (𝑧2 |𝑦2), . . . , 𝐺 (𝑧𝑚 |𝑦𝑚)}
Compute generator loss using Wasserstein loss:
Lgen = 1

𝑚

∑𝑚
𝑖=1 𝐷 (𝐺 (𝑧𝑖 |𝑦𝑖))

Update Generator weights using gradient descent:
G ← G − 𝛼𝐺 · ∇GLgen

nd for
eturn Trained Generator G

ithm 3 FedGenID: Local Critic Training

ire: Local iterations 𝐼, local batch size 𝑚, learning rate
f Critic 𝛼𝐷 , penalty 𝜆
re: Trained Critic D
nitialize Critic D with random weights
or 𝑖 = 1 to 𝐼 do

Sample 𝑚 real data samples {𝑥1, 𝑥2, . . . , 𝑥𝑚} from
lients

Sample 𝑚 noise vectors {𝑧1, 𝑧2, . . . , 𝑧𝑚} from uniform
istribution 𝑃𝑧

Sample 𝑚 random labels {𝑦1, 𝑦2, . . . , 𝑦𝑚} from clients
Generate synthetic samples:

𝐺 (𝑧1 |𝑦1), 𝐺 (𝑧2 |𝑦2), . . . , 𝐺 (𝑧𝑚 |𝑦𝑚)}
Sample 𝑚 random interpolation factors

𝛼1, 𝛼2, . . . , 𝛼𝑚} from a uniform distribution
Compute interpolated samples: {𝑥1, 𝑥2, . . . , 𝑥𝑚} =

𝑖𝑥𝑖 + (1 − 𝛼𝑖)𝐺 (𝑧𝑖 |𝑦𝑖)
Compute critic loss using Wasserstein loss with gra-

ient penalty:

Ldisc =
1
𝑚

𝑚∑︁
𝑖=1

[
𝐷 (𝑥𝑖 |𝑦𝑖) − 𝐷 (𝐺 (𝑧𝑖 |𝑦𝑖))

+ 𝜆 ·
(

∇𝑥̃𝑖𝐷 (𝑥𝑖 |𝑦𝑖)

2 − 1

)2 ]
Update Critic weights using gradient descent:
D ← D − 𝛼𝐷 · ∇DLdisc

nd for

r approach optimizes resource efficiency by distribut-
aining across multiple IoT devices, while a centralized
ach may be limited by server capacity, especially for
scale devices. However, our FedGenID may have higher
unication overhead due to model parameters exchange

g FL-cGAN and CNN learning phases. In contrast,
entralized approach may entail uploading a substantial
nt of data to the centralized server for training.

Out-Of-Range Features (Example : mqtt.conflags Min = 0, Max = 
Real sample 0.1 0.2 0.0 0.188 0.1

Artificial sample 0.001 0.2 0.01 0.2 0.01
Corrected 0.001 0.2 0.01 0.2 0.01

One-Hot Encoded Features (Example : Http.Request)

Get Options PropFind Put Search T
Real sample 0 0 0 1 0

Artificial sample 0.001 0.2 0.01 0.2 0.0001 0
Corrected  0 1 0 0 0

 Binary Features 

http.response tcp.flags.ack
Real sample 0 1

Artificial sample 0.04 0.7
Corrected  0 1

Fig. 3: Example of Data Curation for Artificial Network Tr
samples

D. Validity of generated traffic data

The data generated by the conditional GAN requires a
tional processing and validation to align with the constr
and traffic feature boundaries of the original data. Algor
4 aims to ensure the correctness of generated data that
contain errors or discrepancies, particularly in specific
fic feature categories. To address these issues, we con
features that contain out-of-range values, incorrect value
binary features, and incorrect values for one-hot enc
features. For out-of-range features, we identify samples w
the synthetic data falls outside the valid range defined
the original data and clip their values to the real range
rectify these values for binary features by rounding the
the nearest integer. Finally, for one-hot encoded features
algorithm finds the index of the highest value in the one
encoded feature vector and sets all other values to 0.
approach can effectively guide researchers to address e
and discrepancies in synthetic data generated by GANs
network traffic data, enabling the generation of more consi
and reliable synthetic datasets for network-based cyber t
detection.

Figure 3 illustrates an example of cleaning artificial sam
based on selected one-hot encoded features. For instanc
feature like ‘mqtt.conflags’ should only have values of
1, while a feature like ‘Http.Request’ should only be on
the six predefined categories. Furthermore, features within
range of real examples remain unchanged.

V. PERFORMANCE EVALUATION AND ANALYSIS

Our experiment with the proposed FedGenID sec
framework was conducted on Google Collaboratory u
PyTorch and Tesla-T4 GPU accelerators. We equipped pa
ipating clients with non-iid datasets, as demonstrated in T
IV. We initially established the federated cGAN and proce
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ithm 4 Curation of Generated Data

ire: Original data 𝑂 with 𝑛 instances and 𝑑 features,
ynthetic data 𝑆 with the same shape as 𝑂 and 𝑑 features,
dices 𝑅 of features that need to be corrected for out-

f-range values, indices 𝐵 of binary features that need
be corrected for incorrect values, indices 𝐶 of one-hot

ncoded features that need to be corrected for incorrect
alues
re: Corrected synthetic data 𝑆′ with the same shape as

rocedure CORRECTDATA(𝑂, 𝑆, 𝑅, 𝐵, 𝐶)
𝑆′ ← 𝑆 ⊲ Create a copy of synthetic data
for 𝑖 ∈ 𝑅 do ⊲ Correct out-of-range values

𝑣min,𝑖 ← min(𝑂:,𝑖)
𝑣max,𝑖 ← max(𝑂:,𝑖)
𝑆′:,𝑖 ← max(min(𝑆:,𝑖 , 𝑣max,𝑖), 𝑣min,𝑖)

end for
for 𝑖 ∈ 𝐵 do ⊲ Correct binary values

𝑆′incorrect,𝑖 ← (𝑆:,𝑖 ≠ 0) ∧ (𝑆:,𝑖 ≠ 1) ⊲ Identify
correct values

𝑆′corrected,𝑖 ← ⌊𝑆incorrect,𝑖⌉ ⊲ Round incorrect values
nearest integer

𝑆′corrected,𝑖 ← 𝑆corrected,𝑖 ·𝑆′incorrect,𝑖+𝑆:,𝑖 ·(¬𝑆′incorrect,𝑖)
Replace incorrect values with corrected values

end for
for 𝑖 ∈ 𝐶 do ⊲ Correct one-hot encoded values

ℎ𝑖 ← argmax(𝑆:,𝑖) ⊲ Find index of highest value
𝑆′:,𝑖 ← 𝒆ℎ𝑖 ⊲ Set all but highest value to 0

end for
return 𝑆′ ⊲ Return corrected synthetic data

nd procedure

training. Subsequently, we leverage the federated gener-
model to enhance the training of the federated classifier
l by providing augmented data. After that, we introduced
ential privacy training [8] for the global classifier model
valuated how augmented data in synthetic FL alleviated
egative effects of DP and improved robustness against
day attacks.

reover, it is essential to note that each client maintains
ritic model, which is utilized as a discriminator for
ting adversarial examples. Details regarding the experi-
l settings and learning parameters employed in this study
e found in Table II. Figure 4 illustrates the flowchart
r proposed framework for robust and resilient cyber
detection using a distributed framework. To evaluate

mpact of security constraints on the learning process,
ave employed various metrics to evaluate both detection
ency and effectiveness. These metrics include Accuracy,
sion, Detection Rate, false positive rate and false negative
By analyzing these measures, we aim to gain insights into
erformance and robustness capabilities of our proposed
work for detecting zero-day cyber threats. Furthermore,
im to understand the influence of security constraints,
ing distributed learning and DP training, on its efficacy.

• Accuracy (Acc): given by:

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 where :

TP: refers to the count of negative samples tha
accurately classified.
TN: refers to the count of negative samples tha
accurately classified.
FP: refers to the count of positive samples tha
incorrectly categorized.
FN: refers to the count of negative samples tha
incorrectly categorized.

• Precision (Pr): denotes the proportion of proper a
classifications (TP) attack predictions to the total am
of predicted attack results and given by :

𝑃𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
• Detection rate (Dr): denotes the proportion of pr

attack classifications (TP) relative to the overall cou
all samples that ought to have been identified as att
and given by :

𝐷𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
• False positive rate (FPR) represents the proportio

incorrectly categorized negative samples (FP) relativ
the overall count of all samples that should have
classified as negatives. It is calculated using the follo
formula:

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
• False negative rate (FNR): represents the proportio

incorrectly categorized positive samples (FN) relativ
the overall count of all samples that should have
classified as positives. It is calculated using the follo
formula:

𝐹𝑁𝑅 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑃

TABLE II: Experimental settings

Parameter Values
cGAN Generator Refer to 2
cGAN Critic Refer to 2
Local cGAN epochs 10
Critic repeats for one epoch 2
Learning rate 0.0002
Local Batch_size 32

Federated cGAN

Global rounds 5
Classifier CNN 15-cla
Local Batch_size 64
Global rounds 15Federated Classifier

Learning rate 0.001
Epsilon (𝜖 ) 1
Delta (𝛿) 1.5e-5Differential privacy
Gradient norm bound (𝐶) 1.2

* Optimizer Adam
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Test Set

Raw Data

Data preprocessing

Drop the main Traffic
features (IPs, Ports, ..)
Drop null features (values
all zero)
Drop corrupted rows
Drop duplicates

Start

Normalizaion and one-hot encoding 

Apply Min-Max normalization
Drop "Attack_label" 
Apply one-hot encoding for
categorical features
Set 'Attack_type' as target class

20%80% Holds Out and Stratified Splitting 

Local cGAN
Training

Global Generator
Aggregation

Local Classifier
Training

Convergency 

Y

?

Convergency 

Global Classifier
Aggregation

Y

N

Final Classifier

Adversarial Attacks

Evaluate

Evaluate

Identify Cyber
Attacks including
Zero days Attacks

Detect Adversarial 
attacks 

litting the Train Set into Non-IID Data
Distribution for Clients

Fine-tune local 
Critic

A
ug

m
en

te
d 

da
ta

: Flowchart of FedGenID framework aggregation, train-
nd evalution

TABLE III: Edge-IIoTset Data distribution.

Classes Original Train Count Original Test Count
Normal 1046926 323129

Backdoor 19890 4972
Vulnerability_scanner 40088 10022

DDoS_ICMP 93149 23287
Password 40122 10031

Port_Scanning 18051 4513
DDoS_UDP 88027 22007
Uploading 30107 7527

DDoS_HTTP 39929 9982
SQL_injection 40962 10241
Ransomware 8740 2185
DDoS_TCP 40050 10012

XSS 12732 3183
MITM 320 80

Fingerprinting 801 200

ata Selection and Processing:

r proposed framework uses the new Edge-IIoTset [6],
exhibits characteristics of both imbalanced and non-

atasets. This dataset comprises fourteen labeled network
s. Our data preprocessing involved removing duplicates

handling missing values by dropping instances with
’ or ’INF’ values. Additionally, irrelevant traffic features
P addresses and payload information (e.g., frame.time,
_host, ip.dst_host, arp.src.proto_ipv4, arp.dst.proto_ipv4,

http.file_data, http.request.full_uri, icmp.transmit_timest
http.request.uri.query, tcp.options, tcp.payload, tcp.src
tcp.dstport, udp.port, mqtt.msg) were excluded. Cate
ical features such as ’http.request.method’, ’http.refe
’http.request.version’, ’dns.qry.name.len’, ’mqtt.conack.fl
’mqtt.protoname’, and ’mqtt.topic’ were encoded using
hot encoding, resulting in a total of 95 features. The data
then standardized using min-max scaling. Finally, a hold
split strategy was applied to partition the data into Trai
and Test Sets. The initial distribution of the dataset is dep
in Table III.

To emulate the distribution heterogeneity and natur
FL, we divided the training set into non-IID partitions
allocated them to ten clients. For this, we implement
label partition method, ensuring that each client has a ran
subset of labels with the same feature vector of training
assuming that each client has partial knowledge of the
classes involved in the problem, as demonstrated in Table

B. FedGenID: Federated cGAN Training

A series of comprehensive experiments were conducte
uncover the ideal hyperparameter setup for training stab
of our designed federated cGAN scheme. Our findings re
that utilizing several local epochs with fewer federated ro
improves stability. Figures 5 demonstrate the local trai
loss of Federated cGAN using the Wasserstein distance
gradient penalty (Wass-GP) reported in predetermined trai
steps. Both cGAN models are directly related to the Wa
stein distance, where the Critic loss represents the approxi
negative of the Wasserstein distance. As demonstrated, u
regular loss functions, Wass-GP is unbounded and can ou
any number. This feature enhances the critic without suffe
from the vanishing gradient problem. We can see that
critic’s loss starts at a relatively high value and grad
decreases over time. This signifies an improvement in
Critic’s ability to distinguish between actual and gene
samples. Conversely, the generator loss starts at a lower v
and slightly increases over time. This can be attribute
the enhanced performance of the Critic, which poses a m
challenging adversarial objective for the generator. Not
as the training progresses, a convergence pattern beco
evident, where the losses associated with both the gene
and Critic tend to approach each other and ideally conve

C. FedGenID: Adversarial Attack Detection

The resilience of IDS to sophisticated adversarial att
is a critical aspect often overlooked. Relying on a s
model to defend against all adversarial and zero-day att
presents a potential vulnerability. To enhance the resili
and adaptability of our framework against continually evol
adversarial attacks, we enhance the capability of local c
to detect adversarial examples by adjusting their dec
threshold by applying the Sigmoid function. It is notewo
that Critic models were trained using the Wasserstein
that maximizes the distance between real and fake in
Therefore, if we applied an activation function, we c
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TABLE IV: Non-IID Data Distribution

Client 1 Client 2 Client 3 Client 4 Client 5
ttack classes Count Attack classes Count Attack classes Count Attack classes Count Attack classes Count
ormal 5914 Normal 8420 Normal 5145 Normal 2902 Normal 4340
ackdoor 3023 Backdoor 4066 Backdoor 2600 Vul_scanner 4274 Backdoor 2215
DoS_ICMP 14121 Vul_scanner 10069 Vul_scanner 6080 DDoS_ICMP 14369 DDoS_UDP 12777
ssword 6031 Uploading 7422 DDoS_UDP 15119 DDoS_UDP 8500 Uploading 3808
rt_Scan 2659 SQL_injection 10164 Uploading 4597 Uploading 2696 DDoS_HTTP 7154

DoS_UDP 13223 Ransomware 2121 SQL_injection 6293 DDoS_TCP 2841 SQL_injection 5308
DoS_HTTP 6016 DDoS_TCP 8401 DDoS_TCP 5200 DDoS_TCP 4428
DoS_TCP 6009

Client 6 Client 7 Client 8 Client 9 Client 10
tack classes Count Attack classes Count Attack classes Count Attack classes Count Attack classes Count
rmal 4862 Normal 1364 Normal 1143 Normal 892 Normal 5018
ckdoor 2952 Vul_scanner 2020 Backdoor 843 Backdoor 659 Backdoor 3532
l_scanner 7395 DDoS_ICMP 10430 DDoS_ICMP 9041 Vul_scanner 1628 Ransomware 4680
loading 4340 Port_Scanning 2566 Port_Scanning 2177 DDoS_ICMP 7122 XSS 12732
L_injection 7210 DDoS_UDP 6195 DDoS_UDP 5278 Password 5255 MITM 320
oS_TCP 4870 Uploading 1140 Uploading 985 DDoS_UDP 4209 Fingerprinting 801

SQL_injection 1923 DDoS_HTTP 4398 SQL_injection 1610
Ransomware 1100 DDoS_TCP 1126 Ransomware 839
DDoS_TCP 1376
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Fig. 5: Local cGAN training: Loss vs Training Steps

ct adversarial examples and evaluate them against a cor-
nding ground truth value. Nevertheless, our experiments
led that our cGAN-Critic models exhibited limitations in
alization to other persistent adversarial inputs, thereby
ing the practicality of the defense mechanism in real-

scenarios. To address this issue, we further fine-tune

the critic models using data from the global generator
data from more sophisticated attack methods to increase
adversarial diversity. To this end, we refined our approac
fine-tuning each local cGAN-Critic. Specifically, we add
linear layer and trained using genuine data from the cli
datasets in combination with data from the global gene
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: Fine-tuning Loss for Clients Critic for adversarial attack
tion

E V: Performance Comparison of Proposed individual
tor against the three evaluated adversarial attacks

acks Clients Accuracy % DR % FPR %

SM Worst client : 2 92.05 98.64 15.76
Best client 8 96.74 97.29 04.57

M Worst client : 10 92.97 98.96 18.52
Best client : 9 98.04 98.92 04.01

Fool Worst client : 2 92.12 98.82 15.76
Best client: 9 98.79 100 04.01

ore sophisticated adversarial inputs obtained from the
attack. Figure 6 illustrates the fine-tuning history of

ts Critic for 15 epochs. The results are reported in Table

edGenID: Zero-day Attack Detection

expand our framework’s robustness evaluation against
day attacks, addressing the dynamic nature of these
s. Our non-IID setup simulates the unpredictability of
threats by excluding specific attack classes from cer-
lients’ datasets. Additionally, we simulate these attacks
gmenting the TestSet to include variations and novel
ces, leveraging the global generator. We denote the
ined original TestSet and the generated zero-day attack
les as the Augmented TestSet. We removed any duplicate
ds to ensure its integrity and labeled the generated zero-
ttack samples with their corresponding known attack la-
Furthermore, our data curation approach ensures that the
les are realistic and represent the real data distribution.
e 8 and Table VIII demonstrate performance results in
ting and identifying Zero-day attacks.

dGenID: Numerical results

ure 7 demonstrates the class distribution of generated
ented train data using our proposed federated generative
l (FGM). Notably, our FedGenID incorporates class-
tioned labels, which; although not immune to ensuring
accuracy, significantly enhances data diversity. Our in-
ation produced a dataset comprising 50,000 instances for
distinct attack class. However, following the application

of our data curation methodology, which introduces mar
modifications to feature values, a mismatch was dete
between the initially specified target classes and the resu
predicted labels upon employing a well-trained DL class
In the scope of our research, we proceed with this lab
technique using the DL classifier with 96% accuracy on
original train data to rectify the labeling discrepancies. H
ever, it is worth noting that techniques such as self-superv
learning could be investigated in prospective studies.

The results demonstrate that the approach successfully
tures the underlying patterns and features of classes suc
Normal, XSS, Fingerprinting, Portscanning, and Passwor
indicated by their relatively high sample counts (Figur
These results highlight the Wasserstein conditional GA
ability to generate synthetic data that faithfully exhibits
distinct characteristics associated with each class. How
it is worth noting that certain classes, including Backd
HTTP, and DDoS_UDP, exhibit relatively low counts,
gesting the presence of fewer distinctive patterns or feat
posing challenges for an accurate generation. Neverthe
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Fig. 7: Confusion matrix depicting the class distributio
generated traffic. The classes are labeled using the F
classifier

by integrating these generated samples into the local trai
process of participating clients, we aim to enhance robus
and classification efficiency against adversarial and zero
cyber attacks.

After the fine-tuning of clients’ critics, table V pre
a performance comparison of the proposed individual d
tor against three evaluated sophisticated adversarial atta
The results demonstrate that individual critics exhibit var
performance levels against different adversarial attacks,
some clients achieving higher accuracy and better dete
rates while keeping false positive rates relatively low.
instance, in the case of the FGSM attack, the best-perform
client (Client 8) achieved a detection rate of 97.29% a
false positive rate of 4.57%. Conversely, the worst-perform
client (Client 2) achieved a false positive rate of 15.7
Client 9 generally emerges as the top-performing client ac
the evaluated attacks, displaying impressive detection
and accuracy. These findings emphasize the potential o
proposed fine-tuning individual critics to discern sophistic
adversarial attacks effectively instead of relying on a s
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TABLE VI: Per-class performance using different evaluation aspects

Original TestSet Augmented TestSet
Metrics Precision Detection rate Precision Detection rateClasses Settings FedID FedGenID FedID FedGenID FedID FedGenID FedID FedGenID

Normal No-DP 1.00 0.99 1.00 1.00 0.91 0.99 0.96 1.00
DP 1.00 1.00 1.00 1.00 0.86 1.00 0.99 1.00

Backdoor No-DP 0.63 0.65 0.96 0.98 0.62 0.65 0.93 0.96
DP 0.72 0.73 0.89 0.89 0.72 0.73 0.86 0.89

Vulnerability_scan No-DP 0.89 0.60 0.70 0.98 0.33 0.60 0.64 0.92
DP 0.58 0.49 0.94 0.99 0.57 0.49 0.58 0.99

DDoS_ICMP No-DP 1.00 0.97 1.00 1.00 0.83 0.97 0.76 0.97
DP 0.97 1.00 0.98 0.99 0.90 1.00 0.73 0.99

Password No-DP 0.00 0.94 0.00 0.07 0.00 0.94 0.00 0.50
DP 0.00 1.00 0.00 0.07 0.00 1.00 0.00 0.07

Port_Scanning No-DP 0.00 0.86 0.00 0.00 0.00 0.86 0.00 0.70
DP 0.00 0.58 0.00 0.03 0.14 0.58 0.00 0.03

DDoS_UDP No-DP 0.98 1.00 1.00 1.00 0.83 1.00 0.98 0.99
DP 0.96 0.97 1.00 1.00 0.96 0.97 0.98 1.00

Uploading No-DP 0.54 0.76 0.39 0.38 0.36 0.76 0.34 0.54
DP 0.45 0.57 0.42 0.37 0.17 0.57 0.41 0.37

DDoS_HTTP No-DP 0.64 0.79 0.97 0.30 0.64 0.79 0.95 0.31
DP 0.75 0.87 0.52 0.25 0.49 0.87 0.51 0.25

SQL_injection No-DP 0.41 0.48 0.90 0.91 0.41 0.48 0.65 0.89
DP 0.40 0.41 0.82 0.90 0.40 0.41 0.59 0.90

Ransomware No-DP 0.00 0.85 0.00 0.11 0.00 0.85 0.00 0.57
DP 0.00 0.30 0.00 0.06 0.00 0.30 0.00 0.06

DDoS_TCP No-DP 0.71 0.71 0.99 0.99 0.25 0.71 0.92 0.97
DP 0.69 0.69 1.00 1.00 0.57 0.69 0.92 1.00

XSS No-DP 0.00 0.92 0.00 0.03 0.00 0.92 0.00 0.81
DP 0.99 1.00 0.02 0.02 0.56 1.00 0.01 0.02

MITM No-DP 0.00 0.92 0.00 1.00 0.00 0.92 0.00 0.81
DP 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

Fingerprinting No-DP 0.00 0.90 0.00 0.00 0.00 0.90 0.00 0.86
DP 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00

FedID: Federated Intrusion detection; FedGenID : Federated Generative Intrusion detection;
No-DP : No differentially private training; DP : with differentially private training.
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(a) Federated Generative Intrusion Detection (FedGenID)
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Fig. 8: The effectiveness of FedGenID over FedID in the context of zero-day attacks

l to defend against all attacks. Furthermore, our design
s from conventional methods by utilizing another clas-
detection model to investigate undetected adversarial

s. Consequently enhancing the overall system robustness.
ure 9 illustrates a comparative analysis of validation
acy between FedGenID and FedID over time, consid-
both scenarios with and without DP. The evaluation is

rmed on the Original Real-TestSet. While our synthetic
proach offers a degree of privacy preservation, the intro-
n of DP training shows promise for further enhancing

privacy protection despite its potential negative impac
model performance. Our results demonstrate that inco
rating DP incurs a training overhead for both framew
with FedGenID displaying a comparatively lower incr
in computational time attributable to its data augment
approach. Furthermore, our analysis reveals that FedG
achieves performance levels nearly comparable to thos
FedID without DP while outperforming it under DP t
ing conditions. This underscores the potential of FedG
as a more cost-effective solution when considering pri
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TABLE VII: Comparison with related GAN-based IDS

tudy Main Idea Dataset Features

Name Settings
Features
Diversity

Federated
Learning

Differential
Privacy

Adversarial
Attacks

Data
Curation

aplan et al. 2020
24]

Two methods for improving
BiGAN training include mini-
mizing the mean squared error
between the generator input
and output and starting with a
pre-trained generator

KDD99 IID Low No No No No

abdalgawad et al.
021 [25]

BiGAN model to detect un-
known anomalies, as a form of
defense against novel or zero-
day

IoT-23 IID Low No No No No

u et al. 2021 [26] Feature reduction and a deep
convolutional GAN,
addressing limited resources
and optimizing the
discriminative CNN network
with synthetic samples.

CIC-DDOS2018
CIC-DDOS2019 IID Medium No No No No

ie et al. 2021 [27] a GAN-discriminator to de-
tect potential data tampering
threats in controller area net-
works by incorporating en-
hanced synthetic attack data.

N/A N/A Medium No No No No

abassum et al.
022 [29]

Federated GAN for IoT de-
vices using gradient exchange
and model updates.

KDD99,
NSL-KDD,

UNSW-NB15
IID Medium Yes No No No

u et al. 2023 [36] Self-attention WGAN, and fo-
cal loss DNN to improve the
detection performance of rare
and unknown attack

NSL-KDD,
CIC-IDS-2018 IID Medium No No No No

e et al. 2022 [31] FL-GAN with differential pri-
vacy for enhanced security and
data privacy in IDS

CIC-IDS2017 IID Medium Yes Yes No No

eenakshi et al.
024 [37]

a self-attention-based condi-
tional variational auto-encoder
GAN, combining advanced
techniques to adapt to network
dynamics, and accurately iden-
tify intusions

WSN-DS IID Medium No No No No

ur Study FL-GAN with a 3-model IDS
framework comprising a gen-
erative model, local discrim-
inator, and classifier models,
for robust detection of zero-
day and adversarial attacks

EdgeIIoTSet2022 Non-IID High Yes Yes
FGSM,
BIM,
DeepFOOL

Yes
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: An Examination of Validation Accuracy in FedGenID
ared to Standalone FedID with and without Differential

cy Training on the Original Test Data

rvation. Notably, even when both strategies are combined
ost privacy protection, FedGenID excels in mitigating
dverse effects of DP by enhancing the diversity and
age of the data, and improving the model’s robustness
eneralization. These findings reinforce the robustness
fficiency of our proposed framework, emphasizing its
cal applicability in privacy-sensitive settings.
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Fig. 10: Comparative analysis of cyber threat detection
formance and robustness using our proposed FedGenID
Standalone FedID

Figure 10 illustrates a comparative study between FedG
and FedID, when also considering the impact of DP trai
on the classification accuracy of both frameworks on both
sets. The results demonstrate the potential of our prop
FedGenID and its ability to maintain competitive accu
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across different TestSets, with FedGenID achieving
% and 92.47% accuracy without and with DP-training in
riginal TestSet. Despite a slight drop with DP-training,
enID maintains commendable performance, surpassing

in the "Augmented-TestSet" by 14% and 10% without
ith DP training, respectively. These findings position

enID as a robust and adaptable privacy-preserving IDS,
ssing the evolving challenges of cyber threat detec-
in privacy-sensitive IoT environments. done Table VI

E VIII: Evaluating FedGenID and FedID against zero-
ttacks

Classes FedID FedGenID
Recall Fpr Fnr Recall Fpr Fnr

Normal 0.78 0.39 0.14 0.98 0.25 0.10
Back 0.01 0.00 0.00 0.29 0.00 0.01
Scan 0.53 0.20 0.03 0.84 0.05 0.09

ICMP 0.06 0.05 0.08 0.87 0.06 0.09
Pass 0.00 0.00 0.12 0.88 0.06 0.11
Port 0.00 0.00 0.13 0.95 0.17 0.05
UDP 0.06 0.04 0.00 0.84 0.01 0.00

Upload 0.24 0.05 0.03 0.83 0.02 0.06
HTTP 0.00 0.00 0.00 0.59 0.00 0.01
SQL 0.00 0.00 0.04 0.83 0.04 0.05
Rans 0.00 0.00 0.05 0.78 0.06 0.09
TCP 0.10 0.27 0.01 0.67 0.02 0.02
XSS 0.00 0.00 0.21 0.93 0.14 0.13

MITM 0.00 0.00 0.01 0.79 0.01 0.01
Fing 0.00 0.00 0.14 0.87 0.11 0.16

Accuracy 35.27% 92.17%
Fpr: False Positive Rate, Fnp : False Negative Rate

nstrates per-class performance results to evaluate the
iveness of FedGenID in enhancing the precision and

of detecting and identifying various types of cyber
s and robustness against zero-day attacks. Both FedID
eGenID achieve high precision and recall without DP
tecting the ’Normal’ traffic for threat detection. With
recision drops slightly, while recall remains competitive
experiments. Regarding specific attack categories, the

ion and recall scores of FedGenID and FedID ex-
notable distinctions across different privacy settings. In
rios like ’DDoS_ICMP’, ’DDoS_UDP’, ’MITM’, and
word’, FedGenID achieves performance levels nearly
alent to or better than FedID without DP. When both
cy-enhancing strategies are combined, FedGenID exhibits
t performance, especially in scenarios involving zero-day
s. These results underscore the potential of FedGenID as
able tool for privacy-preserving FL in security-sensitive

xts. However, while FedGenID demonstrates promising
s in accuracy, resilience, and generalization, there are
fic classes where further refinement may enhance preci-
and recall.
ure 8 and Table VIII compare the performance of
enID and FedID in detecting and identifying zero-day
s. The results demonstrate that FedGenID exhibits sig-
ntly higher performance metrics, with high recall rates
ost attack classes and lower false positive (FPR) and false
ive rates (FNR). For instance, FedGenID achieves low
and FNR for the ’Normal’ class, ensuring robust security
st zero-day attacks by minimizing the misclassification of
n traffic as malicious. Additionally, FedGenID achieves

low FNR across different attack classes, demonstrating its
ity to detect and identify malicious traffic instances accura
thereby reducing the risk of undetected attacks. These find
emphasize the importance of leveraging synthetic FL
data augmentation to enhance robustness against emerging
evolving cyber threats.

Overall, our proposed FedGenID framework present
novel contribution to federated generative intrusion dete
and demonstrated its efficiency in addressing challenges p
by privacy preservation, zero-day attacks, and emerging c
threats in industrial IoT applications.

In table VII, we compare our FedGenID framework
recent state-of-the-art GAN-based security frameworks.
scope of the comparison covers the GAN-based intru
detection application, specifically tailored to enhance c
threat detection performance. We distinguish our FedG
framework by opting for a recent and real-world industria
dataset with various network traffic features, providing a m
realistic representation of challenges than previous stu
In addition, we distinctively opt for a federated gener
model that undergoes training without the exchange of
critics to enhance the adaptability of FL against data
lenges, followed by a synthetic federated classifier lear
approach to improve robustness against zero-day cyber thr
Furthermore, our research underscores the significance of
curation in assessing the consistency of the generated tr
data, a crucial factor often missed in earlier works.
included is the adversarial defense against three sophistic
attacks to boost the resilience of IDS in the face of advers
attempts, a consideration often overlooked in prior w
Moreover, our study sets itself apart by incorporating
training, which provides an additional layer of data pri
during collaborative learning.

Overall, our comparative study offers novel contribut
including a recent dataset choice, the adoption of FL
DP, and meticulous attention to data curation, addressing
observed in prior research.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced an innovative FL fr
work named FedGenID. Specifically, we proposed an
proved federated generative framework to generate synt
data and blend it with actual client data. Thus overcom
imbalanced and distributed data challenges while impro
the efficiency and robustness against cyber threats. The re
conducted on a recent industrial cyber security dataset dem
strated the efficiency of our proposed security framew
while maintaining data privacy. However, secure aggreg
and authentication of model sharing are still required to en
the integrity and trustworthiness of our framework. Fu
studies will focus on addressing this limitation. Furtherm
we aim to explore ensemble learning approaches for colle
decision-making and self-supervised learning methodolo
to enhance generative model capabilities.

REFERENCES

[1] N. Tuptuk and S. Hailes, “Security of smart manufacturing syst
Journal of manufacturing systems, vol. 47, pp. 93–106, 2018.



Journal Pre-proof

15

[2] M
t
v

[3] B
a
S

[4] K
“
J

[5] M
s
e
p

[6] M
“
i
A

[7] D
d
I
C

[8] —
e
a
h

[9] N
E
t
I

[10] Y
“
o

[11] N
l
r

[12] J
“
I

[13] T
n
2
E

[14] S
g
fl
p

[15] Z
a
A

[16] I
S
A

[17] R
m
e

[18] S
d
t

[19] Z
o
i
I

[20] S
g
i
3

[21] J
t
I

[22] M
D
6
d
v

[23] M
“

1-12,

roach
185–

loul,
taset,”

rusion
rative
urnal,

hreat
rusion
tation

uliras,
n and
ctions
1151,

izani,
ning,”

ngan:
com-

5, pp.

ollab-
wered
Jour-

gen-
eprint

rivate
erated
ce on
0, pp.

enario
rning
no. 4,

rville,
ation

based
puter

n wsn
coder
faces,
Jo
ur

na
l P

re
-p

ro
of

. Lezzi, M. Lazoi, and A. Corallo, “Cybersecurity for industry 4.0 in
he current literature: A reference framework,” Computers in Industry,
ol. 103, pp. 97–110, 2018.
. Chen, Y. Tan, Z. Sun, and L. Yu, “Attack-resilient control against fdi
ttacks in cyber-physical systems,” IEEE/CAA Journal of Automatica
inica, vol. 9, no. 6, pp. 1099–1102, 2022.
. Wang, C. Gou, Y. Duan, Y. Lin, X. Zheng, and F.-Y. Wang,

Generative adversarial networks: introduction and outlook,” IEEE/CAA
ournal of Automatica Sinica, vol. 4, no. 4, pp. 588–598, 2017.
. Agarwal, S. Purwar, S. Biswas, and S. Nandi, “Intrusion detection

ystem for ps-poll dos attack in 802.11 networks using real time discrete
vent system,” IEEE/CAA Journal of Automatica Sinica, vol. 4, no. 4,
p. 792–808, 2016.
. A. Ferrag, O. Friha, D. Hamouda, L. Maglaras, and H. Janicke,

Edge-iiotset: A new comprehensive realistic cyber security dataset of
ot and iiot applications for centralized and federated learning,” IEEE
ccess, vol. 10, pp. 40 281–40 306, 2022.
. Hamouda, M. A. Ferrag, N. Benhamida, and H. Seridi, “Intrusion
etection systems for industrial internet of things: A survey,” in 2021
nternational Conference on Theoretical and Applicative Aspects of
omputer Science (ICTAACS). IEEE, 2021, pp. 1–8.
—, “Ppss: A privacy-preserving secure framework using blockchain-

nabled federated deep learning for industrial iots,” Pervasive
nd Mobile Computing, p. 101738, 2022. [Online]. Available:
ttps://doi.org/10.1016/j.pmcj.2022.101738
. Rodríguez-Barroso, D. Jiménez-López, M. V. Luzón, F. Herrera, and
. Martínez-Cámara, “Survey on federated learning threats: Concepts,

axonomy on attacks and defences, experimental study and challenges,”
nformation Fusion, vol. 90, pp. 148–173, 2023.
. Cheriguene, W. Jaafar, H. Yanikomeroglu, and C. A. Kerrache,
Towards reliable participation in uav-enabled federated edge learning
n non-iid data,” IEEE Open Journal of Vehicular Technology, 2023.
. Martins, J. M. Cruz, T. Cruz, and P. H. Abreu, “Adversarial machine

earning applied to intrusion and malware scenarios: a systematic
eview,” IEEE Access, vol. 8, pp. 35 403–35 419, 2020.
. Zhang, L. Zhao, K. Yu, G. Min, A. Y. Al-Dubai, and A. Y. Zomaya,
A novel federated learning scheme for generative adversarial networks,”
EEE Transactions on Mobile Computing, 2023.
. Chuenbubpha, T. Boonchoo, J. Haga, and P. Rattanatamrong, “Solving
on-iid in federated learning for image classification using gans,” in 2023
0th International Joint Conference on Computer Science and Software
ngineering (JCSSE). IEEE, 2023, pp. 333–338.
. Bond-Taylor, A. Leach, Y. Long, and C. G. Willcocks, “Deep
enerative modelling: A comparative review of vaes, gans, normalizing
ows, energy-based and autoregressive models,” IEEE transactions on
attern analysis and machine intelligence, 2021.
. Cai, Z. Xiong, H. Xu, P. Wang, W. Li, and Y. Pan, “Generative
dversarial networks: A survey toward private and secure applications,”
CM Computing Surveys (CSUR), vol. 54, no. 6, pp. 1–38, 2021.
. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,”
dvances in neural information processing systems, vol. 27, 2014.
. Durall, A. Chatzimichailidis, P. Labus, and J. Keuper, “Combating
ode collapse in gan training: An empirical analysis using hessian

igenvalues,” arXiv preprint arXiv:2012.09673, 2020.
. B. Hulayyil, S. Li, and L. Xu, “Machine-learning-based vulnerability
etection and classification in internet of things device security,” Elec-
ronics, vol. 12, no. 18, p. 3927, 2023.
. Liu, S. Li, Y. Zhang, X. Yun, and Z. Cheng, “Efficient malware
riginated traffic classification by using generative adversarial networks,”
n 2020 IEEE symposium on computers and communications (ISCC).
EEE, 2020, pp. 1–7.
. I. Popoola, R. Ande, B. Adebisi, G. Gui, M. Hammoudeh, and O. Jo-
unola, “Federated deep learning for zero-day botnet attack detection in
ot-edge devices,” IEEE Internet of Things Journal, vol. 9, no. 5, pp.
930–3944, 2021.
.-Y. Kim, S.-J. Bu, and S.-B. Cho, “Zero-day malware detection using
ransferred generative adversarial networks based on deep autoencoders,”
nformation Sciences, vol. 460, pp. 83–102, 2018.

. A. Ferrag, O. Friha, B. Kantarci, N. Tihanyi, L. Cordeiro, M. Debbah,
. Hamouda, M. Al-Hawawreh, and K.-K. R. Choo, “Edge learning for
g-enabled internet of things: A comprehensive survey of vulnerabilities,
atasets, and defenses,” IEEE Communications Surveys & Tutorials,
ol. 25, no. 4, pp. 2654–2713, 2023.
. A. Merzouk, F. Cuppens, N. Boulahia-Cuppens, and R. Yaich,

Investigating the practicality of adversarial evasion attacks on network

intrusion detection,” Annals of Telecommunications, vol. 77, no. 1
pp. 763–775, 2022.

[24] M. O. Kaplan and S. E. Alptekin, “An improved bigan based app
for anomaly detection,” Procedia Computer Science, vol. 176, pp.
194, 2020.

[25] N. Abdalgawad, A. Sajun, Y. Kaddoura, I. A. Zualkernan, and F. A
“Generative deep learning to detect cyberattacks for the iot-23 da
IEEE Access, vol. 10, pp. 6430–6441, 2021.

[26] Y. Wu, L. Nie, S. Wang, Z. Ning, and S. Li, “Intelligent int
detection for internet of things security: A deep convolutional gene
adversarial network-enabled approach,” IEEE Internet of Things Jo
2021.

[27] G. Xie, L. T. Yang, Y. Yang, H. Luo, R. Li, and M. Alazab, “T
analysis for automotive can networks: A gan model-based int
detection technique,” IEEE Transactions on Intelligent Transpor
Systems, vol. 22, no. 7, pp. 4467–4477, 2021.

[28] I. Siniosoglou, P. Radoglou-Grammatikis, G. Efstathopoulos, P. Fo
and P. Sarigiannidis, “A unified deep learning anomaly detectio
classification approach for smart grid environments,” IEEE Transa
on Network and Service Management, vol. 18, no. 2, pp. 1137–
2021.

[29] A. Tabassum, A. Erbad, W. Lebda, A. Mohamed, and M. Gu
“Fedgan-ids: Privacy-preserving ids using gan and federated lear
Computer Communications, 2022.

[30] J. Zhang, B. Chen, X. Cheng, H. T. T. Binh, and S. Yu, “Poiso
Generative poisoning attacks against federated learning in edge
puting systems,” IEEE Internet of Things Journal, vol. 8, no.
3310–3322, 2020.

[31] X. He, Q. Chen, L. Tang, W. Wang, and T. Liu, “Cgan-based c
orative intrusion detection for uav networks: A blockchain-empo
distributed federated learning approach,” IEEE Internet of Things
nal, vol. 10, no. 1, pp. 120–132, 2022.

[32] M. Rasouli, T. Sun, and R. Rajagopal, “Fedgan: Federated
erative adversarial networks for distributed data,” arXiv pr
arXiv:2006.07228, 2020.

[33] B. Xin, W. Yang, Y. Geng, S. Chen, S. Wang, and L. Huang, “P
fl-gan: Differential privacy synthetic data generation based on fed
learning,” in ICASSP 2020-2020 IEEE International Conferen
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 202
2927–2931.

[34] Y. Li, J. Li, and Y. Wang, “Privacy-preserving spatiotemporal sc
generation of renewable energies: A federated deep generative lea
approach,” IEEE Transactions on Industrial Informatics, vol. 18,
pp. 2310–2320, 2021.

[35] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Cou
“Improved training of wasserstein gans,” Advances in neural inform
processing systems, vol. 30, 2017.

[36] Y. Gu, Y. Yang, Y. Yan, F. Shen, and M. Gao, “Learning-
intrusion detection for high-dimensional imbalanced traffic,” Com
Communications, vol. 212, pp. 366–376, 2023.

[37] B. Meenakshi and D. Karunkuzhali, “Enhancing cyber security i
using optimized self-attention-based provisional variational auto-en
generative adversarial network,” Computer Standards & Inter
vol. 88, p. 103802, 2024.



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Declaratio if ioterettt
 

 The authors declare that they have no known competng fnancial interests or personal relatonships ☒
that could have appeared to infuence the work reported in this paper.
 

 The authors declare the following fnancial interests/personal relatonships which may be considered ☐
as potental competng interests:

 
 
 


	Revolutionizing intrusion detection in industrial IoT with distributed learning and deep generative techniques
	CRediT authorship contribution statement
	Data availability


