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Abstract. We extend the ecological component (ECOGEM)
of the carbon-centric Grid-Enabled Integrated Earth system
model (cGEnIE) to include a diatom functional group. ECO-
GEM represents plankton community dynamics via a spec-
trum of ecophysiological traits originally based on size and
plankton food web (phyto- and zooplankton; EcoGEnIE 1.0),
which we developed here to account for a diatom functional
group (EcoGEnIE 1.1). We tuned EcoGEnIE 1.1, exploring
a range of ecophysiological parameter values specific to phy-
toplankton, including diatom growth and survival (18 param-
eters over 550 runs) to achieve best fits to observations of
diatom biogeography and size class distribution as well as
to global ocean nutrient and dissolved oxygen distributions.
This, in conjunction with a previously developed representa-
tion of opal dissolution and an updated representation of the
ocean iron cycle in the water column, resulted in an improved
distribution of dissolved oxygen in the water column relative
to the previous EcoGEnIE 1.0, with global export production
(7.4 Gt C yr−1) now closer to previous estimates. Simulated
diatom biogeography is characterised by larger size classes
dominating at high latitudes, notably in the Southern Ocean,
and smaller size classes dominating at lower latitudes. Over-
all, diatom biological productivity accounts for ∼ 20% of
global carbon biomass in the model, with diatoms outcom-

peting other phytoplankton functional groups when dissolved
silica is available due to their faster maximum photosynthetic
rates and reduced palatability to grazers. Adding a diatom
functional group provides the cGEnIE Earth system model
with an extended capability to explore ecological dynamics
and their influence on ocean biogeochemistry.

1 Introduction

Dissolved silica (dSi) – H4SiO4 (orthosilicic acid) – plays
a key role in numerous biogeochemical cycles, particu-
larly in marine environments. Marine silicifiers take up dSi
across the cell wall, both via diffusion and silicon trans-
porters, to produce biogenic silica (bSi) (hydrated silica –
SiO2 · nH2O), which is used to build internal and external
structures (Moriceau et al., 2019; Maldonado et al., 2019).
As well as depleting dSi in their local growth environment,
the ecological success of silicifiers impacts the cycling of
other essential nutrients, such as nitrogen, phosphate, and
dissolved iron through competition with non-silicifiers, and
potentially also the cycling of carbon. Today, the dominant
marine silicifiers are diatoms – phytoplankton with a pro-
tective opal frustule (silica shell) that mitigates grazing loss
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(Van Tol et al., 2012). Diatoms also exhibit relatively fast
growth rates (Banse, 1982), enabling them to potentially out-
compete other phytoplankton. As a result, the diatom genera
is thought to be responsible for approximately 40 % of global
primary production in today’s ocean (Field et al., 1998). The
different cellular nutrient-to-carbon ratio of diatoms com-
pared with other phytoplankton (O’Donnell et al., 2021), as
well as the potential for the dense protective opal frustules to
modify the mean depth at which carbon (and nutrients) can
be returned to the water column from sinking biogenic ma-
terial, implies that a complete representation of the ocean’s
“biological pump” requires that we account for the marine
cycle of silica (Wilson et al., 2012). However, the spatio-
temporal distribution of diatoms and their ability to domi-
nate an ecosystem depends on a number of both environmen-
tal pressures, particularly dSi availability, and underlying key
metabolic trade-offs, such as control over frustule size, bal-
ancing predation vs. buoyancy, and/or optimising their pho-
tosynthetic apparatus in light-intensive areas where excess
energy must be dissipated (Hendry et al., 2018; Assmy et al.,
2013; Lavaud et al., 2004) Indeed, the large number of differ-
ent possible combinations of trade-offs and marine environ-
ments may be behind the evolution of the estimated 30 000–
100 000 current species worldwide (Mann and Vanormelin-
gen, 2013).

One way of representing rates of nutrient (and carbon)
uptake from the ocean surface and subsequent export of
solid (and dissolved) biogenic matter in models is as a di-
rect function of the ambient environment such as tempera-
ture, light, and nutrient availability (Maier-Reimer and Has-
selmann, 1987). Such an implicit approach has previously
been used in box models (Ridgwell et al., 2002). However,
the biogenically induced flux modelling approach is limited,
both when tasked with exploring events regarding the evolu-
tion of ecosystem complexity, as ecosystems are not resolved
(i.e. plankton diversity is not considered), and in respect to
the details of seasonal productivity cycles and species suc-
cessions and “blooms”, as standing biomass becomes a key
state variable that creates temporal lags in the response of bi-
ological export to changes in the ambient physical and chem-
ical environment. Instead, model approaches have been de-
veloped that can resolve biomass dynamics across a broad
spectrum of complexities (Kwiatkowski et al., 2014). At one
end, simple NPZD (N – dissolved inorganic nitrogen, P –
phytoplankton, Z – zooplankton, and D – detritus) models
(Kriest et al., 2010) are able to reproduce the variability in the
mean ecosystem by simulating the effects of limiting factors
(e.g. nutrient limitation), but they fail to constrain potentially
important biogeochemical processes and feedbacks associ-
ated with the biological pump due to their simplicity (Yool et
al., 2013). Beyond this, in terms of complexity, models may
include multiple (plankton) functional types (PFTs) to bet-
ter resolve fundamental biogeochemical functions, including
those less sensitive to environmental perturbation (Friedrichs
et al., 2007; Quere et al., 2005). However, PFTs are generally

based explicitly on the observed characteristics of modern
plankton, potentially impacting their prospective application
to past climates (Ward et al., 2018; Falkowski et al., 2004).
The relationships between species, ecosystems, and the envi-
ronment continually evolve through time, such as the diversi-
fication of diatoms in the Cenozoic and their increasing dom-
inance of dSi uptake (Conley et al., 2017). In turn, this has led
to “trait-based” approaches that focus on the governing rules
of diversity, as opposed to imposing a specific and restricted
diversity, being devised (Follows and Dutkiewicz, 2011; Fol-
lows et al., 2007). Besides requiring fewer total parameters
to be specified, trait-based approaches allow a greater resolu-
tion of diversity. However, they also require the identification
of the underlying trade-offs that govern species competition
and coexistence (Kiørboe et al., 2018). Currently, allometric
relationships are often assumed to regulate these trade-offs,
in which physiological and ecological traits can be linked to
organism size (e.g. Mullin et al., 1966). Assuming then that
these allometric relationships are consistent through time (or
at least, rather more conserved than individual species them-
selves), trait-based approaches should be comparatively in-
dependent of the geological period to which they might be
applied.

In the case of the Earth system model of intermediate com-
plexity (EMIC) cGEnIE – a global biogeochemical cycles
(ocean circulation and primary climate feedbacks) model
designed for addressing palaeo-questions (Ridgwell et al.,
2007) – Ward et al. (2018) added a trait-based ecosystem,
EcoGEnIE, that explicitly accounts for the growth of plank-
ton with traits assigned based on size and function. The
palaeo-utility of now being able to simulate potential ecosys-
tem structures (and associated marine biogeochemical cy-
cles) of the past was demonstrated in Wilson et al. (2018).
Here, we build on this earlier work and present an update to
the EcoGEnIE 1.0 framework by introducing a diatom phy-
toplankton functional group (including their allometric rela-
tionships) and a marine silicon cycle by tuning the model
(now named EcoGEnIE 1.1) using Latin hypercube model
parameter sampling (Sect. 3). Finally, we evaluate how the
results of our model ensemble with diatoms compare with
global observations and the previous version of EcoGEnIE
(Sects. 4, 5). We start (Sect. 2) by describing the general
structure and properties of the cGEnIE Earth system model
(e.g. the marine biogeochemical components most relevant
to simulating marine ecology), including a summary of the
existing ecosystem model component and how this has been
extended to include diatoms.

2 The cGEnIE Earth system model

2.1 Ocean (and atmosphere) physics

The underlying climate component in the configuration of
cGEnIE used here comprises a 3-D frictional geostrophic
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ocean model coupled with a 2-D energy moisture bal-
ance model (EMBM) and a dynamic–thermodynamic sea-
ice model (Marsh et al., 2011). We employ cGEnIE on a
36× 36 longitude vs. latitude grid of equal area (equal di-
visions in longitude and the sine of latitude), with ocean
depth resolved across 16 vertical layers that have a progres-
sively increasing thickness, varying from 80.8 m at the sur-
face to a maximum of 765 m at depth. Here, to retain the
same traceable representation of global ocean circulation as
Cao et al. (2009) which formed the basis for the development
of a variety of new biogeochemical cycles in cGEnIE (Crich-
ton et al., 2021; Reinhard et al., 2020; Van De Velde et al.,
2021), we also adopted the same modern continental config-
uration and ocean bathymetry, as well as calibrated param-
eters controlling ocean, atmosphere, and sea-ice physics, as
Cao et al. (2009). This differs from the physics configuration
of Ward et al. (2018), who adopted a slightly modified con-
tinental configuration and, more importantly, included a rep-
resentation of mixed-layer physics (Kraus and Turner, 1967).
Ecologically, the depth of the mixed layer is critical to cal-
culating mean light penetration and, hence, photosynthetic
rates. Thus, we diagnosed the mixed-layer depth everywhere,
calculating what the chlorophyll concentration would be if
it were mixed evenly across this depth and what the aver-
age light level should be across that depth with that level of
chlorophyll (following Ward et al., 2018), but we did not en-
able temperature nor salinity (nor other tracers) to be phys-
ically mixed, thereby retaining the same ocean circulation
as Cao et al. (2009). Finally, we also prevent photosynthesis
under sea ice (in practice, in each grid cell, light availabil-
ity is scaled by the ice-free fraction), which was not adopted
in Ward et al. (2018). We quantify and discuss the separate
impacts of changing ocean physics vs. changing ecosystem
structure between EcoGEnIE 1.0 and EcoGEnIE 1.1 as well
as the effects of contrasting model projections against obser-
vations.

2.2 Ocean biogeochemical cycling framework

The BIOGEM code module in cGEnIE provides the frame-
work for ocean–atmosphere biogeochemical cycling, includ-
ing regulating air–sea gas exchange as well as the transfor-
mation and partitioning of biogeochemical tracers within the
ocean. As configured here, BIOGEM accounts for the bio-
geochemical cycling of carbon, phosphate, oxygen, carbon
(Ridgwell et al., 2007), and iron (Tagliabue et al., 2016) as
well as a previously developed parameterisation of opal dis-
solution in the water column (Ridgwell et al., 2002 – sum-
marised below and in the Supplement) in order to complete
the ocean silicon cycle in conjunction with the new ECO-
GEM diatom addition.

For the iron cycle, we took the preindustrial (year 1850)
dust field of Albani et al. (2016) to provide dissolved iron
input at the ocean surface and carried out a brief parameter
calibration of the two key iron-controlling parameters – the

mean global (flux-weighted) iron solubility and the scaling
factor for the scavenging rate of free (non-ligand bound) iron
by sinking particulate organic matter in the water column.
This was in the form of a 2-D parameter ensemble of iron
solubility vs. scavenging rate with the resulting simulated 3-
D distribution of total dissolved iron in the ocean (i.e. free
iron and ligand-bound iron) statistically contrasted with ob-
servations (Tagliabue et al., 2016). For this parameter tuning,
we utilised the (non-ecosystem-based) cGEnIE phosphate-
and iron-limited marine biogeochemical cycle configuration
of Tagliabue et al. (2016) in the same Cao et al. (2009) con-
figuration of ocean circulation as employed here. We then
simply adopted the same two parameter values when using
the ecosystem model in EcoGEnIE 1.1 (i.e. iron solubility
and scavenging rates in the ocean were calibrated prior to and
independently of the ecosystem model). The only differences
in ocean iron cycling compared with Ward et al. (2018) are
then as follows: (1) the iron cycle is now tuned for the Cao
et al. (2009) configuration of ocean circulation and (2) the
iron cycle is tuned to the more recent dust deposition field
of Albani et al. (2016) (rather than Mahowald et al., 1999).
In terms of the resulting parameter values, the mean global
solubility of dust-delivered iron is now 0.244 % as opposed
to 0.201 %, partly to compensate for the overall lower dust
fluxes of Albani et al. (2016) vs. Mahowald et al. (1999),
and there is a small reduction in the scavenging rate scaling
(0.225 vs. 0.344 in Ward et al., 2018).

To complete the ocean silica cycle, opal must dissolve in
the water column and at the seafloor, allowing silica to be
released back into solution (dSi). The treatment of how sink-
ing biogenic solid silica (bSi) dissolves in the water column
follows Ridgwell et al. (2002), who used a simple quasi-
empirical scheme that considered the degree of ambient opal
under saturation and evaluated it against sediment trap ob-
servations. Note that we do not attempt to calculate the frac-
tional preservation of opal in accumulating sediments at the
seafloor in this current paper; instead, we impose a simple
benthic “closure” term such that all biogenic matter reaching
the bottom of the ocean is entirely dissolved in the lower-
most ocean grid cell instead of being buried in the sediments
– effectively the same common closure term that is used for
all of the (e.g. carbon and nutrient) constituents of particu-
late organic matter as well as of CaCO3 – all of which are
returned back into solution at the model seafloor.

2.3 Ecological structure

The ecological component of the cGEnIE model – EcoGE-
nIE – consists of a highly configurable generic plankton com-
munity (Ward et al., 2018) based on a series of functional
groups and respective size classes. Originally, EcoGEnIE 1.0
described and evaluated just two functional types, zooplank-
ton and phytoplankton, which were each delineated into eight
size classes (Table 1). A mixotroph functional group was also
coded but not described nor evaluated in Ward et al. (2018).
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For EcoGEnIE 1.1, we implemented an additional diatom
functional group, coded as a microphytoplankton that has a
dSi nutrient assimilation requirement, lower palatability, and
higher maximum photosynthetic rate than existing groups
of an equivalent size class (Tréguer et al., 2018; Follows et
al., 2007). As well as adding the diatom functional group,
we also differentiated the generic phytoplankton in EcoGE-
nIE 1.0 into two derived phytoplankton functional subtypes
– “picoplankton” and “eukaryotes” – differentiated by their
respective photosynthetic rate exponent (Table 1) based on
the trait-based modelling of Dutkiewicz et al. (2020). As per
Dutkiewicz et al. (2020), plankton of equivalent spherical di-
ameter < 3 µm exhibit an increase in maximum growth rate
with increasing size, whereas anything larger than 3 µm ex-
hibits a progressive decrease in maximum growth rate with
further increases in size. Hence, the EcoGEnIE 1.1 plankton
community now comprises four functional groups (diatoms,
picoplankton, eukaryotes, and zooplankton).

We configure the assumed size structure of the members
of the ecosystem differently to Ward et al. (2018) (see Ta-
ble 1). Specifically, we choose to decrease the number of size
classes (four zooplankton instead of eight) and rationalise
the remaining structure by, for example, removing the largest
phytoplankton and smallest zooplankton size classes, which
did not meaningfully persist in the simulations of Ward et
al. (2018).

We also tested the impact of the EcoGEnIE 1.0 func-
tional groups and size structure with our new physics
and ecosystem tuning in “EcoGEnIE 1.1_phys_eco” (see
Sect. 5.1). This allows comparisons of size-diversity range
(0.6–1900 µm in EcoGEnIE 1.0 vs. 0.6–2000 µm in EcoGE-
nIE 1.1) and functional diversity (two functional groups in
EcoGEnIE 1.0 vs. four functional groups in EcoGEnIE 1.1).
It additionally shows the effect of moving from an allometric
unimodal scheme to individual photosynthetic rates with the
same physics configuration.

2.4 Diatom physiology

The new parameterisations associated with the incorporation
of diatoms in ECOGEM are described below. State variables
(nutrient resources, plankton biomass, and organic matter) in
EcoGEnIE 1.1 follow the same equations in EcoGEnIE 1.0
and are described in the Supplement.

2.4.1 Size-dependent traits

Power-law functions of organismal volume (Vol
= π [Equivalent spherical diameter]3/6) define a given
size-dependent parameter (p):

p = a

(
Vol
Vol0

)b
, (1)

where Vol0 is a reference value of 1 µm3 and a and b are size
scaling coefficients. In contrast with EcoGEnIE 1.0, which
applies a unimodal photosynthetic uptake rate relationship
for all phytoplankton, each phytoplankton functional group
within the EcoGEnIE 1.1 population possesses specific rates
as per Dutkiewicz et al. (2020), as shown in Table 2.

2.4.2 Diatom extension

As per the other plankton functional groups in the model, di-
atom biomass (BDiat) varies over time as a balance between
a growth term that depends on the uptake rate (V ) and lim-
itations by light, temperature, and nutrients as well as loss
terms (grazing and mortality), which are fully described in
the Supplement.

dBDiat

dt
= VDiat ·BDiat − ((GrazingDiat ·PalatabilityDiat)

+MortalityDiat) (2)

We used commonly defined diatoms traits and trait trade-offs
to characterise their competitiveness relative to other phyto-
plankton (Tréguer et al., 2021). Defined diatom traits include
a higher maximum photosynthetic growth rate (Pmax

C ) than
other phytoplankton (see growth curve in Dutkiewicz et al.,
2020), dSi limitation through associated nutrient parameters,
and reduced palatability, which is defined by a unitless pa-
rameter that modifies the relative grazing palatability on the
group (Table 2 and Table S1 and Fig. S6 in the Supplement).
Within the model, diatom palatability (0.93) is smaller than
for other prey (1), indicative of greater grazing protection.
This reduced relative palatability accounts for diatoms’ com-
petitive ability to mitigate grazing losses via their protective
frustules (Zhang et al., 2017). The model also represents the
production of organic matter and biogenic silica (opal) by di-
atoms, which is exported out of the surface layer after diatom
mortality or detritus from feeding.

3 Model tuning

We tuned both the new diatom-specific model parameters
and a selection of other ECOGEM parameters related to how
general phytoplankton behaviour is controlled (e.g. as related
to nutrient acquisition ability). These are listed in Table 2. We
compared model results with global ecological and diatom
observations (see Sect. 3.2).

3.1 Tuning method

The parameters, whose values we explored in the tuning pro-
cess, include minimum and maximum nutrient quotas, maxi-
mum uptakes rates, and nutrient affinities. We tested a range
of values derived from the literature, as summarised in Ta-
ble 2. We also tuned diatom palatability to best simulate
diatom’s grazing protection. We kept Ward et al. (2018)’s
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Table 1. The four EcoGEnIE 1.1 plankton functional groups and the range of equivalent spherical diameter (ESD) “species” focussed on in
this paper compared with those used in EcoGEnIE 1.0.

j EcoGEnIE 1.1 functional type ESD (µm) EcoGEnIE 1.0 functional type ESD (µm)

1 Diatom 2 Phytoplankton 0.6
2 Diatom 20 Phytoplankton 1.9
3 Diatom 200 Phytoplankton 6
4 Picoplankton 0.6 Phytoplankton 19
5 Picoplankton 2 Phytoplankton 60
6 Eukaryote 20 Phytoplankton 190
7 Eukaryote 200 Phytoplankton 600
8 Zooplankton 6 Phytoplankton 1900
9 Zooplankton 20 Zooplankton 0.6
10 Zooplankton 200 Zooplankton 1.9
11 Zooplankton 2000 Zooplankton 6
12 Zooplankton 19
13 Zooplankton 60
14 Zooplankton 190
15 Zooplankton 600
16 Zooplankton 1900

parameter values for phosphate maximum uptake rate and
the cellular carbon quotas, as preliminary sensitivity exper-
iments showed little sensitivity to biogeochemical output
(mean oxygen concentration, export production, etc.) when
exploring values around the previously well-constrained es-
timated values (e.g. studies seen in Table 2). We then used
Latin hypercube sampling (Mckay et al., 2000) to generate
a 550-member ensemble sampling uniformly across the 18
model parameters that we had identified as critical to control-
ling ecosystem dynamics (and hence marine biogeochemical
cycles). For each ensemble member experiment, we calcu-
lated an M score (Watterson, 2015) to gauge the model–data
fit, with greater values representing better performance:

M =
2
5

arcsin

 ∑n
i=1

(Mi−Oi )
2

n

σ 2
m+ σ

2
o + (µm−µo)

2

 . (3)

Here, the model (m) and observational (o) value in the ith
ocean grid points (cell) out of a total n grid points are rep-
resented by Mi and Oi respectively, with mean-square er-
ror described in the numerator. Mean and variance are de-
noted σ2 and µ respectively. Therefore, the M score is non-
dimensional and is a value between zero and one, with higher
values indicating better model–data performance.

3.2 Observations

We assessed how successful EcoGEnIE 1.1 was with respect
to generating realistic oceanic biogeochemistry by compar-
ing model outputs to observations from the World Ocean At-
las 2013 (WOA13) climatological datasets of dissolved oxy-
gen, phosphate, and dSi (Garcia et al., 2013). This assess-
ment allows direct comparison to the performance assessed
in the original description paper of EcoGEnIE (Ward et al.,

2018). (Using more up-to-date World Ocean Atlas datasets
showed little difference regarding the statistical model per-
formance.) Climatological data were in the form of 1° reso-
lution annual averages that were re-gridded onto the cGEnIE
model grid prior to statistical comparison. We also visually
contrasted modelled chlorophyll concentrations (whilst also
ensuring that they were within the observed range) with an
average from 1997 to 2002, measured by the SeaWiFs (Sea-
viewing Wide Field-of-view Sensor) satellite (taken from
the National Aeronautics and Space Administration Goddard
Space Flight Center).

3.3 Model experiments

We created an initial 20 000-year spin-up of the complete
system (iron and silica cycles) with the default values from
EcoGEnIE 1.0 for the non-silica and diatom-related param-
eters. Each of the 550 ensemble members was then run for
2000 years, continued from the same ocean biogeochemi-
cal and climate steady state. Tests of longer integration times
for ensemble member experiments showed that little (< 1%)
further change occurred in any M scores for dissolved oxy-
gen, phosphate, or silica beyond 2000 years.

4 Results

4.1 Model ensemble and justification of parameter set
choices

We first considered the statistical performance of all 550
model members vs. observations. Figure 1 shows the results
from the tuning ensemble, ordered by the averaged M score
across each of the comparisons of the global distributions of
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Table 2. List of ECOGEM parameters and Qmax :Qmin (where Qmax :Qmin = 1 represents a fixed quota, as the values are equal) selected
for tuning and the range of tested values and cited literature.

Parameter Symbol Tested range Best run Units References

Quota and max/ Qmin
P 10−3

− 10−2 2.7× 10−3 mmol P (mmol C)−1 Ward et al. (2018)
min ratio Qmax

P /Qmin
P 1–10 8.0 mmol P (mmol C)−1

Qmin
Fe 5× 10−7

− 1.5× 10−6 0.7× 10−6 mmol Fe (mmol C)−1 Ward et al. (2018)
Qmax

Fe /Qmin
Fe 1–10 6.0 mmol Fe (mmol C)−1

Qmin
Si 0.01–0.1 0.04 mmol Si (mmol C)−1 Ward et al. (2018)

Qmax
Si /Qmin

Si 1–10 9.4 mmol Si (mmol C)−1 Ragueneau et al. (2006)

Max uptake Vmax
Fea 5× 10−5

− 2× 10−4 1.7× 10−4 mmol Fe (mmol C)−1 d−1 Ward et al. (2018)
rate Vmax

Feb −0.5 to −0.25 −0.13
Vmax

Sia 0.01–0.1 0.07 mmol Si (mmol C)−1 d−1 Ragueneau et al. (2006)
Vmax

Sib 0.01–0.1 0.03

Nutrient αPa 0.5–1.5 0.94 m3 (mmol C)−1 d−1

affinities αPb −0.5 to −0.25 −0.44 Ward et al. (2018)
αFea 0.15–0.2 0.18 m3 (mmol C)−1 d−1

αFeb −0.5 to −0.25 −0.26 Ward et al. (2018)
αSia 1–5 4.8 m3 (mmol C)−1 d−1

αSib −0.5 to −0.25 −0.40 Edwards et al. (2012)

Grazing 0.3–1.0 0.93
protection

dissolved oxygen, phosphate, and silica. Figures 2 and 3 have
the same format but now focus in on just the best 50 meanM-
score ensemble members with respect to performance. There
are clear apparent trade-offs within the mean M-score statis-
tic with, for example, high O2 M scores generally coinciding
with lower PO3−

4 M scores and vice versa (also see Fig. S3).
Such a situation could arise, for example, for a “perfect”
phosphate cycle but an incorrect carbon-to-phosphate (C : P)
ratio, creating a trade-off between PO4 concentrations at in-
termediate depths tending higher than observations vs. dis-
solved O2 tending lower than observations. Improving one
M score then comes at the expense of the M score of the
other. (In such a situation, the silica cycle would be some-
what decoupled from both P and O and, hence, not necessar-
ily exhibit a clear trade-off with either.) We also observe a
similar trade-off between the mean ocean oxygen concentra-
tion and export production. Thus, while one might select the
overall (mean) best M-score experiment when identifying a
tuned parameter set with which to go forward, the ability of
the model to simulate specific features of the global carbon
cycle may also need to be taken into account and will likely
depend on the specific application(s) of the tuned model.

We chose our best run (run no. 387) primarily because it
had the highest average M score, although it also considered
trade-offs and selected realistic oxygen concentrations (pro-
moted by reasonably low export). We also picked the run
with a C : P export ratio close to the Redfield ratio of 106
and recent inverse model estimations of ∼ 105–113 (Wang
et al., 2019; Matsumoto et al., 2020; Teng et al., 2014). This

characteristic favoured run no. 387 (global C : P of 112) over
the best-performing run with respect to silica (run no. 96),
which had a C : P value of 116. While this study primarily
concerns diatoms and the silicon cycle, we are also tuning
the ecosystem as a whole, necessitating a realistic global C : P
value for export. Whilst run no. 464 has a similarly good C : P
value and a high average M score, our pick has an opal ex-
port value (107 Tmol Si yr−1) within estimates (Table 3) of
100–140 Tmol Si yr−1 (Nelson et al., 1995).

Run no. 387 also produces a global total particulate or-
ganic carbon (POC) export of 7.4 Gt C yr−1 (Fig. 3, Ta-
ble 3), falling well within estimates of 4–12 Gt C yr−1 (De-
vries and Weber, 2017; Henson et al., 2011; Dunne et al.,
2005). The global mean oxygen concentration produced by
this iteration is also acceptable at 164 µmol kg−1, close to the
∼ 170 µmol kg−1 mean calculated from the re-gridded WOA
dataset, whilst other statistically high-scoring runs produced
values beyond this range (e.g. run no. 426). Such attributes
give run no. 387 an average M score of 0.67, making it the
best-performing run (Figs. 2, 3).

4.2 Biogeochemical variables

Overall, EcoGEnIE 1.1 captures the zonal contrast in phos-
phate concentrations between the polar and subpolar regions
(> 2 µmol P kg−1 towards the poles with ∼ 1 µmol P kg−1

moving towards the Equator; Fig. 4). The model under-
estimates phosphate (WOA13 records ∼ 1 µmol P kg−1) in
equatorial and marginal upwelling environments. This partly
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Figure 1. M scores of O2 (yellow), SiO2 (grey), and PO4 (orange) mean global ocean concentrations of a 550-run ensemble. The selected
run was no. 387 (highest average M score). These scores are calculated by comparing model performance to re-gridded World Ocean Atlas
annual average climatologies (Garcia et al., 2013).

Figure 2. Top 50 mean M-score values (dot-dashed line) as well as individual M scores for O2 (yellow), SiO2 (grey), and PO4 (orange) out
of the 550-run ensemble. The selected run was no. 387 (highest mean M score).

results from the more simplified physics and lower spa-
tial resolution compared with, for example, current Coupled
Model Intercomparison Project (CMIP) models (Séférian et
al., 2020). However, the model–data comparison is also not
a strictly like-for-like comparison; this is due to the fact

that, in re-gridding higher-vertical-resolution WOA data to
the model grid, elevated subsurface concentrations become
averaged into the re-gridded “surface” layer that cGEnIE is
compared against. This will be particularly important in re-
gions where the surface mixed layer is much shallower than
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Figure 3. POC export (Gt C yr−1), C : P export ratios, and global mean oxygen concentration (µmol kg−1) corresponding to the top 50 runs
shown in Fig. 2. Note that both [O2] (yellow line) and C : P (green points) are plotted on the same (left-hand y axis) scale.

80.8 m. For example, regions with a shallow mixed layer
but an elevated subsurface phosphate concentration, such as
the equatorial Pacific, appear much more elevated with re-
spect to phosphate in both the re-gridded data and what the
model is capable of in terms of nutrient limitation or de-
pletion. Despite this, the model estimates of dSi concen-
trations in the equatorial upwelling region are reasonable
(∼ 20 µmol Si kg−1), although they fall lower than the re-
gridded concentrations present in the surface northern Pacific
(∼ 40 vs. > 50 µmol Si kg−1; Fig. 5).

Through the ocean, EcoGEnIE 1.1 reasonably captures
the main features of the vertical biogeochemical tracer dis-
tributions in each of the three main ocean basins (At-
lantic, Indian, and Pacific). Consistent with observations,
the model captures the propagation of dissolved oxygen
(∼ 300 µmol O2 kg−1) at depth through the North Atlantic
and Southern Ocean via deep-water formation and trans-
port (Fig. 6). The model performs similarly for phos-
phate concentrations (Fig. 7) but with a slight underestima-
tion in the intermediate northern Atlantic (which tends to-
wards 0.5 µmol P kg−1 rather than observed values closer to
1 µmol P kg−1 at 1000–3000 m depth). The highest concen-
trations of phosphate (3 µmol P kg−1) in the equatorial Indian
Ocean are seen between 2000 and 4000 m in the observed
climatology, where they are limited to < 2 km depths in the
model, likely due to restricted resolutions at depth and the
smaller size of the Indian Basin. The same trends (discrepan-
cies compared with WOA13 are most notable at the greatest
depths) are observed in the model for dSi (Fig. 8). However,

dSi is generally represented accurately across the three model
ocean basins, approaching 0 µmol Si kg−1 in the surface and
peaking at approximately 120 µmol Si kg−1 at depths (below
1000 m in the Pacific and Indian oceans).

4.3 Ecological variables

We also assessed the performance of the tuned model rel-
ative to chlorophyll observations from the SeaWiFs satel-
lite as well as to export production-relevant metrics such as
the organic matter C : P (Redfield) ratio. We additionally as-
sessed carbon biomass distributions in our configured plank-
ton community.

Firstly, EcoGEnIE 1.1 chlorophyll (Chl) biomass com-
pares generally well to satellite estimates, peaking at ∼
1 mg Chl m−3 in the high latitudes and equatorially. How-
ever, there is noticeably low chlorophyll in the eastern bound-
ary upwelling regions in our simulations, which is an issue
also visible in EcoGEnIE 1.0. Overall, Figs. 9 and 12d show
similar distributions of chlorophyll biomass and total diatom
biogeography, with EcoGEnIE 1.1 presenting improved and
distinct subtropical gyres from the original rendition. Eco-
GEnIE 1.1 tends to have more widespread peak Chl values
than in the satellite images, with lower Chl in the subtropics
and prominent Chl in the Southern Ocean (Fig. 9). However,
it is known that satellite observations can underestimate con-
centrations in the high latitudes (Dierssen, 2010). This could
help explain some of the model disagreement in the Southern
Ocean. For the Arctic, the sign of the model–data mismatch
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Figure 4. Surface concentrations of dissolved phosphate for (a) observations and (b) EcoGEnIE 1.1 output (µmol P kg−1).

Figure 5. Surface concentrations of dSi for (a) observations and (b) EcoGEnIE 1.1 output (µmol Si kg−1).
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Figure 6. Zonally averaged vertical distribution of dissolved oxygen for (d–f) the best EcoGEnIE 1.1 run (µmol O2 kg−1) compared to (a–c)
WOA13.

Figure 7. Zonally averaged vertical distribution of dissolved phosphate (µmol P kg−1) from (d–f) EcoGEnIE 1.1 compared to (a–c) WOA13.

is reversed and is more likely to be primarily due to the lim-
ited model resolution in this basin, reflecting restricted circu-
lation in the model and/or poor seasonal sea-ice cover.

Global annual mean POC export in the model is
7.4 Gt C yr−1 (Table 3), which is within the estimated range
of 4–12 Gt C yr−1 (Devries and Weber, 2017; Henson et
al., 2011; Dunne et al., 2005). Spatially, the modelled
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Figure 8. Zonally averaged vertical distribution of dSi (µmol Si kg−1) from (d–f) EcoGEnIE 1.1 compared to (a–c) WOA13.

Figure 9. The (a) satellite-derived and (b, c) modelled surface chlorophyll-a concentration (mg Chl m−3).

POC and opal export reaches relatively high values (>
4 mol C m−2 yr−1 and > 1 mol Si m−2 yr−1 respectively) in
the subpolar regions, such as the Southern Ocean and the
northern and eastern equatorial Pacific, and exhibits rela-
tively low values (< 1 mol m−2 yr−1) in the subtropical gyres
and at high polar latitudes (Fig. 10a). The latter is due to sea-
ice formation in the Southern Ocean, which is assumed to
prevent light penetration in the model and, hence, limits pro-

duction, while the low production in the Arctic is likely due
to a combination of the seasonal presence of sea-ice cover in
the model as well as the very limited model resolution in this
region.

The global C : P export ratio is approximately 112 in our
preferred model calibration (Table 3), with higher ratios
(> 120) in the subtropical gyres and low ratios (∼ 90) in
the subpolar and upwelling regions (Fig. 10b). This distribu-
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Table 3. Performance of the three renditions of EcoGEnIE (EcoGEnIE, NoDiatom, and EcoGEnIE 1.1) and their M scores with respect
to WOA13 data. NoDiatom is configured identically to EcoGEnIE 1.1 with just the diatom functional group removed. Two additional runs
are shown: one in which our new physics are applied to EcoGEnIE 1.0 (EcoGEnIE 1.1_phys) and another in which our ecosystem tuning
and new physics are applied to EcoGEnIE 1.0 (EcoGEnIE 1.1_phys_eco). Both of these aforementioned runs use EcoGEnIE 1.0’s plankton
population.

EcoGEnIE 1.0 EcoGEnIE 1.1_phys EcoGEnIE NoDiatom EcoGEnIE 1.1 Estimates
1.1_phys_eco

Ecological 1.0/1.0 1.0/1.0 1.1/1.0 1.1/1.1 1.1/1.1
configuration/ (minus
Plankton diatoms)

Ocean 1.0 1.1 1.1 1.1 1.1
biogeochemical
configuration

O2 M score 0.51 0.50 0.54 0.59 0.60

PO4 M score 0.62 0.69 0.67 0.70 0.69

SiO2 M score – – – – 0.72

Average M score 0.56 0.52 0.61 0.65 0.67

[O2], µmol O2 kg−1 140 129 144 179 164 ∼ 160–170
POC export, Gt C yr−1 11.3 9.5 8.4 6.5 7.4 4–12

Opal export flux, – – – – 107 100–140
Tmol Si yr−1

Export C : P 138 145 120 102 112 106

tion, at least visually, agrees with previous estimates (Teng
et al., 2014; Tanioka et al., 2022) with the exception of the
North Atlantic, which has previously been observed to have
extremely high values (∼ 200). One reason that the model
struggles to produce these high C : P ratios is because it does
not include a nitrogen cycle (and nitrogen fixation); thus, re-
gions where nitrogen concentrations may be low or high (e.g.
North Atlantic) may possess unrealistic C : P ratios.

The spatial distribution of diatoms (total biomass of all
size classes) in EcoGEnIE 1.1 is consistent with previ-
ous estimates (Tréguer et al., 2018), with high concentra-
tions in the productive regions (e.g. equatorial upwelling
and subpolar regions) and a peak in the Southern Ocean
at ∼ 1 mmol C m−3 (Fig. 12d). However, direct and explicit
comparison to ecological datasets as a means of model veri-
fication is limited by observational sampling techniques as
well as the relatively coarse model ecological size struc-
ture (see Sect. 5.2). Diatoms contribute to 18 % of total
carbon biomass in the model and 6 % of exported car-
bon. Of the three different size classes parameterised in
the model (Table 1), the smallest (2 µm) is the most cos-
mopolitan and is abundant across all dSi-enriched regions:
the Southern Ocean, equatorial upwelling zones, and the
northern subpolar region (Fig. 12a). Their larger counterparts
(20 µm) dominate in the subpolar and equatorial upwelling
regions (Fig. 12b) and boast a greater peak biomass (0.28 vs.

0.19 mmol C m−3). The 200 µm diatom size class is further
restricted with respect to geographical extent, consistent with
the fact that, as they increase in size in the model, diatoms
become increasingly restricted to dSi-enriched regions, most
notably to the Southern Ocean (Fig. 12c). The relative carbon
biomass distribution of the 2 and 20 µm diatoms is depicted
in Fig. 13. The Southern Ocean presents a dominance of di-
atoms within the larger size class, with over twice the carbon
biomass compared with the 2 µm class. In contrast, equato-
rial upwelling regions are characterised by a somewhat equal
size distribution between the 2 and 20 µm classes, with the
2 µm class having a slightly greater presence. All diatom size
classes are virtually absent within the subtropical gyres and
low-nutrient regions.

5 Discussion and conclusions

In this section, we assess and discuss how the projections of
EcoGEnIE 1.1 compare to EcoGEnIE 1.0, what has changed
and why, and pay particular attention to the impact of chang-
ing the configuration of the underlying ocean circulation
component as well as adding a diatom functional type. We
then discuss the capability of EcoGEnIE 1.1 with respect to
simulating diatom biogeography within size classes.
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Figure 10. Global (a) POC and (c) opal export (mol m−2 yr−1). Global surface distribution of (b) the C : P ratio for the export of particulate
organic matter.

Figure 11. Surface concentrations of total carbon biomass for (a) EcoGEnIE 1.0 and (b) EcoGEnIE 1.1 (mmol C m−3). Panel (c) depicts the
relative increase or decrease in EcoGEnIE 1.1 from EcoGEnIE 1.0 for vertical fluxes of particulate organic carbon (mmol C m−2 d−1).
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Figure 12. Surface concentrations of carbon biomass for (a–c) each diatom size class (mmol C m−3) and (d) their summed biomass.

Figure 13. The relative presence of diatoms in the 20 µm size class
compared with the 2 µm class.

5.1 EcoGEnIE 1.0 vs. EcoGEnIE 1.1

We first directly contrast EcoGEnIE 1.1 model outputs with
the previous and original ecological version – EcoGEnIE 1.0
(Ward et al., 2018), with the latter including eight size classes
of phytoplankton and zooplankton as well as employing dif-
ferent ocean physics. We then assess the impact of the indi-
vidual changes that we have made (new physics, ecosystem
tuning, and size structure change with new functional groups)
in runs defined within this section and Table 3 (NoDiatom,
EcoGEnIE 1.1_phys, and EcoGEnIE 1.1_phys_eco).

Relative to EcoGEnIE 1.0, EcoGEnIE 1.1 performs bet-
ter for all of the biogeochemical tracers. The EcoGEnIE

1.1 mean oxygen concentration is more realistic than in
EcoGEnIE 1.0 (164 vs. 140 µmol O2 kg−1), which is a di-
rect consequence of lower export production rates (7.4 vs.
11.3 Gt C yr−1) and, hence, reduced respiration in the water
column. Basin profiles in EcoGEnIE 1.0 (Fig. 14) also exhib-
ited somewhat unrealistic elevated and widespread dysoxia
in the low-latitude and northern regions of the Indian Ocean.
Again, in EcoGEnIE 1.0, this was likely due to the enhanced
export (leading to greater oxygen consumption at intermedi-
ate depths).

Despite a lower total global export flux in EcoGEnIE 1.1,
specific regions – notably equatorial upwelling areas – have
higher export relative to EcoGEnIE 1.0 (Fig. 15a). Similar
patterns are also seen in the NoDiatom run (which is identi-
cally configured to EcoGEnIE 1.1 – same functional groups,
size structure, and physics – but with no diatom functional
group) export distribution which has lower production in the
equatorial region than EcoGEnIE 1.1 (Fig. 15b), suggesting
that the difference is primarily due to the change in ocean
physics (Fig. S5). In other regions, the change in ecologi-
cal configuration appears to dominate and the absence of di-
atoms in NoDiatom intuitively results in a Southern Ocean
with lower export production than in EcoGEnIE 1.1 under
the same physics conditions.

Another improvement apparent in EcoGEnIE 1.1 and
NoDiatom compared with EcoGEnIE 1.0 is the C : P export
ratio (Table 3), which is pushed significantly closer to the
Redfield value of 106, likely thanks to the tuning of Qmin
and Qmax values performed in this study to produce more
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Figure 14. Zonally averaged vertical distribution of dissolved oxygen for (d–f) the best EcoGEnIE 1.1 run (µmol O2 kg−1) compared
with (a–c) EcoGEnIE 1.0.

Figure 15. The relative increase or decrease in (a) EcoGEnIE 1.1
from EcoGEnIE and (b) NoDiatom from EcoGEnIE 1.0 for vertical
fluxes of particulate organic carbon (mmol C m−2 d−1).

realistic stoichiometries. Such results imply that the steps
taken in to refine the model have produced more realistic and
comprehensive biogeochemical interactions within the water
column. We suspect that the re-tuning of C : P export ratio
to ∼ 112 helped EcoGEnIE 1.1 to produce more favourable
basin profiles.

Going from EcoGEnIE 1.0 to EcoGEnIE 1.1, there is a
clear improvement in the distinction between low biomass
in subtropical gyres and high biomass at higher latitudes
(Fig. 11), which can be attributed principally to the modi-
fied ocean physics (both NoDiatom and EcoGEnIE 1.1 share
close similarities and are distinct from EcoGEnIE 1.0). The
EcoGEnIE 1.1 southernmost region of the Southern Ocean
has lower POC export than the previous version (Fig. 11c).
This result probably comes from the new sea-ice module in
which growth is no longer enabled at these high latitudes.
The POC export reduction above the Southern Ocean is due
to the new physics, where subtropical gyres are better de-
fined and, subsequently, plankton growth is more restricted
in these now nutrient-replete regions. The equatorial chloro-
phyll biomass of EcoGEnIE 1.1 shows a noticeable increase
from the original rendition (Fig. 9), producing results closer
to satellite estimates (Fig. S4). The introduction of diatoms
moving from NoDiatom and EcoGEnIE 1.1 is also notably
felt in the Southern Ocean, likely due to the high concentra-
tions of dSi which can only be utilised by diatoms in Eco-
GEnIE 1.1, as they are not present in NoDiatom. Overall
(with the exception of the Southern Ocean and equatorial up-
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Figure 16. Sensitivity testing for dSi uptake rates of diatoms within EcoGEnIE 1.1. Panels (a) to (c) depict the relative presence of diatoms
in the 20 µm size class compared with the 2 µm class. Thus, values above one indicate a region dominated by larger diatoms.

welling areas), there are only relatively marginal changes be-
tween the EcoGEnIE 1.1 and NoDiatom runs (relative to the
change from EcoGEnIE 1.0 to 1.1), suggesting that, in the
absence of diatoms, other phytoplankton can take advantage
of these vacant niches that diatoms would otherwise com-
pete in. With our trait-based approach enabling size diversity
amongst functional types, it is intuitive that plankton of the
same sizes as the diatom classes would make up the differ-
ence with regards to the primary production deficit (i.e. size
is the master trait), although they cannot reach similar pro-
ductive output to diatoms in dSi-rich regions (e.g. the South-
ern Ocean).

The differences between EcoGEnIE 1.0 and EcoGEnIE
1.1 arise both due to the developments with respect to adding
phytoplankton functional groups, changing size structure,
and tuning the ECOGEM and switching the physics.

Table 3 includes a run in which the Ward et al. (2018)
ecosystem (EcoGEnIE 1.0’s functional groups, size struc-
ture, and ecosystem tuning) was combined with our new
physics; this run is called EcoGEnIE 1.1_phys. On the other
hand, EcoGEnIE 1.1_phys_eco also has our new physics and
still uses EcoGEnIE 1.0’s functional groups and size struc-
ture but incorporates our ecosystem tuning. With the exact
same ecological structure and parameter tuning as EcoGE-
nIE 1.0, we found that EcoGEnIE 1.1_phys only achieved
slightly improved model correspondence to observations for
phosphate, with the oxygen M score drastically decreasing
There is, however, a decrease in export production (11.3
vs. 9.5 Gt C yr−1), suggesting that the change in physics
helped to improve this result. EcoGEnIE 1.1_phys_eco also

shows slight improvements to the phosphate M score; it is
likely that our ecosystem tuning somewhat complements the
EcoGEnIE 1.0 plankton community due to the similar size
range diversity. Once we introduce our non-diatom func-
tional groups (NoDiatom) coupled with the new physics, it
is evident how much the results improve (M scores, export,
etc.). Adding the diatom functional group (and, thus, ecolog-
ically enabling the silica cycle) then improved the M scores
further with reasonable opal export.

5.2 Relative diatom distribution

EcoGEnIE 1.1 produced diatom populations in which the
smallest size class (2 µm) are the most dominant, a result that
agrees with the relatively few observational estimates that are
available, as we will discuss next.

Genomic ribotype reads and one in situ plankton record-
ing in the northern Atlantic observe smaller diatoms to be
more abundant than larger ones (Barton et al., 2013; Malviya
et al., 2016), a characteristic we also find in EcoGEnIE
1.1, although relative northern Atlantic abundance within the
model (2 µm diatoms relative to the 20 µm diatoms) is 2 or-
ders of magnitude greater than these recordings. However,
studies such as these tend to be poorly constrained via in-
strumentation, as meshes cannot sample plankton < 20 µm,
potentially resulting in a significant part of the plankton com-
munity remaining unrecorded. This could explain at least
partly why EcoGEnIE 1.1 produces seemingly unrealistic
relative abundances. Sensitivity testing in the model suggests
that the proportion of these size classes depends on the up-
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take rate for dSi, V max
Sia (Fig. 16). As V max

Sia increases, the ratio
of carbon biomass attributed to 20 µm compared with 2 µm
biomass decreases. This is intuitive: the allometric relation-
ships within functional groups result in larger plankton be-
coming less competitive as their nutrient quotas and uptake
rates increase metabolic demand. There is a notable absence
of the 200 µm diatom class in the northern Atlantic, despite
recordings by Barton et al. (2013), suggesting that EcoGE-
nIE 1.1 struggles to represent larger plankton.

The difficulties associated with assessing the ecological
performance of EcoGEnIE 1.0 persist in EcoGEnIE 1.1;
these are mostly linked to the nature of ecological commu-
nity observations and recordings. For example, with plankton
biomass restricted to the upper layer (80.8 m) of the GEnIE
ocean circulation model grid, direct comparisons to data col-
lected in situ can be somewhat difficult, with satellite esti-
mates inferring concentrations from the surface itself. In situ
measurements of diatom distribution tend to opt for ribotype
reads of size classes along expedition transects (Malviya et
al., 2016); consequently, we are restricted to inferences of
regional patterns amongst classes, as opposed to direct com-
parisons of global population.

5.3 Conclusion

This paper builds on the EcoGEnIE 1.0 model of Ward
et al. (2018), which developed a size-based formulation of
plankton ecology and embedded this in an Earth system
model of intermediate complexity. We expanded the model
to include a diatom functional group and other phytoplank-
ton functional groups and, hence, enable the marine silica cy-
cle to be simulated. We not only tuned the model parameters
for diatoms but also re-tuned the most critical physiological
parameters in the ecosystem model framework, identifying a
parameter configuration that performed best towards obser-
vations of biogeochemical tracers and ecological variables.

The EcoGEnIE 1.1 model successfully incorporated di-
atoms as a functional type, enabling dSi as a limiting re-
source. The competitive nature and success of diatoms is cap-
tured in the model, as they are a prevalent group within our
configured community (∼ 20% of total biomass). With this
new extension, there is a potential for further study regard-
ing the ecological success of diatoms during future and past
climatological perturbation and their role in the biological
pump. For example, with these additions, this model could
be utilised to explore the Cenozoic evolution of diatoms and
their ongoing influence over the silicon cycle, long-term sil-
ica cycling (e.g. residence times), and their associated prox-
ies (Conley et al., 2017; Tréguer et al., 2021). This study
also acts as an example of the adaptability of the EcoGEnIE
model, encouraging those looking to incorporate additional
functional groups into the framework.

Code and data availability. The code for the version of the “muf-
fin” release of the cGEnIE Earth system model used in this pa-
per is provided at https://www.seao2.info/cgenie/docs/muffin.pdf
(Ridgwell, 2022). Configuration files for the specific experiments
presented in the paper can be found via the following DOI:
https://doi.org/10.5281/zenodo.10223295 (newest version) (Ridg-
well et al., 2023). Details of the experiments, as well as the com-
mand line needed to run each one, are given in the readme.txt file
in that directory. All other configuration files and boundary con-
ditions are provided as part of the code release. A manual detail-
ing code installation, basic model configuration, tutorials cover-
ing various aspects of model configuration, experimental design,
and output as well as the processing of results can be found at
https://www.seao2.info/cgenie/docs/muffin.pdf (Ridgwell, 2022).
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