

Swansea University Prifysgol Abertawe

Short Legs Racing Towards Extinction: The Landscape Genetics of UK Hedgehogs

Samantha Shove

Swansea University

Submitted to Swansea University in fulfilment of the requirements for the Degree of MRes Biosciences.

September 2023

Copyright: The Author, Samantha Shove, 2024.

Abstract

Biodiversity has been in global declines since the 1940s with industrialised nations including the UK seeing significant declines driven by habitat loss and fragmentation, land use changes and barrier effects, among others. These declines have not only resulted in the loss of species and ecosystem diversity but also genetic diversity, a key component to species survival. The relationship between genetic loss and landscape changes has been demonstrated for a variety of specialist species but is less well established for generalist species, such as the West European Hedgehog (Erinaceus europaeus). This species has seen significant declines and changes in distribution across the UK since the 1950s. Although the drivers of these changes are not well understood, anthropogenic changes in the landscape such as modified agricultural practices and increased road traffic have been proposed to play a part. I used microsatellite genetic analysis to investigate the impact of landscape features on the genetic structure of hedgehogs across South Wales. To understand how landscape features might impact on population genetics, I developed landscape resistance mapping for habitats, roads, watercourses and geographic distance, producing surfaces representing the 'resistance' of movement of hedgehogs through South Wales. I then combined these with the genetic data to test for landscape effects on genetic relatedness using circuit theory. I detected weak genetic structure, with four genetic clusters, but many individuals were admixed. The landscape genetic analysis showed no significant effect from any of the resistance variables on genetic relatedness, including geographic distance, suggesting that gene flow within the sample population is not impacted by landscape resistance. I discuss the potential reasons for this along with other possible causes for the genetic structure This study demonstrates the importance of understanding the observed. interactions between a species and landscape to ensure successful conservation management and appropriate consideration within ecological consultancy.

Declarations and Statements

This work has not previously been accepted in substance for any degree and is not being concurrently submitted in candidature for any degree.

Signed:

Date: 29/09/2023

This thesis is the result of my own investigations, except where otherwise stated. Other sources are acknowledged by footnotes giving explicit references. A bibliography is appended.

Signed:

Date: 29/09/2023

I hereby give consent for my thesis, if accepted, to be available for electronic sharing

Signed:

Date: 29/09/2023

The University's ethical procedures have been followed and, where appropriate, that ethical approval has been granted.

Signed:

Date: 29/09/2023

Statement of Expenditure

Expenditure for the thesis work was approximately as follows:

Qiagen DNA extraction kits £1432

Qiagen multiplex PCR kit £612

Plasticware consumables £185

Textbooks £165

External hard drive for data storage £50

Printing costs £185

Total expenditure £2,629

Statement of Contributions

Contributor Role	Persons Involved	
Conceptualization	Hazel Nichols, Dan Forman, Simon Allen, Samantha	
	Shove	
Data Curation	Hazel Nichols, Samantha Shove	
Formal Analysis	Samantha Shove	
Funding Acquisition	Hazel Nichols, Samantha Shove	
Investigation	Samantha Shove, Gabby Howell (lab processing)	
Methodology	Hazel Nichols, Samantha Shove, Lilly Zecherle	
Project Administration	Hazel Nichols, Samantha Shove	
Resources	Hazel Nichols, Samantha Shove, Simon Allen	
Software	Samantha Shove, Lilly Zecherle (coding guidance)	
Supervision	Hazel Nichols	
Validation	Hazel Nichols	
Visualisation	Samantha Shove	
Writing – original draft	Samantha Shove	
preparation		
Writing – review and	Hazel Nichols, Samantha Shove	
editing		

This study was started in 2021 during which Covid-19 restrictions were in place to varying degrees, which had implications for undertaking lab work as well as availability of lab resources. I also continued to work full-time as an ecological consultant while progressing this study part-time, which reduced my ability to process all of the lab samples and transport samples to other labs for more detailed analysis. For this I relied on Hazel Nichols and Gabby Howell who very kindly supported these aspects of the study where I was unable to.

Ethics Approval

Student Deta	ills		
Name:	Samantha Shove		
Student Number:	2001		
Level:	7		
Course:	Biosciences		
Project Supervisor:	Dr Hazel Nichols		
Last Updated Date:	30 Aug 2021, 10:19 a.m.		
Last Reviewed Date:	30 Aug 2021, 10:19 a.m.		
Reviewed by:	Hazel Nichols		
Projects Ethics A	ssessment Status		
Project Title		Status	Approval Number
Short legs racing tow	ards extinction: the landscape genetics of UK hedgehogs	Completed	SU-Ethics-Student-300821/4446

Health and Safety / Risk Assessments

These are provided in full in Appendix C, as follows:

- Generic risk assessment covid 19 in lab W131A HN 15-09-21
- Biological-Risk-Assessment-Form with amendments 17-01-22
- DNA extraction risk assessment
- Gels risk assessment
- PCR risk assessment

Table of Contents

1.	Intr	oduction	10
2.	Mat	terials and Methods	15
2	.1.	Study Area	15
2	.2.	Habitat Resistance Mapping	
2	.3.	Genetic Analysis	
2	.4.	Population structure analysis	24
2	.5.	Landscape Genetic Analysis	
3.	Res	ults	26
3	.1.	Genetic Analysis	
3	.2.	Population structure analysis	
3	.3.	Landscape Genetic Analysis	
4.	Disc	cussion	
4	.1.	The impact of habitat and feature resistance on gene flow	
4	.2.	Genetic structure	
4	.3.	Limitations and further research	
4	.4.	Conservation implications	
5.	Con	clusion	
6.	Арр	endices	
6	.1.	Appendix B – Habitat Resistance Data	
6	.2.	Appendix B – R Code	
6	.3.	Appendix C – Health and Safety Documentation	
7.	Refe	erences	

Acknowledgements

I would like to thank my supervisors and advisors for their support and guidance throughout my studies. My warmest thanks to Hazel Nichols who has been a fabulous supervisor during my masters and has been a great mentor and helped me rediscover and develop my skills as an academic scientist after several years working in the consultancy sector. I would like to thank Gabby Howell for her incredible work in the lab, helping me extract and process the DNA from the samples and for preparing them for further analysis. I am also very grateful to Lilly Zercherle, who patiently assisted me in understanding circuitscape and R coding, without her unofficial support and guidance this project would not have been successful.

This project is based on a collaboration with the Gower Bird Hospital and I would like to thank Simon Allen and his team personally for his efforts in collecting and storing the samples and collating the associated location data.

I would like to thank my family and friends for their tremendous support throughout the last three years. I would like to thank my parents, Carol and Ken Shove, for their support and encouragement and for being willing listeners to my over excited explanations about what I was doing and what it could mean. I would also like to thank my employers past and present for being flexible enough to allow me to undertake this project alongside my continued professional role.

List of Tables

Table 1: Summary of habitat resistance values by Phase 1 habitat type (shaded rows a	re
based on estimates from comparable habitats). Habitat codes and types are from the .	JNCC
Phase I Habitat Survey handbook (JNCC 2010)	18
Table 2: Summary of road resistance values by type	22
Table 3: Summary of watercourse resistance values by type	22
Table 4: Multiplex microsatellites used for hedgehog genotyping	24
Table 5: Percentage of genetic variance explained by the retained PCos of different	
improved grassland habitat resistance values	25
Table 6: Genotyping summary	27
Table 7: Genotyping summary	27
Table 8: Re-genotyping error rate	28
Table 9: Evanno output from Structure Harvester	29
Table 10: Results from the dbRDA (Lynch and Ritland 1999 estimator)	33
Table 11: Results from the dbRDA (Queller and Goodnight 1989 estimator)	34

List of Figures

Figure 1: The study area in South Wales (shown by the red line) and the location of GBH	
(shown by the red dot)	16
Figure 2: Average Ln Pr(X K) for K 1-10 across all runs	29
Figure 3: LnP(K) from Structure Harvester	30
Figure 4: Delta K from Structure Harvester	30
Figure 5: Results of the genetic structure analysis, proportional ancestry for all samples f	or
four genetic clusters (K=4) as estimated by Structure	31
Figure 6: GIS mapping of genetic sub-populations (K=4). The colours shown for individua	ls
with <0.7 assignment to a single cluster match those used in Figure 5. Admixed individua	als
with <0.7 assignment to a single cluster are shown in white	32
Figure 7: GIS mapping of genetic sub-populations concentrated in the Swansea/Gower a	rea
(K=4). The colours shown for individuals with <0.7 assignment to a single cluster match	
those used in Figure 5. Admixed individuals with <0.7 assignment to a single cluster are	
shown in white	33

Definitions of Abbreviations

Abbreviations	Definitions
dbRDA	Distance-based Redundancy Analysis
DNA	Deoxyribonucleic Acid
GBH	Gower Bird Hospital
GIS	Geographic Information System
GPS	Global Positioning System
HW	Hardy-Weinberg
IG	Improved Grassland
IUCN	International Union for Conservation of Nature
JNCC	Joint Nature Conservancy Council
РСо	Principal Co-ordinates
PIC	Polymorphic Information Content

1. Introduction

Biodiversity in its simplest form refers to the species richness of a community (Krebs 2001). However, it has come to refer more widely to the variation of ecosystems, species, populations, and genetic diversity (Frankham, Ballou & Briscoe 2002). The IUCN recognises three key forms of biodiversity, namely species diversity, ecosystem diversity and genetic diversity (Allendorf, Luikart & Aitken 2013). Biodiversity has been in global decline since the 1940s (Robinson & Sutherland 2002) with significant species and ecosystem declines seen across industrialised nations, including the UK, driven by several factors including habitat loss and land use changes (Andrén 1994, Stoate *et al.* 2001, Brooks *et al.* 2002, Crooks *et al.* 2017), habitat fragmentation/isolation (Bright 1993, Yanes, Velasco & Suárez 1995, Fitzgibbon 1997, Clark *et al.* 2001, Van Dyck & Baguette 2005), and overharvesting (Stoate *et al.* 2001, Donald & Evans 2006). Less well known and unintentional factors have also been identified such as pet predation (Baker *et al.* 2003), transport fatalities (Coffin 2007), chemical use (Stoate *et al.* 2001, Robinson & Sutherland 2002), and pollution (Dickman 1987).

Alongside species and ecosystem biodiversity losses, genetic diversity has also been declining (Lacy 1997, Keller & Waller 2002). Such diversity is vital for avoiding inbreeding depression and maintaining genetic resilience within a population making it a key component of species survival (Yanes, Velasco & Suárez 1995, Reed 2004, Coffin 2007, Weeks *et al.* 2011, Allendorf, Luikart & Aitken 2013). As genetic diversity decreases, individuals, groups, populations, and species are less able to respond to deterministic threats such as habitat destruction, climate change etc. or to stochastic threats such as genetic drift (random changes in genetic variation), inbreeding, and natural environmental change ((Frankham, Ballou & Briscoe 2002, Allendorf, Luikart & Aitken 2013). Understanding genetic diversity also provides a retrospective view of the evolution of a species, reveals barriers to movement and gene-flow, and provides a glimpse of the future evolutionary paths populations and species may take (Allendorf, Luikart & Aitken 2013).

10

Despite the importance of biological and genetic diversity and the significant research that has been conducted to date, there are still notable gaps in our knowledge particularly in relation to the links between habitat resistance (the ease or otherwise with which a species, individual animal, or their genes are able to move through a particular habitat (Spear *et al.* 2010, Balkenhol *et al.* 2016)), barrier effects of man-made features, and genetic diversity (Holderegger & Wagner 2008, Baguette *et al.* 2013).

The influence habitat resistance has on genetic structure has been demonstrated in a variety of specialist species but has been shown to be dependent on how a species interacts with the landscape and the habitats within it (Frankham, Ballou & Briscoe 2002, Spear *et al.* 2010, Baguette *et al.* 2013, Balkenhol *et al.* 2016). The influence of habitat resistance is also known to vary depending on the spatial scale of the model used, which can depend on the availability of data and computational efficiency as well as the species studied (Baguette *et al.* 2013, Balkenhol *et al.* 2016). In other studies, habitat resistance appears to have little influence on the genetic structure of a population despite effects identified for similar or related species (Spear *et al.* 2010, Baguette *et al.* 2013).

Barrier effects have generally been included as part of studies on edge effects, which often focuses more on habitat edge and transition zones rather than separating out or addressing linear features such as roads and watercourses specifically (Akçakaya 2000, Balkenhol *et al.* 2016). Where barriers such as roads and watercourses have been studied independently of habitat edge effects mixed results have also been seen, with several studies identifying no significant effect (De Groot *et al.* 2016, Mateo-Sánchez *et al.* 2015, Kimmig *et al.* 2020) while others have identified significant negative influences of such features (Bergl & Vigilant 2007, Cushman & Lewis 2010, Frantz *et al.* 2012, Draheim *et al.* 2020).

These studies show that there is variability in the influence of habitat resistance and landscape barriers on genetic structure. These could be indicative of insufficient accuracy within resistance models, incorrect model assumptions, limited understanding of how habitat resistance and landscape barriers affect animal movements, time lags, or other unknown factors not being fully considered within the models, (Spear *et al.* 2010, Landguth *et al.* 2010, Balkenhol *et al.* 2016).

West European Hedgehogs (Erinaceus europaeus), referred to as hedgehogs from here on, provide an ideal species to investigate the effects of habitat resistance and movement barriers on genetic structure and diversity. They are generalist nocturnal mammals that feed on a wide range of invertebrates, small vertebrates, and carrion, as well as taking advantage of human provided food in urban and sub-urban environments (Dickman 1987, Reeve 1994, Braaker et al. 2014, Morris 2018). They are non-territorial and have home ranges between 10 and 40ha (Braaker et al. 2014) and typically range between 0.7 to 2.5km per night (Reeve 1994, Riber 2006), with some individuals ranging up to 10 to 15km per night (Williams, Stafford & Goodenough 2015, Morris 2018), allowing them to take advantage of a variety of habitats and food sources within their home ranges (Driezen et al. 2007). Hedgehogs utilise a range of habitats from woodland and scrub to grassland and occasionally heath and have adapted to man-made 'habitats' such as parklands, field margins, and hedgerows (Reeve 1994, Hof & Bright 2010, van de Poel, Dekker & Langevelde 2015, Morris 2018). They are now often more common in urban and sub-urban areas than rural areas (Hof & Bright 2009, Hubert et al. 2011, Braaker et al. 2014, Williams, Stafford & Goodenough 2015, Pettett et al. 2017, Wilson & Wembridge 2018). Their generalist nature means that genetic differences within hedgehog populations are unlikely to be strongly influenced by territoriality, dispersal events, or very specialist species requirements as has been shown in some other species (Baguette et al. 2013, Mateo-Sánchez et al. 2015, Keeley et al. 2017).

Despite the generalist nature of the species, its populations have suffered major declines in recent decades, losing at least 60% of the population since the 1950s (Hof & Bright 2016, Morris 2018, Pettett *et al.* 2018, Finch *et al.* 2020). The drivers behind these declines are unclear and often debated but are likely to include habitat loss and fragmentation and road mortalities (Morris 2018, Moore *et al.* 2020, Taucher *et al.* 2020, Wright *et al.* 2020). In the UK agricultural intensification and land use

changes have resulted in increased field sizes, increased management frequency, and loss of field margins (Stoate *et al.* 2001, Robinson & Sutherland 2002), loss of hedgerows/tree-lines (Kotzageorgis & Mason 1997), and non-agricultural habitat patches (Fitzgibbon 1997), all of which are known to provide connectivity and foraging habitats for hedgehogs (Reeve 1994, Hof & Bright 2010, van de Poel, Dekker & Langevelde 2015, Morris 2018). These habitat changes alter the suitability and resistance across the landscape, affecting the pattern of hedgehog movements as well as the availability and accessibility of the resources needed for survival (Driezen *et al.* 2007, Braaker *et al.* 2014, Wright *et al.* 2020). However, we don't know what effect these changes have had on gene flow and genetic diversity.

The levels of hedgehog mortality on UK roads are also likely to be contributing to these declines with recent studies indicating that approximately 100,000 to 300,000 hedgehogs are killed on UK roads each year (Wright *et al.* 2020). There is some indication that hedgehogs have adapted to certain types and sizes of roads, with minor roads showing positive correlations with hedgehog movement (Hof 2009, Hof & Bright 2010), pattern of vehicle use by becoming active later (Dowding *et al.* 2010) and increasing their movement speed when crossing them (Doncaster, Rondinini & Johnson 2001). However, numerous studies indicate that roads remain a significant factor in population declines, both through direct mortality and as a barrier to movement (Micol, Doncaster & Mackinlay 1994, Huijser & Bergers 2000, Rondinini & Doncaster 2002, Orłowski & Nowak 2004) with larger roads having a greater barrier effect (Orłowski & Nowak 2004, Hof & Bright 2009).

The presence of watercourses can also present a barrier to hedgehog movements and may increase the effect of habitat fragmentation (Morris 2018). However, some studies have shown that hedgehogs can cross such features, including large main rivers, by using bridges and other structures or swimming (Hof & Bright 2009, Barthel *et al.* 2020). As such, the barrier effect of watercourses on gene flow is unclear.

To minimise further declines and encourage recovery of hedgehog populations it is vital to determine to what extent of each these factors have contributed and

continue to contribute to the physical and genetic isolation of hedgehog populations and potentially the declining success of populations. This study uses habitat resistance maps and microsatellite genetic data to investigate the potential barriers to gene flow between populations of hedgehogs across South Wales with the aim of identifying these barriers and proposing potential ways of reducing or removing their influence.

The study focuses on the hedgehog population found within South Wales (referred to as the sample population). The South Wales area has a variety of habitats ranging from grassland and heath to scrub and woodland with urban and developed areas limited in size and restricted to specific locations. South Wales has a robust but varied road network that includes single lane tracks, verged and hedged carriageways and a major motorway. The watercourse network is similarly widespread but varied in size across the South Wales area. Hof & Bright 2012 identified that hedgehog sightings on farmland in Wales was one of the lowest in the UK, with only the South West and London returning lower percentages of sightings, while (Williams et al. 2018) showed marked declines in hedgehog numbers in Wales in recent decades. This is similar to data within the State of Britain's Hedgehogs report (Wembridge et al. 2022), which indicated strong declines across rural Britain up until 2015, after which the population appeared to be stabilising. These suggest that there are strong drivers of population decline and fragmentation within Wales, and that the influence of these may be observable within the genetic structure of the remaining populations.

This thesis will provide an understanding of land use and habitat fragmentation effects on genetic diversity at a landscape scale.

The objectives of this study are to:

- 1. Identify genetic subpopulations within the sample population.
- Determine the effect of habitat resistance, roads, and watercourses on patterns of genetic relatedness within the sample population.

Based on hedgehog ecology and previously published information, I predict that:

- The genetic structure of the sample population will have spatially distinct subpopulations corresponding to the overall distance between individuals and groups as well as the presence of high resistance habitats and natural and man-made barriers.
- Areas of low habitat suitability (high habitat resistance) have a significant influence on the genetic structure of the sample population by reducing hedgehog movement and gene flow across the study area.
- Larger landscape features such as roads and watercourses have a barrier effect on hedgehog movement and therefore gene flow within the sample population.
- 2. Materials and Methods
 - 2.1. Study Area

This study was conducted in collaboration with the Gower Bird Hospital (GBH), who take in rescued hedgehogs, birds, and other animals from across South Wales. GBH collected DNA samples from rescued hedgehogs along with details of where the hedgehogs were found including post codes and grid references. The study area was defined by mapping these locations using the grid references in ArcGIS Pro 3.0.3 (Esri Inc 2023) using the recorded grid references and a buffer of 10km applied to produce a single merged buffer for all records. This buffer was then amended to remove isolated excluded pockets, to join across slivers of land, and to follow coastlines. Morris 2018 indicates that long range dispersal is possible to 15km, but nightly distances tend to be less than 5km, in line with (Doncaster, Rondinini & Johnson 2001) and similar estimates from (Reeve 1981, Reeve 1994) and (Moorhouse *et al.* 2014). Ultimately a 10km buffer was applied based on the conclusion of (Doncaster, Rondinini & Johnson 2001) that displacement between hedgehog populations rarely exceeds 10km.

The study area covers approximately 5,800km² (Figure 1) and was dominated by improved grassland habitat with notable areas of broadleaved plantation, dry heath/acid grassland mosaic, and mosaic (largely a combination of acid grassland, marshy grassland, and wet and dry heath). The southern part of the study area included the urban and suburban areas of Cardiff and Swansea and several major roadways including the M4 running east-west. Numerous watercourses were also present, including several large rivers running approximately north-south through the study area, namely River Taff and River Ely to the east, Ogmore River, River Avan, River Neath, and River Tawe to the centre and River Tywi, River Gwili, and River Taff to the west.

Figure 1: The study area in South Wales (shown by the red line) and the location of GBH (shown by the red dot)

2.2. Habitat Resistance Mapping

To assess the impact of land use on the genetic structure of hedgehog populations, a habitat map of the study area was produced and a resistance value allocated to each habitat type. Open-source phase 1 habitat data was obtained from the LLE Geo-Portal (accessed and downloaded 2021-04-03), imported into ArcGIS and edited to cover the study area only using the clip and edit nodes tools. The accuracy of the habitat mapping was checked against the latest aerial photography available within ArcGIS, with corrections made as necessary. Those areas without a habitat code were also checked against the aerials and adjacent categorised habitats and a visual assessment made to assign a habitat type. These checks were made at a scale of 1:5,000 with all areas less than 1 hectare not checked as they were likely too small to influence habitat resistance given the extent of the study area. These limitations were applied given the number of polygons within the study area and the time constraints of the project.

The data used was collected/recorded at different times with the habitat and roads data dated 2016, the watercourse data dated 2017, the aerial imagery used to update these dated 2020, and the genetic samples collected between 2019 and 2021. The updating of the habitat, roads and watercourse data using the aerial imagery brought the baseline information into chronological line with the genetic samples.

Once this mapping was completed, a habitat resistance field was added to the attribute table within ArcGIS. Each habitat type was assigned a resistance value category between 0 (low resistance) and 99 (high resistance/barrier), following (Zecherle *et al.* 2020). These values were based on species knowledge, such as resource requirements, need for cover, and foraging behaviour, and the identified habitat use patterns from previous studies (detailed within Appendix A), where habitats were categorised based on their resistance or suitability for hedgehogs. The previously published studies used a variety of means to define habitat resistance, varying from simple categories, e.g. (Pettett *et al.* 2017), or positive and negative associations, e.g. (Doncaster, Rondinini & Johnson 2001), to generating resistance values that were then tested across several models, e.g. (Driezen *et al.* 2007). These results were collated and summarised to produce a typical resistance level and value for mapping purposes, as shown in Table 1 below and detailed in full in Appendix A.

17

mid-point value using the filter and batch edit tools. A similar process as above was followed for roads and watercourses based on the 'type' information provided by the open source GIS data. These values are shown in Table 2 and Table 3 below.

Data wasn't directly available for 49 of the habitat types, so comparable habitats were used as a proxy, the proxies used have been identified within Appendix A. The data and conclusions from published studies was contradictory for 14 of the habitat types where data was directly available, so the most common result was used in combination with species ecology to determine the most appropriate resistance level.

Once added to ArcGIS, the above were then used to create the raster maps required for the Circuitscape analysis discussed below. This was achieved using the feature to raster and taster to ASCII tools to create .asc and .txt file types that could then be imported into the Circuitscape software.

Given the habitat monoculture and intensive management associated with improved grassland habitats, and contradictory research results indicating different use levels (Appendix A), several habitat resistance maps were produced. These altered the resistance input value of improved grassland using each of the different resistance levels providing a set of 7 raster maps for habitat resistance.

Table 1: Summary of habitat resistance values by Phase 1 habitat type (shaded rows are based on estimates from comparable habitats). Habitat codes and types are from the JNCC Phase I Habitat Survey handbook (JNCC 2010)

Habitat	Habitat Type	Typical	Typical Resistance	GIS input
Code		Resistance Level	Value (0 to 99)	value
A.1.1.1	Broadleaved semi-natural woodland	Low	2 to 20	11
A.1.1.2	Broadleaved plantation	Low-medium	21 to 40	31
A.1.2.1	Coniferous semi-natural woodland	Medium	41 to 60	51
A.1.2.2	Coniferous plantation	Medium	41 to 60	51
A.1.3.1	Mixed semi-natural woodland	Low-medium	21 to 40	31
A.1.3.2	Mixed plantation	Low-medium	21 to 40	31
A.2.1	Dense / continuous scrub	Negligible	1	1
A.2.2	Scattered scrub	Low	2 to 20	11

Habitat Code	Habitat Type	Typical Resistance Level	Typical Resistance Value (0 to 99)	GIS input value
A.3.1	Broadleaved parkland /	Negligible	1	1
/	scattered trees	i cenene	-	-
A.3.2	Coniferous parkland /	Negligible	1	1
	scattered trees	0.0		
A.3.3	Mixed parkland / scattered	Negligible	1	1
	trees			
A.4.1	Broadleaved recently	Low	2 to 20	11
	felled woodland			
A.4.2	Coniferous recently felled	Low-medium	21 to 40	31
	woodland			
A.4.3	Mixed recently felled	Low-medium	21 to 40	31
	woodland			
B.1.1	Unimproved acid grassland	Negligible	1	1
B.1.2	Semi-improved acid	Negligible	1	1
	grassland	A. 1. 1. 1		
B.2.1	Unimproved neutral	Negligible	1	1
D 2 2	grassland	Negligible	1	1
B.2.2	Semi-improved neutral	Negligible	1	1
B.3.1	grassland Unimproved calcareous	Nogligible	1	1
D.3.1	grassland	Negligible		L L
B.3.2	Semi-improved calcareous	Negligible	1	1
0.3.2	grassland	Negligible	-	-
B.4	Improved grassland	Negligible	1	1
2	(pasture)		_	_
B.5	Marsh / marshy grassland	Negligible	1	1
B.6	Poor semi-improved	Negligible	1	1
	grassland	0.0		
C.1.1	Continuous bracken	Negligible	1	1
C.1.2	Scattered bracken	Low-medium	21 to 40	31
C.2	Upland species-rich ledges	High	81 to 98	91
C.3.1	Tall ruderal	Negligible	1	1
C.3.2	Non-ruderal	Negligible	1	1
D.1.1	Dry dwarf shrub heath –	Low-medium	21 to 40	31
	acid			
D.1.2	Dry dwarf shrub heath –	Low-medium	21 to 40	31
	basic			
D.2	Wet dwarf shrub heath	Medium-high	61 to 80	71
D.3	Lichen / bryophyte heath	Medium-high	61 to 80	71
D.4	Montane heath / dwarf herb	Medium	41 to 60	51
D.5	Dry heath / acid grassland	Low-medium	21 to 40	31
	mosaic			
D.6	Wet heath / acid grassland	Medium	41 to 60	51
	mosaic			
E.1.6.1	Blanket bog	High	81 to 98	91
E.1.6.2	Raised bog	High	81 to 98	91
E.1.7	Wet modified bog	High	81 to 98	91
E.1.8	Dry modified bog	High	81 to 98	91
E.2.1	Acid / neutral flush / spring	High	81 to 98	91
	Basic flush / spring	High	81 to 98	

Habitat	Habitat Type	Typical	Typical Resistance	GIS input
Code		Resistance Level	Value (0 to 99)	value
E.2.3	Bryophyte dominated flush / spring	High	81 to 98	91
E.3.1	Valley mire fen	High	81 to 98	91
E.3.2	Basin mire fen	High	81 to 98	91
E.3.3	Flood plain fen	High	81 to 98	91
E.4	Bare peat	High	81 to 98	91
F.1	Swamp	High	81 to 98	91
F.2.1	Marginal vegetation	High	81 to 98	91
F.2.2	Inundation vegetation	High	81 to 98	91
G.1	Standing water	High	81 to 98	91
G.1.1	Eutrophic	High	81 to 98	91
G.1.2	Mesotrophic	High	81 to 98	91
G.1.3	Oligotrophic	High	81 to 98	91
G.1.4	Dystrophic	High	81 to 98	91
G.1.5	Marl	High	81 to 98	91
G.1.6	Brackish	High	81 to 98	91
G.2	Running water	High	81 to 98	91
G.2.1	Eutrophic	High	81 to 98	91
G.2.2	Mesotrophic	High	81 to 98	91
G.2.3	Oligotrophic	High	81 to 98	91
G.2.4	Dystrophic	High	81 to 98	91
G.2.5	Marl	High	81 to 98	91
G.2.6	Brackish	High	81 to 98	91
H.1.1	Intertidal mud / sand	High	81 to 98	91
H.1.2	Intertidal shingles / cobbles	High	81 to 98	91
H.1.3	Intertidal boulders / rocks	High	81 to 98	91
H.1.(1-2).1	Zostera beds	High	81 to 98	91
H.1.(1-3).2	Green algal beds	High	81 to 98	91
H.1.(1-3).3	Brown algal beds	High	81 to 98	91
H.2.3	Saltmarsh / dune interface	High	81 to 98	91
H.2.4	Scattered saltmarsh plants	High	81 to 98	91
H.2.6	Dense / continuous saltmarsh plants	High	81 to 98	91
H.3	Shingle above high tide mark	High	81 to 98	91
H.4	Boulders / rocks above high tide mark	High	81 to 98	91
H.5	Strandline vegetation	High	81 to 98	91
H.6.4	Sand dune – dune slack	Medium-high	61 to 80	71
H.6.5	Sand dune – dune grassland	Medium-high	61 to 80	71
H.6.6	Sand dune – dune heath	High	81 to 98	91
H.6.7	Sand dune – dune scrub	Medium-high	61 to 80	71
H.6.8	Sand dune – open dune	High	81 to 98	91
H.8.1	Maritime cliff and slope – hard cliff	High	81 to 98	91
H.8.2	Maritime cliff and slope – soft cliff	High	81 to 98	91
H.8.3	Maritime cliff and slope – crevice / ledge vegetation	High	81 to 98	91
H.8.4	Maritime cliff and slope – coastal grassland	Negligible	1	1

Habitat	Habitat Type	Typical	Typical Resistance	GIS input
Code		Resistance Level	Value (0 to 99)	value
H.8.5	Maritime cliff and slope – coastal heathland	Low-medium	21 to 40	31
l.1.1.1	Natural inland cliff – acid / neutral	High	81 to 98	91
I.1.1.2	Natural inland cliff – basic	High	81 to 98	91
l.1.2.1	Natural scree – acid / neutral	High	81 to 98	91
I.1.2.2	Natural scree – basic	High	81 to 98	91
l.1.3	Natural limestone pavement	Medium-high	61 to 80	71
1.1.4.1	Natural other exposure – acid / neutral	High	81 to 98	91
1.1.4.2	Natural other exposure – basic	High	81 to 98	91
I.1.5	Natural cave	High	81 to 98	91
I.2.1	Artificial quarry	High	81 to 98	91
1.2.2	Artificial spoil	High	81 to 98	91
1.2.3	Artificial mine	High	81 to 98	91
1.2.4	Artificial refuse tip	High	81 to 98	91
J.1.1	Arable	Medium-high	61 to 80	71
J.1.2	Amenity grassland	Negligible	1	1
J.1.3	Ephemeral / short perennial	Negligible	1	1
J.1.4	Introduced shrub (inc INNS)	Negligible	1	1
J.1.5	Gardens	Low	2 to 20	11
J.2.1.1	Intact species rich hedge	Negligible	1	1
J.2.1.2	Intact species poor hedge	Negligible	1	1
J.2.2.1	Defunct species rich hedge	Negligible	1	1
J.2.2.2	Defunct species poor hedge	Negligible	1	1
J.2.3.1	Species rich hedge with trees	Negligible	1	1
J.2.3.2	Species poor hedge with trees	Negligible	1	1
J.2.4	Fence	Medium	41 to 60	51
J.2.5	Wall	High	81 to 98	91
J.2.6	Dry ditch	Negligible	1	1
J.2.7	Boundary removed	Negligible	1	1
J.2.8	Earth bank	Negligible	1	1
J.3.4	Caravan site	Medium-high	61 to 80	71
J.3.5	Sea wall	Complete	99	99
J.3.6	Buildings	Complete	99	99
J.3.7	Track / road	Medium	41 to 60	51
J.3.7	Road – including all unpaved and asphalt roads, and railroads.	Low	2 to 20	31
J.3.7	Large Road – as above but over 4m wide	High	81 to 98	91
J.4	Bare ground	Low-medium	21 to 40	31
J.5	Other habitat	Low-medium	21 to 40	31
J.5	Solar panel fields	Low	2 to 20	11

Road Type	Typical Resistance	Typical Resistance Value	GIS input value
	Level	(0 to 99)	
A Road	High	81 to 98	91
B Road	Medium-high	61 to 80	71
Classified Unnumbered	Medium	41 to 60	51
Motorway	Complete	99	99
Not Classified	Low-medium	21 to 40	31
Unclassified	Low-medium	21 to 40	31

Table 2: Summary of road resistance values by type

Table 3: Summary of watercourse resistance values by type

Watercourse Type	Typical Resistance Level	Typical Resistance Value (0 to 99)	GIS input value
Canal	High	81 to 98	91
Inland River	High	81 to 98	91
Lake	Complete	99	99
Tidal River	Complete	99	99

2.3. Genetic Analysis

Genetic samples were taken from rescued hedgehogs by Simon Allen of the GBH between October 2019 and September 2021. These samples included 147 frozen buccal swabs, and 164 tail tip samples stored in ethanol and frozen at -20°C. Of these samples, 3 individuals had both buccal swabs and tail samples taken. Buccal swabs were only taken while hedgehogs were under anaesthetic for veterinary procedures. Tail and ear samples were taken from hedgehogs that were dead on arrival or died while in the care of GBH. No hedgehogs were killed, handled, or anaesthetised for the purposes of this study. Samples were taken in accordance with the ethics permit, number SU-Ethics-Staff-200721/213.

DNA extraction used the Qiagen[®] DNeasy Blood and Tissue kit, following the manufacturer's instructions, applying the technique specified for tissue DNA extraction for both tissue and swab samples. Samples were genotyped using 14 fluorescently labelled microsatellites across three multiplex reactions (Table 4). The microsatellites were identified through published literature (Becher & Griffiths 1997, Curto *et al.* 2019, Henderson *et al.* 2000). Microsatellites are small sequences of tandemly repeating DNA no more than 6 bases long that have a high rate of mutation and are easy to extract and genotype in comparison to other genetic approaches (Jarne & Lagoda 1996, Goldstein & Schlotterer 1999). This makes the ideal for

identifying the genetic structure of a given population or sample group, especially when budgets constrain the use of more expensive techniques.

Polymerase chain reactions (PCR) were performed to amplify microsatellite sequences using a Qiagen[®] Multiplex PCR Kit following the manufacturer's recommendations, except that we used 12 µl reaction volumes to keep the use of reagents to a minimum. The following PCR conditions were used: one cycle of 15 min at 95°C; 35 cycles of 30 s at 94°C, 90 s at 57°C, 60 s at 72°C; and one final cycle of 30 min at 60°C. PCR products were resolved by electrophoresis on an ABI 3730xl capillary sequencer (Applied Biosystems) and allele sizes were scored using GeneMapper[®] Software Version 4.0 (Applied Biosystems). To maximise genotype quality, we manually inspected all of the traces and corrected any genotype calls where necessary. To assess error rates for each microsatellite locus, we independently re-genotyped a subset of 49 individuals and compared the resulting genotypes to calculate the error rate per allele.

Summary statistics on the resultant genotypes (information content, deviation from the Hardy-Weinberg equilibrium, and frequency of null alleles) were calculated using Cervus 3.0.7. The Hardy-Weinberg (HW) principle states that the allele/genotype frequency within a population will reach equilibrium after one generation and remain constant from generation to generation in the absence of other influences. This principle uses several assumptions namely random mating, absence of natural selection, a large population, no gene flow (migration), and no mutation (Allendorf, Luikart & Aitken 2013), although these do occur in naturally outbreeding populations (Frankham, Ballou & Briscoe 2002). It is important to determine if the HW principle is violated to show if one or more of the processes above are operating at a level to significantly influence allele and genotype frequencies and therefore the genetic structure of the population (Balkenhol *et al.* 2016) or if there are potential errors in the sampling and extraction process (Van Oosterhout *et al.* 2004, Kwong *et al.* 2021).

Multiplex	Locus	Allele Size (bp)	Colour
	EEU12H	91-97	blue (6-FAM)
	EEU1	129-143	green (HEX)
1	EEU4	144-170	blue (6-FAM)
	EEU37H	236-280	green (HEX)
	E13	310	blue (6-FAM)
	EEU5	107-139	green (HEX)
2	EEU3	131-181	blue (6-FAM)
2	EEU6	145-159	green (HEX)
	EEU2	257-281	blue (6-FAM)
	W23	114-126	blue (6-FAM)
	EEU43H	156-168	green (HEX)
3	W30	177-197	blue (6-FAM)
	W8	244-269	blue (6-FAM)
	E36	319-348	green (HEX)

Table 4: Multiplex microsatellites used for hedgehog genotyping.

2.4. Population structure analysis

Structure 2.3.1 was used to assess the genetic subdivision within the sample population, as set out in (Pritchard, Wen & Falush 2010), using the admixture model. This model can be used to determine the most likely number of genetic clusters (K) within a sample population and which individuals most likely belong to which cluster using the Bayesian method. K values ranging from 1 to 10 were subject to five independent runs each with run length and MCMC of 10^5 following a burn-in time of 10^5 . Given the difficulty in determining K values below 3 (Janes *et al.* 2017) the following were reviewed together to assess the most likely value of K (1) Average estimated likelihood of K (Ln Pr(X|K)), which estimates the posterior probability of the data, across all runs, (2) estimated likelihood of K (Ln Pr(X|K)) for individual runs, and (3) Δ K, the statistic developed by Evanno et al (2005) based on the second-order rate of change of LN Pr(X|K), as generated by Structure Harvester Web v0.6.94 July 2014, Plot vA.1 November 2012, Core vA.2 July 2014 (Earl & vonHoldt 2012).

2.5. Landscape Genetic Analysis

Circuitscape in Julia (Anantharaman *et al.* 2020) was used to calculate the pairwise resistance distances for the sampled population against the different resistance surfaces. This utilises electronic circuit theory to estimate the resistance to current flow between nodes (sampled individuals) and was run in pairwise mode with nodes

connected to all eight neighbouring cells (Zecherle *et al.* 2020). This provides pairwise resistance distances which were then converted to relatedness coefficients to provide a measure of the resistance between paired sampled individuals. The genetic distance and relatedness coefficients were estimated using the pairwise relatedness tool in the GenAlEx Excel add-in (Peakall & Smouse 2006, Peakall & Smouse 2012), following Lynch & Ritland (1999) and Queller & Goodnight (1989).

A distance-based redundancy analysis (dbRDA) was used to test for a potential relationship between habitat/feature resistance distance and genetic distance. This followed (Zecherle et al. 2020) using the capsscale function in the 'vegan' R package (Legendre, Oksanen & ter Braak 2011). This approach allows distance as a response variable against which different explanatory variables can be regressed (Legendre & Anderson 1999, Buttigieg & Ramette 2014). To utilise this approach, the pairwise relatedness matrices and the habitat/feature resistance matrices were first transformed into one-dimensional explanatory variables using the pcoa function in the 'ape' R package with a Lingoes correction to address negative eigenvalues and preserve variation within the matrices (Paradis & Schliep 2018, Zecherle et al. 2020). The number of significant principal coordinates (PCos) to be retained was determined using a broken stick model (MacArthur 1957). This indicated that the first 10 PCos should be retained for the distance control, roads, and water resistance variables; these accounted for >50% of the genetic variance within the samples. Those for the various habitat resistance variables were significantly more due to the low proportion of variability explained. As such the first 10 PCos were used for all resistance variables for consistency (Table 5).

Table 5: Percentage of	genetic variance	e explained b	by the	retained	PCos o	of different
improved grassland hab	itat resistance val	ues				

Variable	Variance Explained by Retained PCo (first 10)
Distance	50.62%
Habitats (IG Resistance = 1)	4.17%
Habitats (IG Resistance = 11)	4.24%
Habitats (IG Resistance = 31)	4.30%
Habitats (IG Resistance = 51)	4.32%
Habitats (IG Resistance = 71)	4.34%

Variable	Variance Explained by Retained PCo (first 10)
Habitats (IG Resistance = 91)	4.36%
Habitats (IG Resistance = 99)	4.36%
Roads	50.40%
Water	50.63%
NB: IG resistance = improved grassland identified	resistance which varies within each variable as

Twenty models were tested for resistance effects on gene flow with the transformed pairwise relatedness matrix set as the response variable and one of the transformed resistance matrices (geographic distance, habitat with varying resistance for improved grassland, roads, and waterbodies) set as the explanatory variables. Models were also tested that controlled for an effect of geographic distance on habitat/feature resistance. A model was also tested that included all the explanatory variables, with habitat resistance of 31 (low-medium) for improved grassland. This resistance was chosen as it was the closest to being statistically significant of all the habitat resistance layers (Table 10 and Table 11). Models were run twice, the first using the pairwise relatedness matrix generated by the Lynch & Ritland (1999) estimator and the second using the matrix from the Queller & Goodnight (1989) estimator. All models were tested for significance using the anova.cca function with 9999 permutations.

3. Results

3.1. Genetic Analysis

Of 303 samples obtained, 298 samples were successfully genotyped, 98.3% of the samples provided by GBH (Table 6). Our panel of 14 microsatellites had a high level of diversity and information content; mean observed heterozygosity of the microsatellites within the sampled population was 0.656 (range 0.336 - 0.801), mean Polymorphic Information Content (PIC) was 0.614 (range 0.327 - 0.761) and the mean number of alleles per locus was 7.786 (range 3 - 11) (Table 6 and Table 7). There was no significant deviation from the HW equilibrium for any locus (Table 6 and Table 7). This indicates that the microsatellites genotyped meet the HW assumptions and are unlikely to be impacted by issues such as sex-linkage and high

levels of genotyping errors. The estimated frequency of null alleles was under 0.05 for all the microsatellites used with the exception of three, the highest having an estimated frequency of 0.067 (highlighted in red in Table 7). As these estimated null allele rates were low, the potential presence of null alleles is likely to have a negligible effect on population-genetic parameters, so all of the microsatellites were used in further analysis.

A subset of 49 samples was re-genotyped and the two sets compared to determine the error level within the genotyped data. The error rate was zero for 12 of the loci and was very low (<0.04 per allele) for the remaining two loci (Table 8). Furthermore, three individuals where tail and swab samples were taken were successfully genotyped and showed no variation in results, demonstrating that genotypes from non-invasive swabs were consistent with those from tissue samples.

Table 6: Genotyping summary

Displayed are the total number of individuals sampled, total number genotyped, number of microsatellite loci used, mean number of alleles per locus, loci proportion typed, mean expected heterozygosity and mean polymorphic information content (PIC)

Number of individuals sampled	303
Number of individuals genotyped	298
Number of microsatellite loci	14
Mean number of alleles per locus	7.786
Mean proportion of loci typed	0.985
Mean expected heterozygosity	0.656
Mean polymorphic Information Content (PIC)	0.614

Table 7: Genotyping summary

Displayed are the loci used, number of alleles associated with each, number of hedgehogs genotyped using that locus, observed and expected heterozygosity, polymorphic information content (PIC), Hardy-Weinberg variation (HW; NS represent not significant), and estimated frequency of null alleles.

Locus	No of Alleles	No of Hedgehogs Genotyped	Observed Hetero- zygosity	Expected Hetero- zygosity	PIC	НW	Estimated Frequency of Null Alleles
E13	9	298	0.728	0.792	0.761	NS	0.041
EEU1	8	300	0.407	0.403	0.35	NS	-0.012
EEU12H	3	300	0.377	0.42	0.359	NS	0.052
EEU37H	6	295	0.336	0.343	0.327	NS	0.001
EEU4	7	298	0.728	0.783	0.748	NS	0.035

Locus	No of Alleles	No of Hedgehogs Genotyped	Observed Hetero- zygosity	Expected Hetero- zygosity	PIC	НW	Estimated Frequency of Null Alleles
EEU2	9	302	0.636	0.712	0.666	NS	0.056
EEU3	7	298	0.614	0.639	0.581	NS	0.016
EEU5	11	299	0.712	0.767	0.731	NS	0.036
EEU6	6	302	0.586	0.669	0.609	NS	0.067
E36	7	301	0.801	0.781	0.748	NS	-0.016
EEU43H	10	298	0.695	0.72	0.685	NS	0.020
W23	8	285	0.586	0.629	0.573	NS	0.035
W30	10	302	0.689	0.75	0.72	NS	0.044
W8	8	301	0.721	0.77	0.732	NS	0.033

Table 8: Re-genotyping error rate

Locus	Total No of Alleles Re- genotyped	No of Mismatches	Error Rate per Allele
E13	94	0	0
EEU1	92	1	0.011
EEU12H	92	0	0
EEU37H	90	3	0.033
EEU4	94	0	0
EEU2	94	0	0
EEU3	96	0	0
EEU5	94	0	0
EEU6	96	0	0
E36	90	0	0
EEU43H	96	0	0
W23	88	0	0
W30	98	0	0
W8	98	0	0

3.2. Population structure analysis

The Ln Pr(X|K) generated by the Structure analysis across all runs of K indicated a K value of either 3 (2 out 5 runs) or 4 (3 out of 5 runs). The average Ln Pr(X|K) indicated a K value of 4, although there is only a slight difference between this and K = 3 (Figure 2). The Structure Harvester analysis indicated a K value of 3 based the mean LnP(K), just above that for K=4 (Table 9 and Figure 3) while Δ K showed a strong peak at K = 4 (Figure 4). Overall, the analysis indicates that there are most likely 4 genetic subpopulations within the sample population.

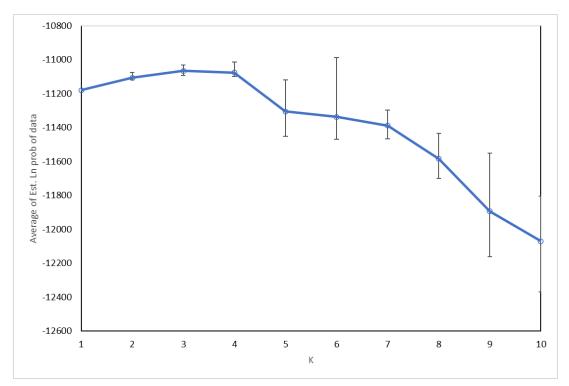


Figure 2: Average Ln Pr(X|K) for K 1-10 across all runs.

# K	Reps	Mean LnP(K)	Stdev LnP(K)	Ln'(K)	Ln''(K)	Delta K
2	5	-11106.68	18.480	NA	NA	NA
3	5	-11065.98	23.473	40.70	51.02	2.174
4	5	-11076.30	34.761	-10.32	218.54	6.287
5	5	-11305.16	120.694	-228.86	196.3	1.626
6	5	-11337.72	200.279	-32.56	18.30	0.091
7	5	-11388.58	67.898	-50.86	145.38	2.141
8	5	-11584.82	116.876	-196.24	112.28	0.961
9	5	-11893.34	251.701	-308.52	131.7	0.523
10	5	-12070.16	203.0189	-176.82	NA	NA

Table 9: Evanno output from Structure Harvester

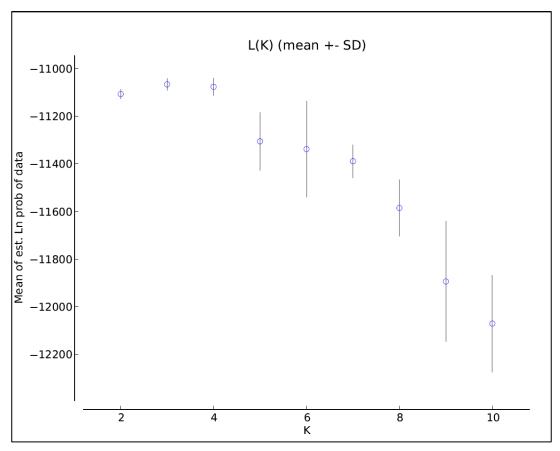


Figure 3: LnP(K) from Structure Harvester

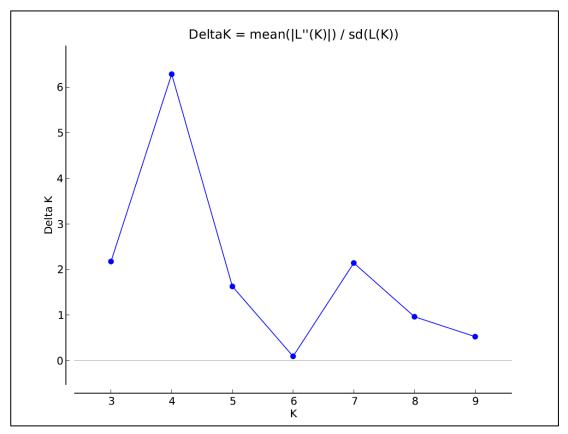


Figure 4: Delta K from Structure Harvester

The Structure ancestry analysis (Figure 5) based on K=4 shows a clear population cluster assigned for 136 (46%) individuals, while 162 (54%) could not be clearly assigned to a single population (q-values <0.7). Mapping the likely populations based on K=4 (Figure 6 and Figure 7) shows the overlap between the population clusters with two populations largely limited to the Gower/Swansea area (red and yellow populations). The green population is largely limited to this area but also has several individuals to the north and east. The blue population also has some geographic limitation to the south east part of the study but this also has some overlap with the other coloured populations. The remaining individuals, shown in white, could not be clearly assigned to a specific population cluster; these are spread throughout the study area.

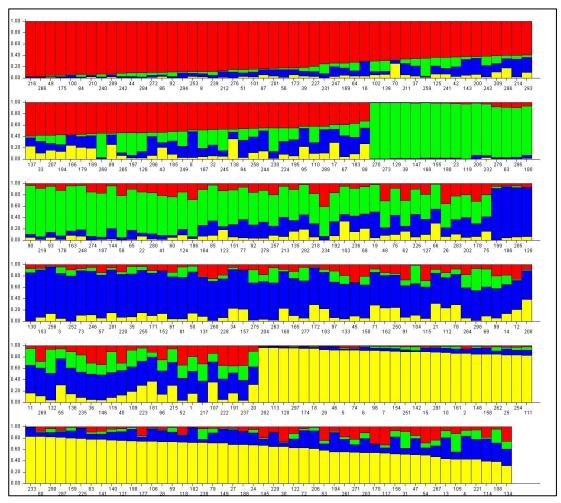


Figure 5: Results of the genetic structure analysis, proportional ancestry for all samples for four genetic clusters (K=4) as estimated by Structure

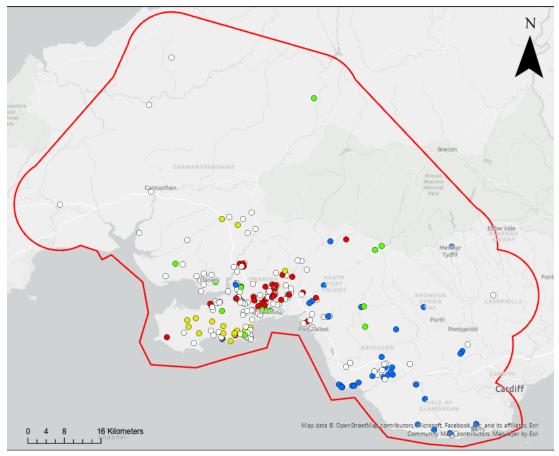


Figure 6: GIS mapping of genetic sub-populations (K=4). The colours shown for individuals with <0.7 assignment to a single cluster match those used in Figure 5. Admixed individuals with <0.7 assignment to a single cluster are shown in white.

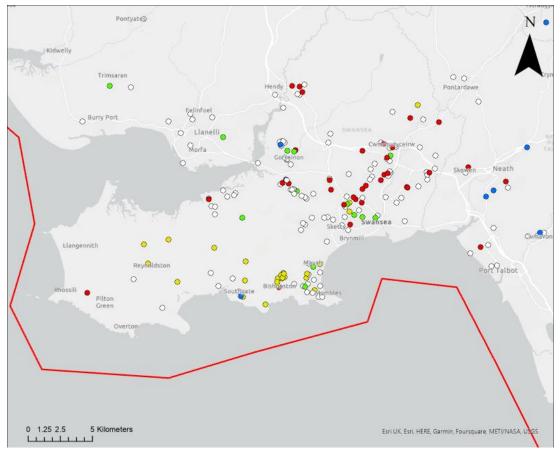


Figure 7: GIS mapping of genetic sub-populations concentrated in the Swansea/Gower area (K=4). The colours shown for individuals with <0.7 assignment to a single cluster match those used in Figure 5. Admixed individuals with <0.7 assignment to a single cluster are shown in white.

3.3. Landscape Genetic Analysis

None of the explanatory variables (geographic distance, habitat resistance, the presence of roads or watercourses) had a significant effect on pairwise genetic relatedness within the sample population, either alone or when controlled for distance (Table 10 and Table 11).

Table 10: Results from the dbRDA (Lynch and Ritland 1999 estimator)

Displayed are the tested models for the Lynch and Ritland 1999 estimator, their total variance (inertia), the % variance explained (R^2) and adjusted % variance explained (adjusted R^2), the degrees of freedom (df), F-statistic (F), and p-value (Pr(>F)) of the permutation tests (9,999). Models controlled for distance are indicated with |.

Variable	Inertia	R ²	Adjusted R ²	Df	F	Pr(>F)
Distance	1.65	3.70%	<1%	10	0.980	0.971
Habitats (IG Resistance = 1)	1.66	3.74%	<1%	10	0.991	0.853

Variable	Inertia	R ²	Adjusted R ²	Df	F	Pr(>F)
Habitats (IG Resistance = 11)	1.68	3.77%	<1%	10	1.000	0.527
Habitats (IG Resistance = 31)	1.68	3.77%	<1%	10	1.000	0.516
Habitats (IG Resistance = 51)	1.66	3.74%	<1%	10	0.992	0.819
Habitats (IG Resistance = 71)	1.66	3.73%	<1%	10	0.987	0.911
Habitats (IG Resistance = 91)	1.64	3.69%	<1%	10	0.977	0.986
Habitats (IG Resistance = 99)	1.64	3.69%	<1%	10	0.977	0.984
Roads	1.65	3.70%	<1%	10	0.980	0.967
Water	1.64	3.70%	<1%	10	0.980	0.971
Roads Distance	1.64	3.76%	<1%	10	0.995	0.679
Water Distance	1.64	3.76%	<1%	10	0.995	0.680
Habitats (IG Resistance = 1) Distance	1.64	3.70%	<1%	10	0.980	0.968
Habitats (IG Resistance = 11) Distance	1.64	3.72%	<1%	10	0.985	0.901
Habitats (IG Resistance = 31) Distance	1.64	3.74%	<1%	10	0.989	0.840
Habitats (IG Resistance = 51) Distance	1.64	3.72%	<1%	10	0.986	0.899
Habitats (IG Resistance = 71) Distance	1.64	3.72%	<1%	10	0.984	0.922
Habitats (IG Resistance = 91) Distance	1.64	3.69%	<1%	10	0.976	0.981
Habitats (IG Resistance = 99) Distance	1.64	3.69%	<1%	10	0.975	0.982
All variables (IG resistance = 31)	44.44	15.03%	<1%	40	0.995	0.844

Table 11: Results from the dbRDA (Queller and Goodnight 1989 estimator)

Displayed are the tested models for the Queller and Goodnight 1989 estimator, their total variance (inertia), the % variance explained (R2) and adjusted % variance explained (adjusted R2), the degrees of freedom (df), F-statistic (F), and p-value (Pr(>F)) of the permutation tests (9,999). Models controlled for distance are indicated with |.

Variable	Inertia	R ²	Adjusted R ²	Df	F	Pr(>F)
Distance	8.82	3.75%	<1%	10	0.995	0.688
Habitats (IG Resistance = 1)	8.76	3.73%	<1%	10	0.987	0.913
Habitats (IG Resistance = 11)	8.83	3.75%	<1%	10	0.995	0.704
Habitats (IG Resistance = 31)	8.84	3.76%	<1%	10	0.996	0.659
Habitats (IG Resistance = 51)	8.81	3.75%	<1%	10	0.993	0.778
Habitats (IG Resistance = 71)	8.80	3.74%	<1%	10	0.992	0.794
Habitats (IG Resistance = 91)	8.80	3.74%	<1%	10	0.992	0.784
Habitats (IG Resistance = 99)	8.80	3.74%	<1%	10	0.992	0.792
Roads	8.83	3.76%	<1%	10	0.996	0.653
Water	8.82	3.75%	<1%	10	0.995	0.693

Variable	Inertia	R ²	Adjusted R ²	Df	F	Pr(>F)
Roads Distance	8.82	3.78%	<1%	10	1.002	0.452
Water Distance	8.82	3.77%	<1%	10	1.000	0.525
Habitats (IG Resistance = 1) Distance	8.82	3.70%	<1%	10	0.979	0.962
Habitats (IG Resistance = 11) Distance	8.82	3.71%	<1%	10	0.982	0.937
Habitats (IG Resistance = 31) Distance	8.82	3.71%	<1%	10	0.981	0.937
Habitats (IG Resistance = 51) Distance	8.82	3.70%	<1%	10	0.978	0.964
Habitats (IG Resistance = 71) Distance	8.82	3.69%	<1%	10	0.978	0.967
Habitats (IG Resistance = 91) Distance	8.82	3.70%	<1%	10	0.980	0.958
Habitats (IG Resistance = 99) Distance	8.82	3.70%	<1%	10	0.980	0.952
All variables (IG resistance = 31)	235.06	15.03%	<1%	40	0.995	0.839

4. Discussion

The analysis showed a weak genetic structure within the hedgehog sample population across the study area, with four genetic clusters; one being primarily found in the south east, another primarily on the Gower peninsula and the remaining two clusters around the Swansea area. However, over half of the individuals sampled were not clearly allocated to a specific cluster, supporting the conclusion of a weak genetic structure. Patterns of genetic relatedness across the study area were seemingly unrelated to geographic distance, habitat resistance, or the presence of large barrier features within the landscape.

4.1. The impact of habitat and feature resistance on gene flow

While previously published research based on individually tracking hedgehogs demonstrates that the species avoids or uses certain habitats less than others (Driezen *et al.* 2007), this doesn't appear to have affected the patterns of relatedness across the study area. This was repeated across all habitat resistance models despite variations in the resistance levels used for improved grassland habitat, which

dominated the study area. This suggests that individual hedgehogs may cross higher resistance habitats with sufficient frequency to allow gene-flow across South Wales. Alternatively, habitat resistance may impact movement, but there may be other drivers to hedgehog movements (not measured in this study) that override the habitat resistance as a factor determining gene-flow, such as availability of resting or nesting habitat, disturbance, food availability and risk of predation (Doncaster 1993, Doncaster, Rondinini & Johnson 2001, Riber 2006, Driezen *et al.* 2007, Berger *et al.* 2020a). However, it should be noted that the drivers not investigated in this study are likely have limited influence on gene-flow on a landscape-scale as we found a weak genetic structure across the whole population.

Contrary to expectations, the presence of roads was found to have no significant impact on genetic relatedness within the study area. Roads present substantial features within the landscape, including motorways and busy A-roads, and based on published research, could be expected to have some form of barrier effect (Orłowski & Nowak 2004, Moore *et al.* 2020). My results suggest that hedgehogs are able to cross the majority of roads, circumvent them, or even to use them as movement corridors. Doncaster (1992) observed individual hedgehogs in London crossing major trunk roads with reports of hedgehogs successfully crossing or circumventing roads also occurring in other studies (Doncaster, Rondinini and Johnson 2001, Dowding *et al.* 2010, Braaker *et al.* 2014, Williams *et al.* 2018 and Barthel *et al.* 2020). Roads have also been reported to aid hedgehog movements in some studies, depending on the suitability of the verge habitats associated with them (Doncaster, Rondinini & Johnson 2001, Rondinini & Doncaster 2002, Hof & Bright 2009, Hof & Bright 2012, Wright *et al.* 2020). When combined with my results, it appears that the road network within the study area has little barrier effect.

While we categorised roads based on their National Highways classification, there are finer scale connectivity features that may be present that are not accounted for within the models, such as crossing structures and traffic calming measures, that are allowing continued safe crossing of roads by hedgehogs in particular locations (Moore *et al.* 2020). Barthel *et al.* (2020) identified the potential for hedgehogs to

36

use bridges over watercourses for crossing purposes and they may be similarly used to cross larger roads. The presence of underpasses, culverts, and other similar structures could also provide a means for hedgehogs to safely cross roads (Moore *et al.* 2020), reducing the barrier effect of such features.

The presence of several large watercourses was also found to have no significant impact on genetic relatedness within the study area. This is not wholly unexpected given that several published studies that indicate that hedgehogs are able to cross such features (Doncaster 1992). However, given the high number of watercourses present, including several large rivers, some effect on genetic relatedness was expected. As with roads, the lack of significant impact suggests that hedgehogs are able to cross such features either by swimming, circumventing them or using finer scale connectivity features to cross that are not accounted for within the models used, including man-made bridges (Barthel *et al.* 2020).

4.2. Genetic structure

The weak genetic structure identified within the sample population was unexpected given the size of the study area and published research indicating that habitat resistance, roads, and watercourses can and do limit hedgehog movement and therefore gene flow (Driezen *et al.* 2007, Braaker *et al.* 2014, Morris 2018, Wright *et al.* 2020). However, weak population structure is consistent with some other studies operating on a similar scale; Rasmussen *et al.* (2019) found no genetic sub-structuring within hedgehog samples from across Denmark, Barthel *et al.* (2020) identified a lack of genetic structure across hedgehog populations in Berlin, and Bolfíková *et al.* (2013) identified variable genetic structuring, dependent on the genotyping used, from hedgehogs sampled across an area of 500km x 280km within Czech Republic. The significance of geographic distance on the genetic structuring has also shown to be slight, if present at all, by Rasmussen *et al.* (2020), Curto *et al.* (2019), Becher and Griffiths (1998), Braaker *et al.* (2017) and Barthel *et al.* (2020), which indicates that the lack of a significant distance effect within the sample population is relatively common with hedgehogs over a variety of spatial scales. However, some other

studies have shown slight to moderate but significant genetic structure at smaller and larger scales than my study (Braaker *et al.* 2017, Curto *et al.* 2019), which suggests that my sample population has a higher rate of gene flow than these populations, or that the genetic structure of hedgehogs in South Wales is yet to reflect recent changes in anthropogenic habitat resistance and barrier effects in the landscape. It is also possible that landscape features not present in South Wales are the primary determinants of genetic structure. For example, the study area for Curto *et al.* (2019) includes large mountains (the Alps) which likely present a more significant barrier than the features within my study area. Bolfíková *et al.* (2013) showed that New Zealand hedgehog populations had high admixture with several clusters in a similar genetic pattern to my study.

The weak genetic structure seen within hedgehogs in South Wales could be driven by several factors. The presence of unmapped stepping-stone habitats, habitat corridors, and/or habitat networks that allow gene flow between the population clusters is likely given the scale of the mapping used and the limitations within this data (discussed in Section 4.3). The presence of such unaccounted-for features could override the resistance and barrier effects of the habitats, roads, and watercourses that have been included within the models changing the significance of any influence that they do have (Hof & Bright 2012, Moorhouse *et al.* 2014). A similar conclusion was suggested within Barthel *et al.* (2020), albeit on a smaller scale than the current study area, where the results indicated gene flow across the city of Berlin despite the presence of barrier features including large roads and watercourses. There is also the potential for the sample population to be part of a larger metapopulation extending beyond the study area boundaries resulting in genetic inputs from individuals and other subpopulations not sampled as part of this study. This has been observed in other hedgehog species (Abu Baker *et al.* 2017).

A further driver of gene flow could be changing land use patterns, noted when comparing the 2016/2017 habitat mapping and the more recent 2020 aerial imagery as over 20 polygons totalling 31.65km² (approximately 0.5% of the overall study area) were changed from semi-natural habitats to urban/sub-urban. Such changes may

result in the migration of animals away from these areas into adjacent habitats (Abu Baker *et al.* 2017, Tarabon *et al.* 2019) particularly during the clearance and construction phases as observed by the author through their professional role and recognised within CIEEM (2018) and European_Commission (2020), resulting in gene flow into existing populations. High levels of widespread migration induced by short term/rapid land-use change might explain the high level of admixture observed, whereby over 50% of the sample population could not be assigned to a single genetic cluster. What is not clear is whether the structure observed represents a stable genetic equilibrium within the study area or whether changes are still in process that may result in more defined population clustering or increased admixture.

The release of animals from rescue and rehabilitation centres may also be contributing to the level of admixture within the sample population (Moore et al. 2007, Barthel et al. 2020, Ploi 2020), particularly where animals are not released to the same location that they were rescued from. Jensen et al. (2017) showed this to have negative implications for the genetic health and success of a population by introducing inbreed individuals or those less genetically suited to an area, although it was not considered to be a significant risk to wild populations. However, Pacioni et al. (2017) demonstrated that the release of rehabilitated individuals can benefit wild populations by counteracting genetic drift and boosting genetic diversity. The occurrence of uncoordinated translocations for many species are not quantified or recorded at present (Pyke & Szabo 2018, Barthel et al. 2020), but the number of animals rescued by the GBH is indicative of the level of concern the public show for hedgehogs and other studies have shown that hedgehogs are one of the most commonly admitted species to rescues in the UK (Molony et al. 2006). While the GBH does release hedgehogs back to their found locations, not all rescues follow this and location data may not always be available (Molony et al. 2006).

4.3. Limitations and further research

This study presents a detailed analysis of the landscape genetic structure of hedgehogs across South Wales, based on approaches used in similar analysis for

other mobile mammal species (Zecherle *et al.* 2020). Nevertheless, there are some limitations to the analysis.

Genetic samples were dependent on members of the public taking rescued hedgehogs to the GBH and reporting location data accurately or informing GBH of hedgehogs in need of assistance. This limits the sample population to those areas where hedgehogs and people overlap and interact, such as urban and sub-urban areas and along roads and paths. This could introduce a bias in the sampling to certain individual hedgehogs, such as younger or sick hedgehogs (Bunnell 2001) or areas where hedgehogs move around more or areas where there are more people present, with potential effects on the subsequent analysis and its outcomes by potentially favouring hedgehogs that utilise higher resistance habitats and/or urban/sub-urban habitats. Such a bias could alter the genetic basis of the sample population and the influence of habitat resistance and barrier effects identified (Balkenhol *et al.* 2016).

Future studies could build on the samples gathered to date by collecting samples in the field from within the study area, or targeted locations within the study area, to supplement those received from GBH. This would provide a greater sample population and include animals that may not utilise higher resistance habitats or urban/sub-urban habitats, offsetting any bias that may be present within the study population. A larger dataset could result in clearer sub-population assignment, or greater evidence of admixture across the study area due to the presence of a metapopulation. This additional work may also result in the influence of habitat resistance and/or barrier effects being identified, particularly if field sampling is successful where no samples have yet been obtained. Such work would not only provide a larger data set but allow comparison between the sampling methods to identify if any bias is present.

The genetic samples were collected over a two-year period, within the generation time of hedgehogs (Morris 2018). However, should there be a time lag between changes within the landscape resistance due to land use changes and the genetic relatedness of individuals, further genetic sampling over an extended time period may be required to reveal the impacts. Such a time lag is most likely in relation to the habitat resistance mapping where changes were noted to have occurred between 2016/2017 and 2020. The effect of these changes on the genetic structure of the sample population may not be visible as yet as insufficient time has lapsed following these changes given that the generation time of hedgehogs is between 2 and 7 years (Morris 2018). It is unlikely that a time lag is responsible for the lack of significant influence of roads as many of the large roads within the study area have been present for several decades, including the M4 which was completed in the 1980s. The watercourses present within the study area have also been present for several decades, and often much longer. Therefore, any barrier effect arising from roads or watercourses is unlikely to be seen as time-lags in their impacts would have passed (Coulon *et al.* 2006, Balkenhol *et al.* 2016, Lecis *et al.* 2022).

The base mapping used to determine the habitat resistance was obtained from freely available sources and was updated based on aerial imagery, therefore is relatively accurate and up to date. However, the scale of mapping doesn't include finer grain features such as tree lines, hedgerows, field margins, road verges etc. Such features are known to be frequently used by hedgehogs (Reeve 1994, Hof & Bright 2010, van de Poel, Dekker & Langevelde 2015, Morris 2018) and the presence of such features may offset the resistance posed by the larger-scale habitat types across the study area (Hof & Bright 2012, Moorhouse et al. 2014). The mapping also didn't differentiate gardens from buildings and hard standing within urban and sub-urban areas, which are also known to be utilised by hedgehogs (Hof & Bright 2009, Hubert et al. 2011, Braaker et al. 2014, Williams, Stafford & Goodenough 2015, Pettett et al. 2017, Wilson & Wembridge 2018). This information was not included as it was not freely available and there was not sufficient time to add these through review of aerial mapping or ground truthing, particularly given the extent of the study area. This could be an area of further research to see how the inclusion of such smaller scale features influences the resistance models, either across the study area as a whole or for focused locations within the study area.

The habitat resistances assigned as part of the study was based on research published to date and required the use of proxy habitats and interpretation of conflicting information. This may have introduced inaccuracies in terms of resistance levels analysed, which were unavoidable due to a lack of definitive data. GPS radiotracking of individual hedgehogs, camera traps, and/or footprint tunnel studies could be undertaken within targeted locations within the study area to augment the analysis and conclusions and test their accuracy in terms of real-world data. Radiotracking data would provide information on how individual hedgehogs use the areas they are in and when mapped against habitat type would show which habitats are used and which are not. Camera traps and/or footprint tunnels can be placed in different habitat types or features and show whether they are used with some indication of how much based on the number of trigger events recorded or footprints within each tunnel. Collecting and collating both types of data could be used to demonstrate habitat use and therefore confirm or amend the habitat resistance values used in the analysis. GPS data was included as part of the Zecherle et al. (2020) study on Asiatic wild ass where it was used to add context to and aid interpretation of the results. Similarly, a review by Müller et al. (2023) shows that using GPS/movement data alongside genetic data provides a more robust analytical tool and additional insights that may have been missed otherwise, including identifying the presence of actual and effective barriers in the landscape. The use of GPS data for hedgehog movements may provide similar insights into the conclusions of this study.

4.4. Conservation implications

While this study didn't identify significant correlations between genetic structure and geographic distance, habitat resistance, or the presence of the roads and watercourses, the results do highlight some possible implications for hedgehog conservation efforts. The lack of correlation between genetic relatedness and geographic distance indicates that hedgehogs may travel much further than the 0.7 to 2.5km per night up to 10 to 15km suggested by existing studies (Reeve 1994, Riber 2006, Williams, Stafford & Goodenough 2015, Morris 2018). This suggests that

ecological assessment and conservation efforts need to consider the landscape scale and gene flow between populations across larger distances and areas than may have been considered to date, which are often limited to 1 to 5km depending on the scale of the project. Some species can trigger the implementation of increased distance for impact assessment, which can be up to 30km for some species of bats (Welsh Government 2016a, Welsh Government 2016b), but this is not currently triggered by the presence of hedgehogs. There is a risk that population fragmentation and isolation impacts may be ruled out due to distance from the impact source when such impacts are present so best practice in relation to hedgehogs needs to be reviewed to ensure that appropriate consideration is given to this species.

The lack of correlation with habitat resistance suggests that other factors may be influencing hedgehog movements, such as smaller scale habitats or habitat features which couldn't be incorporated into the study models. It may be that small scale changes and removal of smaller features could have a more significant impact on population fragmentation than larger scale habitat resistance as analysed by this study. Should this be the case replacement, creation, and/or enhancement of smaller scale features could also have greater benefits for reducing population and genetic isolation. This could be achieved by considering small scale measures such as hedgerows, tree-lines, and field margins across a larger landscape scale rather than a site by site basis. This landscape-scale approach has started to be used in conservation, following studies into hedgehogs and other species and the success of agri-environment schemes in supporting wider biodiversity benefits (Donald & Evans 2006, Yarnell & Pettett 2020). It is also being used with increasing frequency within ecological consultancy, for example in relation to bats on the A487 Caernarfon and Bontnewydd Bypass (Welsh Government 2016a, Welsh Government 2016b).

The lack of correlation between genetic structure and the presence of roads and watercourses indicates that these may not pose as much of a barrier to hedgehog movement as earlier studies have suggested (Micol, Doncaster & Mackinlay 1994, Huijser & Bergers 2000, Rondinini & Doncaster 2002, Orłowski & Nowak 2004). While this may be seen as a reason to not implement conservation measures in relation to

these, it shows that any barrier effect they do have may be relatively easy to address with simple approaches rather than providing overly complex crossing features. Such measures could be as simple as providing connecting edge habitats along the sides of such features reconnecting severed habitats (Riber 2006, Hof & Bright 2009, Moorhouse *et al.* 2014), stepping-stone (Fitzgibbon 1997), or similar crossing options within central reservations or across bridges (Clark *et al.* 2001, Moore *et al.* 2020), inclusion of culverts or underpasses beneath roads (Yanes, Velasco & Suárez 1995, Moore *et al.* 2020), use of guidance fencing (Fahrig & Rytwinski 2009, Moore *et al.* 2020), more sensitive management regimes (Coffin 2007, Hof 2009), reduced lighting where possible (Berger *et al.* 2020b), traffic calming measures on smaller roads (Moore *et al.* 2020), and even warning signs and raised awareness for users to be aware of hedgehogs crossing (Hof 2009). These measures would also contribute to reduce the mortality rate associated with roads and hedgehogs, which is a recognised contributor to declining hedgehog numbers in the UK (Wright *et al.* 2020).

5. Conclusion

This study aimed to produce habitat resistance maps and use these to investigate the presence of barriers to hedgehog movements and the implications of these on gene flow. The analysis has shown that:

- The genetic structure of the sample population had four distinct subpopulations, but this structure was weak, with spatial overlaps and a significant proportion of individuals unassigned to a specific subpopulation.
- 2. Areas of low habitat suitability (high habitat resistance) did not have a significant influence on the genetic structure of the sample population.
- Larger landscape features such as roads and watercourses also did not have a barrier effect on hedgehog movement within the sample population.

Several areas for further and future research have been identified to build on the data and results generated by this study. Future research options include building on the current data set with further genetic sampling and including finer scale habitat modelling to include features not included within this study. Real world habitat use

data collected from radio-tracking or similar survey approaches could also be collected and used to confirm or amend the resistance values assigned as part of this study.

6. Appendices

6.1. Appendix B – Habitat Resistance Data

Habitat Code	Habitat Type	Summary of References	References	Typical Resistance Level	Typical Resistance Value (0 to 99)	Notes
A.1.1.1	Broadleaved semi-natural	Positive link to edge habitats	(Huijser & Bergers 2000)	Low	2 to 20	Woodland habitats noted to have low
	woodland	Positive association	(Doncaster, Rondinini & Johnson 2001)			hedgehog densities - boundaries used more
		Used but not as much as gardens and fields	(Rondinini & Doncaster 2002)			
		Extensive use, especially in clearings	(Riber 2006)			
		Second highest observation rate, negative link in greater extents, less so in edge habitats	(Hof & Bright 2012)			
		Positive effect - as linear habitats (edge effect)	(van de Poel, Dekker & Langevelde 2015)			
		Least or second least ranked	(Pettett <i>et al.</i> 2017)			
		Negative relationship	(Hof, Allen & Bright 2019)			
		Favourable habitat	(Wright <i>et al.</i> 2020)			
		Winter nesting - undergrowth needed	(Reeve 1981)			
		Neither selected for or against but higher than pasture/improved grassland, clearings and edge habitats important	(Hof 2009)			

Habitat	Habitat	Summary of References	References	Typical	Typical Resistance	Notes
Code	Туре			Resistance Level	Value (0 to 99)	
		Positive preference in spring and	(Dowie 1993)			
		summer, not so in autumn				
A.1.1.2	Broadleaved plantation	Positive link to edge habitats	(Huijser & Bergers 2000)	Low-medium	21 to 40	Woodland habitats noted to have low
		Positive association	(Doncaster, Rondinini & Johnson 2001)			hedgehog densities - boundaries used more
		Used but not as much as gardens and fields	(Rondinini & Doncaster 2002)			
		Extensive use, especially in clearings	(Riber 2006)			
		Second highest observation rate,	(Hof & Bright 2012)			
		negative link in greater extents,				
		less so in edge habitats				
		Positive effect - as linear habitats	(van de Poel, Dekker & Langevelde			
		(edge effect)	2015)			
		Least or second least ranked	(Pettett <i>et al.</i> 2017)			
		Negative relationship	(Hof, Allen & Bright 2019)			
		Favourable habitat	(Wright <i>et al.</i> 2020)			
		Winter nesting - undergrowth needed	(Reeve 1981)			
		Neither selected for or against but	(Hof 2009)			
		higher than pasture/improved				
		grassland, clearings and edge				
		habitats important				
		Positive preference in spring and	(Dowie 1993)			
		summer, not so in autumn				

Habitat Code	Habitat Type	Summary of References	References	Typical Resistance Level	Typical Resistance Value (0 to 99)	Notes
A.1.2.1	Coniferous semi-natural woodland	Lowest observation rate, negative link in greater extents, less so in edge habitats	(Hof & Bright 2012)	Medium	41 to 60	Less well used than other woodland habitats, mixed
		Positive effect - as linear habitats (edge effect)	(van de Poel, Dekker & Langevelde 2015)			results - edge habitat used more
		Least or second least ranked	(Pettett <i>et al.</i> 2017)			
		High selection	(Hof 2009)			
A.1.2.2	Coniferous plantation	Lowest observation rate, negative link in greater extents, less so in edge habitats	(Hof & Bright 2012)	Medium	41 to 60	Less well used than other woodland habitats, mixed
		Positive effect - as linear habitats (edge effect)	(van de Poel, Dekker & Langevelde 2015)			results - edge habitat used more
		Least or second least ranked	(Pettett <i>et al.</i> 2017)			
		High selection	(Hof 2009)			
A.1.3.1	Mixed semi- natural	Highly selected (1 to 5m within habitat)	(Hof & Bright 2010)	Low-medium	21 to 40	Woodland habitats noted to have low
	woodland	Negative link in greater extents, less so in edge habitats	(Hof & Bright 2012)			hedgehog densities - boundaries used more
		Positive effect - as linear habitats (edge effect)	(van de Poel, Dekker & Langevelde 2015)			
		Least or second least ranked	(Pettett <i>et al.</i> 2017)			
		Neither selected for or against but higher than pasture/improved grassland, clearings and edge habitats important	(Hof 2009)			
A.1.3.2	Mixed plantation	Highly selected (1 to 5m within habitat)	(Hof & Bright 2010)	Low-medium	21 to 40	Woodland habitats noted to have low

Habitat Code	Habitat Type	Summary of References	References	Typical Resistance Level	Typical Resistance Value (0 to 99)	Notes
		Negative link in greater extents, less so in edge habitats	(Hof & Bright 2012)			hedgehog densities - boundaries used more
		Positive effect - as linear habitats (edge effect)	(van de Poel, Dekker & Langevelde 2015)			
		Least or second least ranked	(Pettett <i>et al.</i> 2017)			
		Neither selected for or against but higher than pasture/improved grassland, clearings and edge habitats important	(Hof 2009)			
A.2.1	Dense / continuous	Used for cover	(Rondinini & Doncaster 2002)	Negligible	1	Considered similar to hedgerows? Could
	scrub	Positive effect - as linear habitats (edge effect)	(van de Poel, Dekker & Langevelde 2015)			depend on extent
		Confirmed habitat use	(Berger <i>et al.</i> 2020a)			
		Positive link	(Yarnell & Pettett 2020)			
		Confirmed use	(Berger <i>et al.</i> 2020b)			
		Winter nesting	(Reeve 1981)			
A.2.2	Scattered scrub	Confirmed habitat use	(Berger <i>et al.</i> 2020a)	Low	2 to 20	Limited cover but may be used in similar manner to less structured gardens / open habitats, activity focused to edges
A.3.1	Broadleaved	Positive link	(Hof & Bright 2009)	Negligible	1	Hedgehogs reported
	parkland /	Confirmed habitat use	(Berger <i>et al.</i> 2020a)			to use parkland areas
	scattered trees	Confirmed use	(Berger <i>et al.</i> 2020b)			

Habitat	Habitat	Summary of References	References	Typical	Typical Resistance	Notes
Code	Туре			Resistance Level	Value (0 to 99)	
A.3.2	Coniferous	Positive link	(Hof & Bright 2009)	Negligible	1	Hedgehogs reported
	parkland /	Confirmed habitat use	(Berger <i>et al.</i> 2020a)			to use parkland areas
	scattered trees	Confirmed use	(Berger <i>et al.</i> 2020b)			
A.3.3	Mixed	Positive link	(Hof & Bright 2009)	Negligible	1	Hedgehogs reported
	parkland /	Confirmed habitat use	(Berger <i>et al.</i> 2020a)			to use parkland areas
	scattered trees	Confirmed use	(Berger <i>et al.</i> 2020b)			
A.4.1	Broadleaved recently felled woodland	No references		Low	2 to 20	Open areas but hedgehogs known to use parkland and open spaces, may be limited to edge habitats Proxy = broadleaved woodland and parkland
A.4.2	Coniferous recently felled woodland	No references		Low-medium	21 to 40	Open areas but hedgehogs known to use parkland and open spaces, may be limited to edge habitats Proxy = broadleaved woodland and parkland

Habitat	Habitat	Summary of References	References	Typical Resistance Level	Typical Resistance	Notes
Code A.4.3	Type Mixed recently felled woodland	No references		Resistance Level	Value (0 to 99) 21 to 40	Open areas but hedgehogs known to use parkland and open spaces, may be limited to edge habitats Proxy = broadleaved woodland and parkland
B.1.1	Unimproved acid	Preferred habitat	(Micol, Doncaster & Mackinlay 1994)	Negligible	1	Pasture and set aside well used
	grassland	Positive association	(Doncaster, Rondinini & Johnson 2001)			
		Scarce in pasture	(Young <i>et al.</i> 2006)	1		
		Highly selected (margins)	(Hof & Bright 2010)	1		
		Second highest observation rate	(Hof & Bright 2012)	1		
		Margins used but less impact on movement distance	(Moorhouse <i>et al.</i> 2014)	-		
		Middle ranking - changeable	(Pettett <i>et al.</i> 2017)	1		
		Present	(Williams et al. 2018)	-		
		Positive link (field margins)	(Yarnell & Pettett 2020)			
		Less preferred	(Braaker <i>et al.</i> 2014)			
		Favourable habitat	(Wright <i>et al.</i> 2020)			
		Summer nesting in taller vegetation	(Reeve 1981)			
		Positive correlation	(Hof 2009)			

Habitat Code	Habitat Type	Summary of References	References	Typical Resistance Level	Typical Resistance Value (0 to 99)	Notes
		Less preference unless used as pasture	(Dowie 1993)			
B.1.2	Semi- improved	Preferred habitat	(Micol, Doncaster & Mackinlay 1994)	Negligible	1	Pasture and set aside well used
	acid grassland	Positive association	(Doncaster, Rondinini & Johnson 2001)			
		Scarce in pasture	(Young <i>et al.</i> 2006)			
		Highly selected (margins)	(Hof & Bright 2010)			
		Second highest observation rate	(Hof & Bright 2012)			
		Margins used but less imapct on movement distance	(Moorhouse <i>et al.</i> 2014)			
		Middle ranking - changeable	(Pettett <i>et al.</i> 2017)			
		Present	(Williams <i>et al.</i> 2018)			
		Positive link (field margins)	(Yarnell & Pettett 2020)			
		Less preferred	(Braaker <i>et al.</i> 2014)			
		Favourable habitat	(Wright <i>et al.</i> 2020)			
		Summer nesting in taller vegetation	(Reeve 1981)			
		Positive correlation	(Hof 2009)			
		Less preference unless used as pasture	(Dowie 1993)			
B.2.1	Unimproved neutral	Preferred habitat	(Micol, Doncaster & Mackinlay 1994)	Negligible	1	Pasture and set aside well used
	grassland	Positive association	(Doncaster, Rondinini & Johnson 2001)			
		Scarce in pasture	(Young <i>et al.</i> 2006)			

Habitat	Habitat	Summary of References	References	Typical	Typical Resistance	Notes
Code	Туре			Resistance Level	Value (0 to 99)	
		Highly selected (margins)	(Hof & Bright 2010)			
		Second highest observation rate	(Hof & Bright 2012)	7		
		Margins used but less imapct on	(Moorhouse <i>et al.</i> 2014)	7		
		movement distance				
		Middle ranking - changeable	(Pettett <i>et al.</i> 2017)			
		Present	(Williams <i>et al.</i> 2018)			
		Positive link (field margins)	(Yarnell & Pettett 2020)			
		Less preferred	(Braaker <i>et al.</i> 2014)	7		
		Favourable habitat	(Wright <i>et al.</i> 2020)	1		
		Summer nesting in taller	(Reeve 1981)	1		
		vegetation				
		Neither selected for or against but	(Hof 2009)			
		higher than pasture/improved				
		grassland		_		
		Positive preference	(Dowie 1993)			
B.2.2	Semi- improved	Preferred habitat	(Micol, Doncaster & Mackinlay 1994)	Negligible	1	Pasture and set aside well used
	neutral grassland	Positive association	(Doncaster, Rondinini & Johnson 2001)			
		Scarce in pasture	(Young <i>et al.</i> 2006)			
		Highly selected (margins)	(Hof & Bright 2010)			
		Second highest observation rate	(Hof & Bright 2012)			
		Margins used but less imapct on movement distance	(Moorhouse <i>et al.</i> 2014)			
		Middle ranking - changeable	(Pettett <i>et al.</i> 2017)	1		
		Present	(Williams et al. 2018)	1		

Habitat	Habitat	Summary of References	References	Typical	Typical Resistance	Notes
Code	Туре			Resistance Level	Value (0 to 99)	
		Positive link (field margins)	(Yarnell & Pettett 2020)			
		Less preferred	(Braaker <i>et al.</i> 2014)			
		Favourable habitat	(Wright <i>et al.</i> 2020)			
		Summer nesting in taller vegetation	(Reeve 1981)			
		Neither selected for or against but higher than pasture/improved grassland	(Hof 2009)			
		Positive preference	(Dowie 1993)	_		
B.3.1	Unimproved calcareous	Preferred habitat	(Micol, Doncaster & Mackinlay 1994)	Negligible	1	Pasture and set aside well used
	grassland	Positive association	(Doncaster, Rondinini & Johnson 2001)			
		Scarce in pasture	(Young <i>et al.</i> 2006)			
		Highly selected (margins)	(Hof & Bright 2010)			
		Second highest observation rate	(Hof & Bright 2012)			
		Margins used but less imapct on movement distance	(Moorhouse <i>et al.</i> 2014)			
		Middle ranking - changeable	(Pettett <i>et al.</i> 2017)			
		Present	(Williams <i>et al.</i> 2018)	_		
		Positive link (field margins)	(Yarnell & Pettett 2020)	_		
		Less preferred	(Braaker <i>et al.</i> 2014)	-		
		Favourable habitat	(Wright <i>et al.</i> 2020)	1		
		Summer nesting in taller vegetation	(Reeve 1981)			

Habitat Code	Habitat Type	Summary of References	References	Typical Resistance Level	Typical Resistance Value (0 to 99)	Notes
coue	туре	Positive correlation, lower nutrients = less inverts = less food = fewer hedgehogs	(Hof 2009)	Resistance Lever		
		Less preference unless used as pasture	(Dowie 1993)			
B.3.2	Semi- improved calcareous grassland	Preferred habitat	(Micol, Doncaster & Mackinlay 1994)	Negligible	1	Pasture and set aside well used
		Positive association	(Doncaster, Rondinini & Johnson 2001)			
		Scarce in pasture	(Young <i>et al.</i> 2006)	1		
		Highly selected (margins)	(Hof & Bright 2010)			
		Second highest observation rate	(Hof & Bright 2012)	7		
		Margins used but less imapct on movement distance	(Moorhouse <i>et al.</i> 2014)			
		Middle ranking - changeable	(Pettett <i>et al.</i> 2017)	-		
		Present	(Williams <i>et al.</i> 2018)			
		Positive link (field margins)	(Yarnell & Pettett 2020)			
		Less preferred	(Braaker et al. 2014)			
		Favourable habitat	(Wright <i>et al.</i> 2020)			
		Summer nesting in taller vegetation	(Reeve 1981)			
		Positive correlation, lower nutrients = less inverts = less food = fewer hedgehogs	(Hof 2009)			
		Less preference unless used as pasture	(Dowie 1993)	1		

Habitat Code	Habitat Type	Summary of References	References	Typical Resistance Level	Typical Resistance Value (0 to 99)	Notes
B.4	Improved grassland	Preferred habitat	(Micol, Doncaster & Mackinlay 1994)	Negligible	1	Pasture and set aside well used
	(pasture)	Positive association	(Doncaster, Rondinini & Johnson 2001)			
		Scarce in pasture	(Young <i>et al.</i> 2006)			
		Highly selected (margins)	(Hof & Bright 2010)			
		Second highest observation rate	(Hof & Bright 2012)			
		Middle ranking - changeable	(Pettett <i>et al.</i> 2017)			
		Present	(Williams <i>et al.</i> 2018)			
		Negative relationship	(Hof, Allen & Bright 2019)			
		Positive link (field margins)	(Yarnell & Pettett 2020)			
		Less preferred	(Braaker <i>et al.</i> 2014)			
		Favourable habitat	(Wright <i>et al.</i> 2020)			
		Summer nesting in taller vegetation	(Reeve 1981)			
		Neither selected for or against	(Hof 2009)			
		Positive preference	(Dowie 1993)			
B.5	Marsh /	Seldom used	(Jackson 2007)	Negligible	1	Pasture and set aside
	marshy	Highly selected (margins)	(Hof & Bright 2010)			well used
	grassland	Negative effect	(van de Poel, Dekker & Langevelde 2015)			
B.6	Poor semi- improved	Preferred habitat	(Micol, Doncaster & Mackinlay 1994)	Negligible	1	Pasture and set aside well used
	grassland	Positive association	(Doncaster, Rondinini & Johnson 2001)			
		Scarce in pasture	(Young <i>et al.</i> 2006)			

Habitat	Habitat	Summary of References	References	Typical	Typical Resistance	Notes
Code	Туре			Resistance Level	Value (0 to 99)	
		Highly selected (margins)	(Hof & Bright 2010)			
		Second highest observation rate	(Hof & Bright 2012)			
		Margins used but less imapct on movement distance	(Moorhouse <i>et al.</i> 2014)			
		Middle ranking - changeable	(Pettett <i>et al.</i> 2017)			
		Present	(Williams <i>et al.</i> 2018)			
		Positive link (field margins)	(Yarnell & Pettett 2020)			
		Less preferred	(Braaker <i>et al.</i> 2014)			
		Favourable habitat	(Wright <i>et al.</i> 2020)			
		Summer nesting in taller vegetation	(Reeve 1981)			
		Neither selected for or against	(Hof 2009)			
		Less preference unless used as pasture	(Dowie 1993)			
C.1.1	Continuous bracken	Summer nesting in taller vegetation	(Reeve 1981)	Negligible	1	Similar to dense scrub in terms of cover provided
C.1.2	Scattered bracken	No references		Low-medium	21 to 40	Limited cover but may be used in similar manner to less structured gardens / open habitats, activity focused to edges Proxy other habitat

Habitat Code	Habitat Type	Summary of References	References	Typical Resistance Level	Typical Resistance Value (0 to 99)	Notes
C.2	Upland species-rich ledges	No references		High	81 to 98	Unlikely in upland areas, absent above treeline (Williams <i>et al</i> . 2018)
C.3.1	Tall ruderal	Highly selected (margins) Positive link (vegetation cover)	(Hof & Bright 2010) (Yarnell & Pettett 2020)	Negligible	1	Similar to dense scrub in terms of cover provided
C.3.2	Non-ruderal	No references		Negligible	1	Similar to dense scrub in terms of cover provided Proxy dense scrub
D.1.1	Dry dwarf shrub heath - acid	Seldom used Lowest observation rate	(Jackson 2007) (Hof & Bright 2012)	Low-medium	21 to 40	Research suggests not well used but not necessarily a barrier
D.1.2	Dry dwarf shrub heath - basic	Seldom used Lowest observation rate	(Jackson 2007) (Hof & Bright 2012)	Low-medium	21 to 40	Research suggests not well used but not necessarily a barrier
D.2	Wet dwarf shrub heath	Seldom used Lowest observation rate	(Jackson 2007) (Hof & Bright 2012)	Medium-high	61 to 80	Research suggests not well used but not necessarily a barrier, wetter habitats noted to be used less frequently than dry habitats
D.3	Lichen / bryophyte heath	Seldom used Lowest observation rate	(Jackson 2007) (Hof & Bright 2012)	Medium-high	61 to 80	Research suggests not well used but not necessarily a barrier,

Habitat Code	Habitat Type	Summary of References	References	Typical Resistance Level	Typical Resistance Value (0 to 99)	Notes
						wetter habitats noted to be used less frequently than dry habitats
D.4	Montane heath / dwarf herb	Seldom used Lowest observation rate	(Jackson 2007) (Hof & Bright 2012)	Medium	41 to 60	Research suggests not well used but not necessarily a barrier, upland habitats noted to be used in some studies
D.5	Dry heath / acid grassland mosaic	No references		Low-medium	21 to 40	Research suggests not well used but not necessarily a barrier Proxy dry dwarf shrub heath - acid
D.6	Wet heath / acid grassland mosaic	No references		Medium	41 to 60	Research suggests not well used but not necessarily a barrier, wetter habitats noted to be used less frequently than dry habitats Proxy wet dwarf shrub heath and acid grassland

Habitat	Habitat	Summary of References	References	Typical	Typical Resistance	Notes
Code	Туре			Resistance Level	Value (0 to 99)	
E.1.6.1	Blanket bog	Negative effect	(van de Poel, Dekker & Langevelde 2015)	High	81 to 98	Habitat type unlikely to be used
E.1.6.2	Raised bog	Negative effect	(van de Poel, Dekker & Langevelde 2015)	High	81 to 98	Habitat type unlikely to be used
E.1.7	Wet modified bog	Negative effect	(van de Poel, Dekker & Langevelde 2015)	High	81 to 98	Habitat type unlikely to be used
E.1.8	Dry modified bog	Negative effect	(van de Poel, Dekker & Langevelde 2015)	High	81 to 98	Habitat type unlikely to be used
E.2.1	Acid / neutral flush / spring	Negative effect	(van de Poel, Dekker & Langevelde 2015)	High	81 to 98	Habitat type unlikely to be used
E.2.2	Basic flush / spring	Negative effect	(van de Poel, Dekker & Langevelde 2015)	High	81 to 98	Habitat type unlikely to be used
E.2.3	Bryophyte dominated flush / spring	Negative effect	(van de Poel, Dekker & Langevelde 2015)	High	81 to 98	Habitat type unlikely to be used
E.3.1	Valley mire fen	Negative effect	(van de Poel, Dekker & Langevelde 2015)	High	81 to 98	Habitat type unlikely to be used
E.3.2	Basin mire fen	Negative effect	(van de Poel, Dekker & Langevelde 2015)	High	81 to 98	Habitat type unlikely to be used
E.3.3	Flood plain fen	Negative effect	(van de Poel, Dekker & Langevelde 2015)	High	81 to 98	Habitat type unlikely to be used
E.4	Bare peat	Negative effect	(van de Poel, Dekker & Langevelde 2015)	High	81 to 98	Habitat type unlikely to be used

Habitat Code	Habitat Type	Summary of References	References	Typical Resistance Level	Typical Resistance Value (0 to 99)	Notes
F.1	Swamp	Negative effect	(van de Poel, Dekker & Langevelde 2015)	High	81 to 98	Habitat type unlikely to be used
F.2.1	Marginal vegetation	Negative effect	(van de Poel, Dekker & Langevelde 2015)	High	81 to 98	Habitat type unlikely to be used
F.2.2	Inundation vegetation	Negative effect	(van de Poel, Dekker & Langevelde 2015)	High	81 to 98	Habitat type unlikely to be used
G.1	Standing water	Partial barrier	(Hof & Bright 2009)	High	81 to 98	Hedgehogs known to swim on occasion so
		Positive but not significant effect on presence	(Hof 2009)			not an absolute barrier
G.1.1	Eutrophic	Partial barrier	(Hof & Bright 2009)	High	81 to 98	Hedgehogs known to
		Positive but not significant effect on presence	(Hof 2009)			swim on occasion so not an absolute barrier
G.1.2	Mesotrophic	Partial barrier	(Hof & Bright 2009)	High	81 to 98	Hedgehogs known to
		Positive but not significant effect on presence	(Hof 2009)			swim on occasion so not an absolute barrier
G.1.3	Oligotrophic	Partial barrier	(Hof & Bright 2009)	High	81 to 98	Hedgehogs known to
		Positive but not significant effect on presence	(Hof 2009)			swim on occasion so not an absolute barrier
G.1.4	Dystrophic	Partial barrier	(Hof & Bright 2009)	High	81 to 98	Hedgehogs known to
		Positive but not significant effect on presence	(Hof 2009)			swim on occasion so not an absolute barrier
G.1.5	Marl	Partial barrier	(Hof & Bright 2009)	High	81 to 98	

Habitat Code	Habitat Type	Summary of References	References	Typical Resistance Level	Typical Resistance Value (0 to 99)	Notes
		Positive but not significant effect on presence	(Hof 2009)			Hedgehogs known to swim on occasion so not an absolute barrier
G.1.6	Brackish	Partial barrier	(Hof & Bright 2009)	High	81 to 98	Hedgehogs known to
		Positive but not significant effect on presence	(Hof 2009)			swim on occasion so not an absolute barrier
G.2	Running	Partial barrier	(Hof & Bright 2009)	High	81 to 98	Hedgehogs known to
	water	Negative effect on presence	(Hof 2009)			swim on occasion so not an absolute barrier
G.2.1	Eutrophic	Partial barrier	(Hof & Bright 2009)	High	81 to 98	Hedgehogs known to
		Negative effect on presence	(Hof 2009)			swim on occasion so not an absolute barrier
G.2.2	Mesotrophic	Partial barrier	(Hof & Bright 2009)	High	81 to 98	Hedgehogs known to
		Negative effect on presence	(Hof 2009)			swim on occasion so not an absolute barrier
G.2.3	Oligotrophic	Partial barrier	(Hof & Bright 2009)	High	81 to 98	Hedgehogs known to
		Negative effect on presence	(Hof 2009)			swim on occasion so not an absolute barrier
G.2.4	Dystrophic	Partial barrier	(Hof & Bright 2009)	High	81 to 98	Hedgehogs known to
		Negative effect on presence	(Hof 2009)			swim on occasion so not an absolute barrier

Habitat Code	Habitat Type	Summary of References	References	Typical Resistance Level	Typical Resistance Value (0 to 99)	Notes
G.2.5	Marl	Partial barrier	(Hof & Bright 2009)	High	81 to 98	Hedgehogs known to
		Negative effect on presence	(Hof 2009)			swim on occasion so not an absolute barrier
G.2.6	Brackish	Partial barrier	(Hof & Bright 2009)	High	81 to 98	Hedgehogs known to
		Negative effect on presence	(Hof 2009)		U III	swim on occasion so not an absolute barrier
H.1.1	Intertidal mud / sand	No references		High	81 to 98	Habitat type unlikely to be used Proxy sand dune - open
H.1.2	Intertidal shingles / cobbles	No references		High	81 to 98	Habitat type unlikely to be usedProxy sand dune - open
H.1.3	Intertidal boulders / rocks	No references		High	81 to 98	Habitat type unlikely to be used Proxy sand dune - open
H.1.(1- 2).1	Zostera beds	No references		High	81 to 98	Habitat type unlikely to be used Proxy sand dune - open

Habitat Code	Habitat Type	Summary of References	References	Typical Resistance Level	Typical Resistance Value (0 to 99)	Notes
H.1.(1- 3).2	Green algal beds	No references		High	81 to 98	Habitat type unlikely to be used Proxy sand dune - open
H.1.(1- 3).3	Brown algal beds	No references		High	81 to 98	Habitat type unlikely to be used Proxy sand dune - open
H.2.3	Saltmarsh / dune interface	No references		High	81 to 98	Habitat type unlikely to be used Proxy sand dune - open
H.2.4	Scattered saltmarsh plants	No references		High	81 to 98	Habitat type unlikely to be used Proxy sand dune - open
H.2.6	Dense / continuous saltmarsh plants	No references		High	81 to 98	Habitat type unlikely to be used Proxy sand dune - open

Habitat Code	Habitat Type	Summary of References	References	Typical Resistance Level	Typical Resistance Value (0 to 99)	Notes
H.3	Shingle above high tide mark	No references		High	81 to 98	Habitat type unlikely to be used
						Proxy sand dune - open
H.4	Boulders / rocks above high tide	No references		High	81 to 98	Habitat type unlikely to be used
	mark					Proxy sand dune - open
H.5	Strandline vegetation	No references		High	81 to 98	Habitat type unlikely to be used
						Proxy sand dune - open
H.6.4	Sand dune - dune slack	Foraging	(Jackson 2007)	Medium-high	61 to 80	Low use generally, only 1 study shows use, more due to proximity and presence within home range
H.6.5	Sand dune - dune grassland	Foraging	(Jackson 2007)	Medium-high	61 to 80	Low use generally, only 1 study shows use, more due to proximity and presence within home range

Habitat Code	Habitat Type	Summary of References	References	Typical Resistance Level	Typical Resistance Value (0 to 99)	Notes
H.6.6	Sand dune - dune heath	No references		High	81 to 98	Habitat type unlikely to be used Proxy sand dune - open
H.6.7	Sand dune - dune scrub	Foraging	(Jackson 2007)	Medium-high	61 to 80	Low use generally, only 1 study shows use, more due to proximity and presence within home range
H.6.8	Sand dune - open dune	Not used	(Jackson 2007)	High	81 to 98	Not used
H.8.1	Maritime cliff and slope - hard cliff	No references		High	81 to 98	Habitat type unlikely to be used
H.8.2	Maritime cliff and slope - soft cliff	No references		High	81 to 98	Habitat type unlikely to be used
H.8.3	Maritime cliff and slope - crevice / ledge vegetation	No references		High	81 to 98	Habitat type unlikely to be used

Habitat	Habitat	Summary of References	References	Typical	Typical Resistance	Notes
Code	Туре			Resistance Level	Value (0 to 99)	
H.8.4	Maritime cliff and slope - coastal grassland	No references		Negligible	1	Similar to grassland habitats in terms of potential use
H.8.5	Maritime cliff and slope - coastal heathland	No references		Low-medium	21 to 40	Heathland habitats generally not used
1.1.1.1	Natural inland cliff - acid / neutral	No references		High	81 to 98	Habitat type unlikely to be used
1.1.1.2	Natural inland cliff - basic	No references		High	81 to 98	Habitat type unlikely to be used
1.1.2.1	Natural scree - acid / neutral	No references		High	81 to 98	Habitat type unlikely to be used
1.1.2.2	Natural scree - basic	No references		High	81 to 98	Habitat type unlikely to be used
1.1.3	Natural limestone pavement	No references		Medium-high	61 to 80	Might vary depending on associated habitats
1.1.4.1	Natural other exposure -	No references		High	81 to 98	Habitat type unlikely to be used

Habitat	Habitat	Summary of References	References	Typical Desistance Level	Typical Resistance Value (0 to 99)	Notes
Code	Туре			Resistance Level	Value (0 to 99)	
	acid / neutral					
1.1.4.2	Natural other exposure -	No references		High	81 to 98	Habitat type unlikely to be used
	basic					
1.1.5	Natural cave	No references		High	81 to 98	Habitat type unlikely to be used
1.2.1	Artificial quarry	No references		High	81 to 98	Habitat type unlikely to be used
1.2.2	Artificial spoil	No references	No references		81 to 98	Habitat type unlikely to be used
1.2.3	Artificial mine	No references		High	81 to 98	Habitat type unlikely to be used
1.2.4	Artificial refuse tip	No references		High	81 to 98	Habitat type unlikely to be used
J.1.1	Arable	Negative link	(Micol, Doncaster & Mackinlay 1994)	Medium-high	61 to 80	Depends on size of fields but research
		Negative association	(Doncaster, Rondinini & Johnson 2001)			suggests habitat is not used
		Rarely visited	(Riber 2006)			
		Rarely selected	(Hof & Bright 2010)			
		Positive effect	(van de Poel, Dekker & Langevelde 2015)			
		Least or second least ranked	(Pettett <i>et al.</i> 2017)			
		Present	(Williams <i>et al.</i> 2018)			

Habitat	Habitat	Summary of References	References	Typical	Typical Resistance	Notes
Code	Туре			Resistance Level	Value (0 to 99)	
		Positive relationship	(Hof, Allen & Bright 2019)			
		Positive link (field margins)	(Yarnell & Pettett 2020)			
		Trended to avoid	(Driezen <i>et al.</i> 2007)			
		Favourable habitat	(Wright <i>et al.</i> 2020)			
		Selected against - use of field margins and hedgerows confuses this (use generally within 5m of edge)	(Hof 2009)			
		Negatively preferred	(Dowie 1993)			
J.1.2	Amenity grassland	Preferred habitat	(Micol, Doncaster & Mackinlay 1994)	Negligible	1	Amenity grassland noted to be well used
		Positive association	(Doncaster, Rondinini & Johnson 2001)			
		Preferred	(Rondinini & Doncaster 2002)			
		Lower densities	(Orłowski & Nowak 2004)			
		More abundant	(Young <i>et al.</i> 2006)			
		Positive link	(Hof & Bright 2009)			
		Highly selected (females)	(Hof & Bright 2010)			
		Positive effect	(van de Poel, Dekker & Langevelde 2015)			
		Locally high, landscape lower	(Pettett <i>et al.</i> 2017)			
		Present	(Williams et al. 2018)			
		Confirmed habitat use	(Berger et al. 2020a)			
		Positive link	(Yarnell & Pettett 2020)			
		Strong preference, particularly with structures (bushes, trees etc)	(Braaker <i>et al.</i> 2014)			

Habitat	Habitat	Summary of References	References	Typical	Typical Resistance	Notes
Code	Туре			Resistance Level	Value (0 to 99)	
		Favourable habitat	(Wright <i>et al.</i> 2020)			
		General use	(Reeve 1981)			
		Selected for - edge habitats	(Hof 2009)			
J.1.3	Ephemeral /	Positive link (vegetation cover)	(Yarnell & Pettett 2020)	Negligible	1	Similar to dense
	short perennial	Used	(Hof 2009)			scrub, although less cover provided
J.1.4	Introduced shrub (inc INNS)	No references		Negligible	1	Similar to dense scrubProxy dense scrub
J.1.5	Gardens	Preferred habitat	(Micol, Doncaster & Mackinlay 1994)	Low 2 to 2	2 to 20	Boundaries will affect resistance level
		Positive association	(Doncaster, Rondinini & Johnson 2001)			
		Preferred	(Rondinini & Doncaster 2002)			
		Higher densities	(Orłowski & Nowak 2004)			
		More abundant	(Young <i>et al.</i> 2006)			
		High % of shrubs and grass	(Hof & Bright 2009)			
		Strong preference	(Dowding <i>et al.</i> 2010)			
		Highly selected (females)	(Hof & Bright 2010)			
		Highest observation rate	(Hof & Bright 2012)			
		Positive effect	(van de Poel, Dekker & Langevelde 2015)			
		Well used - likely under-recorded	(Williams, Stafford & Goodenough 2015)			
		Highest ranked	(Pettett <i>et al.</i> 2017)			
		Present	(Williams <i>et al.</i> 2018)			

Habitat	Habitat	Summary of References	References	Typical	Typical Resistance	Notes
Code	Туре			Resistance Level	Value (0 to 99)	
		Positive link	(Yarnell & Pettett 2020)			
		Confirmed use	(Berger <i>et al.</i> 2020b)			
		Favoured	(Driezen <i>et al.</i> 2007)			
		Strong preference, particularly with structures (bushes, trees etc)	(Braaker <i>et al.</i> 2014)			
		Favourable habitat	(Wright <i>et al.</i> 2020)			
		General use but less than amenity/golf course	(Reeve 1981)			
		Used but limited by connectivity (or lack of)	(Hof 2009)			
		Mixed levels of use	(Dowie 1993)			
		Consistently preferred	(Dowding 2007)			
J.2.1.1	Intact species rich	Positive link	(Micol, Doncaster & Mackinlay 1994)	Negligible	1	
	hedge	Positive link to edge habitats	(Huijser & Bergers 2000)			
		Positive association	(Doncaster, Rondinini & Johnson 2001)			
		Favoured (edge habitats)	(Riber 2006)			
		Highly selected	(Hof & Bright 2010)			
		Positive association	(Hof & Bright 2012)			
		Positive effect	(van de Poel, Dekker & Langevelde 2015)			
		Highly ranked	(Pettett <i>et al.</i> 2017)			
		May be attractive	(Hof, Allen & Bright 2019)			
		Positive link	(Yarnell & Pettett 2020)			
		Confirmed use	(Berger <i>et al.</i> 2020b)			

Habitat	Habitat	Summary of References	References	Typical	Typical Resistance	Notes
Code	Туре			Resistance Level	Value (0 to 99)	
		Positive correlation	(Hof 2009)			
		Strong preference of use	(Dowie 1993)			
J.2.1.2	Intact species poor	Positive link	(Micol, Doncaster & Mackinlay 1994)	Negligible	1	
	hedge	Positive link to edge habitats	(Huijser & Bergers 2000)			
		Positive association	(Doncaster, Rondinini & Johnson 2001)			
		Favoured (edge habitats)	(Riber 2006)			
		Highly selected	(Hof & Bright 2010)			
		Positive association	(Hof & Bright 2012)			
		Positive effect	(van de Poel, Dekker & Langevelde			
			2015)	-		
		Highly ranked	(Pettett <i>et al.</i> 2017)			
		May be attractive	(Hof, Allen & Bright 2019)			
		Positive correlation	(Hof 2009)			
		Strong preference of use	(Dowie 1993)			
J.2.2.1	Defunct species rich hedge	No references		Negligible	1	Proxy intact species poor hedge
J.2.2.2	Defunct species poor hedge	No references		Negligible	1	Proxy intact species poor hedge
J.2.3.1	Species rich hedge with	Positive link	(Micol, Doncaster & Mackinlay 1994)	Negligible	1	
	trees	Positive link to edge habitats	(Huijser & Bergers 2000)			

Habitat	Habitat	Summary of References	References	Typical	Typical Resistance	Notes
Code	Туре			Resistance Level	Value (0 to 99)	
		Positive association	(Doncaster, Rondinini & Johnson 2001)			
		Favoured (edge habitats)	(Riber 2006)			
		Highly selected	(Hof & Bright 2010)			
		Positive association	(Hof & Bright 2012)			
		Determinant of permeability	(Moorhouse <i>et al.</i> 2014)			
		Positive effect	(van de Poel, Dekker & Langevelde 2015)			
		Highly ranked	(Pettett <i>et al.</i> 2017)			
		May be attractive	(Hof, Allen & Bright 2019)			
		Positive link	(Yarnell & Pettett 2020)			
		Confirmed use	(Berger <i>et al.</i> 2020b)			
		Positive correlation	(Hof 2009)			
		Strong preference of use	(Dowie 1993)			
J.2.3.2	Species poor hedge with	Positive link	(Micol, Doncaster & Mackinlay 1994)	Negligible	1	
	trees	Positive link to edge habitats	(Huijser & Bergers 2000)			
		Positive association	(Doncaster, Rondinini & Johnson 2001)			
		Favoured (edge habitats)	(Riber 2006)			
		Highly selected	(Hof & Bright 2010)			
		Positive association	(Hof & Bright 2012)			
		Determinant of permeability	(Moorhouse <i>et al.</i> 2014)			
		Positive effect	(van de Poel, Dekker & Langevelde 2015)			
		Highly ranked	(Pettett <i>et al.</i> 2017)			

Habitat Code	Habitat Type	Summary of References	References	Typical Resistance Level	Typical Resistance Value (0 to 99)	Notes
		May be attractive	(Hof, Allen & Bright 2019)			
		Positive link	(Yarnell & Pettett 2020)			
		Confirmed use	(Berger <i>et al.</i> 2020b)			
		Positive correlation	(Hof 2009)			
		Strong preference of use	(Dowie 1993)			
J.2.4	Fence	No references		Medium	41 to 60	Depends on condition and presence of gaps No proxy
J.2.5	Wall	No references		High	81 to 98	Lower walls could be climbed so pose less of a barrier No proxy
J.2.6	Dry ditch	No references		Negligible	1	Proxy grassland habitats
J.2.7	Boundary removed	No references		Negligible	1	Proxy grassland habitats
J.2.8	Earth bank	No references		Negligible	1	Proxy grassland habitats
J.3.4	Caravan site	No references		Medium-high	61 to 80	Assuming small garden / amenity areas are present amongst caravans, which is common, although often heavily managed and lit

Habitat Code	Habitat Type	Summary of References	References	Typical Resistance Level	Typical Resistance Value (0 to 99)	Notes
						Proxy buildings and track / road
J.3.5	Sea wall	No references		Complete	99	Proxy buildings
J.3.6	Buildings	Highly ranked	(Pettett <i>et al.</i> 2017)	Complete	99	Mixed correlations,
		Positive link - fewer badgers, more food	(Williams <i>et al.</i> 2018)			likely driven by other factors such as gardens, amenity areas, parks etc.
		Negative relationship	(Hof, Allen & Bright 2019)			
		Favoured	(Driezen <i>et al.</i> 2007)			
		Favourable habitat	(Wright <i>et al.</i> 2020)			
		Avoided	(Dowie 1993)			
J.3.7	Track / road	Negative link	(Micol, Doncaster & Mackinlay 1994)	Medium	41 to 60	Likely to vary depending on the size
		Verges used (split into 2)	(Doncaster, Rondinini & Johnson 2001)			of road and traffic levels, adjacent habitats etc.
		Less preferred inc verges, reluctance to cross larger roads	(Rondinini & Doncaster 2002)	-		habitats etc.
		35% lower densities, larger roads bigger barrier effect	(Orłowski & Nowak 2004)			
		Verges used, large roads bigger barrier	(Hof & Bright 2009)			
		Clear aversion but would cross during the night	(Dowding <i>et al.</i> 2010)			

Habitat Code	Habitat Type	Summary of References	References	Typical Resistance Level	Typical Resistance Value (0 to 99)	Notes
	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Positive for minor roads, negative for major roads	(Hof & Bright 2012)			
		Positive effect - likely linked to lower badger numbers	(van de Poel, Dekker & Langevelde 2015)			
		Positive link - fewer badgers, more food	(Williams <i>et al.</i> 2018)			
		Positive link (verges)	(Yarnell & Pettett 2020)			
		Smaller roads no resistence, main streets acted as major barriers	(Braaker <i>et al.</i> 2014)			
		Favourable habitat (verges)	(Wright <i>et al.</i> 2020)			
		General avoidance	(Reeve 1981)			
		Minor road positively correlated (verge habs), major roads negatively correlated	(Hof 2009)			
		Avoided	(Dowie 1993)			
		Used in nightly ranging, avoided within home ranges, didn't actively avoid crossing	(Dowding 2007)			
J.3.7	Road - including all	Negative link	(Micol, Doncaster & Mackinlay 1994)	Low	2 to 20	Likely to vary depending on traffic
	unpaved and asphalt	Verges used (split into 2)	(Doncaster, Rondinini & Johnson 2001)			levels, adjacent habitats etc.
	roads, and	Least preferred	(Rondinini & Doncaster 2002)			
	railroads.	Lower densities	(Orłowski & Nowak 2004)			
		Verges used	(Hof & Bright 2009)			
		Clear aversion but would cross during the night	(Dowding <i>et al.</i> 2010)			

Habitat	Habitat	Summary of References	References	Typical	Typical Resistance	Notes
Code	Туре			Resistance Level	Value (0 to 99)	
		Positive link	(Hof & Bright 2012)			
		Positive effect - likely linked to	(van de Poel, Dekker & Langevelde			
		lower badger numbers	2015)			
		Positive link - fewer badgers, more food	(Williams <i>et al.</i> 2018)			
		Positive link (verges)	(Yarnell & Pettett 2020)			
		No resistence	(Braaker et al. 2014)			
		Favourable habitat (verges)	(Wright <i>et al.</i> 2020)			
		General avoidance	(Reeve 1981)			
		Positively correlated	(Hof 2009)			
		Avoided	(Dowie 1993)			
		Used in nightly ranging, avoided	(Dowding 2007)			
		within home ranges, didn't				
		actively avoid crossing				
J.3.7	Large Road - as above	Negative link	(Micol, Doncaster & Mackinlay 1994)	High	81 to 98	Likely to vary depending on traffic
	but over 4m	Verges used (split into 2)	(Doncaster, Rondinini & Johnson			levels, adjacent
	wide		2001)			habitats etc.
		Reluctance to cross	Rondinini & Doncaster 2002			
		Large barrier effect	(Orłowski & Nowak 2004)			
		Large barrier effect	(Hof & Bright 2009)			
		Clear aversion but would cross during the night	(Dowding <i>et al.</i> 2010)			
		Negative link	(Hof & Bright 2012)			
		Positive effect - likely linked to lower badger numbers	(van de Poel, Dekker & Langevelde 2015)			

Habitat	Habitat	Summary of References	References	Typical	Typical Resistance	Notes
Code	Туре			Resistance Level	Value (0 to 99)	
		Positive link - fewer badgers, more food	(Williams <i>et al.</i> 2018)			
		Positive link (verges)	(Yarnell & Pettett 2020)			
		Barrier effect	(Braaker <i>et al.</i> 2014)			
		Favourable habitat (verges)	(Wright <i>et al.</i> 2020)			
		General avoidance	(Reeve 1981)			
		Negatively correlated	(Hof 2009)			
		Avoided	(Dowie 1993)			
		Used in nightly ranging, avoided within home ranges, didn't actively avoid crossing	(Dowding 2007)			
J.4	Bare ground	No references		Low-medium	21 to 40	Will be variable depending on what the habitat is and the extent Proxy other habitat
J.5	Other	Waste ground favoured	(Hof 2009)	Low-medium	21 to 40	Will be variable
	habitat	Least selected	(Dowding 2007)			depending on what the habitat is
	Other notes	Positive link with uplands, explained by roads and badgers	(Hof & Bright 2012)			
		Absent above tree line	(Williams <i>et al.</i> 2018)			
		Avoided high light intensity	(Berger <i>et al.</i> 2020a)			
		Food availability and connectivity key drivers to presence, larger	(Yarnell & Pettett 2020)			

Habitat Code	Habitat Type	Summary of References	References	Typical Resistance Level	Typical Resistance Value (0 to 99)	Notes
		field sizes likely to hinder movement				
		Adjusted behaviour in urban areas, able to respond to temporary disturbance	(Berger <i>et al.</i> 2020b)			
		Connectivity is less important than quality, although connectivity issues create pinch points	(Braaker <i>et al.</i> 2014)			
		Preference for cover over open habs in first year, reverse in second year (due to lack of radio tracking, biased by ability to see animals), clear use of edge habitats even when in open areas	(Reeve 1981)			
		Selected for upland habs (downs, moors, heaths), agri-environment schemes small positive effect	(Hof 2009)			
		Habitat use dictated by need to foraging - need to fill stomachs 2/3 times per night	(Dowding 2007)			

6.2. Appendix B – R Code

Masters analysis August 2023
data location D:\Research Project\Thesis Work\forR
set through file menu

load vegan and ape packages
load ggplot2

create explanatory variables from resistance matrices (Circuitscape data) using weighted PCoA

import explanatory data as matrices# note: hab labels contain number ones not lowercase letter L

```
distance<-read.table("distance.txt", header=TRUE, row.names=1)
habg1<-read.table("habg1.txt", header=TRUE, row.names=1)
habg31<-read.table("habg31rf.txt", header=TRUE, row.names=1)
habg51<-read.table("habg51.txt", header=TRUE, row.names=1)
habg71<-read.table("habg71.txt", header=TRUE, row.names=1)
habg91<-read.table("habg91.txt", header=TRUE, row.names=1)
habg91<-read.table("habg91.txt", header=TRUE, row.names=1)
habg91<-read.table("habg91.txt", header=TRUE, row.names=1)
habg91<-read.table("habg91.txt", header=TRUE, row.names=1)
water<-read.table("roads.txt", header=TRUE, row.names=1)
water<-read.table("water.txt", header=TRUE, row.names=1)
```


import response data as matrices (pairwise genetic info generated through GenAlEx)
LRM - Lynch & Ritland (1999) estimator - Mean
QGM - Queller and Goodnight (1989) estimator - Mean

pwiselrm<-read.table("pairwiselrm.txt", header=TRUE, row.names=1)
pwiseqgm<-read.table("pairwiseqgm.txt", header=TRUE, row.names=1)</pre>

transform into distance matrices

distancea<-as.dist(distance) habg1a<-as.dist(habg1) habg11a<-as.dist(habg11) habg31a<-as.dist(habg31) habg51a<-as.dist(habg51) habg71a<-as.dist(habg71) habg91a<-as.dist(habg91) habg99a<-as.dist(habg99) roada<-as.dist(road) watera<-as.dist(water) pwiselrma<-as.dist(pwiselrm) pwiseqgma<-as.dist(pwiseqgm)

PCoAs

perform PCoA for each explanatory variable (distance, habitats, roads, and water)

pcoadist<-pcoa(distancea, correction="lingoes", rn=NULL) pcoahabg1<-pcoa(habg1a, correction="lingoes", rn=NULL) pcoahabg11<-pcoa(habg11a, correction="lingoes", rn=NULL) pcoahabg31<-pcoa(habg31a, correction="lingoes", rn=NULL) pcoahabg51<-pcoa(habg51a, correction="lingoes", rn=NULL) pcoahabg71<-pcoa(habg71a, correction="lingoes", rn=NULL) pcoahabg91<-pcoa(habg91a, correction="lingoes", rn=NULL) pcoahabg91<-pcoa(habg91a, correction="lingoes", rn=NULL) pcoahabg99<-pcoa(habg99a, correction="lingoes", rn=NULL) pcoaroad<-pcoa(roada, correction="lingoes", rn=NULL) pcoawater<-pcoa(watera, correction="lingoes", rn=NULL)

pcoadist\$values pcoahabg1\$values pcoahabg11\$values pcoahabg31\$values pcoahabg51\$values pcoahabg71\$values pcoahabg91\$values pcoahabg99\$values pcoaroad\$values pcoawater\$values

identify number of PCos to retain - those above red line # habitats code amended to reflect pcoa columns, bar [,3] and line [,4]

distance

df.bar<-barplot(pcoadist\$values[,2], xlab="PCos", ylab="percentage variation explained") lines(x=df.bar, y=pcoadist\$values[,3], col='red')

habitatsGL1

df.bar<-barplot(pcoahabg1\$values[,3], xlab="PCos", ylab="percentage variation explained")

lines(x=df.bar, y=pcoahabg1\$values[,4], col='red')

habitatsGL11

```
df.bar<-barplot(pcoahabg11$values[,3], xlab="PCos", ylab="percentage variation
explained")
lines(x=df.bar, y=pcoahabg11$values[,4], col='red')
```

habitatsGL31

```
df.bar<-barplot(pcoahabg31$values[,3], xlab="PCos", ylab="percentage variation
explained")
lines(x=df.bar, y=pcoahabg31$values[,4], col='red')
```

habitatsGL51

```
df.bar<-barplot(pcoahabg51$values[,3], xlab="PCos", ylab="percentage variation
explained")
lines(x=df.bar, y=pcoahabg51$values[,4], col='red')
```

habitatsGL71

```
df.bar<-barplot(pcoahabg71$values[,3], xlab="PCos", ylab="percentage variation
explained")
lines(x=df.bar, y=pcoahabg71$values[,4], col='red')
```

habitatsGL91

```
df.bar<-barplot(pcoahabg91$values[,3], xlab="PCos", ylab="percentage variation
explained")
lines(x=df.bar, y=pcoahabg91$values[,4], col='red')
```

habitatsGL99

```
df.bar<-barplot(pcoahabg99$values[,3], xlab="PCos", ylab="percentage variation
explained")
lines(x=df.bar, y=pcoahabg99$values[,4], col='red')
```

roads

```
df.bar<-barplot(pcoaroad$values[,2], xlab="PCos", ylab="percentage variation
explained")
lines(x=df.bar, y=pcoaroad$values[,3], col='red')
```

water

df.bar<-barplot(pcoawater\$values[,2], xlab="PCos", ylab="percentage variation explained") lines(x=df.bar, y=pcoawater\$values[,3], col='red')

variation explained by first PCos, relative eigenvalues / relative correlated evs for habs

habitats code amended to reflect pcoa columns, [,3]

sum(pcoadist\$values[1:1,2]) sum(pcoahabg1\$values[1:1,3]) sum(pcoahabg11\$values[1:1,3]) sum(pcoahabg31\$values[1:1,3]) sum(pcoahabg51\$values[1:1,3]) sum(pcoahabg71\$values[1:1,3]) sum(pcoahabg91\$values[1:1,3]) sum(pcoahabg99\$values[1:1,3]) sum(pcoaroad\$values[1:1,2]) sum(pcoawater\$values[1:1,2])

variation explained by first 4 PCos, relative eigenvalues / relative correlated evs for habs

habitats code amended to reflect pcoa columns, [,3]

sum(pcoadist\$values[1:4,2]) sum(pcoahabg1\$values[1:4,3]) sum(pcoahabg11\$values[1:4,3]) sum(pcoahabg31\$values[1:4,3]) sum(pcoahabg51\$values[1:4,3]) sum(pcoahabg71\$values[1:4,3]) sum(pcoahabg91\$values[1:4,3]) sum(pcoahabg99\$values[1:4,3]) sum(pcoaroad\$values[1:4,2]) sum(pcoawater\$values[1:4,2])

variation explained by first 9 PCos, relative eigenvalues / relative correlated evs for habs

habitats code amended to reflect pcoa columns, [,3]

sum(pcoadist\$values[1:9,2]) sum(pcoahabg1\$values[1:9,3]) sum(pcoahabg11\$values[1:9,3]) sum(pcoahabg31\$values[1:9,3])
sum(pcoahabg51\$values[1:9,3])
sum(pcoahabg71\$values[1:9,3])
sum(pcoahabg91\$values[1:9,3])
sum(pcoahabg99\$values[1:9,3])
sum(pcoaroad\$values[1:9,2])
sum(pcoawater\$values[1:9,2])

variation explained by first 10 PCos, relative eigenvalues / relative correlated evs for habs

habitats code amended to reflect pcoa columns, [,3]

```
sum(pcoadist$values[1:10,2])
sum(pcoahabg1$values[1:10,3])
sum(pcoahabg11$values[1:10,3])
sum(pcoahabg31$values[1:10,3])
sum(pcoahabg51$values[1:10,3])
sum(pcoahabg71$values[1:10,3])
sum(pcoahabg91$values[1:10,3])
sum(pcoahabg99$values[1:10,3])
sum(pcoaroad$values[1:10,2])
sum(pcoawater$values[1:10,2])
```

create matrices from first 1/10 (corrected) PCos

```
dist<-(pcoadist$vectors[,1:10])
habsg1<-(pcoahabg1$vectors[,1:10])
habsg11<-(pcoahabg11$vectors[,1:10])
habsg31<-(pcoahabg31$vectors[,1:10])
habsg51<-(pcoahabg51$vectors[,1:10])
habsg91<-(pcoahabg91$vectors[,1:10])
habsg99<-(pcoahabg99$vectors[,1:10])
roads<-(pcoaroad$vectors[,1:10])
waters<-(pcoawater$vectors[,1:10])
```

run dbRDA models - one per explanatory variable

set 1 - LRM pairwise models (ma)

pairwise matrix as response variable - distance matrices created at start# distance, habitats, roads, and water as explanatory variables - PCos matrices created above

ma1 - pairwise and distance

```
ma1<-capscale(pwiselrma~dist, add="lingoes")
print(ma1)
anova.cca(ma1,permutations=how(nperm=9999))
```

ma2 - pairwise and habitatGL1

```
ma2<-capscale(pwiselrma~habsg1, add="lingoes")
print(ma2)
anova.cca(ma2,permutations=how(nperm=9999))
```

```
# ma3 - pairwise and habitatGL11
```

```
ma3<-capscale(pwiselrma~habsg11, add="lingoes")
print(ma3)
anova.cca(ma3,permutations=how(nperm=9999))
```

ma4 - pairwise and habitatGL31

ma4<-capscale(pwiselrma~habsg31, add="lingoes") print(ma4) anova.cca(ma4,permutations=how(nperm=9999))

ma5 - pairwise and habitatGL51

```
ma5<-capscale(pwiselrma~habsg51, add="lingoes")
print(ma5)
anova.cca(ma5,permutations=how(nperm=9999))
```

```
# ma6 - pairwise and habitatGL71
```

```
ma6<-capscale(pwiselrma~habsg71, add="lingoes")
print(ma6)
anova.cca(ma6,permutations=how(nperm=9999))
```

ma7 - pairwise and habitatGL91

```
ma7<-capscale(pwiselrma~habsg91, add="lingoes")
print(ma7)
anova.cca(ma7,permutations=how(nperm=9999))
```

ma8 - pairwise and habitatGL99

```
ma8<-capscale(pwiselrma~habsg99, add="lingoes")
print(ma8)
anova.cca(ma8,permutations=how(nperm=9999))
```

ma9 - pairwise and roads

```
ma9<-capscale(pwiselrma~roads, add="lingoes")
print(ma9)
anova.cca(ma9,permutations=how(nperm=9999))
```

ma10 - pairwise and water

```
ma10<-capscale(pwiselrma~waters, add="lingoes")
print(ma10)
anova.cca(ma10,permutations=how(nperm=9999))
```

ma11 - pairwise and roads

```
ma11<-capscale(pwiselrma~roads+Condition(dist), add="lingoes")
print(ma11)
anova.cca(ma11,permutations=how(nperm=9999))</pre>
```

ma12 - pairwise and water

```
ma12<-capscale(pwiselrma~waters+Condition(dist), add="lingoes")
print(ma12)
anova.cca(ma12,permutations=how(nperm=9999))
```

```
# ma13 - pairwise and habitatGL1
```

```
ma13<-capscale(pwiselrma~habsg1+Condition(dist), add="lingoes")
print(ma13)
anova.cca(ma13,permutations=how(nperm=9999))
```

```
# ma14 - pairwise and habitatGL11
```

```
ma14<-capscale(pwiselrma~habsg11+Condition(dist), add="lingoes")
print(ma14)
anova.cca(ma14,permutations=how(nperm=9999))
```

ma15 - pairwise and habitatGL31

```
ma15<-capscale(pwiselrma~habsg31+Condition(dist), add="lingoes")
print(ma15)
anova.cca(ma15,permutations=how(nperm=9999))
```

ma16 - pairwise and habitatGL51

```
ma16<-capscale(pwiselrma~habsg51+Condition(dist), add="lingoes")
print(ma16)</pre>
```

anova.cca(ma16,permutations=how(nperm=9999))

ma17 - pairwise and habitatGL71

```
ma17<-capscale(pwiselrma~habsg71+Condition(dist), add="lingoes")
print(ma17)
anova.cca(ma17,permutations=how(nperm=9999))
```

ma18 - pairwise and habitatGL91

ma18<-capscale(pwiselrma~habsg91+Condition(dist), add="lingoes") print(ma18) anova.cca(ma18,permutations=how(nperm=9999))

ma19 - pairwise and habitatGL99

ma19<-capscale(pwiselrma~habsg99+Condition(dist), add="lingoes") print(ma19) anova.cca(ma19,permutations=how(nperm=9999))

ma20 - pairwise and all explanatory variables (imp grass = 31)

ma20<-capscale(pwiselrma~habsg31+dist+roads+waters, add="lingoes") print(ma20) anova.cca(ma20,permutations=how(nperm=9999))

run dbRDA models - one per explanatory variable

set 2 - QGM pairwise models (mb)
pairwise matrix as response variable - distance matrices created at start
distance, habitats, roads, and water as explanatory variables - PCos matrices created above

mb1 - pairwise and distance

mb1<-capscale(pwiseqgma~dist, add="lingoes") print(mb1) anova.cca(mb1,permutations=how(nperm=9999))

mb2 - pairwise and habitatGL1

mb2<-capscale(pwiseqgma~habsg1, add="lingoes") print(mb2) anova.cca(mb2,permutations=how(nperm=9999)) # mb3 - pairwise and habitatGL11

```
mb3<-capscale(pwiseqgma~habsg11, add="lingoes")
print(mb3)
anova.cca(mb3,permutations=how(nperm=9999))
```

mb4 - pairwise and habitatGL31

```
mb4<-capscale(pwiseqgma~habsg31, add="lingoes")
print(mb4)
anova.cca(mb4,permutations=how(nperm=9999))
```

```
# mb5 - pairwise and habitatGL51
```

```
mb5<-capscale(pwiseqgma~habsg51, add="lingoes")
print(mb5)
anova.cca(mb5,permutations=how(nperm=9999))
```

mb6 - pairwise and habitatGL71

```
mb6<-capscale(pwiseqgma~habsg71, add="lingoes")
print(mb6)
anova.cca(mb6,permutations=how(nperm=9999))
```

mb7 - pairwise and habitatGL91

```
mb7<-capscale(pwiseqgma~habsg91, add="lingoes")
print(mb7)
anova.cca(mb7,permutations=how(nperm=9999))
```

```
# mb8 - pairwise and habitatGL99
```

```
mb8<-capscale(pwiseqgma~habsg99, add="lingoes")
print(mb8)
anova.cca(mb8,permutations=how(nperm=9999))
```

mb9 - pairwise and roads

```
mb9<-capscale(pwiseqgma~roads, add="lingoes")
print(mb9)
anova.cca(mb9,permutations=how(nperm=9999))
```

mb10 - pairwise and water

```
mb10<-capscale(pwiseqgma~waters, add="lingoes")
print(mb10)
anova.cca(mb10,permutations=how(nperm=9999))
```

mb11 - pairwise and roads

```
mb11<-capscale(pwiseqgma~roads+Condition(dist), add="lingoes")
print(mb11)
anova.cca(mb11,permutations=how(nperm=9999))
```

mb12 - pairwise and water

```
mb12<-capscale(pwiseqgma~waters+Condition(dist), add="lingoes")
print(mb12)
anova.cca(mb12,permutations=how(nperm=9999))
```

```
# mb13 - pairwise and habitatGL1
```

```
mb13<-capscale(pwiseqgma~habsg1+Condition(dist), add="lingoes")
print(mb13)
anova.cca(mb13,permutations=how(nperm=9999))
```

```
# mb14 - pairwise and habitatGL11
```

```
mb14<-capscale(pwiseqgma~habsg11+Condition(dist), add="lingoes")
print(mb14)
anova.cca(mb14,permutations=how(nperm=9999))
```

```
# mb15 - pairwise and habitatGL31
```

```
mb15<-capscale(pwiseqgma~habsg31+Condition(dist), add="lingoes")
print(mb15)
anova.cca(mb15,permutations=how(nperm=9999))
```

```
# mb16 - pairwise and habitatGL51
```

```
mb16<-capscale(pwiseqgma~habsg51+Condition(dist), add="lingoes")
print(mb16)
anova.cca(mb16,permutations=how(nperm=9999))
```

mb17 - pairwise and habitatGL71

```
mb17<-capscale(pwiseqgma~habsg71+Condition(dist), add="lingoes")
print(mb17)
anova.cca(mb17,permutations=how(nperm=9999))
```

mb18 - pairwise and habitatGL91

mb18<-capscale(pwiseqgma~habsg91+Condition(dist), add="lingoes") print(mb18) anova.cca(mb18,permutations=how(nperm=9999))

mb19 - pairwise and habitatGL99

```
mb19<-capscale(pwiseqgma~habsg99+Condition(dist), add="lingoes")
print(mb19)
anova.cca(mb19,permutations=how(nperm=9999))
```

mb20 - pairwise and all explanatory variables (imp grass = 31)

```
mb20<-capscale(pwiseqgma~habsg31+dist+roads+waters, add="lingoes")
print(mb20)
anova.cca(mb20,permutations=how(nperm=9999))
```

extract adjusted R2 for all models

```
RsquareAdj(ma1)
RsquareAdj(ma2)
RsquareAdj(ma3)
RsquareAdj(ma4)
RsquareAdj(ma5)
RsquareAdj(ma6)
RsquareAdj(ma7)
RsquareAdj(ma8)
RsquareAdj(ma9)
RsquareAdj(ma10)
RsquareAdj(ma11)
RsquareAdj(ma12)
RsquareAdj(ma13)
RsquareAdj(ma14)
RsquareAdj(ma15)
RsquareAdj(ma16)
RsquareAdj(ma17)
RsquareAdj(ma18)
RsquareAdj(ma19)
RsquareAdj(ma20)
RsquareAdj(mb1)
RsquareAdj(mb2)
RsquareAdj(mb3)
RsquareAdj(mb4)
RsquareAdj(mb5)
RsquareAdj(mb6)
RsquareAdj(mb7)
```

RsquareAdj(mb8)

RsquareAdj(mb9) RsquareAdj(mb10) RsquareAdj(mb11) RsquareAdj(mb12) RsquareAdj(mb13) RsquareAdj(mb14) RsquareAdj(mb15) RsquareAdj(mb16) RsquareAdj(mb17) RsquareAdj(mb18) RsquareAdj(mb19) RsquareAdj(mb20)

END

6.3. Appendix C – Health and Safety Documentation

	Risk Assessment – COVID-19 in the lab environment							
College/ PSU	College of Science	Assessment Date	15/09/21					
Location (Building / Lab	Wallace	Assessor	Dr Hazel Nichols					
Number)								
Activities	See individual risk assessments	Review Date (if applicable)						
Associated documents	Individual risk assessments for each activity are stored in the lab							

Part 1: Risk Assessment - COVID-19 controls

Generic COVID-19 controls for labs are detailed below. This document has been amended to reflect the controls required in this lab. Where a number of research groups share a laboratory, co-ordinating your activities will be required. Supervisors / Principle Investigators are responsible for implementing the controls and monitoring work in the lab. You should also review the risk assessments of the activites that you are carrying out, to consider the additional risk of COVID-19. All lab users are to follow the controls identified below.

What are the hazards?	Who might be harmed?	How could they be harmed?	What are you already doing?	Do you need to do anything else to manage this risk?
Potential contact with the COVID-19 through contact with an infected person – this person may be symptomatic or asymptomatic.	Staff , Students, visitors, contractors Members of their household	 Worst-case infection can be fatal. Illness of varying degrees. Some staff / students may be at higher risk from coronavirus (including older 	 Eliminate / reduce Staff / students should work from home where possible. See University - Homeworking guidance Returning staff / students must have be authorised prior to attending campus. Permits will be issued. Vulnerable groups: Staff to complete the HR return to work if you are categorised as at higher risk from coronavirus. Staff who live with someone who is Clinically Extremely Vulnerable or Clinically 	

What are the hazards?	Who might be harmed?	How could they be harmed?	What are you already doing?	Do you need to do anything else to manage this risk?
		people, people with health conditions and pregnant persons). Refer to NHS website.	 Vulnerable should contact their line manager / supervisor prior to their return. Training Returning staff / students must complete the Health and Safety Covid Recovery Induction (on Canvas) to reduce the risk of infection. Staff / students will receive a local induction to familarise them with the additional controls required within their lab to reduce the risk of Covid-19. Ill-health: Covid-19 symptoms include (see NHS website): New continuous cough High temperature Loss of or change to sense of smell or taste. 	
			• Staff / students who experience any of these symptoms must not travel to or attend the workplace. They must self-isolate at home and inform their supervisor / manager that they have coronavirus symptoms; then follow NHS Wales advise and Test, Trace and Protect.	
			 Self-isolating: If staff / student lives with others and someone in the household has symptoms of coronavirus or if you have been asked to self-isolate by the NHS (Test, Trace and Protect), they must not travel to or attend the workplace. They must self-isolate and not leave the house for 14 days. Individuals should continue to work from 	

What are the hazards?	Who might be harmed?	How could they be harmed?	What are you already doing?	Do you need to do anything else to manage this risk?
			home and inform their line manager. / supervisor.	
Suspected case of Covid-19 in the workplace or suspicion of own infection	Staff - individual	Infection and spreading of virus	 If a person in work becomes symptomatic whilst in work, they should avoid touching anything and return home, where they should follow NHS advise. The line manager / supervisor must be informed. Clean and disinfect any surfaces or equipment the person has come in to contact with. Arrange for safe cleaning of the lab coat. Anyone who may have come in to contact with the person showing symptoms should wash their hands for 20 seconds. NHS Wales Test, Trace and Protect should be used to identify other contacts who may need to self-isolate. 	
Contact with the virus whilst travelling to work.			 Staff / students travelling to campus should understand the need to observe social distancing when travelling to and from work. Where possible staff / students should travel alone or with their household group. Refer to H&S information sheet - <u>Travelling on Public</u> <u>Transport and - Travelling in private or other</u> vehicles 	
COVID-19, as a result of sharing a lab, bench-space or lab equipment.	Staff /students	Spread of infection through close contact with others, or touching benchspace or equipment that has been contaminated – then touching mouth/ eye/ nose.		

What are the hazards?	Who might be harmed?	How could they be harmed?	What are you already doing?	Do you need to do anything else to manage this risk?
			• Staff / students will be assigned designated bench-spaces. These will be socially distanced to maintain a minimum separation distance of 2 metres. Working side to side, or back to back is preferred.	
			• Where bench-spaces are shared, each will be shared with the minimum number of users. All bench spaces must be cleaned and disinfected before and after use.	
			 All staff / students will maintain good levels of personal hygiene, this will include – Frequent washing of hands, including when you arrive and leave the lab (washing hands with soap and water often for at least 20 seconds using soap and water). See University guidance <u>Hand washing and sanitizing</u> 	
			 Avoid of touching eyes, nose and mouth with unwashed hands. 	
			 Catching sneezes and coughs in tissues / arm and to wash hands for 20 seconds. 	
			 There is a hand washing station in the lab with soap, access to hot and cold water and paper towels – use the Estates helpdesk if soap or paper towels are unavailable. Where a hand wash station is not available hand sanitizer will be provided. We will ensure the maximum number of lab users is not exceeded by: 	

What are the hazards?	Who might be harmed?	How could they be harmed?	What are you already doing?	Do you need to do anything else to manage this risk?
			 Pre-booking Using a student / staff rota Use fixed shifts, to minimize the number of people you come into contact with. Other - 	
			Identify other actions required in this lab to maintain 2 metre social distancing: One way system Use of floor tape (2m separation) Tape designating safe bench-spaces Work at alternate fume cupboards Move frequently used equipment to a safe, socially distanced space Installing barriers Other: There should only be one user within each working bay for each booking slot. Sign up sheets at each bay already exist. Users should also check that no other users are signed up for equipment in that bay for their scheduled time.	
			For further information see <u>Social distancing and</u> shared spaces for further advice	
			The following high touch points have been identified and are to be cleaned regularly:	
			- Door handle	

What are the hazards?	Who might be harmed?	How could they be harmed?	What are you already doing?	Do you need to do anything else to manage this risk?
hazards?	be harmed?	harmed?	 Bench tops in working bays Taps at hand wash stations Refridgerator / freezer / chemical cabinet handles Fume cupboards controls & railing Light switch High use shared equipment within W131A: Nanodrop, Autoclave, Gel Doc, PCR machine lids & Control, Water Purification station, Centrifuges, PCR cabinet controls, BioAnalyzer, QPCR machine & keyboard Personal protective equipment must not be shared e.g. lab coats, safety glasses, gloves. Lab coats should be stored separately and must be cleaned regularly (they should not be taken home to clean); contact Hilary Williams for further information. Gloves should be changed frequently and hands washed after use. If face coverings are used, users should be aware of their correct use and limitations - <u>Face</u> <u>coverings</u> Identify shared equipment. Minimise the use of 	
			shared equipment. All shared equipment is to be cleaned and disinfected before and after use. The disinfectant to be used is: Distel or BioCleanse. 70% Ethanol (used for sanitizing tools before molecular work) should not be used as a regular or primary disinfectant.	

What are the hazards?	Who might be harmed?	How could they be harmed?	What are you already doing?	Do you need to do anything else to manage this risk?
Risk of exposure and spread of COVID-19 to other personnel when training / demonstating or observing persons working in lab			 Consider providing detailed instructions / video demonstratons. Minimise contact the time. Face to face teaching should be avoided, work side by side. Wear <u>face coverings</u> if 2 metre social distancing cannot be maintained. 	
Lone working			 Lone working must not be undertaken where there a reasonably foreseeable risk that the work might result in an adverse event or emergency, which would be sufficiently serious to require a second person to be available to summon help or provide assistance. A lone working risk assessment is to be completed if lone working cannot be avoided. Refer to the University's lone working policy - https://staff.swansea.ac.uk/healthsafety/policies-and-procedures/general-health-and-safety/ Lone workers should use SafeZone 	No work is planned outside of normal working hours. Students will work under direct supervision, or on their own after suitable training and assessment of their competencies.
Work equipment that has not been maintained / tested	Lab users	Failure of equipment	 Checks are to be made that equipment remains safe to use and that any equipment that requires statutory testing have been tested (e.g. fume cupboards / autoclaves / gas regulators / lifting equipment / portable electric equipment). 	
Emergencies – Reduced staffing on Campus / within buildings, first aiders.	All lab users	No first aiders available due to reduced staff presence, delaying emergency first aid treatment.	nearest first aider.	

What are the hazards?	Who might be harmed?	How could they be harmed?	What are you already doing?	Do you need to do anything else to manage this risk?
Potential for contact with COVID-19 when giving first aid Fire: Covid directional signs, slowling down the safe evacuation of the building. Adverse Impact on mental health and wellbeing	Staff / Student	Difficulty social distancing when administering first aid Staff not evacuating the building quickly, due to covid directional signs. Staff may congregate at fire assembly points, without social distancing. Adverse mental health leading to sickness absence or detrimental effect on work and weelbeing	 First aiders are to be made aware of new guidance for first aiders First aiders to follow new <u>Guidance for first aiders</u>. This includes new guidance for CPR. In the event of a fire alarm, staff and students should evacuate the building through <i>nearest</i> exit. <i>Covid directional signs should not be followed in an emergency.</i> Once outside and a safe distance away from the building staff / students should not congregate at the fire evacuation point, they should maintain social distancing. Regular contact with line manage / supervisor and colleagues Offer flexible working arrangements where possible Signpost staff to mental health assistance and professional mental health services should they require them 	

Part 2: Actions arising from risk assessment

Actions	Lead	Target Date	Done Yes/No

Lab users – who require a permit

Name	Staff / student ID
Dr Hazel Nichols Samantha Shove	
Samantha Shove	

RISK ASSESSMENT OF AN ACTIVITY INVOLVING DELIBERATE WORK WITH PATHOGENIC MICROORGANISMS OR SAMPLES WITH POTENTIAL TO HARBOUR PATHOGENIC MICROORGANIMS

This risk assessment form should be used to assist in the assessment of risks from an activity involving deliberate work with an infectious of harmful biological agent. The aim of the assessment is to identify those at risk from infection or other harm and the measures required to eliminate or control the risks to human health and the environment to an acceptable level.

Section 1: Project Information			
1.1 Principal Investigator/Academic Supervisor			
Name College			
Dr Hazel Nichols	Dr Hazel Nichols College of Science		
1.2 Person undertaking this risk assessment (if different from above)			
Name	College		
Click or tap here to enter text. Click or tap here to enter text.			
1.3 Project title			

Understanding sociality in the banded mongoose (Mungos mungo), dwarf mongoose (Helogale parvula), Onager (Equus hemionus), mole-rats (Bathyergidae) and European hedgehogs (Erinaceus europaeus)

1.4 Brief overview of the work (in layman's terms)

This project does NOT involve deliberated use of pathogens and will NOT result in an accidental propagation and concentration of pathogenic microorganisms.

Banded mongoose

DNA will be extracted from samples of tissue (e.g., skin) and blood that were collected **from wild banded mongooses in Uganda**. Samples will be stored and maintained in 96% ethanol at 4°C or -20°C in spark proof refrigerators and freezers. Extracted DNA will be analysed using PCR. The resulting data will be combined with behavioural data collected in the field and used to further our understanding of the evolution of social behaviour.

Tissue (skin) and blood samples are i) obtained from a study population that has been observed daily since 1995, and they are not derived from animals known or suspected to be infected with a pathogen which causes a notifiable disease (ii) the samples do not originate from animals in a premises or region or zone of a country that is subject to official restrictions due to a notifiable disease to which the animals are susceptible according to European or other National Animal Health Regulations. Samples are shipped to Swansea for DNA extraction and analyses with a global logistics company. All samples will be shipped in leak proof, impervious, lidded and labelled containers/tubes. On receipt, samples will be inspected for potential damage. Until further processing/analyses, tissue samples will be stored at 4°C or -20°C under Containment Level 2 conditions (Wallace 044). All procedures will follow Good Laboratory Practice and Good Occupational Safety and Hygiene procedures commensurate with HSE guidelines.

Banded mongooses can be infected with two pathogens: leptospirosis and the newly discovered *Mycobacterium mungi*, a member of the *Mycobacterium tuberculosis* complex. However, these two disease-causing agents are not known to be present in our study population (note that this population

has been observed daily for the past 20+ years). In addition, tissue and blood samples **are preserved in 96% ethanol**, **which kills almost all pathogenic and non-pathogenic microbes** (including, *Mycobacterium mungi* and *Leptospira interrogans* the causative agents of tuberculosis and letospirosis) **after 1 minute of exposure**. Samples are never taken from animals known or suspected to be infected with a transmissible disease.

Dwarf mongoose

I will extract DNA from a dwarf mongoose blood sample (stored in herapin) to conduct downstream genetic analyses. The sample is from Chester Zoo in the UK. The individual was observed daily by zoo staff and was not known or suspected to have any transmissible diseases.

<u>Onager</u>

DNA will be extracted from blood and tissue from captive Onagers housed within the EU (Chester and Emmen Zoo). The individuals were observed daily by zoo staff and were not known or suspected to have any transmissible diseases. Samples are stored in 96% ethanol, which kills almost all pathogenic microbes.

Mole-rats

DNA will be extracted from non-invasive skin swabs obtained from captive and wild mole-rats. The molerats were located in laboratories at Pretoria University and the Kalahari Research Centre in South Africa. The majority of individuals are captive bred, but some are wild caught under appropriate licences. All were monitored daily by project staff and were not known or suspected to have any transmissible diseases. Samples are stored in 96% ethanol, which kills almost all pathogenic microbes.

Hedgehogs

DNA will be extracted from saliva and tissue samples taken by the Gower Bird Hospital. The buccal swabs are taken from live animals and stored in ethanol or frozen at -20°C, while the tissue samples are taken from the tails or ears of recently deceased hedgehogs and stored in 96% ethanol.

The diseases and parasites that wild hedgehogs carry are generally of little concern to humans. However, there is a risk of exposure to a small number including *Leptospira icterohaemorrhagiae*, the bacterium that causes Weil's disease, and methicillin-resistant Staphylococcus aureus (MRSA). The infection risk from hedgehog-borne MRSA to humans is very low, with no evidence of infection in rescue-centre workers who regularly come into contact with wild hedgehogs¹.

To minimise risk of transfer (1) tissue samples will be stored in 96% ethanol, which destroys almost all pathogenic organisms after 1 minute of exposure (2) all samples will be treated with proteinase-K which breaks down cell walls and hence destroys microorganisms (3) no samples will be collected from any animals suspected of carrying potentially zoonotic diseases and (4) we will apply Containment Level 2 conditions (Wallace 044) to all samples and following the Good Laboratory Practice and Good Occupational Safety and Hygiene procedures commensurate with HSE guidelines.

 Rasmussen, S.L., Larsen, J., van Wijk, R.E., Jones, O.R., Berg, T.B., Angen, Ø. and Larsen, A.R., 2019. European hedgehogs (Erinaceus europaeus) as a natural reservoir of methicillin-resistant Staphylococcus aureus carrying mecC in Denmark. PloS one, 14(9), p.e0222031.

<u>General</u>

Risk of exposure to microorganisms through working with these samples is very unlikely and it will be further reduced by using disinfectants such as 2% Biocleanse to clean spatulas, glassware, and spills. In addition, the use of the Swansea University Wallace Building Cat 2 facility will provide an extra containment and clear routes for safe disposal if necessary.

Section 2: Identification of Biological Hazards					
2.1 List microorganisms <u>deliberately</u> used					
Name of microorganism	Click or tap here to enter text.	Click or tap here to enter text.	Click or tap here to enter text.		
Identified as human pathogen on ACDP list ¹	Choose an item.	Choose an item.	Choose an item.		
If yes please state hazard group	Choose an item.	Choose an item.	Choose an item.		
If not on ACDP list, is there any evidence to support the microorganism may present a risk to human health	Click or tap here to enter text.	Click or tap here to enter text.	Click or tap here to enter text.		
Normal routes of human infection	 Inhalation Oral/ingestion Mucocutaneous Percutaneous Via vector (e.g. insect) Allergen 	 Inhalation Oral/ingestion Mucocutaneous Percutaneous Via vector (e.g. insect) Allergen 	 Inhalation Oral/ingestion Mucocutaneous Percutaneous Via vector (e.g. insect) Allergen 		
Multiplicity of infection if known	Click or tap here to	Click or tap here to	Click or tap here to		
(i.e. number of organisms	enter text.	enter text.	enter text.		
required to establish an infection)					
Consequence of infection to	Click or tap here to	Click or tap here to	Click or tap here to		
humans	enter text.	enter text.	enter text.		
Is the microorganism a specified animal pathogen (SAPO ²)	Choose an item.	Choose an item.	Choose an item.		
If yes please state SAPO hazard group	Choose an item.	Choose an item.	Choose an item.		
Detail of any other harm the	Click or tap here to	Click or tap here to	Click or tap here to		
microorganism may pose to the	enter text.	enter text.	enter text.		
environment? e.g. harmful to					
plants, insects etc.					
Consequence of spread in	Click or tap here to	Click or tap here to	Click or tap here to		
environment	enter text.	enter text.	enter text.		
Route of transmission for	Click or tap here to	Click or tap here to	Click or tap here to		
environmental pathogens	enter text.	enter text.	enter text.		
(including animals)					
Any additional risk to	Click or tap here to	Click or tap here to	Click or tap here to		
health/environment e.g. hyper	enter text.	enter text.	enter text.		

virulence, multiple antibiotic resistance					
Listed on Schedule 5 ³	Choose an item.	Choose an item.	Choose an item.		
¹ ACDP Approved List of (Human) Pathogens ² SAPO pathogens ³ Schedule 5 Pathogens on the Anti-terrorism & Security Order					

SECTION 3: EXPERIMENTAL PROCEDURES

3.1 Description of experimental procedures:

(Brief details, also indicate any non-standard laboratory operations and any procedures that might require specific control measures e.g. use of sharps, generation of aerosols, in vivo work)

Samples will be maintained for long-term storage through monitoring the condition of the samples and storage containers (predominantly 2 ml plastic screw cap vials) and topping up with 96% ethanol when necessary.

Buccal samples will not be stores long-term, unless in 96% ethanol.

DNA will be extracted from samples using standard DNA extraction kits (e.g. Qiagen blood/tissue kit) following the manufacturer's instructions and protocols and standard Good Laboratory Practice and Good Occupational Safety and Hygiene procedures commensurate with HSE guidelines

3.2 Quantities used and frequency of use:

This information will enable you to determine the likelihood of exposure and therefore the risks from this particular activity. Please indicate maximum culture volumes at any time shown as multiples of flask volumes to give an idea of scale.

Max. volume per culture/sample	100g. Almost all samples are <0.25g.	Max. volume per experiment:	0.1g
Frequency of experiments		DNA extractions from approx. 2 year, taking place over a period per year.	· ·

SECTION 4: MEASURES TO PREVENT OR CONTROL EXPOSURE

Preventing exposure

4.1 Could a less hazardous substance (or form of the substance) be used instead?

(If it can, then it should be used or justification be given here why it is not being used. COSHH requires substitution with less hazardous materials wherever possible, but there may be good reasons for not using them.)

No. Material containing substantial amounts of DNA (blood/tissue) is required for obtaining sufficient quality and quantity of DNA for subsequent analyses.

Controlling exposure

4.2 Containment Level - what containment level is required for this work with regard to COSHH/SAPO?					
□1 ⊠2 □3					
CL3 only – application for derogation from the following controls (list if relevant and justify)					
Click or tap here to enter text.					

Premises where this work will be carried out				
Building	Laboratories		Containment level	
Wallace	044		2	
Mill the work be cogregated	from others not inv	alvad in tha w	ork and if not how will that he informed of	
the hazards? :	a from others not inv	olved in the w	ork and if not, how will they be informed of	
	directly handling ther	n. Dr Nichols h	lab. Samples are extremely unlikely to has been vaccinated against rabies, lity of infection.	
A 2 Engineering Controls (Co	ntainmont 8 Vontila	tion		
 4.3 Engineering Controls (Cc a) Is a microbial safety cab generating potentially infect 	inet (or isolator for i	n vivo work) r	required? These must be used for activities	
□YES ⊠ NO		Class:		
If required, what processes r	equire its use?	Click or	tap here to enter text.	
Specify other local ventilatio	on control measures o	considered ap	propriate (e.g. downdraft table, isolator):	
Click or tap here to enter te	xt.			
b) Will centrifugation be use	:d?			
🖾 YES 🗆 NO				
If yes, will buckets and rotor	s be sealed?	🗆 YES 🖾 N	0	
If yes, where will buckets or	rotors be opened?	Click or tap he	ere to enter text.	
<i>If yes, how will spillages in tl dealt with?</i>		<i>Ige be</i> Samples will only be centrifuged after (1) treatment/storage in ethanol and (2) digestion with proteinase K. They are therefore extremely unlikely to contain any viable pathogens. Any spillages will be sprayed with 2% Bio-cleanse* disinfectant and removed with absorbent material, and will be disposed of as biohazard material (autoclaved).		
c) Will incubators be used?				
🖾 YES 🗆 NO				
lf yes, what type (e.g. shakin			n-shaking) incubators may be used for ne sample with proteinase K.	
If yes, how will spillages in the incubator be dealt with? Any spillages will be removed with absorbent mathematical and affected su treated with disinfectant (Bio-cleanse* 2%).		biohazard material and affected surfaces		
d) Will sharps be used:				
🛛 YES 🗌 NO				
If yes, list and justify their us	e:	Needed to cut	t tissue samples to the appropriate size.	
Control measures			disposed of as biohazard material in the harp bin available in Wallace 044.	
e) Will animals be deliberately infected with these biological agents?				

□ YES ⊠ NO					
If yes, describe the procedure, control measures Click or tap here to enter text. and whether shedding of infectious agents by animals is expected?					
Practical control	S:				
Will any further treatment of the sample be undertaken prior to or during use?					
⊠YES					
If yes, please provide further information:					
•	re stored in 96% ethanol, which renders almost all pathogens inviable. Further proteinase K during DNA extraction will provide an additional step to remove viable				

4.4 Personal Protective Equipment (PPE):					
Lab coat	Gloves	Eye or face (specify if yes)	Other (specify)		
⊠YES	🛛 YES 🗌 NO	YES D NO	Click or tap here to enter text.		
Details:	Details:	Details:			
Suitable for	Nitrile gloves	Safety spectacles			
Category 2					
material					

4.5 Transportation

a) How will viable material be transported within the laboratory ?

No viable pathogens are expected to be present in the samples. Samples will be stored and transported in sealed vials within closed boxes.

b) How will viable material be transported locally outside the laboratory ?

No viable pathogens are expected to be present in the samples. It is not anticipated that samples will be transported outside of the laboratory, however if this is required, samples will be transported in sealed vials inside closed boxes.

c) Will viable material be shipped anywhere (off campus)?			
If yes, what will be shipped?	No viable pathogens are expected in tissue/blood samples. It is not anticipated that any samples will be transported off-site. If required, however, tissue and blood samples, DNA and PCR products will be shipped.		
If yes, how will this be shipped (e.g. Category A, Category B, Exempt, Non-hazardous)?	No viable pathogens are expected to samples (tissue and blood). It is not a samples will be transported off-site. tissue and blood is required, samples Category B material and packaged ap according to HSE guidelines.	nticipated that any If transportation of will be shipped as	

DNA and PCR products may be shipped off site. However, all biological agents (i.e., microorganisms and potential pathogens) will have been removed through DNA extraction processes so these are non-hazardous materials.

4.6 Waste disposal procedures:

(Disinfectants, concentrations, exposure times, autoclaving procedures, incinerator procedures, include any animal related wastes.)

Waste	Decontamination method (include details on efficacy)	Disposal route e.g. drain/incineration/landfill
Liquid waste	No liquid disposal is anticipated with the exception of the ethanol and the DNA extraction reagents. These will be disposed according to Swansea University chemical waste procedure if applicable.	Swansea University chemical disposal.
Solid waste	 No tissue or blood will be discarded a priori, as it will be archived for further experiments. However, if necessary any waste will be disposed in appropriate containers (labelled solid red- lidded yellow containers) and incinerated through Natural UK. Tips, spent buccal swabs and other plastics that have been in direct contact with the samples will be disposed in autoclave bags. Tips and plastics used for DNA extraction (no direct contact with samples) will be disposed in the chemical contaminated waste boxes. 	 Incineration by Natural UK. Autoclaving. Incineration by Swansea University.
Sharp waste	Swansea University disposal procedures for sharps will be followed.	Incineration or alternative method will be followed according to Swansea University.

4.7 Emergency procedures

(spillages – if not covered by local rules/standard operating procedure) Remember to take into account route of exposure

Inside primary containment (if relevant e.g. MSC, isolator)

NA

Outside primary containment but within the laboratory (secondary containment)

Any spillages will be removed with absorbent material, disposed of as biohazard material and affected surfaces treated with disinfectant (2% Bio-cleanse*).

Outside secondary containment (if relevant):

Any spillages will be removed with absorbent material, disposed of as biohazard material and affected surfaces treated with disinfectant (2% Bio-cleanse*).

Other procedures (e.g. following any kind of accidental exposure, needlestick etc.):

If cuts occur, clean wound thoroughly with soap and water, seek medical attention from GP or emergency department if necessary.

* Bio-cleanse (Teknon®) has powerful bactericidal and virucidal properties. Bio-cleanse concentrate is free from sodium hypochlorite, phosphates and enzymes and effectively removes blood, fat, proteins, grease and other organic and non-organic contaminants whilst simultaneously disinfecting the treated surface. It is safe to use on ferrous and non-ferrous metals, ceramics, glassware and plastics. Bio-cleanse kills *E. coli, Salmonella, Listeria, Candida* and *Penicillium* at 1% dilution and MRSA at 2% dilution. Efficacy against *C. difficile*, Avian Flu, HIV and HBV is proven at 5% dilution. In addition, under COSHH Regulations, the product does not require a maximum exposure limit and when diluted to normal use concentrations, is not irritating to skin.

Section 5: Personnel and Health Issues

5.1 Vaccination

For ACDP 2 or above human pathogens - to be completed by Occupational Health Is an effective vaccination available for any of the pathogens associated with this work? NA

5.2 Is health surveillance/health clearance required?						
Staff and postgraduate research students	🗆 YES 🔲 NO					
Taught students (undergrad and MSc)	□ YES □ NO (initial Health clearance only)					
5.3 Identify any particular groups of workers who may be at increased risk from this material: (for						
example pregnant workers, young persons under 18, disabled workers, those with pre-existing disease that						
increases susceptibility.)						
Click or tap here to enter text						

Click or tap here to enter text.

Anyone who might have compromised resistance to disease for any reason should seek advice from the University Occupational Health Service regarding the need for additional precautions.

5.4 Information, instruction and training

Describe the training that will be given to all those affected (directly or indirectly) by the work activity. 044 Laboratory training and inductions will be provided Dr Christopher Coates and/or Dr Almudena Ortiz-Urquiza. If concerns are raised regarding pre-existing conditions, advice will be sought from University Occupational Health Service.

SECTION 6: DECLARATIONS AND APPROVAL

Principal Investigator:

I the undersigned:

- Confirm that all information contained in this assessment is correct and up to date
- Will ensure that suitable and sufficient instruction, information and supervision is provided to all individuals working on the activity
- Will ensure that no work will be carried out until this assessment has been completed and approved and that all necessary control measures are in place
- Will ensure that all information contained in this assessment will remain correct and up to date and re-submit for approval if any significant changes occur
- Work will only be undertaken in appropriate facilities

Name	Signature	Date
Dr Hazel Nichols		12/02/2019
	ead of College approval required for ACI	DP HG3/4, SAPO 2-4 and
	ess) – College BSO and University BSA)	
(The person supporting this proposal	must not be involved in the project bein	g proposed.)
Name	Signature	Date
Click or tap here to enter text.	Click or tap here to enter text.	Click or tap to enter a date.

Approval on behalf of the University (for ACDP HG2-4, SAPO2-4 and organisms listed on Schedule 5 process) – College BSO and University BSA									
Name	Name Signature Date								
Click or tap here to enter text.	Click or tap here to enter text.	Click or tap to enter a date.							

SECTION 7: LIST OF WORKERS UNDER THIS PROJECT							
Full Name (W	orker type		Signature and date		
	Staff	Postgrad - Research	Postgrad - taught	UG	Other		
Dr Hazel Nichols					□ Details	12/02/2019	
Samantha Shove					Details	Samatha Shove 1/01/21	
Click or tap here to enter text.					Details	Click or tap here to enter text.	
Click or tap here to enter text.					Details	Click or tap here to enter text.	
Click or tap here to enter text.					Details	Click or tap here to enter text.	
Click or tap here to enter text.					Details	Click or tap here to enter text.	
Click or tap here to enter text.					Details	Click or tap here to enter text.	
Click or tap here to enter text.					Details	Click or tap here to enter text.	
Click or tap here to enter text.					Details	Click or tap here to enter text.	
Click or tap here to enter text.					Details	Click or tap here to enter text.	
Click or tap here to enter text.					Details	Click or tap here to enter text.	
Click or tap here to enter text.					□ Details	Click or tap here to enter text.	

(this can also be completed manually and kept as a hard copy in the laboratory – copies must be available for review by BSO/BSA – a blank copy of this table can be found <u>here</u>.) '

Additional information:

Laboratory 044 has restricted access at the discretion of Dr Christopher Coates and Dr Almudena Ortiz. This lab is equipped with a Salto electronic lock.

A designated autoclave is located in the Wallace Building room 001. This autoclave is regularly validated using a 12-point thermocouple technique. Staff technicians keep records of the validation. Once autoclaved, the waste will be place in tiger bags and disposed into the autoclave skip situated in the car park between Margam and ILS1.

There is a designated lidded bin to store and transport double-bagged waste from lab 044 to the autoclave. Autoclave facilities are in the same building.

Risk Assessment for Teaching, Administration and Research Activities

Swansea University; College of Science

Name Samantha Shove Signature	date11/12/2021	
Supervisor* Hazel Nichols	Signature	date
Activity title DNA extractions from tiss	ue samplesB	ase location (room no.)
(* the supervisor for all HEFCW funded	academic and non-academic staff is t	he HOC)
University Activity Serial # (enter Em Start date of activity (cannot predate s End date of activity (or 'on going')	signature dates)	

Level of worker (delete as applicable)

UG,PG, research assistant, technician, administration, academic staff, other (state)

Approval obtained for Gene Manipulation Safety Assessment by SU? not applicable **Licence(s) obtained under "Animals (Scientific Procedures) Act (1986)"**? not applicable **Approval obtained for use of radioisotopes by COS**? not applicable

Record of specialist training undertaken

Course	date

Summary of protocols used; protocol sheets to be appended plus COSHH details for chemicals of category A or B with high or medium exposure

	Protocol Details							Protoco	l Details	5	
#	# Assessment					#		Asse	ssment		
	1st date	Frequency of re-assessment	Hazard category	Secondary containment level	Exposure potential		1st date	Frequency of re- assessment	Hazard category	Secondary containment level	Exposure potential
1	19/05/21	annually	С	OB	<u>4</u>	11					
2						12					
3						13					
4						14					
5						15					
6						16					
7						17					

8			18			
9			19			
10			20			

See notes in handbook for help in filling in form (Continue on another sheet if necessary)

Bioscience and Geography Protocol Risk Assessment Form

(Expand or contract fields, or append additional sheets as required; insert NA if not applicable)

Protocol #	Title: DNA extraction and purification from tissue
Associated Protocols #	Description: Extracting DNA from tissue samples of banded mongoose (Mungo mungo), dwarf mongoose (Helogale parvula), Onager (Equus hemionus) and mole-rats (Bathyergidae).

Location:

circle which Bioscience and Geography Local Rules apply -

Laboratory

Identify here risks and control measures for work in this environment, additional to Local Rules

Chemicals	Quantity	Hazards	Category	Exp.
			(A,B,C,D)*	Score
Isopropanol	32ml	Flammable Liquid (Category 2) Serious eye damage/eye irritation (Category 2A) Target Organ Systematic Toxicant – Single Exposure (Category 3)	C	4
		H225: Highly flammable liquid and vapour H336: Vapours may cause drowsiness and dizziness. H319: Causes serious eye irritation.		
HBC Buffer	500 μl per sample vial	Acute toxicity (oral) (Category 4) Skin corrosion/irritation (Category 2) Serious eye damage/eye irritation (Category 2A) Specific target organ toxicity- single exposure (Category 3).	C	2

			[1
		H302 – Harmful if swallowed. H315 – Causes skin irritation. H319 – Causes serious skin irritation. H332 – Harmful if inhaled.		
TL Buffer	200 µl per sample vial	Not a hazardous substance/mixture	D	2
BL Buffer	220 µl per sample vial	Acute toxicity (oral) (Category 4) Skin corrosion/irritation (Category 2) Serious eye damage/eye irritation (Category 2A) Specific target organ toxicity – single exposure (Category 3)	С	6
		H302 – Harmful if swallowed. H315 – Causes skin irritation. H319 – Causes serious skin irritation. H332 – Harmful if inhaled.		
Proteinase K Solution	25 μl per sample vial	Skin irritation (Category 3) Respiratory sensitisation (Category 1)	С	1
Ethanol	220 µl per sample vial + 100 ml added to DNA Wash Buffer	Flammable liquids (Category 2) Serious eye damage/eye irritation (Category 2) Specific target organ toxicity (single exposure) (Category 1) Target organs – central nervous system (CNS), optic nerve. Respiratory system. Specific target organ toxicity – (repeated exposure) (Category 1). Target	С	6
		exposure) (Category 1). Target organs – kidney, liver, spleen, blood. Highly flammable liquid and vapor. Causes serious eye irritation. Causes damage to organs.		

Dì	IA wash buffer	700 µl per sample vial	prolo Not a	es damage to o nged or repeate hazardous sub	D	2	
Eh	ution Buffer	100-200 µl per sample vial	mixtu Not a mixtu	hazardous sub	ostance or	D	2
B C	Hazard Category (know (e.g. carcinogen/teratoge (e.g. v.toxic/toxic/explo (e.g. harmful/irritant/con flammable/oxidising)	en/mutagen) sive/pyrophoric)		Exposure Po Score above. potential for t Indicate this	Use this to calc the <u>entire</u> protoc value below.	the highest Exposure lculate the exposure ocol (see handbook).	
D	(e.g. non classified)			Low	Medium	High	
Pr	imary containment (of	product) sealed	flask/b	ottle/glass/plas	stic/other (state)	:- sealed bottle	e
Ste	orage conditions and ma	aximum duratio	n :-				
<u>BI</u>	<u>Buffer</u>						
Ke	ep containers tightly clos	ed in a dry, cool	and we	ell-ventilated p	lace. Protect fro	m moisture.	
TL	<u>buffer</u>						
Ke	ep container tightly close	ed in a dry, well-	ventilat	ed place.			
HE	<u>3C buffer</u>						
Ke	ep containers tightly clos	ed in a dry, cool	and we	ell-ventilated p	lace. Protect fro	m moisture.	
Pro	oteinase K Solution						
Ke 8°(ep container tightly close	ed in a dry and w	ell-ven	tilated place. R	ecommended st	orage tempera	ture: 2-
Etl	nanol						
Sto	ore locked up in a well-ve	entilated place. K	eep coo	ol.			
Isc	propanol						
wh	ore in a cool place. Keep hich are opened must be containers with care.				1		S
<u>D</u>	VA wash buffer						
Ke	ep container tightly close	ed in a dry, well-	ventilat	ed place.			
Elu	ution buffer						
Ke	ep container tightly close	ed in a dry, well-	ventilat	ed place.			
Se	condary containment (o	f protocol) open	bench	fume hood/spe	ecial (state) :- op	ben bench	
Di	sposal SU chemical wast	e					
	propanol						
	propanoi						

<u>Ethanol</u>

Dispose of contents/container to an approved waste disposal plant.

BL Buffer

Disposal should be in accordance with applicable regional, national and local laws and regulations.

S29 – Do not empty into drains.

S57 – Use appropriate container to avoid environmental contamination.

TL Buffer

Disposal should be in accordance with applicable regional, national and local laws and regulations. HBC Buffer

Disposal should be in accordance with applicable regional, national and local laws and regulations.

S29 – Do not empty into drains.

S57 – Use appropriate container to avoid environmental contamination.

DNA Wash Buffer

Disposal should be in accordance with applicable regional, national and local laws and regulations.

Proteinase K Solution

Disposal should be in accordance with applicable regional, national and local laws and regulations.

 $\label{eq:control} Identify \ other \ control \ measures \ \ (circle \ or \ delete) - nitrile \ gloves; \ lab \ coat, \ safety \ glasses$

Justification and controls for any work outside normal hours NA

Emergency procedures (e.g. spillage clearance; communication methods)

<u>Isopropanol</u>

Ingestion: Do NOT induce vomiting. Never give anything by mouth to an unconscious person. Rinse mouth with water. Consult a physician.

Eyes: Immediately flush eyes with large amounts of water for at east 15 minutes while holding eyelids open. Transport to the nearest medical facility for additional treatment.

Skin: Remove contaminated clothing, wash off with plenty o water and soap. Consult a physician if any symptoms arise.

Inhaled: Remove to fresh air. If rapid recovery does not occur, transport to nearest medical facility for additional treatment.

First aid facilities: Eye wash fountains and safety showers should be available for emergency use.

Most important symptoms acute and delayed:

EXPOSURE TO HIGH CONCENTRATIONS: Coughing, dry/sore throat, central nervous system depression. Dizziness. Headache Narcopsis.

AFTER ABSORPTION PF HIGH QUANTITIES: Central nervous system depression, headache, dilation of the blood vessels, low arterial pressure, nausea, vomiting, abdominal pain, disturbed motor response, disturbances of consciousness.

FOLLOWING SYMTOMS MAY APPEAR LATER: Body temperature fail, slowing respiration.

ON CONTINUOUS/REPEATED EXPOSURE/CONTACT: Re skin, dry skin. Itching, cracking of the skin, skin rash/inflammation, impaired memory.

HBC Buffer

General advice: Exit to a safe area. Consult a physician. Seek medical attention.

If inhaled: move to fresh air. If not breathing, give artificial respiration. Seek medical attention.

In case of skin contact: exit to a safe area. Wash thoroughly with soap and water. Seek medical attention.

In case of eye contact: flush eyes wit clean water for a minimum of 15 minutes, keeping eye open. Seek medical attention.

If swallowed: rinse mouth with water. Never give anything by mouth to an unconscious person. Seek medical attention/.

Most important symptoms and effect acute and delayed: irritating to eyes, respirator system and skin. Narcotic effect.

Recommendations for immediate medical attention and special treatment: treat symptomatically. Symptoms may be delayed.

TL Buffer

General advice: Wear protective gloves/protective clothing/eye protection/face protection.

In case of skin contact: Wash with soap and water.

I case of eye contact: remove contact lenses, if present and easy to do. Continue rinsing.

If swallowed: N/A

Most important symptoms ad effects acute and delayed: N/A

Recommendations for immediate medical attention and special treatment: Treat symptomatically. Symptoms may be delayed.

BL Buffer

General advice: Exit to safe area. Consult a physician. Seek medical attention.

If inhaled: Move to fresh air. If not breathing, give artificial respiration. Seek medical attention.

In case of skin contact: Exit to safe area. Wash thoroughly with soap and water. Seek medical attention.

If swallowed: rinse mouth with water. Never give anything by mouth to an unconscious person. Seek medical attention.

Most important symptoms and effects accuse and delayed: Irritating to eyes, respiratory system and skin. Narcotic effect. Recommendations for immediate medical attention and special treatment: treat symptomatically. Symptoms may be delayed.

Proteinase K Solution

General advice: move out of dangerous area. Consult a physician. |Show this safety data sheet to the doctor in attendance. If inhaled: if we breathe in, move person into fresh air. If not breathing, give artificial respiration. Consult a physician. In case of skin contact: wash off with soap and plenty of water. Consult a physician.

In case of eye contact: rinse thoroughly with plenty of water for at least 15 minutes and consult a physician.

If swallowed: never give anything by mouth to an unconscious person. Rinse mouth with water. Consult a physician.

Recommendations for immediate medical attention and special treatment: treat symptomatically. Symptoms may be delayed.

Ethanol

Response IF exposed: Call a POISON CENTER or doctor/physician.

Skin IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower.
Eyes IF IN EYES: Rinse cautiously with wate for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. If eye irritation persists get medical advice/attention.
Fire: in case of fire use CO2, dry chemical or foam for extinguishing.
DNA Wash Buffer
General advice: wear protective gloves/protective clothing/ eye protection/face protection.
If inhaled: If not breathing, give artificial respiration.
In case of skin contact: wash with soap and water.
In case of eye contact: remove contact lenses, if present and easy to do. Continue rinsing.
If swallowed: N/A
Most important symptoms and effects acute and delayed: N/A
Recommendations for immediate medical attention and special treatment: treat symptomatically. Symptoms may be delayed.
Elution Buffer
General advice: wear protective gloves/protective clothing/eye protection/face protection.
If inhaled: if not breathing, give artificial respiration.
In case of skin contact: wash with soap and water.
In case of eye contact: remove contact lenses, if present and easy to do. Continue rinsing.
If swallowed: N/A.
Most important symptoms and effects acute and delayed: N/A
Recommendations for immediate medical attention and special treatment: treat symptomatically. Symptoms may be delayed.
Supervision/training for worker (circle)
None required Already trained Training required Supervised always
Declaration I declare that I have assessed the hazards and risks associated with my work and will take appropriate measures to decrease these risks, as far as possible eliminating them, and will monitor the effectiveness of these risk control measures.
Name & signature of worker Samantha Shove
Name & counter-signature of supervisor Date

Date of first reassessment

Frequency of reassessments

I

Risk Assessment for Teaching, Administration and Research Activities Swansea University; College of Science

Name Samantha Shove Signature	date 11/12/2021	
Supervisor* Hazel Nichols	Signature	date
Activity title preparing, running and visua		on (room no.)
(* the supervisor for all HEFCW funded ac	cademic and non-academic staff is the HOC)	
University Activity Serial # (enter Empl Start date of activity (cannot predate sig End date of activity (or 'on going') on g	gnature dates)	
Level of worker (delete as applicable)		
UG,PG, research assistant, technic	ian, administration, academic staff, ot	her (state)
Approval obtained for Gene Manipulat Licence(s) obtained under "Animals (So Approval obtained for use of radioisoto	cientific Procedures) Act (1986)" ?	not applicable not applicable not applicable

Record of specialist training undertaken

Course	date

Summary of protocols used; protocol sheets to be appended plus COSHH details for chemicals of category A or B with high or medium exposure

	Protocol Details							Protoco	l Details	5	
#	Assessment				#		Asse	ssment			
	1st date	Frequency of re-assessment	Hazard category	Secondary containment level	Exposure potential		1st date	Frequency of re- assessment	Hazard category	Secondary containment level	Exposure potential
1	19/05/21	annually	С	OB	<u>4</u>	11					
2						12					
3						13					
4						14					
5						15					
6						16					
7						17					
8						18					
9						19					
10						20					

See notes in handbook for help in filling in form (Continue on another sheet if necessary)

Bioscience and Geography Protocol Risk Assessment Form

(Expand or contract fields, or append additional sheets as required; insert NA if not applicable)

Protocol # 3	Title: Agarose gels
Associated Protocols #	Description: Making up, loading and running agarose gels for separation of DNA fragments

Location:

circle which Bioscience and Geography Local Rules apply -

Boat Field Genetic-Manipulation Laboratory Office/Facility Radioisotope Identify here risks and control measures for work in this environment, <u>additional</u> to Local Rules

Chemicals	Quantity		Hazards	Category	Exp.		
Chemicals	Quantity		Hazarus	(A,B,C,D)*	Score		
Agarose powder	1g	Note	lassified	$(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})^{+}$	2		
Agaiose powdei	ig	NOLC	lassincu	D	2		
TAE buffer	50ml	Skin Corrosion/Irritation (Cat 2) Serious eye damage (Cat2B) Specific Target Organ Toxicity,		С	4		
		-	e exposure (Cat 3)				
		H315: Causes skin irritation H320: Causes eye irritation H335: May cause respiratory irritation					
SYBR Safe DNA gel stain	5µl	Flam	mable liquids (Cat 4)	С	2		
		H227	: Combustible liquids				
DNA ladder	5µ1	Not h	azardous	D	1		
Gel loading dye	1µl pe well	Not h	azardous	D	1		
 Hazard Category (known or potential) A (e.g. carcinogen/teratogen/mutagen) B (e.g. v.toxic/toxic/explosive/pyrophoric) C (e.g. harmful/irritant/corrosive/high flammable/oxidising) D (a.g. non classified) 			Exposure Potential Circle the Score above. Use this to calcordinate potential for the <u>entire</u> protocordinate this value below.	culate the exposi- col (see handbo	sure		
D (e.g. non classified)	D (e.g. non classified)LowMediumHigh						
Primary containment (of	product) sealed	flask/b	ottle/glass/plastic/other (state)	:- sealed bottle	e		
Storage conditions and ma	ximum duration	n :-					

Storage conditions and maximum duration :-

Agarose powder, TAE buffer, SYBR Safe DNA: Store in a closed container in a cool, dry, well ventilated area.							
DNA ladder : Store	frozen at -20C						
Gel loading dye: Sto	ore refrigerated at 4C						
Secondary contain	ment (of protocol) ope	en bench/fume hood/spec	cial (state) :- open bench				
Disposal SU chemic	cal disposal						
Identify other cont	rol measures (circle or	delete) – Nitrile gloves, la	ab coat, safety glasses				
Justification and co	ontrols for any work o	outside normal hours N	A				
Emergency proced	ures (e.g. spillage clearand	ce; communication methods)					
Supervision/trainir	g for worker (circle)						
None required	Already trained	Training required	Supervised always				
		-	work and will take appropriate measures to fectiveness of these risk control measures.				
Name & signature of worker Samantha Shove							
Name & counter-sig	nature of supervisor		Date				
Date of first reassess	sment		Frequency of reassessments				

Guidance for Completion of Bioscience and Geography Protocol Risk Assessment Form

Note – you are strongly advised to complete electronic versions of this form, enabling you to readily expand and contract sections as required to ensure clarity and adequate documentation. Do **not** delete any sections! Instead, mark inappropriate sections with NA (not applicable) and contract the section to save space on the final printed form.

- **Protocol** any self-contained procedure. This could be any activities undertaken, be they lab-work, use of equipment, fieldwork or office work. Your complete research/teaching/administration **activity** (e.g. undergraduate project, PhD study, research grant, other) is therefore made up from separate **protocols**. If the protocol is mainly of low hazard, but with one or more hazardous components, consider making the manipulation of the latter a separate protocol and tie them together by completing the "*Associated Protocol*" box. This is because the entire protocol must be conducted under conditions required for the handling of the most hazardous component.
- Title/Description give sufficient detail to make it obvious what the protocol involves.
- **Location** identify which local rules apply. More than one rule may apply. Then add any additional risks and control measures peculiar to this protocol (e.g. site-specific fieldwork information; use of autoclaves, sonicators; mechanical, electrical hazards). You may also wish to stress any particularly important risks and controls even if indicated in local rules.
- **Chemicals etc.** give name, maximum quantity used, list hazards, hazard category (see Table 1) and calculate the **Exposure Score** (see Table 2) for **every** chemical used. Expand the area in the table as required.
- **Exposure Potential** (see Table 3) complete this section for the chemical which has the **highest** exposure score in your chemical list as this defines the highest risk factor.
- **Primary containment/Storage -** detail how and where, and for how long, the resultant product from the protocol will be stored. The product must be labelled with the date of synthesis, and disposed of (see below) before the maximum duration time has elapsed.

Secondary containment - detail where the protocol will be performed (refer to Table 4).

Disposal - detail how you will dispose of surplus reagents and the product of the protocol. Final disposal must be undertaken within the period noted in the 'maximum duration' under 'Storage' (above).

Identify other control measures – typically these refer to special protective clothing etc.

- **Justification and controls for any work outside normal hours** out of hours working is <u>only</u> allowed under special conditions (e.g. 24h sampling, sampling related to tides etc.); convenience is <u>not</u> an acceptable reason.
- **Emergency procedures -** detail how spillages etc. would be handled, including clearance of the laboratory etc. as required. For field work indicate emergency communication and first-aid coverage.
- Supervision/training detail here what special supervision and training is required by the worker <u>named</u> at the bottom of the form. Note that all undergraduates <u>are always considered as research</u> <u>incompetent</u>. First-year PhD students and MSc students are <u>not</u> to be used to supervise the activities of others.

Declaration - both the worker and the supervisor <u>must</u> sign this on the date entered here.

- **Reassessment** the first reassessment <u>must</u> be undertaken as soon as possible after the first time the protocol has been undertaken in order to identify any unforeseen hazards. After this first reassessment, the protocol should be reassessed every 6-12m, depending on the nature of the chemicals, to take account of changing knowledge concerning the hazardous nature of chemicals. The protocol must be reassessed immediately if new knowledge on the chemical hazards becomes available.
- NOTE standard protocols can be produced for each environment BUT each worker <u>must</u> have their own personalised version, signed by them and their supervisor, and dated. These completed personalised protocols must then be appended to the SU risk assessment form for the Teaching/Research activity belonging to the individual.

COSHH Assessment - modified from "COSHH in Laboratories" published by the Royal Society of Chemistry, July 1989

Hazards, Risks and Containment - Definition of terms

Hazard	potential for doing harm, e.g. toxic, flammable, carcinogenic etc
Exposure potential	the risk to the user depends very much on the exposure, which depends on the physical properties of the material, the quantity used and for how long.

Risk = "Hazard" x "Exposure Potential"

The risk is decreased to a safe level by:

- a) Containment
- b) Personal Protection
- c) Good Laboratory Practice (GLP)

Levels of containment

The containment required for a given activity is of two basic kinds: the primary (or intrinsic) containment provided by the apparatus or equipment in which the substances are handled and the additional (or secondary) containment needed to ensure appropriate control of exposure.

HAZARD CATEGORY

A		Substances of known or suspected exceptional toxicity (e.g. carcinogen, teratogen, potential mutagen)
B	HIGH HAZARD	All substances whose toxicity exceeds that of the medium hazard category, except for those known or believed to be so highly toxic as to merit special precautions (i.e. those in the "extreme" category)
С	MEDIUM HAZARD	Substances meeting criteria for CPL* classification as "Harmful" or 'Irritant'
D		Substances not matching criteria for CPL* classification as "Harmful" or "Irritant"

TABLE 1- General Guidelines for determining hazard categories

CPL = the Classification, Packaging and Labelling Regulations 1984.

NOTE:

- 1. The toxicity considered should be that of the substance or mixture handled, including any impurities.
- 2. Substances may have other properties (*e.g.* flammability) which may call for additional precautions.
- 3. The above general guidance may need to be supplemented by developing additional criteria with the help of expert toxicological advice. (Additional criteria may be developed using, for example, data given in HSE Guidance Notes such as EH40).
- 4. Time factors, such as frequency and duration of activity should also be considered. Short duration tasks, involving a few seconds exposure at infrequent intervals, should not affect the initial estimate, whereas continuous operations on a daily basis would probably raise the estimate to the next highest category.

EXPOSURE SCORE

	EXPOSURE SCORE						
Calc	Calculation Value123						
(i)	Quantity	<1g	1-100g	>100g			
		Dense solid	Dusty solids				
		Non- volatile liquid	Lyophilised	Gases, Aerosols			
(ii)	Properties	No skin absorption	solids	Highly volatile liquids (b.p.<80° C)			
		_	Volatile liquids	Solutions promoting skin absorption			
			(b.p.>80°C)				
(iii)	Pressure	Normal	Low/Vacuum	>1 atmosphere			
(iv)	Temperature	Room temperature	25°С - 100°С	>100°C			

TABLE 2 - exposure score to be calculated for all chemicals used in a protocol

Exposure Score calculation = (i) x (ii) x (iii) x (iv)

The Exposure Potential

TABLE 3 - Rough calculation of exposure potential

	EXPOSURE SCORE (FROM TABLE 2)					
Total score	<10	10-54	>54			
Exposure Potential	L (low)	M (medium)	H (high)			

Secondary containment level calculation

Table 4 - use to determine secondary containment

SECONDARY CONTAINMENT LEVEL						
Hazard Cat	egory	Α	В	С	D	
Evnogung	Н	SA	SA	FH	FH	
Exposure potential	Μ	SA	FH	FH	OB	
(from table 3)	L	FH	FH	OB	OB	

OB = **O**pen **B**ench;

FH = **F**ume **H**ood;

SA = Special Attention (see supervisor)

Risk Assessment for Teaching, Administration and Research Activities Swansea University; College of Science

Name Samantha Shove Signat	date 11/12/2021	
Supervisor* Hazel Nichols	Signature	date
	Base locatio	on (room no.)
	CW funded academic and non-academic staff is the HOC)	
Start date of activity (cannot	enter Employee No. or STUREC No. predate signature dates) oing') on going	
Level of worker (delete as app	licable)	
UG, <mark>PG</mark> , research assista	ant, technician, administration, academic staff, ot	her (state)
	Manipulation Safety Assessment by SU ? Animals (Scientific Procedures) Act (1986)" ? Tradioisotopes by COS ?	not applicable not applicable not applicable

Record of specialist training undertaken

Course	date

Summary of protocols used; protocol sheets to be appended plus COSHH details for chemicals of category A or B with high or medium exposure

	Protocol Details							Protoco	Details	5	
#		Α	ssessme	ent		#		Asse	ssment		
	1st date	Frequency of re-assessment	Hazard category	Secondary containment level	Exposure potential		1st date	Frequency of re- assessment	Hazard category	Secondary containment level	Exposure potential
1	19/05/21	annually	D	OB	<u>1</u>	11					
2						12					
3						13					
4						14					
5						15					
6						16					
7						17					
8						18					
9						19					
10						20					

See notes in handbook for help in filling in form (Continue on another sheet if necessary)

Bioscience and Geography Protocol Risk Assessment Form

(Expand or contract fields, or append additional sheets as required; insert NA if not applicable)

Protocol # 2	Title: PCR
Associated Protocols #	Description: PCR to amplify DNA using microsatellites

Location:

circle which Bioscience and Geography Local Rules apply -

Laboratory

Identify here risks and control measures for work in this environment, additional to Local Rules

Chemicals	Quantity		Hazard	ls	Category (A,B,C,D)*	Exp. Score
Primer DNA	1.2µl per reaction	Not H	Not Hazardous		D	1
Target DNA	2-3µl per reaction	Not Hazardous			D	1
RNAse free water	1.8µl per reaction	Not H	Not Hazardous		D	1
Mineral oil	10µ1 per reaction	Not H	Hazardous		D	1
Qiagen master mix	6µl per reaction	small which and c are sv 12,00	Hazardous (con- quantities of g n may irritate e an be toxic if la vallowed (LD5 00mg/kg in rats) all mix is not co dous)	lycerol, yes and skin arge amounts 0=), but the	D	1
Hazard Category (km A (e.g. carcinogen/terate B (e.g. v.toxic/toxic/exp C (e.g. harmful/irritant/o flammable/oxidising)	ogen/mutagen) losive/pyrophoric)		Score above.	Use this to calc he <u>entire</u> protoc	he highest Exp culate the exposi- col (see handbo	sure
D (e.g. non classified)			Low	Medium	High	
Primary containment (of product) sealed	flask/b	ottle/glass/plas	tic/other (state)	:- sealed bottle	e
Storage conditions and storage duration	maximum duratio	n :- All	l components sl	hould be stared	l frozen. No ma	ximum
Secondary containment	(of protocol) open	bench	/fume hood/spe	cial (state) :- o	pen bench	
Disposal chemical waste						

Justification and	controls for any work	outside normal hours N	A
Emergency proce	dures (e.g. spillage clearan	ce; communication methods)	
-	ove contact lenses. Prote and consult a physician	-	horoughly with plenty of water for
	ccidentally swallowed on the second state of t		attention. Rinse mouth with water
General advice : S	how this safety data she	et to the doctor in attenda	ince.
If inhaled : Move	o fresh air. If symptoms	s persist, call a physician.	
contaminated cloth	nes and shoes. If sympto	ately with soap and plenty ms persist, call a physicia	of water while removing all an.
contaminated cloth			6
contaminated cloth Supervision/train None required Declaration I dec	ing for worker (circle) Already trained	ms persist, call a physicia Training required ards and risks associated with my	an.
contaminated cloth Supervision/train None required Declaration I dec decrease these	ing for worker (circle) Already trained	Training required Training required ards and risks associated with my ting them, and will monitor the ef	an. Supervised always
contaminated cloth Supervision/train None required Declaration I dec decrease these Name & signature	ing for worker (circle) Already trained lare that I have assessed the haz risks, as far as possible eliminat of worker Samantha Sh	Training required Training required and risks associated with my ting them, and will monitor the ef	an. Supervised always

Guidance for Completion of Bioscience and Geography Protocol Risk Assessment Form

Note – you are strongly advised to complete electronic versions of this form, enabling you to readily expand and contract sections as required to ensure clarity and adequate documentation. Do **not** delete any sections! Instead, mark inappropriate sections with NA (not applicable) and contract the section to save space on the final printed form.

- **Protocol** any self-contained procedure. This could be any activities undertaken, be they lab-work, use of equipment, fieldwork or office work. Your complete research/teaching/administration **activity** (e.g. undergraduate project, PhD study, research grant, other) is therefore made up from separate **protocols**. If the protocol is mainly of low hazard, but with one or more hazardous components, consider making the manipulation of the latter a separate protocol and tie them together by completing the "*Associated Protocol*" box. This is because the entire protocol must be conducted under conditions required for the handling of the most hazardous component.
- Title/Description give sufficient detail to make it obvious what the protocol involves.
- Location identify which local rules apply. More than one rule may apply. Then add any additional risks and control measures peculiar to this protocol (e.g. site-specific fieldwork information; use of autoclaves, sonicators; mechanical, electrical hazards). You may also wish to stress any particularly important risks and controls even if indicated in local rules.
- **Chemicals etc.** give name, maximum quantity used, list hazards, hazard category (see Table 1) and calculate the **Exposure Score** (see Table 2) for **every** chemical used. Expand the area in the table as required.

- **Exposure Potential** (see Table 3) complete this section for the chemical which has the **highest** exposure score in your chemical list as this defines the highest risk factor.
- **Primary containment/Storage -** detail how and where, and for how long, the resultant product from the protocol will be stored. The product must be labelled with the date of synthesis, and disposed of (see below) before the maximum duration time has elapsed.
- Secondary containment detail where the protocol will be performed (refer to Table 4).
- **Disposal** detail how you will dispose of surplus reagents and the product of the protocol. Final disposal must be undertaken within the period noted in the 'maximum duration' under 'Storage' (above).

Identify other control measures – typically these refer to special protective clothing etc.

- **Justification and controls for any work outside normal hours** out of hours working is <u>only</u> allowed under special conditions (e.g. 24h sampling, sampling related to tides etc.); convenience is <u>not</u> an acceptable reason.
- **Emergency procedures -** detail how spillages etc. would be handled, including clearance of the laboratory etc. as required. For field work indicate emergency communication and first-aid coverage.
- Supervision/training detail here what special supervision and training is required by the worker <u>named</u> at the bottom of the form. Note that all undergraduates <u>are always considered as research</u> <u>incompetent</u>. First-year PhD students and MSc students are <u>not</u> to be used to supervise the activities of others.

Declaration - both the worker and the supervisor <u>must</u> sign this on the date entered here.

- **Reassessment** the first reassessment <u>must</u> be undertaken as soon as possible after the first time the protocol has been undertaken in order to identify any unforeseen hazards. After this first reassessment, the protocol should be reassessed every 6-12m, depending on the nature of the chemicals, to take account of changing knowledge concerning the hazardous nature of chemicals. The protocol must be reassessed immediately if new knowledge on the chemical hazards becomes available.
- NOTE standard protocols can be produced for each environment BUT each worker <u>must</u> have their own personalised version, signed by them and their supervisor, and dated. These completed personalised protocols must then be appended to the SU risk assessment form for the Teaching/Research activity belonging to the individual.

COSHH Assessment - modified from "COSHH in Laboratories" published by the Royal Society of Chemistry, July 1989

Hazards, Risks and Containment - Definition of terms

Hazard	potential for doing harm, e.g. toxic, flammable, carcinogenic etc
Exposure potential	the risk to the user depends very much on the exposure, which depends on the physical properties of the material, the quantity used and for how long.

Risk = "Hazard" x "Exposure Potential"

The risk is decreased to a safe level by:

- a) Containment
- b) Personal Protection
- c) Good Laboratory Practice (GLP)

Levels of containment

The containment required for a given activity is of two basic kinds: the primary (or intrinsic) containment provided by the apparatus or equipment in which the substances are handled and the additional (or secondary) containment needed to ensure appropriate control of exposure.

HAZARD CATEGORY

A		Substances of known or suspected exceptional toxicity (e.g. carcinogen, teratogen, potential mutagen)
B	HIGH HAZARD	All substances whose toxicity exceeds that of the medium hazard category, except for those known or believed to be so highly toxic as to merit special precautions (i.e. those in the "extreme" category)
С	MEDIUM HAZARD	Substances meeting criteria for CPL* classification as "Harmful" or 'Irritant'
D	LOW HAZARD	Substances not matching criteria for CPL* classification as "Harmful" or "Irritant"

TABLE 1- General Guidelines for determining hazard categories

CPL = the Classification, Packaging and Labelling Regulations 1984.

NOTE:

- 1. The toxicity considered should be that of the substance or mixture handled, including any impurities.
- 2. Substances may have other properties (*e.g.* flammability) which may call for additional precautions.
- 3. The above general guidance may need to be supplemented by developing additional criteria with the help of expert toxicological advice. (Additional criteria may be developed using, for example, data given in HSE Guidance Notes such as EH40).
- 4. Time factors, such as frequency and duration of activity should also be considered. Short duration tasks, involving a few seconds exposure at infrequent intervals, should not affect the initial estimate, whereas continuous operations on a daily basis would probably raise the estimate to the next highest category.

EXPOSURE SCORE

	EXPOSURE SCORE						
Calc	ulation Value	1	2	3			
(i)	Quantity	<1g	1-100g	>100g			
		Dense solid	Dusty solids				
		Non- volatile liquid	Lyophilised	Gases, Aerosols			
(ii)	Properties	No skin absorption	solids	Highly volatile liquids (b.p.<80° C)			
			Volatile liquids	Solutions promoting skin absorption			
			(b.p.>80°C)				
(iii)	Pressure	Normal	Low/Vacuum	>1 atmosphere			
(iv)	Temperature	Room temperature	25°C - 100°C	>100°C			

TABLE 2 - exposure score to be calculated for all chemicals used in a protocol

Exposure Score calculation = (i) x (ii) x (iii) x (iv)

The Exposure Potential

TABLE 3 - Rough calculation of exposure potential

	EXPOSURE SCORE (FROM TABLE 2)					
Total score	<10 10-54 >54					
Exposure Potential	L (low)	M (medium)	H (high)			

Secondary containment level calculation

Table 4 - use to determine secondary containment

SECONDARY CONTAINMENT LEVEL						
Hazard Cat	egory	Α	В	С	D	
Exposure		SA	SA	FH	FH	
potential	Μ	SA	FH	FH	OB	
(from table 3)	L	FH	FH	OB	OB	

OB = **O**pen **B**ench;

FH = **F**ume Hood;

SA = Special Attention (see supervisor)

7. References

Abu Baker, M.A., Reeve, N., Conkey, A.A.T., Macdonald, D.W. & Yamaguchi, N. (2017) Hedgehogs on the move: Testing the effects of land use change on home range size and movement patterns of free-ranging Ethiopian hedgehogs. *PLOS ONE*, **12**, e0180826. Akçakaya, H.R. (2000) Population Viability Analyses with Demographically and Spatially Structured Models. *Ecological Bulletins*, 23-38.

Allendorf, F.W., Luikart, G. & Aitken, S.N. (2013) *Conservation and the Genetics of Populations,* Second edn. Wiley-Blackwell.

Anantharaman, R., Hall, K., Shah, V.B. & Edelman, A. (2020) Circuitscape in Julia: High Performance Connectivity Modelling to Support Conservation Decisions. *JuliaCon Proceedings*.

Andrén, H. (1994) Effects of Habitat Fragmentation on Birds and Mammals in Landscapes with Different Proportions of Suitable Habitat: A Review. *Oikos*, **71**, 355-366.

Baguette, M., Blanchet, S., Legrand, D., Stevens, V.M. & Turlure, C. (2013) Individual dispersal, landscape connectivity and ecological networks. *Biological Reviews*, **88**, 310-326. BAKER, P.J., ANSELL, R.J., DODDS, P.A.A., WEBBER, C.E. & HARRIS, S. (2003) Factors

affecting the distribution of small mammals in an urban area. *Mammal Review*, **33**, 95-100. Balkenhol, N., Cushman, S.A., Storfer, A.T. & Waits, L.P. (2016) *Landscape Genetics: Concepts, Methods, Applications*. Wiley Blackwell.

Barthel, L.M.F., Wehner, D., Schmidt, A., Berger, A., Hofer, H. & Fickel, J. (2020) Unexpected Gene-Flow in Urban Environments: The Example of the European Hedgehog. *Animals*, **10**, 2315.

Becher, S. & Griffiths, R. (1997) Isolation and characterization of six polymorphic microsatellite loci in the European hedgehog Erinaceus europaeus. *Molecular Ecology*, **6**, 89-90.

BECHER, S.A. & GRIFFITHS, R. (1998) Genetic differentiation among local populations of the European hedgehog (Erinaceus europaeus) in mosaic habitats. *Molecular Ecology*, **7**, 1599-1604.

Berger, A., Barthel, L.M.F., Rast, W., Hofer, H. & Gras, P. (2020a) Urban Hedgehog Behavioural Responses to Temporary Habitat Disturbance versus Permanent Fragmentation. *Animals*, **10**, 2109.

Berger, A., Lozano, B., Barthel, L.M.F. & Schubert, N. (2020b) Moving in the Dark—Evidence for an Influence of Artificial Light at Night on the Movement Behaviour of European Hedgehogs (Erinaceus europaeus). *Animals*, **10**, 1306.

BERGL, R.A. & VIGILANT, L. (2007) Genetic analysis reveals population structure and recent migration within the highly fragmented range of the Cross River gorilla (Gorilla gorilla diehli). *Molecular Ecology*, **16**, 501-516.

Bolfíková, B., Konečný, A., Pfäffle, M., Skuballa, J. & Hulva, P. (2013) Population biology of establishment in New Zealand hedgehogs inferred from genetic and historical data: conflict or compromise? *Molecular Ecology*, **22**, 3709-3720.

Braaker, S., Kormann, U., Bontadina, F. & Obrist, M.K. (2017) Prediction of genetic connectivity in urban ecosystems by combining detailed movement data, genetic data and multi-path modelling. *Landscape and Urban Planning*, **160**, 107-114.

Braaker, S., Moretti, M., Boesch, R., Ghazoul, J., Obrist, M.K. & Bontadina, F. (2014) Assessing habitat connectivity for ground-dwelling animals in an urban environment. *Ecological Applications*, **24**, 1583-1595.

BRIGHT, P.W. (1993) Habitat fragmentation-problems and predictions for British mammals. *Mammal Review*, **23**, 101-111.

Brooks, T.M., Mittermeier, R.A., Mittermeier, C.G., Da Fonseca, G.A.B., Rylands, A.B., Konstant, W.R., Flick, P., Pilgrim, J., Oldfield, S., Magin, G. & Hilton-Taylor, C. (2002) Habitat Loss and Extinction in the Hotspots of Biodiversity. *Conservation Biology*, **16**, 909-923. Bunnell, T. (2001) The incidence of disease and injury in displaced wild hedgehogs (Erinaceus europaeus). *Lutra*, **44**, 3-14.

Buttigieg, P.L. & Ramette, A. (2014) A guide to statistical analysis in microbial ecology: a community-focused, living review of multivariate data analyses. *FEMS Microbiol Ecol*, **90**, 543-550.

CIEEM (2018) Guidelines for Ecological Impact Assessment in the UK and Ireland: Terrestrial, Freshwater, Coastal and Marine version 1.1. *Chartered Institute of Ecology and Environmental Management, Winchester*.

Clark, B.K., Clark, B.S., Johnson, L.A. & Haynie, M.T. (2001) Influence of Roads on Movements of Small Mammals. *The Southwestern Naturalist*, **46**, 338-344.

Coffin, A.W. (2007) From roadkill to road ecology: A review of the ecological effects of roads. *Journal of Transport Geography*, **15**, 396-406.

COULON, A., GUILLOT, G., COSSON, J.-F., ANGIBAULT, J.M.A., AULAGNIER, S., CARGNELUTTI, B., GALAN, M. & HEWISON, A.J.M. (2006) Genetic structure is influenced by landscape features: empirical evidence from a roe deer population. *Molecular Ecology*, **15**, 1669-1679.

Crooks, K., Burdett, C., Theobald, D., King, S., Di Marco, M., Rondinini, C. & Boitani, L. (2017) Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals. *Proceedings of the National Academy of Sciences*, **114**, 201705769.

Curto, M., Winter, S., Seiter, A., Schmid, L., Scheicher, K., Barthel, L.M.F., Plass, J. & Meimberg, H. (2019) Application of a SSR-GBS marker system on investigation of European Hedgehog species and their hybrid zone dynamics. *Ecology and Evolution*, **9**, 2814-2832. Cushman, S.A. & Lewis, J.S. (2010) Movement behavior explains genetic differentiation in American black bears. *Landscape Ecology*, **25**, 1613-1625.

De Groot, G., Hofmeester, T., La Haye, M., Jansman, H., Perez-Haro, M. & Koelewijn, H. (2016) Hidden dispersal in an urban world: genetic analysis reveals occasional long-distance dispersal and limited spatial substructure among Dutch pine martens. *Conservation Genetics*, **17**, 111-123.

Dickman, C.R. (1987) Habitat Fragmentation and Vertebrate Species Richness in an Urban Environment. *Journal of Applied Ecology*, **24**, 337-351.

DONALD, P.F. & EVANS, A.D. (2006) Habitat connectivity and matrix restoration: the wider implications of agri-environment schemes. *Journal of Applied Ecology*, **43**, 209-218. Doncaster, C. (1992) Testing the Role of Intraguild Predation in Regulating Hedgehog Populations. *Proceedings. Biological sciences / The Royal Society*, **249**, 113-117.

Doncaster, C. (1993) Influence of predation threat on foraging pattern: the hedgehog's gambit. *Revue d'écologie*.

Doncaster, C.P., Rondinini, C. & Johnson, P.C.D. (2001) Field test for environmental correlates of dispersal in hedgehogs Erinaceus europaeus. *Journal of Animal Ecology*, **70**, 33-46.

Dowding, C.V. (2007) An investigation of factors relating to the perceived decline of European hedgehogs (Erinaceus europaeus) in Britain. PhD, University of Bristol. Dowding, C.V., Harris, S., Poulton, S. & Baker, P.J. (2010) Nocturnal ranging behaviour of urban hedgehogs, Erinaceus europaeus, in relation to risk and reward. *Animal Behaviour*, **80**, 13-21.

Dowie, M.T. (1993) The spatial organisation and habitat use of the European hedgehog Erinaceus europaeus on farmland. PhD, Royal Holloway, University of London Draheim, H.M., Moore, J.A., Winterstein, S.R. & Scribner, K.T. (2020) Spatial genetic structure and landscape connectivity in black bears: Investigating the significance of using different land cover datasets and classifications in landscape genetics analyses. *Ecology and Evolution*, **n/a**.

Driezen, K., Adriaensen, F., Rondinini, C., Doncaster, C.P. & Matthysen, E. (2007) Evaluating least-cost model predictions with empirical dispersal data: A case-study using radiotracking data of hedgehogs (Erinaceus europaeus). *Ecological Modelling*, **209**, 314-322.

Earl, D.A. & vonHoldt, B.M. (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. *Conservation Genetics Resources*, **4**, 359-361.

European_Commission (2020) Environmental Impact Assessment - EIA. https://ec.europa.eu/environment/eia/eia-legalcontext.htm.

Fahrig, L. & Rytwinski, T. (2009) Effects of Roads on Animal Abundance

an Empirical Review and Synthesis. Ecology and Society, 14.

Finch, D., Smith, B.R., Marshall, C., Coomber, F.G., Kubasiewicz, L.M., Anderson, M., Wright, P.G.R. & Mathews, F. (2020) Effects of Artificial Light at Night (ALAN) on European

Hedgehog Activity at Supplementary Feeding Stations. Animals, **10**, 768.

Fitzgibbon, C.D. (1997) Small Mammals in Farm Woodlands: The Effects of Habitat, Isolation and Surrounding Land-Use Patterns. *Journal of Applied Ecology*, **34**, 530-539. Frankham, R., Ballou, J.D. & Briscoe, D.A. (2002) *Introduction to Conservation Genetics*. Cambridge University Press.

FRANTZ, A.C., BERTOUILLE, S., ELOY, M.C., LICOPPE, A., CHAUMONT, F. & FLAMAND, M.C. (2012) Comparative landscape genetic analyses show a Belgian motorway to be a gene flow barrier for red deer (Cervus elaphus), but not wild boars (Sus scrofa). *Molecular Ecology*, **21**, 3445-3457.

Goldstein, D.B. & Schlotterer, C. (1999) *Microsatellites: Evolution and Applications,* First edn. Oxford University Press.

Government, W. (2016a) A487 Caernarfon and Bontnewydd Bypass Environmental Statement Appendix E.2 Statement to Inform an Appropriate Assessment (SIAA). Government, W. (2016b) A487 Caernarfon and Bontnewydd Bypass Environmental Statement Volume 1 Technical Assessment Report.

Henderson, M., Becher, S.A., Doncaster, C.P. & Maclean, N. (2000) Five new polymorphic microsatellite loci in the European hedgehog Erinaceus europaeus. *Molecular Ecology*, **9**, 1949-1951.

Hof, A. & Bright, P. (2010) The value of agri-environment schemes for macro-invertebrate feeders: Hedgehogs on arable farms in Britain. *Animal Conservation - ANIM CONSERV*, **13**. Hof, A.R. (2009) A Study of the Current Status of the Hedgehog (*Erinaceus europaeus*) and its Declines in Great Britain Since 1960. Ph.D, Royal Holloway, University of London, Egham, UK.

Hof, A.R., Allen, A.M. & Bright, P.W. (2019) Investigating the Role of the Eurasian Badger (Meles meles) in the Nationwide Distribution of the Western European Hedgehog (Erinaceus europaeus) in England. *Animals*, **9**, 759.

Hof, A.R. & Bright, P.W. (2009) The value of green-spaces in built-up areas for western hedgehogs. *Lutra*, **52**, 69-82.

Hof, A.R. & Bright, P.W. (2012) Factors affecting hedgehog presence on farmland as assessed by a questionnaire survey. *Acta Theriologica*, **57**, 79-88.

Hof, A.R. & Bright, P.W. (2016) Quantifying the long-term decline of the West European hedgehog in England by subsampling citizen-science datasets. *European Journal of Wildlife Research*, **62**, 407-413.

Holderegger, R. & Wagner, H.H. (2008) Landscape Genetics. *BioScience*, **58**, 199-207. Hubert, P., Julliard, R., Biagianti, S. & Poulle, M.-L. (2011) Ecological factors driving the higher hedgehog (Erinaceus europeaus) density in an urban area compared to the adjacent rural area. *Landscape and Urban Planning*, **103**, 34-43. Huijser, M.P. & Bergers, P.J.M. (2000) The effect of roads and traffic on hedgehog (Erinaceus europaeus) populations. *Biological Conservation*, **95**, 111-116. Inc, E. (2023) ArcGIS Pro 3.1.3.

Jackson, D.B. (2007) Factors affecting the abundance of introduced hedgehogs (Erinaceus europaeus) to the Hebridean island of South Uist in the absence of natural predators and implications for nesting birds. *Journal of Zoology*, **271**, 210-217.

Janes, J.K., Miller, J.M., Dupuis, J.R., Malenfant, R.M., Gorrell, J.C., Cullingham, C.I. & Andrew, R.L. (2017) The K = 2 conundrum. *Molecular Ecology*, **26**, 3594-3602. Jarne, P. & Lagoda, P.J.L. (1996) Microsatellites, from molecules to populations and back.

Trends in Ecology & Evolution, **11**, 424-429.

Jensen, L.F., Ejbye-Ernst, R., Michaelsen, T.Y., Jensen, A., Hansen, D.M., Nielsen, M.E. & Pertoldi, C. (2017) Assessing the genetic effects of rehabilitating harbor seals (Phoca vitulina) in the Wadden Sea using stochastic simulations. *Mammal Research*, **62**, 363-372. JNCC (2010) *Handbook for Phase 1 habitat survey – a technique for environmental audit*. JNCC, Peterborough,.

Keller, L.F. & Waller, D.M. (2002) Inbreeding effects in wild populations. *Trends in Ecology* & *Evolution*, **17**, 230-241.

Kimmig, S.E., Beninde, J., Brandt, M., Schleimer, A., Kramer-Schadt, S., Hofer, H., Börner, K., Schulze, C., Wittstatt, U., Heddergott, M., Halczok, T., Staubach, C. & Frantz, A.C. (2020) Beyond the landscape: Resistance modelling infers physical and behavioural gene flow barriers to a mobile carnivore across a metropolitan area. *Molecular Ecology*, **29**, 466-484. Kotzageorgis, G.C. & Mason, C.F. (1997) Small mammal populations in relation to hedgerow structure in an arable landscape. *Journal of Zoology*, **242**, 425-434.

Krebs, C.J. (2001) *Ecology: The Experimental Analysis of Distribution and Abundance,* Fifth edn. Benjamin Cummings.

Kwong, A.M., Blackwell, T.W., LeFaive, J., de Andrade, M., Barnard, J., Barnes, K.C., Blangero, J., Boerwinkle, E., Burchard, E.G., Cade, B.E., Chasman, D.I., Chen, H., Conomos, M.P., Cupples, L.A., Ellinor, P.T., Eng, C., Gao, Y., Guo, X., Irvin, M.R., Kelly, T.N., Kim, W., Kooperberg, C., Lubitz, S.A., Mak, A.C.Y., Manichaikul, A.W., Mathias, R.A., Montasser, M.E., Montgomery, C.G., Musani, S., Palmer, N.D., Peloso, G.M., Qiao, D., Reiner, A.P., Roden, D.M., Shoemaker, M.B., Smith, J.A., Smith, N.L., Su, J.L., Tiwari, H.K., Weeks, D.E., Weiss, S.T., Scott, L.J., Smith, A.V., Abecasis, G.R., Boehnke, M. & Kang, H.M. (2021) Robust, flexible, and scalable tests for Hardy-Weinberg equilibrium across diverse ancestries. *Genetics*, **218**.

Lacy, R.C. (1997) Importance of Genetic Variation to the Viability of Mammalian Populations. *Journal of Mammalogy*, **78**, 320-335.

Lecis, R., Dondina, O., Orioli, V., Biosa, D., Canu, A., Fabbri, G., Iacolina, L., Cossu, A., Bani, L., Apollonio, M. & Scandura, M. (2022) Main roads and land cover shaped the genetic structure of a Mediterranean island wild boar population. *Ecology and Evolution*, **12**, e8804.

Legendre, P. & Anderson, M.J. (1999) DISTANCE-BASED REDUNDANCY ANALYSIS: TESTING MULTISPECIES RESPONSES IN MULTIFACTORIAL ECOLOGICAL EXPERIMENTS. *Ecological Monographs*, **69**, 1-24.

Legendre, P., Oksanen, J. & ter Braak, C.J.F. (2011) Testing the significance of canonical axes in redundancy analysis. *Methods in Ecology and Evolution*, **2**, 269-277.

Lynch, M. & Ritland, K. (1999) Estimation of Pairwise Relatedness With Molecular Markers. *Genetics*, **152**, 1753-1766.

MacArthur, R.H. (1957) ON THE RELATIVE ABUNDANCE OF BIRD SPECIES. *Proceedings of the National Academy of Sciences*, **43**, 293-295.

Mateo-Sánchez, M.C., Balkenhol, N., Cushman, S., Pérez, T., Domínguez, A. & Saura, S. (2015) A comparative framework to infer landscape effects on population genetic

structure: are habitat suitability models effective in explaining gene flow? *Landscape Ecology*, **30**, 1405-1420.

Micol, T., Doncaster, C.P. & Mackinlay, L.A. (1994) Correlates of Local Variation in the Abundance of Hedgehogs Erinaceus europaeus. *Journal of Animal Ecology*, **63**, 851-860. Molony, S., Dowding, C., Baker, P., Cuthill, I. & Harris, S. (2006) The effect of translocation and temporary captivity on wildlife rehabilitation success: An experimental study using European hedgehogs (Erinaceus europaeus). *Biological Conservation*, **130**, 530-537. Moore, L.J., Petrovan, S.O., Baker, P.J., Bates, A.J., Hicks, H.L., Perkins, S.E. & Yarnell, R.W. (2020) Impacts and Potential Mitigation of Road Mortality for Hedgehogs in Europe. *Animals*, **10**, 1523.

Moore, M., Early, G., Touhey, K., Barco, S., Gulland, F. & Wells, R. (2007) REHABILITATION AND RELEASE OF MARINE MAMMALS IN THE UNITED STATES: RISKS AND BENEFITS. *Marine Mammal Science*, **23**, 731-750.

Moorhouse, T.P., Palmer, S.C.F., Travis, J.M.J. & Macdonald, D.W. (2014) Hugging the hedges: Might agri-environment manipulations affect landscape permeability for hedgehogs? *Biological Conservation*, **176**, 109-116.

Morris, P. (2018) Hedgehog. William Collins.

Müller, M.F., Banks, S.C., Crewe, T.L. & Campbell, H.A. (2023) The rise of animal biotelemetry and genetics research data integration. *Ecology and Evolution*, **13**, e9885. Orłowski, G. & Nowak, L. (2004) Road mortality of hedgehogs Erinaceus spp. in farmland in lower Silesia (South-Western Poland). **52**, 377-382.

Pacioni, C., Rafferty, C., Morley, K., Stevenson, S., Chapman, A., Wickins, M., Verney, T., Deegan, G., Trocini, S. & Spencer, P.B.S. (2017) Augmenting the conservation value of rehabilitated wildlife by integrating genetics and population modeling in the post-rehabilitation decision process. *Current Zoology*, **64**, 593-601.

Paradis, E. & Schliep, K. (2018) ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. *Bioinformatics*, **35**, 526-528.

Peakall, R. & Smouse, P.E. (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. *Molecular Ecology Notes*, **6**, 288-295.

Peakall, R. & Smouse, P.E. (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. *Bioinformatics*, **28**, 2537-2539.

Pettett, C., Moorhouse, T., Johnson, P. & Macdonald, D. (2017) Factors affecting hedgehog (Erinaceus europaeus) attraction to rural villages in arable landscapes. *European Journal of Wildlife Research*, **63**.

Pettett, C.E., Johnson, P.J., Moorhouse, T.P. & Macdonald, D.W. (2018) National predictors of hedgehog Erinaceus europaeus distribution and decline in Britain. *Mammal Review*, **48**, 1-6.

Ploi, K.C., M.; Bolfíková, B.Č.; Loudová, M.; Hulva, P.; Seiter, A.; Fuhrmann, M.; Winter, S.; Meimberg, H. (2020) Evaluating the Impact of Wildlife Shelter Management on the Genetic Diversity of Erinaceus europaeus and E. roumanicus in Their Contact Zone. *Animals*, **10**. Pritchard, J.K., Wen, X. & Falush, D. (2010) Documentation for structure software: Version 2.3. pp. 39.

https://web.stanford.edu/group/pritchardlab/structure_software/release_versions/v2.3.4/ html/structure.html.

Pyke, G.H. & Szabo, J.K. (2018) Conservation and the 4 Rs, which are rescue, rehabilitation, release, and research. *Conservation Biology*, **32**, 50-59.

Queller, D.C. & Goodnight, K.F. (1989) ESTIMATING RELATEDNESS USING GENETIC MARKERS. *Evolution*, **43**, 258-275.

Rasmussen, S., Pertoldi, C., Yashiro, E., Sverrisdóttir, E., Nielsen, K., Lukassen, M. & Nielsen, J. (2019) Applying the GBS technique for the genomic characterization of a Danish population of European hedgehogs (Erinaceus europaeus). **3**, 78-86.

Rasmussen, S.L., Nielsen, J.L., Jones, O.R., Berg, T.B. & Pertoldi, C. (2020) Genetic structure of the European hedgehog (Erinaceus europaeus) in Denmark. *PLOS ONE*, **15**, e0227205. Reed, D.H. (2004) Extinction risk in fragmented habitats. *Animal Conservation*, **7**, 181-191. Reeve, N. (1994) *Hedgehogs*. Poyser Natural History.

Reeve, N.J. (1981) A field study of the hedgehog (Erinaceus europaeus) with particular reference to movement and behaviour. PhD, University of London.

Riber, A.B. (2006) Habitat use and behaviour of European hedgehogErinaceus europaeus in a Danish rural area. *Acta Theriologica*, **51**, 363-371.

Robinson, R.A. & Sutherland, W.J. (2002) Post-war changes in arable farming and biodiversity in Great Britain. *Journal of Applied Ecology*, **39**, 157-176.

Rondinini, C. & Doncaster, C.P. (2002) Roads as barriers to movement for hedgehogs. *Functional Ecology*, **16**, 504-509.

SPEAR, S.F., BALKENHOL, N., FORTIN, M.-J., MCRAE, B.H. & SCRIBNER, K. (2010) Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. *Molecular Ecology*, **19**, 3576-3591.

Stoate, C., Boatman, N.D., Borralho, R.J., Carvalho, C.R., Snoo, G.R.d. & Eden, P. (2001) Ecological impacts of arable intensification in Europe. *Journal of Environmental Management*, **63**, 337-365.

Tarabon, S., Bergès, L., Dutoit, T. & Isselin-Nondedeu, F. (2019) Environmental impact assessment of development projects improved by merging species distribution and habitat connectivity modelling. *Journal of Environmental Management*, **241**, 439-449.

Taucher, A.L., Gloor, S., Dietrich, A., Geiger, M., Hegglin, D. & Bontadina, F. (2020) Decline in Distribution and Abundance: Urban Hedgehogs under Pressure. *Animals*, **10**, 1606. van de Poel, J., Dekker, J. & Langevelde, F. (2015) Dutch hedgehogs Erinaceus europaeus are nowadays mainly found in urban areas, possibly due to the negative Effects of badgers Meles meles. *Wildlife Biology*, **21**, 51-55.

Van Dyck, H. & Baguette, M. (2005) Dispersal behaviour in fragmented landscapes: Routine or special movements? *Basic and Applied Ecology*, **6**, 535-545.

VAN OOSTERHOUT, C., HUTCHINSON, W.F., WILLS, D.P.M. & SHIPLEY, P. (2004) microchecker: software for identifying and correcting genotyping errors in microsatellite data. *Molecular Ecology Notes*, **4**, 535-538.

Weeks, A., Sgro, C., Young, A., Frankham, R., Mitchell, N., Miller, K., Byrne, M., Coates, D., Eldridge, M., Sunnucks, P., Breed, M., James, E. & Hoffmann, A. (2011) Assessing the benefits and risks of translocations in changing environments: A genetic perspective. *Evolutionary applications*, **4**, 709-725.

Wembridge, D., Johnson, G., Al-Fulaij, N. & Langton, S. (2022) The State of Britain's Hedgehogs 2022. pp. 8.

Williams, B., Baker, P., Thomas, E., Wilson, G., Judge, J. & Yarnell, R. (2018) Reduced occupancy of hedgehogs (Erinaceus europaeus) in rural England and Wales: The influence of habitat and an asymmetric intra-guild predator. *Scientific Reports*, **8**.

Williams, R.L., Stafford, R. & Goodenough, A.E. (2015) Biodiversity in urban gardens: Assessing the accuracy of citizen science data on garden hedgehogs. *Urban Ecosystems*, **18**, 819-833.

Wilson, E. & Wembridge, D. (2018) The State of Britain's Hedgehogs 2018. PTES. Wright, P.G.R., Coomber, F.G., Bellamy, C.C., Perkins, S.E. & Mathews, F. (2020) Predicting hedgehog mortality risks on British roads using habitat suitability modelling. *PeerJ*, **7**, e8154.

Yanes, M., Velasco, J.M. & Suárez, F. (1995) Permeability of roads and railways to vertebrates: The importance of culverts. *Biological Conservation*, **71**, 217-222. Yarnell, R.W. & Pettett, C.E. (2020) Beneficial Land Management for Hedgehogs (Erinaceus europaeus) in the United Kingdom. *Animals*, **10**, 1566. Young, R., Davison, J., Trewby, I., Wilson, G., Delahay, R. & Doncaster, C. (2006) Abundance of hedgehogs (Erinaceus europaeus) in relation to the density and distribution of badgers (Meles meles). *Journal of Zoology*, **269**.

Zecherle, L.J., Bar-David, S., Nichols, H.J., Templeton, A.R., Hipperson, H., Horsburgh, G.J. & Brown, R.P. (2020) Landscape resistance affects individual habitat selection but not genetic relatedness in a reintroduced desert ungulate. *Biological Conservation*, **252**, 108845.