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Abstract
We present a systematic study of the oxidation and deoxidation behaviours of several kinds of
ultrathin silicon oxide layers frequently used in silicon (Si) technology, which in this work serve
as surface protecting layers for molecular beam epitaxy (MBE). With various characterization
techniques, we demonstrate that a chemically grown silicon oxide layer is the most promising
candidate for subsequent removal in an ultra-high vacuum chamber at a temperature of 1000 ◦C,
without making use of a reducing agent. As a demonstration, a tensile-strained Ge(100) layer is
epitaxially grown on the deoxidised wafer with an atomically flat surface and a low threading
dislocation density of 3.33 × 108 cm−2. Our findings reveal that the ultra-thin oxide layer grown
using a chemical approach is able to protect Si surfaces for subsequent MBE growth of Ge. This
approach is promising for the growth of III/V-on-Si (using Ge as a buffer) and all group-IV
related epitaxy for integration on the Si photonics platforms.

Supplementary material for this article is available online

Keywords: MBE oxidation, deoxidation, Ge, Si

(Some figures may appear in colour only in the online journal)

1. Introduction

Manipulation of ultra-thin silicon oxide (SiOx with x⩽ 2) lay-
ers is a key process for Si electronics and photonics [1–3],
represented by the state-of-the-art fabrication technology
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approaching a nanoscale era in both academia and industry.
By adjusting its thickness and stoichiometry, the SiOx layer
can play many roles including gate oxides [4, 5], protect-
ing layer [6], passivation layer, cladding layer for quantum
dots [7], and even light emitting centres [8, 9]. As a funda-
mental technology in modern electronics and photonics, semi-
conductor molecular beam epitaxy (MBE) can achieve high-
quality epilayers with low defect densities on Si, but requires
Si substrates with ultra-clean surfaces and control of strain
in the subsequent buffer layers. In order to be able to handle
and transfer substrates without contamination and formation
of unwanted oxide layers, it is therefore necessary to create
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a stable and repeatable surface protection layer that can be
cleanly and predictably removed. This becomes of the utmost
importance for patterned Si templates with multiple fabrica-
tion steps required before MBE epitaxy can be undertaken.
Ultra-thin (~1 nm) SiOx is one of the best candidates to serve as
surface protection layer, as it is possible to thermally decom-
pose the grown layer in anMBE chamber [10, 11]. The dynam-
ics of SiOx decomposition in ultra-high vacuum chambers
have been studied [12, 13], verifying that atomically flat Si sur-
faces can be obtained with clear Si(100)− 2× 1 reconstruc-
tions, a crucial prerequisite for growing low-defect epilayers
[14]. Ishizaka and Shiraki initially demonstrated that a thin
passivation oxide layer created by using boiling chemical solu-
tions can be thermally decomposed to generate a clean Si sur-
face prior to MBE growth [13]. This work has relied on indir-
ect characterization methods to study the microstructures and
thickness of the ultrathin oxide layers, with a conclusion that
the layer was composed of a 0.64 nm thick SiO2. We believe
that further study is required to generate a stable SiOx pro-
tecting layer and to understand the oxidation/deoxidation pro-
cesses occurring during wafer transfer and more importantly
to engineer the surface in order to enable subsequent growth
of high-quality epilayers.

Generally speaking, there are two ways to grow ultra-thin
silicon oxide layers on Si, top-down deposition methods (e.g.
atomic layer deposition, chemical vapour deposition and so
on) [15, 16], and direct surface oxidation. In this work, we
focus on the latter and investigate deoxidation process for
MBE growth, because introducing new facilities increases
the risk of contaminating the ultra-clean MBE chambers and
the cost. Using a range of different fabrication methods, we
developed different kinds of oxidised SiOx films with atom-
ically flat surfaces. These films were subsequently transferred
to a group-IV MBE chamber to perform the thermal deoxid-
ation and epitaxial growth. To explore the impact of differ-
ent SiOx films on MBE growth of a technologically relevant
material, tensile strained thin Ge buffer was selected as our
target layer as it is commonly used for high-speed photodi-
odes [17, 18] and light sources [19, 20], while at the same time
being an excellent buffer layer for III–V-on-Si heteroepitaxy
[21, 22]. It can therefore play a key role in all group-IV and
III–V/Si co-integration.We noticed that there are other options
to fabricated virtual Ge/Si substrates for III–V growth [23],
except for the in-situ growth method with a established recipe
in this work. Characterizing the Ge-on-Si growth using differ-
ent oxide protection layers byXRD,micro-Raman and absorp-
tion spectroscopy, we demonstrate that a tensile strained Ge
film with both low defect density and a high surface flatness
can be achieved with MBE through in-situ deoxidisation of a
SiOx/Si(100) film prepared by a chemical oxidation process.

2. Experimental

Depending on the oxidation mechanism, SiOx layers are
usually categorized into three types, natural oxide layer
(NOL)—the oxide layer forms in air with participation of

humidity; chemical oxide layer (COL)—the layer is formed
using solution based oxidants (e.g. acidic solutions and H2O2);
and thermal oxide layer (TOL)—the layer is formed by oxid-
ising Si with oxygen and/or its derivatives at an elevated tem-
perature. It is worth noting that COL is also named native
oxide layer in many works, leading to a potential confusion
with NOL [19, 24, 25]. However, NOL and COL are funda-
mentally different, because the former is formed in a layer-
by-layer process with hydrophobic surface (contact angle =
52◦ from our measurements, figure S1), whilst the latter is
formed by a complex process involving potential H-bonds bur-
ied underneath the hydrophobic surface (water film formed on
the surface of COL from our observation) [26]. As the NOL
is sensitive to the environment (such as humidity, temperature
and oxygen content) [24, 26], it is considered too unpredict-
able and vulnerable to serve as a surface protecting layer for
low defect epitaxial growth. Therefore, this work will focus on
the TOL and COL processes.

COL films were prepared using a mixed chemical oxid-
ant, while TOL films were prepared using rapid thermal pro-
cessing (RTP). Thermal deoxidisation and epitaxial growth
were carried out in a group-IVMBE chamber (VeecoGen930).
The surface flatness before and after deoxidation was evalu-
ated by atomic force microscopy (AFM). Threading disloca-
tion densities (TDDs) were determined by electron channel-
ing contrast imaging (ECCI) and by counting the pits from
AFM images. Similar results were obtained as shown in previ-
ous work [27]. The crystalline quality of the epitaxially grown
Ge layers was examined by x-ray diffraction (XRD), while
their optical properties were characterised by micro-Raman
(µ-Raman) and absorption spectroscopy. The µ-Raman was
performed with a backscattering configuration z(xy)z at room
temperature, so that only the longitudinal optical phonons will
be observed. A 789 nm laser was employed as the excita-
tion wavelength. The beam was focused on the sample with a
50× objective lens. The scattered light collected by the same
objective lens was sent to a monochromator followed by a
thermo-electric cooled charge-coupled device for signal ana-
lysis. The absorption spectra of our Ge on deoxidised COL
(Ge-on-De/COL) were measured using a microspectrophoto-
meter equipped with halogen light source as excitation. All
AFM and optical characterisations were carried out at room
temperature.

Scanning transmission electron microscopy (STEM) high-
angle annular-dark-field (HAADF) imaging and electron
energy loss spectroscopy (EELS) were used on selected
samples prior to deoxidation to establish the thickness and
chemical nature of the oxide layers at the nanometer scale.
Experiments were carried out on a Nion UltraSTEM100
microscope operated at 60 kV acceleration voltage, with
32mrad probe convergence (with an approximate probe size
of 0.12 nm) and 44mrad collection semi-angles, while the
HAADF detector angular range was 85–185mrad. Samples
for STEM-EELS were prepared by in situ lift-out on a Hita-
chi Ethos NX5000 focused ion beam, and polished with 5 kV
Ga. EELS chemical maps were obtained by integrating the
Si L2,3, O K, and C K edges over suitable energy windows
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Figure 1. Thickness of the TOL as a function of oxidation time (red line is linear fit of 0.0563 nm s−1).

following denoising of the hyperspectral datasets by prin-
cipal component analysis and removal of the decaying back-
ground using a conventional power-law model. Indicative
quantification of the chemical composition of the samples was
achieved using the model-based approach initially developed
by Verbeeck et al and implemented in GatanMicroscopy Suite
software [28, 29].

3. Results and discussion

Before fabrication, all wafers had their NOLs com-
pletely removed by using buffered hydrofluoric acid
(HF : H2O2 = 7 : 1) for 5min. The COLs were fabricated
in a hybrid solution of hydrochloric acid and hydrogen per-
oxide (HCl : H2O2 : H2O= 3 : 1 : 1) at room temperature,
which is often used for oxides regrowth in the Radio Cor-
poration of America cleaning processes [30]. Regarding the
TOLs, we developed a procedure with RTP as shown in figure
S2. The temperature was initially increased to 350 ◦C under
2000 sccm (standard cubic centimeters per minute) N2. Then
the temperature was maintained for 100 s at 350 ◦C for dehyd-
ration. The thermal oxidation was carried out under an O2

flux of 1000 sccm at 900 ◦C, below which temperature the
oxide growth hardly to progresses with RTP in an ultraclean

Table 1. TOL and COL oxidation parameters.

Sample Recipe Oxidation time

TOL 900 ◦C 1000 sccm oxygen 14 s
COL HCl : H2O2 : H2O= 3 : 1 : 1 10–20 min

non-oxidising atmosphere based on previous work [31]. The
thickness of the oxidised layer follows the Deal–Grove model,
where a linear relationship between thickness and time can
be expected when the layer is thin (⩽100 nm) [31, 32]. As
shown in figure 1, the oxidation rate is determined to be
0.0563 nm s−1 by fitting the experimental results. Therefore,
one can extrapolate the fitting curve for the oxidation time to
acquire a desired thickness according to the oxidation rate.
The oxidation parameters used are shown in table 1.

To examine surface flatness, we performed tapping AFM
imaging of the different oxidised samples compared to bare
Si. As shown in figure 2, both methods produce extremely
flat surfaces with RMS roughness of 1.003 nm (10min
COLs, figure 2(b)) and 0.962 nm (14 s TOL, figure 2(c)),
which follows the corresponding value of the original Si(100)
wafers (RMS = 0.915 nm, figure 2(a)). The surface of
TOLs maintains a flatness of 1.011 nm with a thickness
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Figure 2. AFM images of the (a) Si, (b) 10min COL (2 nm), (c)14 s TOL (~1 nm), and (d) 400 s TOL (26 nm).

up to ~26 nm (400 s TOL), meaning that no undesired
cluster-like oxidation is recorded through potential defects or
contamination [33, 34].

Thermal deoxidation does not involve any reducing agent
such as hydrogen, which was proved to be a defect for InAs
materials [35]. It is performed with the MBE by the following
reaction,

SiOx+ xSi= xSiO ↑ (1)

where the SiO is gaseous and will be desorbed from the
substrate under high temperature, leaving a pure Si surface.
Though the nucleation of the inhomogeneous desorption of
SiOx is still not clear, the decomposition rate of the oxide layer
can be described by an empirical time-rate limiting law, which
closely relates with both temperature and time [36]. There-
fore, we increased the deoxidation temperature in our MBE to
1000 ◦C tominimize the process time. As shown in figure 3(a),
residual SiOx islands can be observed after deoxidising the 14 s
TOL wafer at 1000 ◦C for 30 min. These islands have a dens-
ity of 1.37 × 108 cm−2, and measure up to 25 nm in height
and ~500 nm in diameter. In contrast, residual SiOx islands on
the deoxidised 20min COL wafer exhibit a density of 4.78 ×
108 cm−2, with a much smaller profile of <100 nm in width
and 10 nm in height. Comparing our fabrication methods, the
COL area coverage ratio (area of residual oxides over the
whole area) is seven times lower than for TOL, while the island
height is reduced by half. From this we conclude that the COL
is a more promising candidate than TOL to work as a thermo-
removable protecting layer. The deoxidation of the COLs were
then examined by changing the oxidation time from 20 min

down to 10min under 1000 ◦C for half an hour. From the AFM
observation, the sizes of the residual oxide islands are the same
for all the samples while the density decreases. As shown in the
inset of figure S3(a), the density decreases 1.7 times by redu-
cing the oxidation time from 20 to 10min. Given the minimum
thickness (~1 nm) of oxide layer required to protect from nat-
ural oxidation in air, the oxidation time is limited to 10 min in
our work. According to a recent report, the deoxidised area R
at a fixed temperature can be described as [37],

R(t) = α(t− tn)+

√
β

π
(t− tn)

1/2 (2)

where α and β are temperature-related constants and tn is
the nucleation time of the first void. Obviously, it is critical
to increase the time for the deoxidation with a fixed temper-
ature. The oxide islands are completely removed by extend-
ing the deoxidation time from 30min to 60min according to
equation (2), leaving a root-mean-square surface roughness of
0.312 nm, as shown in figure 3(c). Though occasional residual
dots are observed, the area without islands is atomically flat
and ready for epitaxial growth (figure 3(d)).

In order to provide insights into the oxidation and deoxid-
ation processes, we investigated the nature of COLs obtained
with oxidation times of 20min and 10min prior to deoxidation
by cross-sectional observation through STEM and EELS. As
shown in figures 3(e) and (f), the 10 min COL exhibits a clear
boundary at Si/SiOx interface (In contrast to SiO2 as repor-
ted in [13]), with the extent of the amorphous oxidised region
confined within a thickness of 2.1 nm above the crystalline Si
(see also figure S4), with high O content (the quantification of
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Figure 3. AFM images of the (a) deoxidised 14 s TOL wafer, (b) deoxidised 10 min COL wafer (0.5 h at 1000 ◦C), (c) deoxidised COL
(1 h at 1000 ◦C), (d) high-resolution scan in island-free area, (e) and (g) HR-STEM HAADF cross-sectional images of 10min and 20min
COLs. The crystalline substrate and COLs were protected by a carbon layer deposited during the focused-ion-beam sample preparation
process, as labelled; (f) and (h) HAADF (grey) and EELS maps across the COLs for Si and C (false-colored) images of 10min and 20min
COLs. (The intensity scale for the Si maps corresponds to 0:1 relative Si content as quantified using a model-based approach. The O map in
(g) also corresponds to a 0:1 scale, whereas in (h) the O relative content is lower and displayed here on a 0:0.3 scale.)

Figure 4. (a) AFM image of the Ge(100) film grown on deoxidised COL wafer, (b) ECCI image of Ge(100)-on-De/COL, (c) XRD ω− 2θ
rocking curve the Ge(100) and the reference sample (Ge-on-De/NOL); inset is the magnified area near the Ge peaks.

the EELS data reveals an approximate 1:1 Si to O ratio in the
amorphous oxidised layer). This observation suggests that the
10min COL can work as a surface protecting layer by stop-
ping any further oxidation process in air. In clear contrast, the
20min COL sample exhibits a much wider oxidised region,
with oxidation not confined to a sharply defined amorphous
layer and still present at clearly detectable levels several nm
(>5 nm) below the crystalline Si surface, albeit at relatively
low O content (an approximate quantification of the EELS
data suggests a maximum Si:O ratio of 8:1 in this region).
An amorphous layer is still visible above the surface, but nar-
rower than in the 20 min case.(figures 3(g) and (h)). This fun-
damental difference in the COLs not observed before would
lead to different deoxidation results.

Ge epitaxial growth was performed in the MBE with a
temperature of ~1000 ◦C using previously established para-
meters [38]. As shown in figure 4(a), the 300 nm Ge film
grown on deoxidised COL has an RMS roughness <1 nm
with a low TDD of 3.33 × 108 cm−2 determined by ECCI

measurements as shown in figure 4(b), compared with>7.6×
108 cm−2 of Ge grown on deoxidised NOL (Ge-on-De/NOL,
reference sample used in this work) [38]. The XRD curve in
ω− 2θ mode along Ge(004) plane is shown in figure 4(c). A
sharp and symmetric peak with a full width at half maximum
of 391.1 arcsec implies a high crystal quality in the epitaxial
Ge layer. For a strain-free (bulk) Ge layer, the peak is cal-
culated to be 5649 arcsec from Si according to Cu Kα1 (λ =
1.5406Å) radiation and Bragg’s law. The peaks at 5368 (Ge-
on-De/COL) and 5327 arcsec (Ge-on-De/NOL) indicate bi-
axial tensile stain in both samples [39, 40]. Such a strained
film with a low TDD is suitable for high-quality III–V epi-
taxial growth [41].

The epitaxial Ge(100) layers were further examined by µ-
Raman in order to have a deeper insight into the crystal qual-
ity. Figure 5(a) shows the spectra of the Ge(100) films used in
figure 4. Except for the Ge–Ge and Si–Si signals at ~300 cm−1

and ~520.5 cm−1, the peak at ~400 cm−1 is attributed to Si–Ge
from the interface. In addition, a broad peak at 2800 cm−1
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Figure 5. (a) Raman spectra of Ge-on-De/COL and Ge-on-De/NOL samples used in figure 4(b), (b) zoom-in spectra of the Ge–Ge signal in
the highlighted area in (a).

Figure 6. (a) Schematic of Ge energy band structure without (top panel) and with (bottom panel) tensile strain, (b) Tauc plot of the epitaxial
Ge-on-De/COL (red) and the Ge-on-De/NOL samples (black).

was observed on both Ge wafers from residual oxides [42].
Figure 5(b) is the zoomed-in Ge–Ge signal of figure 5(a). The
peak positions of the Ge-on-De/COL and Ge-on-De/NOL are

at 297.7 cm−1 and 297.5 cm−1 respectively, corresponding to
a shift of 1 cm−1 and 1.2 cm−1 with respect to the bulk Ge
substrate measured at 298.7 cm−1 (not shown). From Raman
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Table 2. Properties of Ge growth on De/COL and De/NOL wafers.

Sample Deoxidation TDD (cm−2) ω− 2θ (arcsec) Strain EΓ1 (eV)

Ge-on-De/COL 1000 ◦C, 1 h 3.32 × 108 5368 ~0.29% 0.783
Ge-on-De/NOL >7.6 × 108 5327 ~0.24% 0.772

spectra, the tensile strain ϵ∥ can be quantitatively evaluated
from the blue-shift of the peak as,

∆ω = b× ϵ∥ (3)

where ∆ω is the shift of the peak, and b (= 415 ± 40 cm−1)
a constant [43, 44]. From equation (3), the calculated bi-axial
tensile strain is ~0.24% for the Ge-on-De/NOL and ~0.29%
for the Ge-on-De/COL. The differences in the strain status are
attributed to the different thermal treatments required for the
deoxidation processes, and the potential residual oxides.

It is known that the energy band structure of Ge is strongly
related to strain, which directly affects the optoelectronic prop-
erties. As schematically shown in figure 6(a), the energy gap
at the Γ point (EΓ1 transition) in momentum space decreases
more drastically with tensile strain than that of EΓL. Specific-
ally, the minimum of the electronic valley decreases while the
maximum of the light hole (ELH) band increases [45], enabling
band gap engineering of Ge for high-speed detectors and light
sources [17–20]. When the bi-axial tensile strain exceeds 2%,
a direct bandgap can be expected. The value of EΓ1 can be
obtained from the Tauc plot in figure 6(b) by extrapolating
the curve at the direct transition point. We get EΓ1 values
of 0.783 eV for Ge-on-De/COL and 0.772 eV for the Ge-on-
De/NOL, which agrees with the calculated values from strain
(0.783 eV and 0.779 eV) according to former reports [46, 47].
In addition, the non-deteriorated absorption coefficient of Ge-
on-De/COL shown in figure 4(b) indicates that COLs canwork
as a surface protection layer for epitaxial growth on Si.

For a direct comparison, table 2 summarises our observed
properties of Ge-on-De/COL and Ge-on-De/NOL. Finally,
while realizing and fully characterizing a direct bandgap epi-
taxial Ge film is beyond the scope of this work, these findings
are promising for future integration of III–V sources and high-
speed strained Ge devices with prescribed optical properties
in a single growth process, which is of great importance for Si
photonics.

3.1. Conclusion

In summary, we have demonstrated that SiOx layers fabric-
ated by a chemical method based on a mixture of H2O2 and
acidic solution provide a superior surface protecting layer on
Si. Compared with TOLs, this SiOx layer can be thermally
removed by deoxidising at 1000 ◦C. In addition, the oxida-
tion and deoxidation processes in this work are controllable
and repeatable compared with NOLs. These are crucial for
ultra-clean MBE growth. As a demonstration, Ge(100) were
grown on the deoxidised COL wafers. The epilayer exhibits

an extremely flat surface with RMS roughness below 1 nm
and an ultra-low TDD down to 3.33 × 108 cm−2 from AFM
measurements. A bi-axial tensile strain of 0.24% can be con-
firmed from XRD and Raman characterizations, leading to a
reduced band energy of 0.783 eV observed from the optical
experiments. Although the experiments in this work are based
on planar substrates, we believe that the ultra-thin COLs are
also applicable in patterned Si substrates, such as V-grooved
substrates for selective area growth and aspect ratio trapping
techniques to reduce anti-phase defects and TDDs [48, 49].
Finally, our results show that high-quality Ge with tensile
strain can be obtained on the deoxidised COL wafer, which is
extremely useful for III/V-on-Si photonic integration as well
as for high-speed Ge based devices.
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