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We determine hidden conformal symmetries behind the evolution equations of black hole perturbations
in a vector-tensor theory of gravity. Such hidden symmetries are valid everywhere in the exterior region of a
spherically symmetric, asymptotically flat black hole geometry. They allow us to factorize second order
operators controlling the black hole perturbations into a product of two commuting first order operators. As
a consequence, we are able to analytically determine the most general time-dependent solutions for the
black hole perturbation equations. We focus on solutions belonging to a highest weight representation of a
conformal symmetry, showing that they correspond to quasibound states with an ingoing behavior into the
black hole horizon, and exponential decay at spatial infinity. Their time dependence is characterized by
purely imaginary frequencies, with imaginary parts separated by integer numbers, as the overtones of
quasinormal modes in general relativity.
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I. INTRODUCTION

The study of emergent conformal symmetries is a topic
of active research for black holes in general relativity.
Conformal symmetries are important for understanding
black hole entropy in terms of microstate counting for
BTZ [1] and extremal [2] black holes, as well as for
configurations equipped with anti–de Sitter (AdS) sym-
metries (see e.g. [3–6]). Given the need of a deeper
understanding of black hole entropy to address the black
hole information problem, exploring the emergence of
conformal symmetries in black hole geometries may prove
particularly insightful.
Conformal symmetries emerge in the near horizon region

of Schwarzschild black holes. They are associated with
diffeomorphism invariance of geometrical quantities in the
proximity of the black hole horizon [7,8], or with the
properties of the near horizon optical metric [9]. However,
they can also appear as hidden symmetries [10], without
apparent relation to any geometric properties of the black
hole space-time (see also [11]). This is reminiscent of the
situation for Kerr [12], whereby such hidden symmetries
and their Virasoro central charge extensions have been

related with the black hole entropy. The interesting results
of said hidden symmetries in [10] have been further
explored in the literature: see (for example) [13–17].
Recently, they have played a key role in [18] where they
have been used to uncover a black hole Love symmetry, able
to explain the vanishing of Love numbers for four-dimen-
sional black holes in terms of underlying symmetry
structures. Further work has demonstrated that conformal
symmetries emerge not only near the horizon, but also in
the proximity of the photon ring region [19–28] of a black
hole, explaining some of its features.
It is interesting to explore if these results pertain to

general relativity, or instead whether hidden conformal
symmetries can be found in alternative theories of gravity
(see e.g. [29] for a comprehensive review). In this work we
focus on a specific case of a vector-tensor theory of gravity
[30,31], in which vector fields are nonminimally coupled
with curvature. The dynamics of parity-odd fluctuations
around a class of spherically symmetric, asymptotically
flat geometries appear to be particularly simple. We
concentrate on a background solution with a geometry
corresponding to a Schwarzschild black hole [32,33]. The
evolution equations for vector and metric fluctuations are
characterized by hidden conformal symmetries, associ-
ated with SLð2; RÞ algebras, and their extensions to
centerless Virasoro symmetries. This is somehow unex-
pected, since our geometrical configurations do not enjoy
AdS asymptotics, nor correspond to extremal black hole
geometries. Interestingly, our symmetries apply on the
entire exterior geometry of the configuration as opposed
to only being realized in the near horizon limit.
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The evolution equations for the vector-field and metric
perturbations can be factorized into a product of two
commuting first order operators. This property allows us
to analytically determine the most general time-dependent
solutions for the system of equations. In fact, we associate
this factorizability property with emergent conformal sym-
metries behind the structure of the equations controlling the
field fluctuations, and directly link the two structures.
We proceed to study the highest weight representation

for one of the SLð2; RÞ algebras, and analytically determine
the expression for the highest weight time-dependent
solutions, and their descendants. As pointed out more
generally in [11], the highest weight representations are
known to have common properties with quasinormal
modes of black holes in general relativity. Indeed, we find
that elements belonging to the highest weight multiplets
have frequencies separated by integer numbers, resembling
the behavior of overtones of black hole quasinormal modes.
We note, however, that although our solutions have the
time-dependent profile of ingoing modes into the black
hole horizon, they do not describe outgoing modes asymp-
totically far from it, as quasinormal modes do. Instead, they
decay exponentially with the radial distance from the black
hole horizon, behaving as quasibound states.
The details of the system and the dynamics of fluctua-

tions around a spherically symmetric Schwarzschild sol-
ution are discussed in Secs. II and III, where we analyze in
detail the emergent conformal symmetries. Their physical
implications are discussed in Sec. IV. Our conclusions and
further considerations may be found in Sec. V.

II. SYSTEM UNDER CONSIDERATION

We consider Einstein-Maxwell gravity, including a non-
minimal coupling between a vector field Aμ and the
Einstein tensor Gμν. The Lagrangian density is [30,31]

L ¼ 1

2
R −

1

4
FμνFμν þ 1

4
GμνAμAν: ð2:1Þ

This system leads to second order equations of motion,
hence it is free of Ostrogradsky instabilities. The choice
of the nonminimal coupling between the vector and
the curvature—the factor 1=4 in front of the GμνAμAν

combination—leads to particularly simple black hole and
spherically symmetric solutions, see e.g. [32,33] (see also
[34–40] for further developments on this topic), and we
focus on this specific choice in what follows. Notice that
the theory breaks a Uð1Þ Abelian symmetry through the
direct coupling of the vector field to gravity. We consider
the spherically symmetric Ansatz

ds2 ¼ ḡμνdxμdxν

¼ −ĀðrÞdt2 þ dr2

B̄ðrÞ þ r2dθ2 þ r2sin2θdϕ2; ð2:2Þ

for the metric, and an electric-type ansatz

V̄μdxμ ¼ ᾱ0ðrÞdtþ Π̄ðrÞdr; ð2:3Þ

for the vector field. Fromnowon, a bar denotes background
quantities that depend on the radial coordinate only. Since
the Abelian gauge symmetry is broken, we cannot gauge
away the radial component of the vector profile.
The corresponding Einstein and vector field equations

admit two branches of solutions (we refer the reader to [32]
for details on the system of equations). One branch contains
vanishing vector radial component Π̄ðrÞ ¼ 0, and is con-
tinuously connected with the Reissner-Nordström configu-
ration. No known exact solutions exist in this branch. The
equations of motion for the other branch—on which we
focus our attention—are satisfied by choosing profiles for
B̄ðrÞ, ᾱ0ðrÞ, and Π̄ðrÞ obeying the following relations:

B̄ðrÞ ¼ ĀðrÞ
ĀðrÞ þ rĀ0ðrÞ ; ð2:4Þ

�
d
dr

�
rᾱ0ðrÞ

2

��
2

¼ d
dr

ðrĀðrÞÞ; ð2:5Þ

Π̄ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ᾱ20ðrÞ − 4ĀðrÞ
ĀðrÞB̄ðrÞ

s
: ð2:6Þ

Hence the configuration is determined by a choice of
the arbitrary function ĀðrÞ, compatible with the boundary
conditions one wishes to impose. For example, choosing
ĀðrÞ ¼ 1–2M=r, one finds an asymptotically flat, spheri-
cally symmetric solution corresponding to a Schwarzschild
geometry

ds2 ¼ −
�
1 −

2M
r

�
dt2 þ dr2

ð1 − 2M
r Þ

þ r2dΩ2; ð2:7Þ

ᾱ0ðrÞ ¼ 2þ 2Q
r

; ð2:8Þ

Π̄ðrÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ 2ðM þQÞr

p
r − 2M

; ð2:9Þ

characterized by two arbitrary constants M, Q. Notice
that—differently from the Reissner-Nordström black
hole—the background geometry does not depend on Q
(whilst, as we will learn, the dynamics of fluctuations
depends on this quantity). This geometrical configuration
is equipped with a Schwarzschild horizon located at
radius RS ¼ 2M.
However a solution with a Schwarzschild horizon

is not the unique asymptotically flat configuration solving
Eqs. (2.4)–(2.6). There is the possibility to smoothly
connect the exterior Schwarzschild geometry (2.7) to a
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regular interior configuration with no horizon, dubbed
“ultracompact vector star” in [33]. We briefly discuss
this configuration since, in an appropriate limit, its sym-
metry properties resemble what we will find next for the
dynamics of the fluctuations. The metric and vector-field
components for the interior solution—recall our metric
ansatz (2.2)—are

ĀðrÞ¼ σ2þ2σð1−σÞ
1þ γ

�
r
R̄

�
γ

þð1−σÞ2
1þ2γ

�
r
R̄

�
2γ

; ð2:10Þ

B̄ðrÞ ¼ Ā
½σ þ ð1 − σÞðr=R̄Þγ�2 ; ð2:11Þ

and

ᾱ0ðrÞ ¼ 2

�
Qþ γð1 − σÞ

1þ γ

�
R̄
r
þ 2σ þ 2ð1 − σÞ

1þ γ

�
r
R̄

�
γ

;

ð2:12Þ

while the (long) expression for Π̄ðrÞ can be found by
plugging the previous equations into equation (2.6). This
solution is characterized by the additional dimensionless
constants 0 ≤ σ ≤ 1 and γ ≥ 0, as well as a radius R̄
corresponding to the boundary of the vector star (the Q is
the same as in the exterior solution above). This configu-
ration solves the equations in theAppendix under conditions
(2.4)–(2.6), which characterize the branch of solutions we
are interested in. It connects smoothly with the exterior
configuration, with no need to consider contributions from
the extra surface energy momentum tensor, if its parameters
satisfy the relation

R̄ ¼ ð1þ γÞð1þ 2γÞ
2γð1 − σÞð1þ γ þ σγÞRS ≥ RS: ð2:13Þ

The solutions described by Eq. (2.7) (in the exterior) and
Eq. (2.10) (in the interior) corresponds to an asymptotically
flat vector star, with compactness

C≡M
R̄

¼ γð1 − σÞð1þ γ þ σγÞ
ð1þ γÞð1þ 2γÞ ≤

1

2
ð2:14Þ

smaller than a Schwarzschild black hole. The black hole
compactness limit C ¼ 1=2 is reached for σ → 0 and
γ → ∞. These objects can avoid Buchdahl theorem and
be as compact as black holes, thanks to their internal
anisotropic stress [33].
When σ → 0, the configuration of Eqs. (2.10) and (2.11)

becomes singular and develops self-similar properties, with
a scaling symmetry resembling a singular isothermal sphere
[33]. This feature indicates that scaling symmetries and
conformal transformations can play an important role in the
characterization of this system. In fact, a rich pattern of
conformal symmetries emerge when studying the dynamics
of parity-odd fluctuations, as we are going to discuss in the
following.

III. PARITY-ODD FLUCTUATIONS AND
CONFORMAL SYMMETRIES

We now consider the dynamics of parity odd fluctuations
around a spherically symmetric background configuration
satisfying the system of Eqs. (2.4)–(2.6). For definiteness,
we focus on the exterior Schwarzschild geometry described
in Eqs. (2.7)–(2.9). We demonstrate that the evolution
equations for the fluctuations enjoy a large set of sym-
metries [including conformal SLð2; RÞ symmetries], which
allows us to analytically characterize their time-dependent
solutions, and their corresponding properties.
Fluctuations around our background configuration are

parametrized in terms of small quantities hμν and aμ, as

gμν ¼ ḡμν þ hμν; ð3:1Þ
Aμ ¼ Āμ þ aμ: ð3:2Þ

In Regge-Wheeler gauge, the metric fluctuations are con-
trolled by two nonvanishing components h0 and h1, which
depend on time and on the radial direction:

hμν ¼

0
BBBBBB@

0 0 −h0ðt; rÞð∂φ= sin θÞ h0ðt; rÞ sin θ∂θ
0 0 −h1ðt; rÞð∂φ= sin θÞ h1ðt; rÞ sin θ∂θ

−h0ðt; rÞð∂φ= sin θÞ −h1ðt; rÞð∂φ= sin θÞ 0 0

h0ðt; rÞ sin θ∂θ h1ðt; rÞ sin θ∂θ 0 0

1
CCCCCCA
Yðθ;φÞ; ð3:3Þ

with Yðθ;φÞ denoting spherical harmonics. There is a single parity-odd component for the perturbations aμ of the vector
field, which we denote with βðt; rÞ:

aμ ¼
�
0; 0;

rᾱ20ðrÞ
4

βðt; rÞ sin θ−1∂φ;−
rᾱ20ðrÞ

4
βðt; rÞ sin θ∂θ

�
Yðθ;φÞ: ð3:4Þ
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For convenience, we multiply the parity-odd vector fluc-
tuation βðt; rÞ by the background quantity rᾱ20ðrÞ=4 in
order to simplify the corresponding evolution equations. It
is straightforward to determine the quadratic action gov-
erning the dynamics of fluctuations h0ðt; rÞ, h1ðt; rÞ, and
βðt; rÞ around a configuration satisfying Eqs. (2.4)–(2.6).
This task has been carried out1 in [41]. We write the
corresponding equations of motion in the Appendix. Upon
using conditions (2.4)–(2.6), formulas simplify dramati-
cally. We can algebraically solve for h1ðt; rÞ, and express
this quantity as a linear combination of h0ðt; rÞ and βðt; rÞ
in the exterior geometry of Eqs. (2.7)–(2.9):

h1 ¼
r

rþQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ 2ðMþQÞr

p
r− 2M

h0 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ 2ðMþQÞr

p
2

β

−
r2

2ðlþ 2Þðl− 1Þ∂tβþ
r2ðrþQÞ

2ðlþ 2Þðl− 1Þ∂t∂rβ

−
r3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ 2ðMþQÞr

p
2ðr− 2MÞðlþ 2Þðl− 1Þ∂

2
t β: ð3:5Þ

The quantity l is the multipole number, an integer l ≥ 2.
Hence, only two degrees of freedom are dynamical in this
system: we take them to be βðt; rÞ and h0ðt; rÞ. Upon
substituting condition (3.5) into the remaining equations,
the dynamics of the vector fluctuations βðt; rÞ are de-
coupled from the metric perturbation h0ðt; rÞ. We study the
interesting symmetry properties of the decoupled vector
equation in Sec. III A, and then analyze the metric
fluctuation dynamics in Sec. III B. The physical implica-
tions of our findings are studied in Sec. IV.

A. Vector-field perturbations and associated
symmetries

After inserting Eq. (3.5) into the remaining evolution
equations, the vector fluctuation βðt; rÞ decouples from the
metric fluctuation h0ðt; rÞ. The evolution equation reads

El½β� ¼ 0: ð3:6Þ

El½…� is a linear operator defined in the exterior black hole
region, r ≥ 2M:

El½βðt; rÞ� ¼ 2

ffiffiffiffiffiffiffiffiffiffi
Δ̄ðrÞ

q
∂rβ þ Δ̄ðrÞ∂2rβðt; rÞ − 2Σ̄ðrÞ∂t∂rβ

þ Σ̄2ðrÞ∂2t β
Δ̄ðrÞ − Σ̄0ðrÞ∂tβ − lðlþ 1Þβ; ð3:7Þ

where the integer l ≥ 2 denotes the multipole number. The
definition of the radial-dependent functions Δ̄ and Σ̄ are
given in terms of the background quantities

Δ̄ðrÞ ¼ r2ᾱ20
4ðĀþ rĀ0Þ ; ð3:8Þ

¼ ðrþQÞ2; ð3:9Þ

and

Σ̄ðrÞ ¼ r2ᾱ0
4Ā

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ᾱ20 − 4Ā
Āþ rĀ0

s
; ð3:10Þ

¼ rðrþQÞ
r − 2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ rð2M þ 2QÞ

q
: ð3:11Þ

In passing from the first to the second line in each
of the previous equations we are specializing to the
Schwarzschild-type “exterior” solution of Eqs. (2.7)–(2.9).
The vector Eq. (3.7) has intriguing properties. Although

it involves second derivatives along the temporal and radial
coordinates, it can be factorized as a product of two
commuting first-order operators Dþ and D−, as

El½βðt;rÞ� ¼ ðD−DþÞ½βðt;rÞ� ¼ ðDþD−Þ½βðt;rÞ� ð3:12Þ

with

D�½βðt; rÞ� ¼ Σ̄ffiffiffiffi
Δ̄

p ∂tβ −
ffiffiffiffi
Δ̄

p
∂rβ − σ�β: ð3:13Þ

The constants σ� in Eq. (3.13) depend on the multipole
number as

σþ ¼ 1þ l; σ− ¼ −l: ð3:14Þ

Crucially, the factorizability feature (3.12) is valid in the
entire exterior region of the black hole, and not only in the
proximity of the horizon. Such a property can be expected
for the evolution of fluctuations in the context of extremal
black holes [for example, see Ref. [42], their Eq. (2.30),
setting the extremal condition rS ¼ 2rQ]. However it is
quite unexpected in our case, where we deal with a
Schwarzschild background. The property (3.12) of the
evolution Eq. (3.6) implies that, for any given multipole
l, the general solution βðt; rÞ of the second order equation
is a linear combination of the solutions of the two first order
equations

1The work [41] shows that the dynamics of parity odd
fluctuations around spherically symmetric solutions for the
theory (2.1) are generically plagued by instabilities in the
near-horizon region. However, the specific background configu-
ration (2.7)–(2.9) we are considering avoids their arguments. In
fact—in the notation of [41]—it leads a vanishing quantity C1

and C6 as defined in Appendix C of [41]. But C1 is assumed to be
nonvanishing in [41], since it appears in the denominator of many
equations, upon solving constraint equations. Hence, the insta-
bility arguments as developed in [41] do not apply in the present
instance.
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Dþ½βðt; rÞ� ¼ 0; ð3:15Þ

D−½βðt; rÞ� ¼ 0: ð3:16Þ

The exact time-dependent solutions of Eqs. (3.15) and
(3.16) are not difficult to determine. The complete solution
then reads

βðt; rÞ ¼ cþ
Fþðtþ r⋆Þ
ðrþQÞσþ þ c−

F−ðtþ r⋆Þ
ðrþQÞσ− ; ð3:17Þ

where c� are two arbitrary constants, σ� appear as defined
in Eq. (3.14), and F� are two arbitrary functions of the
combination

tþ r⋆ ≡ tþ
Z

r Σ̄ðr̃Þ
Δ̄ðr̃Þ dr̃: ð3:18Þ

The “tortoise” radial coordinate r⋆ is given by the radial
integral in Eq. (3.18): we will study its properties in Sec. IV.
Further specifications of physically interesting solutions
depend both on the boundary conditionswe are interested in,
and on the structure of the configurations we wish to study.
When focusing on static fluctuations, first-order oper-

ators similar to our definition in Eq. (3.13) have been
introduced in [42,43] as “ladder” operators in the context of
Schwarzschild solutions of general relativity (see also
[44,45] for related proposals). The ladder operators studied
in [43] do not satisfy a commutation relation like our
(3.12). Nevertheless they allow one to generate solutions of
different multipole numbers starting from a given solution
at multipole level l. Such features have proven to be
helpful for understanding the vanishing of Love numbers of
black hole solutions.
We do not pursue this line of investigation. Instead, we

analyze the full time-dependent solutions for the equations
of motion, as given in Eq. (3.17). We ask whether the
particularly simple structure of our solutions (3.17) can be
associated with some underlying symmetry, possibly also
explaining the factorizability property (3.12) of the equa-
tions of motion. We answer affirmatively, and we determine
underlying conformal symmetries behind the vector evo-
lution equation. Interestingly, these conformal symmetries
are not just a near-horizon property of the configuration:
they extend to the entire exterior black hole geometry.

1. A first set of symmetries

We introduce the first-order operators Lp involving
solely first derivatives

Lp ¼ −
e

p
4Mðtþr⋆Þffiffiffiffi

Δ̄
p ½ð4M

ffiffiffiffi
Δ̄

p
þ pΣ̄Þ∂t − pΔ̄∂r�; ð3:19Þ

where p is an arbitrary integer and the tortoise radial
variable r⋆ is defined in Eq. (3.18). The quantities Δ̄, Σ̄ are

given in Eqs. (3.9) and (3.10). The operators Lp satisfy a
centerless Virasoro algebra

½Lp; Ls� ¼ ðp − sÞLpþs; ð3:20Þ

for every integer p, s. Moreover, for each p, the Lp

operators commute with the operator El of (3.6) controlling
the vector equations of motion:

½El; Lp� ¼ 0; ð3:21Þ

indicating that they can be used for generating solutions
from existing ones. Hence they represent a symmetry for
the system. The choice of operators (3.19) is inspired by
the structure of operators studied in [10], adapted to the
particular form of equations of motion in our context.
In fact, while a similar algebraic structure has been found in
the near-horizon region of Schwarzschild black hole in
GR [10], in our case the commutation relations are valid
everywhere outside the horizon.
In fact, we can consider an SLð2; RÞ conformal sub-

algebra constituted by the three operators Lþ1, L0, L−1, by
focusing on jpj ≤ 1. The operator El is associated with the
quadratic Casimir of the SLð2; RÞ algebra:

El½βðt; rÞ� þ lðlþ 1Þβðt; rÞ

¼
�
L2
0 −

1

2
fL1; L−1g

�
½βðt; rÞ�: ð3:22Þ

Subsequently, solutions of the equations of motion can be
related, starting from a highest weight representation of the
SLð2; RÞ algebra [10,11,18]. Such a representation is
defined through the conditions

L1½βð0Þðt; rÞ� ¼ 0; ð3:23Þ

L0½βð0Þðt; rÞ� ¼ σ�βð0Þðt; rÞ: ð3:24Þ

Both the choices σ� are allowed in principle, depending on
the physical structures one wishes to analyze, and also
depending on whether one studies (as we do here) a highest
weight or a lowest weight representation [18]. It is not
difficult to convince ourselves, using the commutation
relations (3.20), that a function βð0Þðt; rÞ satisfying the
previous conditions also satisfies the equations of motion
El½βð0Þðt; rÞ� ¼ 0. Moreover, starting from βð0Þðt; rÞ, we
can build its descendants as

βðnÞðt; rÞ≡ ðL−1Þn½βð0Þðt; rÞ�; ð3:25Þ

which also satisfy the equations of motion, and belong to
the conformal multiplet associated with the highest weight
solution βð0Þ.
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The general solution of conditions (3.23) and (3.24)
contains a plane-wave structure (but with a purely imagi-
nary frequency). It results

βð0Þðt; rÞ ¼ cþ
e−

σþðtþr⋆Þ
4M

ðrþQÞσþ þ c−
e−

σ−ðtþr⋆Þ
4M

ðrþQÞσ− ; ð3:26Þ

for two arbitrary constants c�. The solution (3.26) has
the correct structure we determined in (3.17) for solving
the vector equations of motion. As anticipated above, the
exponential structure (3.26) indicates that the highest
weight solution (3.26) behaves as a plane wave with a
purely imaginary frequency ω such that 4iMω ¼ σ� for
each of the two contributions in Eq. (3.26) [recall that the
σ� of Eq. (3.14) are integers]. We will return in Sec. IV to
study its properties and the properties of its descendants.

2. A second set of symmetries

Interestingly, besides the conformal symmetries associ-
ated with operators Lp of Eq. (3.19), the vector fluctuations
also enjoy extra symmetries, that shed light on the
factorizability property of the vector Eq. (3.12).
We introduce a new set of operators

PðσÞ
n ¼ −e n

4Mðtþr⋆Þ½4M∂t þ nσ�; ð3:27Þ

for an integer n. The quantity σ in the previous definition is
in principle arbitrary. These operators satisfy a Witt-like
algebra

½Pðσ1Þ
m ;Pðσ2Þ

n � ¼ ðm−nÞPðσ3Þ
mþnþm2ðσ1−σ2Þδmþn;0; ð3:28Þ

with a contribution resembling a central extension. The
quantity σ3 is related to σ1;2 by

ðm2 − n2Þσ3 ¼ ðm2σ1 − n2σ2Þð1 − δm2;n2Þ: ð3:29Þ

When σ1 ¼ σ2, one finds the usual Witt algebra. The

operators PðσÞ
m commute with the equations of motion

½El; P
ðσÞ
n � ¼ 0; ð3:30Þ

indicating they are also symmetries of the system of
equations. As for the commutation relations we met for
the L’s operators, also the commutation relations for the P
operators of Eq. (3.30) are valid everywhere in the exterior
black hole geometry. As far as we are aware, we are the first
to study the properties of these operators in a black hole
space-time in modified gravity.
The associated quadratic Casimir gives

lðlþ1Þβðt;rÞ¼P2
0½βðt;rÞ�−

1

2
fP1;P−1g½βðt;rÞ�: ð3:31Þ

The quantities PðσÞ
n have also elegant commutation relations

with the operators Lm defined in (3.19): we find

ðmþ nÞ½Lm; P
ðσÞ
n � ¼ m2Lmþn − n2PðσÞ

mþn: ð3:32Þ

Formþ n ¼ 0, the previous relation gives a trivial identity.
To deal with this case, we introduce another operator
(m ≠ 0)

DðσÞ ≡ 2

m
L0 −

1

m2
½Lm; P

ðσÞ
−m�; ð3:33Þ

¼ Σ̄ffiffiffiffi
Δ̄

p ∂tβ −
ffiffiffiffi
Δ̄

p
∂rβ − σβ; ð3:34Þ

which “closes the algebra” and commutes with all the
remaining operators:

0¼ ½Dðσ1Þ;El� ¼ ½Dðσ1Þ;Pσ
n� ¼ ½Dðσ1Þ;Ln� ¼ ½Dðσ1Þ;Dðσ2Þ�:

ð3:35Þ

Interestingly, comparing Eqs. (3.13) and (3.34), we realize
that for σ ¼ σ� the operators Dðσ�Þ coincide with the
operators D� of Eq. (3.13). We then find an algebraic
origin of the factorizable operators D� as related with a
combination of the two SLð2; RÞ (or more generally,
centerless Virasoro) algebras involving the operators Lm
and Pn. It would be interesting to find other examples of
similar rich algebraic structures for other black holes in
general relativity and beyond. We now demonstrate very
similar algebraic structures for metric fluctuations, before
turning to some physical implications of our findings
in Sec. IV.

B. Metric perturbations

Interestingly, under particular hypotheses, symmetries
identical to the ones we determined in the vector sector of
Sec. III A also apply to the metric sector. Whilst, as we
learned, the evolution equation for vector perturbations
decouple from the remaining propagating degrees of free-
dom, metric fluctuations are sourced by vector fluctuations.
To study the system more simply, we choose appropriate
boundary conditions to set the independent vector fluctua-
tions to zero, βðt; rÞ ¼ 0. We can then study the dynamics
of the metric perturbations only. We learned in Eq. (3.5)
that the quantity h1ðt; rÞ is algebraically related with
h0ðt; rÞ. Hence we focus on the dynamics of h0: it is
convenient to rescale it as

h0ðt; rÞ ¼ r2γðt; rÞ: ð3:36Þ

The metric perturbation γ satisfies the evolution equation

Gl½γðt; rÞ� ¼ 0; ð3:37Þ
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in the exterior geometry, with

Gl½γðt;rÞ� ¼
Σ̄ðrÞ2∂2t γ
Δ̄ðrÞ −

�
2Σ̄ðrÞffiffiffiffiffiffiffiffiffiffi
Δ̄ðrÞ

p þ Σ̄0ðrÞ
�
∂tγ−2Σ̄ðrÞ∂t∂rγ

þ4

ffiffiffiffiffiffiffiffiffiffi
Δ̄ðrÞ

q
∂rγþ Δ̄ðrÞ∂2rγ− ðl−1Þðlþ2Þγ:

ð3:38Þ

The functions Δ̄ and Σ̄ are defined in the exterior region of
the black hole in Eqs. (3.9) and (3.11). Similarly to the
vector case, the metric evolution Eq. (3.38) may also be
factorized into a product of two first-order operators, with
an identical structure.

Gl½γðt; rÞ� ¼ ðD−DþÞ½γðt; rÞ� ¼ ðDþD−Þ½γðt; rÞ�; ð3:39Þ

with

D�½γðt; rÞ� ¼ Σ̄ffiffiffiffi
Δ̄

p ∂tγ −
ffiffiffiffi
Δ̄

p
∂rγ − ρ�γ: ð3:40Þ

However this time the constants ρ� read

ρþ ¼ 2þ l; ρ− ¼ 1 − l: ð3:41Þ

Hence the general solution to Eq. (3.37) can be
expressed as a linear combination of solutions to equations
D−½γðt; rÞ� ¼ 0 and Dþ½γðt; rÞ� ¼ 0. We find the general
solution to be

γðt; rÞ ¼ dþ
Sþðtþ r⋆Þ
ðrþQÞρþ þ d−

S−ðtþ r⋆Þ
ðrþQÞρ− ; ð3:42Þ

with d� arbitrary constants, and S� arbitrary functions of
their argument.
Supplementing this, we find an underlying algebraic

structure which lies behind the factorizability property of
Eq. (3.39). It is actually the very same structure that applied
to the vector case. In fact, the very same operators Ln, P

ρ
m

commute with the operator Gl introduced in Eq. (3.38),
which controls the evolution equation for metric perturba-
tions. Consequently, the commutation relations remain the
same as the ones already studied in Sec. III A. Combining
these operators as in Eq. (3.34), we can form the combi-
nations (m ≠ 0)

Dðρ�Þ ≡
�
2

m
L0 −

1

m2
½Lm; P

ðρ�Þ
−m �

�
½γðt; rÞ�; ð3:43Þ

¼ Σ̄ffiffiffiffi
Δ̄

p ∂tβ −
ffiffiffiffi
Δ̄

p
∂rβ − ρ�β; ð3:44Þ

which precisely coincide with the factorizing operators
(3.40). Equivalent to the vector fluctuations, in the case of

the metric perturbations the structure of the evolution equa-
tions can be related with SLð2; RÞ symmetries of the system.

IV. SOME CONSEQUENCES OF THE
CONFORMAL SYMMETRIES

The rich structure of symmetries associated with the
evolution equations for vector and metric fluctuations
offers a deeper understanding of the factorizability proper-
ties of the system, Eqs. (3.12) and (3.39), which lead to
exact time-dependent solutions for the system. Solutions
can be organized in SLð2; RÞ multiplets, and have proper-
ties in common with quasinormal modes of black hole
perturbations in general relativity. There are, however,
some important differences. In this section, we seek to
investigate these differences further.
We begin by focusing on the vector perturbations

of Sec. III A, since the metric perturbations studied in
Sec. III B behave very similarly. We consider solutions
belonging to the highest weight representation of the
SLð2; RÞ algebra associated with the operators Lp (with
p ¼ 0;�1). We start with the time-dependent solution
corresponding to the highest weight (primary) vector. It
is written in Eq. (3.26). We reiterate it here substituting the
values given in Eq. (3.14) for the quantities σ�:

βð0Þðt; rÞ ¼ cþ
e−

ð1þlÞðtþr⋆Þ
4M

ðrþQÞð1þlÞ þ c−e
lðtþr⋆Þ

4M ðrþQÞl: ð4:1Þ

The solution depends on two free parameters, cþ and c−;
recall that the multipole numbers satisfy l ≥ 2. But the
contribution to Eq. (4.1) proportional to c− exponentially
grows in time. Due to this, it is not a physically interesting
solution for describing a small perturbation: hence we set
c− ¼ 0. We are left with a perturbation exponentially
decaying in time, as expected for a black hole quasinormal
mode (see e.g. [46] for a comprehensive review). However,
the radial dependence of the solution is somehow peculiar.
Recall the definition of tortoise coordinate r⋆ of Eq. (3.18):

r⋆ ¼
Z

r Σ̄ðr̃Þ
Δ̄ðr̃Þ dr̃ ¼

Z
r r̃
r̃þQ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ 2ðM þQÞr̃

p
r̃ − 2M

dr̃:

ð4:2Þ

In order for the integrand to be well defined for all r > 2M,
we impose the condition ðM þQÞ ≥ 0.
For the case Q ¼ −M, the integral is particularly simple

and gives

r⋆ ¼ 2M ln

�
r − 2Mffiffiffiffiffiffiffiffiffiffiffiffi
r −M

p
�
: ð4:3Þ

Hence we learn that r⋆ ∼ 2M lnðr − 2MÞ → −∞ nearby
the black hole horizon r → 2M, while r⋆ ∼ 2M lnðrÞ →
þ∞ at large distances r → þ∞ from the black hole. This is
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the expected behavior for the tortoise coordinate. When
expressed in terms of the original ðt; rÞ coordinates, the
resulting exact solution for the highest weight vector is

βð0Þðt;rÞ¼ cþe−
ð1þlÞt
4M

ðr−2MÞ1þl
2 ðr−MÞ3þ3l

4

; Q¼−M: ð4:4Þ

For QþM > 0 the integral can still be solved analyti-
cally, but the resulting formula is more complicated. It
scales as r⋆ ∼ lnðr − 2MÞ near the black hole horizon, and
as r⋆ ∼ r1=2 at plus infinity; again a behavior compatible
with what we should expect from a tortoise coordinate.
When expressed in terms of the original ðt; rÞ coordinates,
the resulting exact solution for the highest weight vector is

βð0Þðt;rÞ¼ cþe−
ð1þlÞt
4M

ðrþQÞ1þl

�
2MþQþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2þ2ðMþQÞr

p
2MþQ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2þ2ðMþQÞr

p
�1þl

2

×e−
1þl
2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2þ2ðMþQÞr

p
e

ð1þlÞQ2

2M
ffiffiffiffiffiffiffiffiffiffiffi
Qð2MþQÞ

p arccot

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2MQþQ2

Q2þ2ðMþQÞr

q �
:

ð4:5Þ

For both cases, when QþM ≥ 0 the resulting solution
for the primary vector has a structure

βð0Þðt; rÞ ∝ e−
ð1þlÞðtþr⋆Þ

4M

ðrþQÞð1þlÞ : ð4:6Þ

It has the correct ingoing behavior e−iωðtþr⋆Þ at the black
hole horizon, r⋆ → −∞; however, it does not exhibit the
correct outgoing behavior e−iωðt−r⋆Þ at r⋆ → þ∞, as
expected for a quasinormal mode. The solution is better
classified as a quasibound state, since there is energy
dissipation inside the black hole horizon; yet these modes
decay exponentially at radial infinity. This behavior is in
common with perturbations of massive fields [47–49]. In
our case, the nonminimal coupling of the vector with
gravity induces contributions to the energy momentum
tensor of the vector fluctuations, that appear to mimic the
effects of the vector mass, and cause the aforemen-
tioned decay.
Let us now examine the behavior of the frequencies of

the solutions involved. The structure of the solution (4.6)
indicates that the highest weight primary vector has a
purely imaginary frequency:

ω0 ¼ −i
ð1þ lÞ
4M

; ð4:7Þ

with no real part. Starting from the primary vector
solution of Eq. (4.6), we can generate its descendants
βðnÞ by repeated application of the operators L−1, as
explained around equation (3.25). The corresponding
frequencies result

Mωn ¼ Mω0 −
in
4
; n ¼ 0; 1; 2; 3… ð4:8Þ

Hence the elements of the highest weight representation
have frequencies shifted by an integer n with respect to the
frequency of the primary vector.
For large values of n, this formula greatly resembles the

behavior of frequency overtones of Schwarzschild black
hole perturbations in general relativity, which follows the
law [50,51]

GR; large n∶ Mωn ¼
ln 3
8π

−
i
4

�
nþ 1

2

�
þO½ðnþ 1Þ−1=2�:

ð4:9Þ

The relations between overtones and elements of a highest
representation were already noticed in the context of
general relativity [11], exploiting near-horizon conformal
symmetries in proximity of the horizon. In our modified
gravity setup, the result extends in the entire exterior
geometry, since our conformal symmetries are defined in
all exterior space. Comparing Eqs. (4.8) and (4.9), we
notice that in our modified gravity framework the frequen-
cies are purely imaginary and lack a real part. Moreover, as
explained above, we can not talk of quasinormal modes in
our system, but instead of quasibound states.
We have largely omitted discussion of the static solution,

however we make a brief note here as a basis for further
work. If one takes the zero-frequency limit of the time-
dependent solutions considered in Sec. III, then one may
directly solve the equations of motion in the static limit.
With this procedure, the vector equation appears to become
exactly that of the equation controlling the dynamics of
perturbations around an extremal Reissner-Nordström con-
figuration derived in [42]

Δ̄ðrÞ∂2rβðrÞþ2

ffiffiffiffiffiffiffiffiffiffi
Δ̄ðrÞ

q
∂rβðrÞ−lðlþ1ÞβðrÞ¼ 0; ð4:10Þ

where solutions may be obtained by repeated applications
of the L−1 operator to the highest weight vector (or,
conversely, applying the L1 operator to the lowest weight
vector) [18]. These solutions read

βðrÞ ¼ dðþÞ
ðrþQÞð1þlÞ þ dð−ÞðrþQÞl; ð4:11Þ

for two constants dð�Þ. When ðQþ 2MÞ > 0, both the
contributions proportional to dðþÞ and dð−Þ are regular at the
black hole horizon: subsequently, the associated Love
numbers do not necessarily vanish. This highlights an
immediate difference when compared to general relativity,
where typically only one among the two solutions of the
second-order static equation is physically acceptable. If
instead ðQþ 2MÞ ≤ 0, then the solution proportional to
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dðþÞ is not regular at the horizon, and should be discarded.
Some care must be taken when considering the metric
perturbations, as h1 is algebraically connected to h0 via
Eq. (3.5), it would appear as if these perturbations
immediately diverge on approach to the horizon. This
divergence, however, may be removed (as usual) by
moving into the tortoise coordinate, r�, suggesting to us
that this is purely a coordinate singularity.
The exterior background configuration that formed the

primary focus of this work can be smoothly joined into a
regular interior, and consequently static solutions of vector
and metric fluctuations may also be smoothly connected
with fluctuations in the interior [33] by the imposition of
particular constraints on the relevant parameters. Due to our
conformal symmetries appearing to be a global phenomena,
it would be interesting to develop our conformal symmetry
structures into the interior solutions.

V. SUMMARY AND OUTLOOK

We studied the evolution of parity-odd, time-dependent
field fluctuations around an asymptotically flat solution of a
vector-tensor theory of gravity. The geometry corresponds
to a Schwarzschild black hole. However the dynamics of
parity-odd fluctuations—both in the vector and in the metric
sectors—resemble the behavior of perturbations around
extremal black holes in general relativity. Their evolution
equations, controlled by operators containing second order
derivatives along time and space, can be factorized into a
product of two commuting first order operators. This
property allows us to analytically determine themost general
time-dependent solutions for the system of equations.
We shown that the aforementioned factorizability prop-

erty is associated with the existence of a large set of
symmetries behind the system of equations. We identified
two sets of operators belonging to SLð2; RÞ algebras,
which represent conformal symmetries for the system.
Once combined, they produce the aforementioned first-
order operators that generate the equations of motion.
Interestingly, while similar conformal SLð2; RÞ symmetries
have been found in proximity of the horizon of a
Schwarzschild configuration [10], our symmetries apply
to the entire exterior geometry of the black hole.
We then studied the highest weight representation for

one of the SLð2; RÞ algebras. We analytically determined
the expression for the highest weight time-dependent
solutions, and their descendants. The highest weight
representations are known to have common properties with
quasinormal modes of black holes in general relativity. In
fact, we found that elements belonging to the highest
weight multiplets have frequencies separated by integer
numbers, resembling the behavior of overtones of black
hole quasinormal modes. However, although our solutions
have the time-dependent profile of modes ingoing into the
black hole horizon, they do not describe outgoing modes
asymptotically far from it, as quasinormal modes do.

Instead, they decay exponentially with the radial distance
from the black hole, behaving as quasibound states.
Our results leave many open questions for future work.

We do not truly understand the origin of our conformal
symmetries, since we do not have AdS asymptotic boun-
dary conditions, nor do we consider configurations corre-
sponding to an extremal black hole. It would be nice to
relate our conformal symmetries with some hidden sym-
metry of our vector-tensor system, or, at least, with classes
of its solutions within some specific ansatz. A hint of this
possibility was discussed in Sec. II (building on [33]),
where we pointed out that our system admits spherically
symmetric solutions with scaling symmetries. Such sol-
utions can be used to smooth out the black hole horizon,
and describe ultracompact stars with a Schwarzschild
exterior geometry. It may also be possible that extra hidden
symmetries relate our configurations with an asymptoti-
cally AdS space in terms of subtracted geometries—as
shown in [10] for Schwarzschild geometries within general
relativity—or with some extremal or near-horizon black
hole space-times, hence geometrically motivating our
conformal symmetries as some form of isometries.
As stated above, among the general time-dependent

solutions for vector and metric perturbations, the highest
weight solutions are somehow special, and describe quasi-
bound states around the black hole geometry. It would be
interesting to relate such states with modes accounting for
the black hole entropy, or the entropy of regularized compact
stars discussed in Sec. II (see Ref. [33]). Regarding this
important point, we have been able to extend SLð2; RÞ
symmetries to centerless Virasoro algebras. It would be
interesting to investigate whether our symmetries can be
formed in terms of center-full Virasoro symmetries, and find
ways to include central charges. In fact, the latter can be
associated with the entropy of our geometrical configura-
tions, analogous to the case for the Kerr black hole [12].
In this work, we focused exclusively on time-dependent

solutions. However, the system also admits static solutions,
which can be determined by directly solving the static limit
of the equations of motion, or in terms of descendant (or
ascendant) elements of highest (lowest) weight representa-
tions [18] of the SLð2; RÞ symmetries. By imposing appro-
priate boundary conditions, the static solutions can be
related with the Love numbers of our configurations, a
topic which received much attention in the recent literature
in the context of emergent symmetries [18,43]. Some
preliminary results on Love numbers for our configurations
have been explored in [33], but certainly a more complete
analysis is needed.
We hope to be able to answer some of these questions in

the near future.
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APPENDIX: EVOLUTION EQUATIONS

We collect in this appendix the three evolution equations for the parity-odd fluctuations h0, h1, and β, obtained varying
the Lagrangian (2.1) expanded at second order in perturbation around the exterior solution of Eqs. (2.7)–(2.9):

0 ¼ 2r4ðQþ rÞ2∂2t βðt; rÞ − r4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ 2ðM þQÞr

q
∂t∂rh0ðt; rÞ

þ 2r2ð2M − rÞð2Q∂rh0ðt; rÞ þ ðr −QÞ∂th1ðt; rÞÞ þ 2r3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ 2ðM þQÞr

q
∂th0ðt; rÞ

þ r3ðr − 2MÞðQþ rÞ∂2rh0ðt; rÞ þ r4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ 2ðM þQÞr

q
∂
2
t h1ðt; rÞ

þ r3ð2M − rÞðQþ rÞ∂t∂rh1ðt; rÞ − 2r2ðr − 2MÞ2ðQþ rÞ2∂2rβðt; rÞ
þ 4rð2M − rÞðQþ rÞð3MQ − ðM þQÞrþ r2Þ∂rβðt; rÞ
− 2ð2M − rÞð6MQ2 þ ðl − 1Þðlþ 2ÞQ2rþ lðlþ 1Þð2Qr2 þ r3Þ − 2Mr2Þβðt; rÞ
− ðl − 1Þðlþ 2Þð2M − rÞr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ 2Mrþ 2Qr

p
h1ðt; rÞ

− ð4Mrðr − 3QÞ − rððlðlþ 1Þ − 8ÞQþ lðlþ 1ÞrÞÞh0ðt; rÞ; ðA1Þ

0 ¼ 2ðl − 1Þðlþ 2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ 2ðM þQÞr

p
ðQþ rÞ2ðr − 2MÞr h1ðt; rÞ −

2ðl − 1Þðlþ 2ÞðQ2 þ 2ðM þQÞrÞ
ðQþ rÞ3ðr − 2MÞ2 h0ðt; rÞ

þ
�

2

ðQþ rÞ2 −
ðl − 1Þðlþ 2Þ
ðr − 2MÞr

�
βðt; rÞ − 2

Qþ r
∂rβðt; rÞ − ∂

2
rβðt; rÞ þ

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ 2ðM þQÞr

p
ðr − 2MÞðQþ rÞ ∂t∂rβðt; rÞ

−
ð2MQ3 þ 6MQðM þ 2QÞrþ ð14M2 þ 13MQ − 3Q2Þr2 − 5ðM þQÞr3Þ

ðr − 2MÞ2ðQþ rÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ 2ðM þQÞr

p ∂tβðt; rÞ; ðA2Þ

0 ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ 2ðM þQÞr

p
ðr − 2MÞðQþ rÞ ∂

2
t βðt; rÞ þ ∂t∂rβðt; rÞ −

1

Qþ r
∂tβðt; rÞ

−
ðl − 1Þðlþ 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ 2ðM þQÞr

p
r2ðQþ rÞ βðt; rÞ − 2ðl − 1Þðlþ 2Þ

r2ðQþ rÞ h1ðt; rÞ

−
2ðl − 1Þðlþ 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ 2ðM þQÞr

p
Þ

rð2M − rÞðQþ rÞ2 h0ðt; rÞ: ðA3Þ

As explained in the main text, we can use (A3) to algebraically solve for h1 as a function of the remaining variables.
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