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Introduction

It is fair to say that the application of machine learning (ML) in healthcare has not been

smooth. The field of ML has let down the medical community and the wider public in many

respects: from research that is clinically irrelevant (1) or applying flawed methodologies (2),

to non-transparent sharing of data with industry (3, 4). Success stories do exist across a

range of physical health specialties, but they currently remain a minority (5, 6).

In hindsight, the pitfalls for ML in medical research are hardly surprising.

Epidemiology (medicine’s own approach) is underpinned by statistics and hypothesis

testing, designed to maintain ethical etiquette, ensure robust, unbiased results, and produce

strong evidence and knowledge in measured phenomena – at least in principle (7). It

therefore aims to understand the ‘true’ mechanisms connecting exposures and outcomes

(features and targets in ML jargon) and naturally gravitates towards simpler, easier to

interpret models. ML has its own established methodology (8), but one that is

fundamentally different, geared towards solving problems and developing

applications (9). It therefore pursues maximum accuracy at predicting the outcome and

naturally prefers complex, more powerful models. The different use of logistic regression by

both fields illustrates this. While epidemiology takes special care with correlated

independent variables and directs its attention to the estimated coefficients, ML mostly

disregards these and focusses on predictive power. Overall, while both epidemiology and

ML rely on data to obtain their results, their core principles are at odds. Nevertheless,

appropriately introducing ML elements into epidemiological research is possible and

guidelines have been published (10).

Mental health has been a target for ML, with the number of ML mental health

publications increasing dramatically since, 2017 (Figure 1), and the research community is

rightly expectant of its impact. However, the challenges are amplified: (1) losing sight of

mental health objectives, over-promising on data processing and problem-solving (9); (2)

technical hurdles of multiple underlying biases and often heightened privacy requirements

(11); and (3) difficulties building, validating and approving ML-enabled clinical devices for

diseases with insufficiently clear underlying mechanisms (12). Overall, it is the
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responsibility of individual researchers and institutions alike to

demonstrate the value of ML for mental health. Here, we reflect on

these ideas and their corresponding steps within the workflow of

ML mental health research (Figure 2), in the hope of bringing

awareness to the field and to elicit further conversations.
The ideal target for ML

Factors affecting an individual’s mental health extend far beyond

the clinical setting and are numerous, with complex interactions. Social,

demographic, and economic factors and people’s psychological make-

up carry as much or more weight in estimating risk of mental health

outcomes as medical symptoms, biological factors, and previous health

(e.g., the effect of loneliness in suicidal thoughts and self-harm) (13).

The complexity of these relationships is typified in suicide research,

where a meta-analysis of risk factors identified little progress in

prevention over a span of 50 years (14). Consequently, the heavy

reliance of classical statistics on prior expert knowledge and model

assumptions is another important limiting factor in mental health

research. Progress in data provision and data linkage has addressed

some of the challenges of mental health research (i.e., providing better

population coverage and a wider range of risk factors) but has brought

additional challenges such as larger volumes of data, lower data quality,

increased missing data and unstandardised phenotypes (15, 16).

Furthermore, the field of mental health is evolving, and expert

consensus is lacking on the taxonomy of psychiatric diagnosis (17)

or on preferred ‘transdiagnostic’ clinical phenotypes (18).

The complexity and wide reach of its disease models are why

mental health might particularly benefit from ML. ML is better

equipped than classical statistics to deal with large numbers of

factors, complex (i.e., non-linear) interactions, and noise (i.e., low

quality or missing data, unstandardised phenotypes) (19). A data-

driven approach is of particular value (20), such as deep learning

techniques (21), and ML could be pivotal in evidence provision for

diagnostic taxonomies or clinical phenotypes. However, this

requires demonstrable evidence on applied clinical validity.
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Keeping sight of mental health aims
and objectives

Single studies of ML predicting an outcome from a given

dataset, and therefore only presenting performance results of

these models, are of limited interest for mental health research

(22). More valuable applications seek to improve our understanding

of the disease (e.g., risk factors or time trends) and/or identify

intervention opportunities. Therefore, researchers working on ML

mental health should strive to: (1) extract new clinical insights from

their models; (2) validate such insights with supplementary

statistical analyses, and (3) contextualise their findings in the

existing clinical literature. Completing all three objectives in full is

not always possible, but researchers should make an honest effort on

each of them and, when unsuccessful, acknowledge it as a limitation

of their research.

This is not to say that research aiming at developing new ML

algorithms and methodologies to process data with similar

characteristics to those from mental health data (outlined below)

are unimportant. Such research may naturally rely on mental health

data, but the focus is on the fundamental characteristics of the data,

not its mental health content – indeed, the research could have been

completed using any other (non-mental health) data with the same

fundamental characteristics. In this scenario, researchers should

recognise that their work is about ML and not mental health, and

this should be reflected in the focus of their papers and their

targeted audience.
ML challenges when using mental
health data

Data curation is a critical part in developing ML models for

healthcare. Some of the steps involved in this process are identical to

those seen in epidemiological research: determining the sample size

through power calculations; assessing the quality of the variables;

studying bias in the patterns of missing data and recording

practices; and evaluating the representation of the study

population by the study sample. Other data curation steps are

more specific to ML: the need for larger volumes of data, especially

for complex models (23); comprehensive evaluation of outcome

variable quality (24); data partition strategies for model building

and validation (in ML jargon training and testing; cross-validation,

often done repeatedly to improve robustness and generalizability of

the results) (25); and considering additional security measures to

prevent data inference from the ML model itself (in ML jargon

membership inference attacks) (26).

Many of the data curation steps described above are potentially

more complex in mental health research. Recall and reporting

biases are common in self-reported mental health data, and can

lead to under- or overestimation of underlying associations (27).

When these biases affect the outcome variable, the entire validity of

the model can be compromised. With ML being a “data driven”

approach, these biases can be especially damaging in ML

applications. They should therefore be reduced as much as
FIGURE 1

Number of annual publications found by PubMed (https://
pubmed.ncbi.nlm.nih.gov/) between, 2010 and, 2023 with the terms
“machine learning” and one of “mental health”, “mental illness”,
“depression”, “anxiety”, “bipolar disorder, “schizophrenia”, “psychotic
disorder”, “ADHD” or “autism” in the title.
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possible to improve the model’s performance and clinical validity,

with the remaining bias carefully considered when assessing the

results (24). Additionally, achieving participation and retention of

participants in mental health research may also be challenging (28).

The use of routinely collected electronic health records alleviates

these issues to some extent; however, many important constructs of

interest are subjective and can only be self-reported. Furthermore,

minority groups (often the most affected by mental health

inequalities) and those with more severe syndromes are

frequently excluded and underserved (29). In addition, outcomes

such as self-harm are known to be under-recorded in electronic

health records (30). More generally, mental health data are viewed

as relatively sensitive, partly due to the personal nature of the

questions asked in a typical clinical assessment but also due to the

stigma surrounding mental health conditions and consequent

heightened privacy concerns – the public is slightly less inclined

to share their mental health data for research compared to their

physical health (31). This results in additional ethical and legal
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hurdles for mental health research (32), and more so for the

application of ML due to its need of large volumes of data and

the risk of models inadvertently carrying these data (26).

There is no easy fix for these problems, and, compared to most

other medical specialties, mental health researchers, especially those

applying ML, often need to: (1) focus more resources on their data

curation strategy; (2) address bias in their data with statistical tools

such as inverse probability weighing, which can be applied to both

epidemiology (33) and ML (34) methods; and (3) have a stronger

patient and public involvement and engagement plan (35).
ML enabled clinical mental health
devices with unknowns

The path from the lab to the clinical setting for medical

innovations is not simple. This is especially true for ML-enabled

devices, and still under discussion (5, 36) with regulatory

frameworks evolving (37). In fact, only a small proportion of the

published clinical ML research has been focused on deployment (5);

as of October 19, 2023, the United States Food and Drug Agency

reports approving less than 700 ML-enabled medical devices (based

on their summary descriptions) (38), although this is likely an

underestimation due to bias in explicit reporting of ML

methods (39).

The situation is exacerbated for clinical mental health devices,

with less real-world deployments (40) and fewer FDA approved

devices (6). This may reflect the currently restricted scope of such

devices as a consequence of our limited knowledge of the

mechanisms underlying mental disorders, at least relative to other

specialties (12). Without such knowledge, ML models are often fed

a wide range of risk factors suspected to be related to the outcome

(or in the hope that they will be of value during prediction). The

assumption here is that if a model accurately predicts the outcome,

it must be a true representation of the real-world phenomena

described by the data. However, the data may contain variables

that are confounders or act as proxies to latent variables, thus

rendering the assumption unfair. When the potential risk factors fed

to the ML algorithm lack evidence supporting and explaining their

relationship with the outcome (as it is often the case), the clinical

validity of the resulting ML-enabled mental health device remains

to be proven, regardless of its accuracy. However, with the clinical

knowledge laid down, healthcare professionals and patients will be

more likely to accept the black box quality of ML models (41), and

ML will have a clearer path to developing mental health solutions.
Individual and collective responsibility

Researchers have a responsibility to demonstrate that, when

correctly applied, ML can lead to improved knowledge and care of

mental health disorders. To achieve this, ML practitioners must

work in close collaboration with mental health epidemiologists and

clinicians, and actively seek their input to protocol design and data

interpretation. Crucially, they need to acknowledge that data fed

into ML models represent personal experiences, to be aware of the
FIGURE 2

Typical workflow of machine learning – mental health research.
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particular sensitivities of mental health data, and to learn to handle

these data responsibly above and beyond legislated privacy and

security requirements. Conversely, mental health researchers

seeking to engage with ML must avoid being blinded by the hype.

Instead, they must continue to adhere to the main methodological

principles of epidemiology and mental health research, and

scrutinise any ML models generated (42). They should also be

cautious of utilizing easy-to-use ML libraries and tools without the

appropriate training, as these have led to the abuse and misuse of

ML by non-experts (43).

Organisations and large projects could play a key role in

ensuring that the fields of mental health and ML interact as

described here. For example, DATAMIND (the MRC funded, UK

Hub for Mental Health Data Science; www.datamind.org.uk) brings

the issues outlined above to the attention of the field of mental

health research at large, holding regular meetings and conferences

with a wide range of stakeholders, and providing mental health data

science workshops for early career researchers. DATAMIND is also

developing a set of standardised mental health phenotypes to be

used by the scientific community (44) and contributing to the

cataloguing of available mental health data resources to improve

discoverability and accessibility (45). Crucially, DATAMIND

achieves this in close collaboration with academics, healthcare

professionals, industry, and, most importantly, patients and

people with lived experiences.

Concluding remarks

Overall, the opportunity of using ML in mental health is not

cost-free. As described, it introduces complexity, especially in

mental health research, and additional workflow steps. Therefore,

its application in healthcare generally, and in mental health

particularly, needs to be justified. Ideally, this should be done at

the planning stage, evidencing why the use of ML is needed to solve

an existing problem that is hindering research: for example, to

reduce an original set of available measurements to a size that is

more manageable for traditional statistical regression (46).

Alternatively, the benefits of using ML over conventional

statistical methods can be treated as a hypothesis to be tested as

part of the research project: for example, by comparing how well

ML and statistical models fit the used data.

Beyond the hype, ML can genuinely play a central role in the

future of psychiatry and mental healthcare. However, this depends

on researchers applying ML responsibly and avoiding the mistakes

seen in its application to other medical specialties.
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