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A B S T R A C T

Parallel and Orthogonal Superposition experiments may be employed to probe a material’s non-linear rheolog-
ical properties through the rate-dependent parallel and orthogonal superposition moduli, 𝐺∗

∥(𝜔, �̇�) and 𝐺∗
⟂(𝜔, �̇�),

respectively. In a recent series of publications, we have considered the problem of interconversion between
parallel and orthogonal superposition moduli as a means of probing flow induced anisotropy. However, as
noted by Yamomoto (1971) superposition flows may be used to assess the ability of a particular constitutive
model to describe the flow of complex fluids. Herein, we derive expressions for the superposition moduli of
the Gordon–Schowalter (or Johnson–Segalman) fluid. This model contains, as special cases, the corotational
Maxwell model, the upper (and lower) convected Maxwell models, the corotational Jeffreys model, and the
Oldroyd-B model. We also consider the conditions under which the superposition moduli may take negative
values before studying a specific, non shear banding, worm like micellular system of cetylpyridinium chloride
and sodium salicylate. We find that, using a weakly non-linear analysis (in which the model parameters are rate
independent) the Gordon–Schowalter/Johnson–Segalman (GS/JS) model is unable to describe the superposition
moduli. However, by permitting strong non-linearity (allowing the GS/JS parameters to become shear rate
dependent), the superposition moduli, at all rates studied, are described well by the model. Based on this
strongly non-linear analysis, the shear rate dependency of the GS/JS ‘slip parameter’, 𝑎, suggests that the
onset of shear thinning in the specific worm-like micellular system studied herein is driven by a combination
of microstructural modification and a transition from rotation dominated (as in the corotational Jeffreys model)
to shear dominated (as in the Oldroyd-B model) deformation of the microstructural elements.
. Introduction

Superposition Rheometry may be used to characterise the non-
inear rheological properties of complex fluids. The techniques involve
he simultaneous application of (i) a unidirectional shear flow that
rives the fluid into a steady, but non-equilibrium, condition and (ii) a
mall amplitude oscillatory flow that probes the frequency-dependent
heological characteristics of the material at the imposed unidirectional
hear rate. The oscillatory component may be applied in either a
parallel’ (PSR) or ‘orthogonal’ (OSR) configuration. In PSR, the unidi-
ectional and oscillatory flow components are applied in the same di-
ection whilst in OSR the oscillatory component is applied orthogonally
o the unidirectional flow. Analysis of the oscillatory flow component
llows one to report the frequency and strain-rate dependent parallel
r orthogonal superposition complex moduli, 𝐺∗

∥(𝜔, �̇�) and 𝐺∗
⟂(𝜔, �̇�),

∗ Corresponding author.
E-mail address: d.j.curtis@swansea.ac.uk (D.J. Curtis).

respectively. Whilst it is tempting to interpret these parameters as per
the linear modulus, 𝐺∗(𝜔) it is important to note that their relationship
to the underlying stress relaxation characteristics of the fluid are not
the same as those of 𝐺∗(𝜔) [1–5].

The techniques of Superposition Rheometry were first discussed in
the literature in the 1960’s [1,6–9]. Until very recently, the orthogonal
experiment could only be performed using a TA Instruments ARES-
G2 rheometer fitted with specialist geometries [2,10] (or using be-
spoke instrumentation/rheometer adaptations [11–14]). Consequently,
experimental studies employing orthogonal superposition are scarce.
However, in the past few years, orthogonal superposition accessories
have become available for a wider range of rheometers including the
HR series from TA Instruments and the MCR series of rheometers
from Anton-Paar (as a bespoke accessory). In contrast, the PSR ex-
periment can be implemented on most single head rheometers using
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standard geometries. However, the complexity of the expressions re-
lating the parallel moduli to the underlying relaxation characteristics
of the material, such as those derived by Yamamoto [1] for a Lodge
type integral constitutive model (lodge ‘type’ because the underlying
relaxation spectrum was allowed to be shear-rate dependent — thus
permitting strong non-linearity) led to a widespread belief that the
parallel moduli were not Kramers–Krönig (KK) compliant. However,
whilst considering the problem of interconversion between the parallel
and orthogonal complex moduli, Curtis & Davies [3] approached the
analysis of the Lodge style integral constitutive model of Yamamoto
in terms of a rate-dependent response spectrum and demonstrated
that both parallel and orthogonal moduli are indeed, KK compliant.
The same authors have also derived expressions for the superposition
moduli for the Wagner-I and K-BKZ [4], and corotational Maxwell [5]
(CRM) models, demonstrating that the superposition moduli for these
models are also KK compliant.

Closely related to the CRM, the Gordon–Schowalter (GS) [15] model
(which is equivalent to the Johnson–Segalman (JS) model [16] in the
limit of the single mode [17]) is a differential model derived by intro-
ducing the GS convected derivative (see Section 2.2), in contrast, the JS
model is an integral model derived by admitting a non-affine velocity
gradient to the Lodge integral constitutive equation. As discussed by
Ramlawi et al. [17] in their study of the weakly nonlinear response
of the JS model, the latter is more general and, in contrast to the GS
model (which was derived for polymeric materials), is not restricted
to a particular microstructure. The terms GS and JS appear to be
used interchangeably in the literature. In the present work, we limit
our discussion to a single mode and hence refer to the GS/JS model
throughout. The GS/JS model contains a ‘slip’ or ‘affinity’ parameter,
𝑎, which permits the polymer chains and the bulk solvent to experience
different velocity gradients - i.e. the polymer chains ‘slip’ relative to the
velocity gradient imposed by the bulk deformation. Where 𝑎 = 0 the
GS/JS model reduces to the corotational Maxwell (CRM) model, whilst
for 𝑎 = 1 the model reduces to the Upper Convected Maxwell (UCM)
model. Herein, we derive expressions for the parallel and orthogonal
superposition moduli of the GS/JS model which may be used to facil-
itate model based interconversion between the superposition moduli
to support the study of flow induced anisotropy (as discussed in [5]).
However, the techniques of superposition rheometry are also excel-
lent tools for assessing the ability of constitutive models to describe
particular fluids [1].

In the present work, we assess the ability of the CRM and GS/JS
constitutive models to describe the dynamics of a (non shear-banding)
Worm-like Micellular (WLM) system (cetylpyridinium chloride/sodium
salicylate) under superposition flows where the analysis has been per-
formed on (i) a weakly non-linear and (ii) a strongly non-linear ba-
sis. In defining these conditions we draw on the definitions provided
by Malkin (1995) [18] who proposed that flows should be consid-
ered weakly non-linear where the underlying relaxation spectrum is
not modified by the flow but strongly non-linear where the materi-
als microstructural response to the imposed flow condition generates
changes to its underlying relaxation properties - i.e. in the strongly
non-linear regime the flow shear stresses can no longer be predicted
from the linear relaxation spectrum (in combination with some non-
linear parameter) and, in terms of superposition rheometry, leads to
rate-dependent parameterisation of the flow models.

Many constitutive models have been proposed, and used, to study
WLM systems [19–21]. Anderson, Pearson & Sherwood (2006) [22]
evaluated the ability of the Bautista-Monero and a Modified-Bautista–
Monero constitutive models to capture the dynamics of a WLM system
under parallel superposition flows concluding that neither model per-
formed well and noting that ‘often rheological models that are in
excellent agreement with a restricted set of experimental results per-
form poorly when used to predict flows other than those on which they
have been calibrated’ [22]. Ballesta et al. [23] studied shear banding
2

WLM using parallel superposition using a two-fluid model. As part of 𝜸
their treatment they employed the Oldroyd-B model for which Booij
(1966) [24] derived expressions for the superposition moduli. Kim et al.
(2013) [2] derived approximate solutions for the superposition moduli
(both parallel and orthogonal) for the Giesekus model and found the
model was able to capture some features of the experimental data for a
shear thinning WLM system but was unable to predict the superposition
moduli under shear banding conditions. Recently, Medium-Amplitude-
Parallel-Superposition (MAPS) rheometry (which includes the parallel
superposition experiment as a special case) on a WLM system has been
reported by Lennon et al. [25] who demonstrated that the CRM was
able to better describe the high frequency dynamics of a WLM system
than the Giesekus model. The authors also noted that the use of con-
stitutive models specifically formulated for WLM systems would give
better insight into the physical processes that underlie the rheological
data. In the present work, we also adopt a relatively simple constitutive
modelling approach (using the CRM and JS/GS models) with a view to
exploring microstructure based constitutive models in future work. For
example, whilst the JS/GS model has been used to study shear banding,
its successful implementation requires the inclusion of a stress diffusion
term which we leave to further work [26,27]. The remainder of this
article begins by reviewing the expressions for the superposition moduli
for the corotational Maxwell model (as derived in [5]) before extending
the analysis to the GS/JS model (incorporating the ‘slip’ parameter ‘𝑎’).

e then present experimental data for a specific (non-shear banding)
orm-like micellular system (cetylpyridinium chloride/sodium salicy-

ate/sodium chloride) before analysing the data in the context of both
i) weak and (ii) strong non-linearity using the corotational Jeffreys
odel (i.e. the CRM with a Newtonian solvent) and GS/JS models (with
ewtonian solvent).

. Modelling

In [5], Curtis & Davies derived expressions for the parallel and
rthogonal superposition moduli for the corotational Maxwell model.
he reader is referred to Ref. [5] for details of the derivation but the
ain results are provided below for convenience.

.1. Corotational Maxwell model

We begin by writing the Cauchy stress tensor as:

= −𝑝𝐈 + 𝝉 (2.1)

or which the extra stress tensor 𝝉 can be written as:

+ 𝜆𝝉
𝑡

= 𝜂0�̇� (2.2)

or the corotational Maxwell model, the objective derivative is the
orotational, or Jaumann, derivative defined as:
𝝉
𝑡

= 𝐷𝝉
𝐷𝑡

+ 1
2
[𝝎 ⋅ 𝝉 − 𝝉 ⋅ 𝝎] (2.3)

For a parallel superposition flow, with arbitrary superimposed per-
urbation 𝜖�̇�(𝑡) (e.g. oscillation, step, chirp) to the viscometric flow
characterised by a steady, unidirectional, shear rate �̇�) we can write
he velocity field as:

∥ =
[

(�̇� + 𝜖�̇�)𝑦, 0, 0
]𝑇 (2.4)

hilst for an orthogonal experiment we can write

⟂ =
[

�̇�𝑦, 0, 𝜖�̇�𝑦
]𝑇 (2.5)

n the present work we restrict or attention to simple (i.e. single tone)
scillatory perturbations and hence 𝜙(𝑡) = 𝑒−𝑖𝜔𝑡. For later use, we define
he vorticity and strain rate tensors as:

= ∇𝒖 − ∇𝒖𝑇 (2.6)

nd

̇ 𝑇
= ∇𝒖 + ∇𝒖 (2.7)
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For such flows, the material derivative in (2.3) (i.e. 𝐷𝜏∕𝐷𝑡) reduces
o the normal derivative (i.e. 𝑑𝜏∕𝑑𝑡). Using a power series expansion
bout the viscometric flow case we can write the following expressions
or the parallel and orthogonal moduli [5]:

′
∥(�̇� , 𝜔) =

𝜂0𝜔2𝜆1(1 + 𝜔2𝜆21 − 3𝜆21�̇�
2)

(1 + 𝜆21�̇�
2)[(1 + 𝜆21�̇�

2 − 𝜔2𝜆21)
2 + 4𝜔2𝜆21]

(2.8)

𝐺′′
∥ (�̇� , 𝜔) =

𝜂0𝜔(1 + 𝜔2𝜆21 − 𝜆21�̇�
2)

(1 + 𝜆21�̇�
2 − 𝜔2𝜆21)

2 + 4𝜔2𝜆21
(2.9)

𝐺′
⟂(�̇� , 𝜔) =

𝜂0𝜔2𝜆1
1 + 𝜆21�̇�

2

⎡

⎢

⎢

⎢

⎣

(

1 + 1
2𝜆

2
1�̇�

2
)

𝜔2𝜆21 +
(

1 + 1
4𝜆

2
1�̇�

2
)(

1 − 1
2𝜆

2
1�̇�

2
)

(1 + 1
4𝜆

2
1�̇�

2 − 𝜔2𝜆21)
2 + 4𝜔2𝜆21

⎤

⎥

⎥

⎥

⎦

(2.10)

𝐺′′
⟂(�̇� , 𝜔) =

𝜂0𝜔
1 + 𝜆21�̇�

2

⎡

⎢

⎢

⎢

⎣

(

1 + 1
4𝜆

2
1�̇�

2
)2

+ 𝜔2𝜆21
(

1 + 3
4𝜆

2
1�̇�

2
)

(1 + 1
4𝜆

2
1�̇�

2 − 𝜔2𝜆21)
2 + 4𝜔2𝜆21

⎤

⎥

⎥

⎥

⎦

(2.11)

.2. Parallel superposition moduli for the Gordon–Schowalter/Johnson–
egalman model

The GS/JS Model [15,16], includes a parameter, −1 ≤ 𝑎 ≤ 1,
nterpreted as a ’slip parameter’ that allows the polymer (or other
icrostructural element) to experience non-affine deformation. The
odel contains the upper convected, lower convected and corotational
axwell models as special cases (corresponding to 𝑎 = −1, 1 and 0, re-

pectively). As for the CRM, to derive expressions for the superposition
oduli we begin by writing the Cauchy stress tensor as:

= −𝑝𝐈 + 𝝉 (2.12)

or which the extra stress tensor 𝝉 can be written as:

+ 𝜆𝝉
𝑡

= 𝜂0�̇� (2.13)

where the objective derivative is the Gordon–Schowalter [15] deriva-
tive defined as:
𝝉
𝑡

= 𝐷𝝉
𝐷𝑡

+ 1
2
[(𝝎 − 𝑎�̇�) ⋅ 𝝉 − 𝝉 ⋅ (𝝎 + 𝑎�̇�)] (2.14)

However, for superposition flows, the material derivative in (2.14)
reduces to the normal derivative such that
𝝉
𝑡

= 𝑑𝝉
𝑑𝑡

+ 1
2
[(𝝎 − 𝑎�̇�) ⋅ 𝝉 − 𝝉 ⋅ (𝝎 + 𝑎�̇�)] (2.15)

The extra stress tensor, 𝝉 is symmetric and may be written as six
omponent equations. For the parallel superposition case, (where the
elocity field is defined by Eq. (2.4)) the constraint 𝜏13 = 𝜏23 = 𝜏33 = 0
s admitted and the following set of linear differential equations in 𝜏11,
𝜏22 and 𝜏12 may be written:

𝜏11 + 𝜆1
[

�̇�11 − (�̇� + 𝜖�̇�(𝑡))𝜏21(1 + 𝑎)
]

= 0 (2.16)

𝜏12 + 𝜆1�̇�12 +
𝜆1
2
(�̇� + 𝜖�̇�(𝑡))

[

(1 − 𝑎)𝜏11 − (1 + 𝑎)𝜏22
]

= 𝜂0(�̇� + 𝜖�̇�(𝑡)) (2.17)

𝜏22 + 𝜆1
[

�̇�22 + (�̇� + 𝜖�̇�(𝑡))𝜏21(1 − 𝑎)
]

= 0 (2.18)

Further, from Eqs. (2.16) and (2.18) we can write,

𝜏22 = −
( 1 − 𝑎
1 + 𝑎

)

𝜏11 (2.19)

which allows us to write the following pair of linear differential equa-
tions:

𝜏11 + 𝜆1�̇�11 − 𝜆1�̇�(1 + 𝑎)𝜏21 − 𝜖𝜆1�̇�(𝑡)𝜏21(1 + 𝑎) = 0 (2.20)

𝜏 + 𝜆 �̇� + 𝜆 (1 − 𝑎)�̇�𝜏 + 𝜖𝜆 (1 − 𝑎)�̇�(𝑡)𝜏 = 𝜂 �̇� + 𝜖𝜂 �̇�(𝑡) (2.21)
3

12 1 12 1 11 1 11 0 0
Considering the viscometric case, i.e. 𝜖 = 0, Eqs. (2.20) and (2.21)
reduce to:

𝜏11 − 𝜆1�̇�(1 + 𝑎)𝜏21 = 0 (2.22)

𝜏12 + 𝜆1(1 − 𝑎)�̇�𝜏11 = 𝜂0�̇� (2.23)

from which we can write the viscometric expressions for 𝜏11 and 𝜏12 as:

𝜏(0)11 =
𝜂0𝜆1�̇�2(1 + 𝑎)

1 + 𝜆21�̇�
2(1 − 𝑎2)

(2.24)

and

𝜏(0)12 =
𝜂0�̇�

1 + 𝜆21�̇�
2(1 − 𝑎2)

(2.25)

which, for 𝑎 = 0, reduce the expressions for the corotational Maxwell
model as expected.

We now represent the extra stress tensor as a power series:

𝝉 = 𝝉 (0)(𝑡) + 𝜖𝝉 (1)(𝑡) + 𝜖2𝝉 (2)(𝑡) +⋯ (2.26)

and substitute into Eqs. (2.20) and (2.21) to give:

[𝜏(0)11 + 𝜖𝜏(1)11 ] + 𝜆1[�̇�
(0)
11 + 𝜖�̇�(1)11 ] − 𝜆1�̇�(1 + 𝑎)[𝜏(0)12 + 𝜖𝜏(1)12 ]

− 𝜖𝜆1�̇�(𝑡)[𝜏
(0)
12 + 𝜖𝜏(1)12 ](1 + 𝑎) = 0 (2.27)

𝜏(0)12 + 𝜖𝜏(1)12 ] + 𝜆1[�̇�
(0)
12 + 𝜖�̇�(1)12 ] + 𝜆1(1 − 𝑎)�̇�[𝜏(0)11

+ 𝜖𝜏(1)11 ] + 𝜖𝜆1(1 − 𝑎)�̇�(𝑡)[𝜏(0)11 + 𝜖𝜏(1)11 ] = 𝜂0�̇� + 𝜖𝜂0�̇�(𝑡) (2.28)

oting that �̇�(0)11 = �̇�(0)12 = 0 and substituting Eqs. (2.24) and (2.25) for
(0)
11 and 𝜏(0)12 , respectively we can write (to first order in 𝜖):

(1)
11 + 𝜆1�̇�

(1)
11 − 𝜆1�̇�(1 + 𝑎)𝜏(1)12 = 𝛼�̇�(𝑡) (2.29)

(1)
12 + 𝜆1�̇�

(1)
12 + 𝜆�̇�(1 − 𝑎)𝜏(1)11 = 𝛽�̇�(𝑡) (2.30)

here

=
𝜂0𝜆1�̇�(1 + 𝑎)

1 + 𝜆21�̇�
2(1 − 𝑎2)

(2.31)

𝛽 =
𝜂0

1 + 𝜆21�̇�
2(1 − 𝑎2)

(2.32)

Note that 𝛽 is equal to the rate-dependent viscosity for the viscoemetric
case (see Eq. (2.25)).

For a parallel superposition experiment with a single tone sinusoidal
perturbation (i.e. a standard PSR experiment), the first order shear
stress may be written in the form:

𝜏(1)12 (𝑡) = 𝐺∗
∥(�̇� , 𝜔)𝑒

𝑖𝜔𝑡 (2.33)

here 𝐺∗
∥(�̇� , 𝜔) denotes the usual rate-dependent parallel superposition

omplex modulus. Writing 𝜙(𝑡) = 𝑒𝑖𝜔𝑡 in Eqs. (2.29) and (2.30), it is also
lear that 𝜏(1)11 will take the form:

(1)
11 (𝑡) = 𝐴(𝜔)𝑒𝑖𝜔𝑡 (2.34)

ence, we can write Eqs. (2.29) and (2.30) as:

(�̇� , 𝜔)(1 + 𝜆1𝑖𝜔) − 𝜆1�̇�(1 + 𝑎)𝐺∗
∥(�̇� , 𝜔) = 𝛼𝑖𝜔 (2.35)

∗
∥(�̇� , 𝜔)(1 + 𝜆1𝑖𝜔) + 𝜆1�̇�(1 − 𝑎)𝐴(�̇� , 𝜔) = 𝛽𝑖𝜔 (2.36)

olving for 𝐺∗
∥(�̇� , 𝜔), we find:

∗
∥(�̇� , 𝜔) =

𝜂0𝑖𝜔
1 + 𝜆21�̇�

2(1 − 𝑎2)

[

(1 + 𝜆1𝑖𝜔) − 𝜆21�̇�
2(1 − 𝑎2)

(1 + 𝜆1𝑖𝜔)2 + 𝜆21�̇�
2(1 − 𝑎2)

]

(2.37)

which reduces to (i) the expression for the corotational Maxwell model
when 𝑎 = 0 and (ii) the linear viscoelastic modulus when �̇� = 0.
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Resolving Eq. (2.37) into its real and imaginary parts, we arrive at
the expressions for the parallel storage and loss moduli, respectively.

𝐺′
∥(�̇� , 𝜔) =

𝜂0𝜔2𝜆1(1 + 𝜔2𝜆21 − 3𝜆21�̇�
2(1 − 𝑎2))

(1 + 𝜆21�̇�
2(1 − 𝑎2))[(1 + 𝜆21�̇�

2(1 − 𝑎2) − 𝜔2𝜆21)
2 + 4𝜔2𝜆21]

(2.38)

𝐺′′
∥ (�̇� , 𝜔) =

𝜂0𝜔(1 + 𝜔2𝜆21 − 𝜆21�̇�
2(1 − 𝑎2))

(1 + 𝜆21�̇�
2(1 − 𝑎2) − 𝜔2𝜆21)

2 + 4𝜔2𝜆21
(2.39)

It is instructive to consider the conditions for which negative values
f the parallel moduli may appear. Noting that 𝜆1 > 0, 𝜔 > 0 and
1 ≤ 𝑎 ≤ 1 we can see that:

1. The condition for 𝐺′
∥(�̇� , 𝜔) to be globally positive (i.e. 𝐺′

∥(�̇� , 𝜔) >
0 for all positive 𝜔) is that

𝜆21�̇�
2(1 − 𝑎2) < 1

3
.

Otherwise, 𝐺′
∥(�̇� , 𝜔) < 0 where

𝜔2𝜆21 < 3𝜆21�̇�
2(1 − 𝑎2) − 1.

2. The condition for 𝐺′′
∥ (�̇� , 𝜔) to be globally positive is that

𝜆21�̇�
2(1 − 𝑎2) < 1.

Otherwise, 𝐺′′
∥ (�̇� , 𝜔) < 0 where

𝜔2𝜆21 < 𝜆21�̇�
2(1 − 𝑎2) − 1.

Hence, for a given frequency, 𝐺′
∥(�̇� , 𝜔) will become negative at lower �̇�

han 𝐺′′
∥ (�̇� , 𝜔).

The frequency at which the moduli change sign (𝜔′
𝑐∥ and 𝜔′′

𝑐∥ for
′
∥(�̇� , 𝜔) and 𝐺′′

∥ (�̇� , 𝜔), respectively) can be written as:

′
𝑐∥ =

√

3�̇�2(1 − 𝑎2) − 1
𝜆21

(2.40)

and

𝜔′′
𝑐∥ =

√

�̇�2(1 − 𝑎2) − 1
𝜆21

(2.41)

from which we see that, provided the criteria for globally positive mod-
uli are not met, for a given shear rate and relaxation time, increasing
|𝑎| pushes both 𝜔′

𝑐∥ and 𝜔′′
𝑐∥ to lower values with 𝜔′

𝑐∥ > 𝜔′′
𝑐∥ until, at

|𝑎| =
√

1 − 1
𝜆21�̇�

2

′′
𝑐∥ reaches zero and globally positive 𝐺′′

∥ (�̇� , 𝜔) are recovered before, at

𝑎| =
√

1 − 1
3𝜆21�̇�

2

′
𝑐∥ reaches zero and globally positive 𝐺′

∥(�̇� , 𝜔) are recovered.

2.2.1. Kramers–Krönig compliance of the GS/JS parallel moduli
As noted in Section 1, it is often claimed in the literature that

the parallel superposition moduli do not satisfy the Kramers–Krönig
relations. This assertion appears to be based on the seminal work of
Yamamoto (1973) [1] in which he derived expressions for 𝐺′

∥(�̇� , 𝜔) and
′′
∥ (�̇� , 𝜔) for a Lodge-type integral constitutive equation (specifically

Lodge-type’ because Yamamoto allowed the memory function of the
odge model to become shear rate dependent). Yamamoto’s expressions
ere believed to invalidate the Kramers–Krönig relations for over 4
ecades but it has recently been shown that the expressions could be
ewritten as a pair of Kramers–Krönig compliant moduli. Since then, the
-BKZ and Wagner I models [4], and the CRM model [5] have also been
hown to have Kramers–Krönig compliant parallel (and orthogonal)
oduli. The parallel moduli for the GS/JS model (Eqs. (2.38) and

2.39)) also satisfy the Kramers–Krönig relations since 𝐺∗
∥(�̇� , 𝜔), apart

rom at its poles (which occur, in the upper half of the complex
4

frequency plane, at 𝜔 = ±�̇�
√

(1 − 𝑎2) + 𝑖𝜆−11 ), is an analytic function
of 𝜔 throughout the complex frequency plane.

2.3. Orthogonal superposition for the Gordon-Schowalter model

For orthogonal superposition experiments, in which the flow field
is defined by Eq. (2.5), expansion of the extra stress tensor around the
viscometric case (see Appendix) leads to a set of six linear simultaneous
differential equations. Of these, the 𝜏13 and 𝜏23 components define a
solvable pair from which the orthogonal moduli can be determined:

𝜏(1)13 + 𝜆1�̇�
(1)
13 − 1

2
𝜆1�̇�(1 + 𝑎)𝜏(1)23 = 1

2
𝛼�̇� (2.42)

(1)
23 + 𝜆1�̇�

(1)
23 +

𝜆1
2
�̇�(1 − 𝑎)𝜏(1)13 = 1

2
(𝛽 + 𝜂0)�̇� (2.43)

or an orthogonal superposition experiment with a single tone sinu-
oidal perturbation, the first order orthogonal shear stress (𝜏23) can be

written

𝜏(1)23 (𝑡) = 𝐺∗
⟂(�̇� , 𝜔)𝑒

𝑖𝜔𝑡 (2.44)

here 𝐺∗
⟂(�̇� , 𝜔) denotes the usual rate-dependent orthogonal superpo-

ition complex modulus. Writing 𝜙(𝑡) = 𝑒𝑖𝜔𝑡 in Eqs. (2.42) and (2.43),
t is also clear that 𝜏(1)23 will take the form:

(1)
13 (𝑡) = 𝐵(�̇� , 𝜔)𝑒𝑖𝜔𝑡 (2.45)

ence, Eqs. (2.42) and (2.43) can be written as:

(�̇� , 𝜔) + 𝜆1𝑖𝜔𝐵(�̇� , 𝜔) −
1
2
𝜆1�̇�(1 + 𝑎)𝐺∗

⟂(�̇� , 𝜔) =
1
2
𝛼𝑖𝜔 (2.46)

𝐺∗
⟂(�̇� , 𝜔) + 𝜆1𝑖𝜔𝐺

∗
⟂(�̇� , 𝜔) +

𝜆1
2
�̇�(1 − 𝑎)𝐵(�̇� , 𝜔) = 1

2
(𝛽 + 𝜂0)𝑖𝜔 (2.47)

olving for 𝐺∗
⟂(�̇� , 𝜔) we find:

𝐺∗
⟂(�̇� , 𝜔) =

𝜂0𝑖𝜔
1 + 𝜆21�̇�

2(1 − 𝑎2)

⎡

⎢

⎢

⎣

(1 + 𝑖𝜔𝜆1) +
1
4𝜆

2
1�̇�

2(1 − 𝑎2)(1 + 2𝑖𝜔𝜆1)

(1 + 𝑖𝜔𝜆1)2 +
1
4𝜆2�̇�

2(1 − 𝑎2)

⎤

⎥

⎥

⎦

(2.48)

which can be resolved into its real and imaginary parts to find 𝐺′
⟂(�̇� , 𝜔)

and 𝐺′′
⟂(�̇� , 𝜔), respectively:

𝐺′
⟂(�̇� , 𝜔) =

𝜂0𝜔2𝜆1
1 + 𝜆21�̇�

2(1 − 𝑎2)

×
⎡

⎢

⎢

⎣

(1 + 1
2𝜆

2
1�̇�

2(1 − 𝑎2))𝜔2𝜆21 + (1 + 1
4𝜆

2
1�̇�

2(1 − 𝑎2))(1 − 1
2𝜆

2
1�̇�

2(1 − 𝑎2))

(1 + 1
4𝜆

2
1�̇�

2(1 − 𝑎2) − 𝜔2𝜆21)
2 + 4𝜔2𝜆21

⎤

⎥

⎥

⎦

(2.49)

𝐺′′
⟂(�̇� , 𝜔) =

𝜂0𝜔
1 + 𝜆21�̇�

2(1 − 𝑎2)

×
⎡

⎢

⎢

⎣

(1 + 1
4𝜆

2
1�̇�

2(1 − 𝑎2))2 + 𝜔2𝜆21(1 +
3
4𝜆

2
1�̇�

2(1 − 𝑎2))

(1 + 1
4𝜆

2
1�̇�

2(1 − 𝑎2) − 𝜔2𝜆21)
2 + 4𝜔2𝜆21

⎤

⎥

⎥

⎦

(2.50)

It is again interesting to note the conditions for which negative values
of the moduli may appear. Noting that 𝜆1 > 0, 𝜔 > 0 and −1 ≤ 𝑎 ≤ 1
we see that:

1. The condition for 𝐺′
⟂(�̇� , 𝜔) to be globally positive (i.e. 𝐺′

⟂(�̇� , 𝜔) >
0 for all positive 𝜔) is that

𝜆21�̇�
2(1 − 𝑎2) < 2

Otherwise, 𝐺′
⟂(�̇� , 𝜔) < 0 where

𝜔2𝜆21 <
(1 + 1

4𝜆
2
1�̇�

2(1 − 𝑎2))(𝜆21�̇�
2(1 − 𝑎2) − 2)

2 2 2
2 + 𝜆1�̇� (1 − 𝑎 )
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2. 𝐺′′
⟂(�̇� , 𝜔) is always globally positive

Where 𝜆21�̇�
2(1 − 𝑎2) < 2, the frequency at which 𝐺′

⟂(�̇� , 𝜔) changes
ign (𝜔′

𝑐⟂) can be written as:

′
𝑐⟂ =

(1 + 1
4𝜆

2
1�̇�

2(1 − 𝑎2))(𝜆21�̇�
2(1 − 𝑎2) − 2)

𝜆21(2 + 𝜆21�̇�
2(1 − 𝑎2))

from which we see that, for a given shear rate and relaxation time,
increasing |𝑎| again pushes 𝜔′

𝑐 to lower values until, at

|𝑎| =
√

1 − 2
𝜆21�̇�

2

′
𝑐 reaches zero and globally positive 𝐺′

⟂(�̇� , 𝜔) is recovered.

2.4. The upper and lower convected Maxwell fluids

For 𝑎 = 1 and 𝑎 = −1, the GS model reduces to the upper and lower
onvected Maxwell models, respectively (UCM & LCM). In both of these
imits, the expressions for the superposition moduli are:

′
∥(�̇� , 𝜔) = 𝐺′

⟂(�̇� , 𝜔) = 𝐺′(𝜔) =
𝜂0𝜆1𝜔2

1 + 𝜔2𝜆21
(2.51)

𝐺′′
∥ (�̇� , 𝜔) = 𝐺′′

⟂(�̇� , 𝜔) = 𝐺′′(𝜔) =
𝜂0𝜔

1 + 𝜔2𝜆21
(2.52)

We see that for both the UCM and LCM models, the superposition
moduli in parallel and orthogonal experiments reduce to the linear
moduli such that their shear rate dependency (and hence the possi-
bility of negative values of the superposition moduli) are lost. This
result is unsurprising since the UCM and LCM models do not display
shear thinning in the viscometric case. We conjecture (in the absence
of any evidence to the contrary) that shear thinning is required for
the emergence of negative moduli (i.e. shear thinning is necessary,
but not sufficient, since the real and imaginary parts of both sets of
superposition moduli for the GS/JS model are globally positive for
𝜆21�̇�

2(1 − 𝑎2) < 1
3 ).

2.5. Comparison of the models

Fig. 1 shows parallel and orthogonal moduli as a function of Debo-
rah number (𝐷𝑒 = 𝜆1𝜔) at an indicative Weissenberg number (𝑊 𝑖 =
𝜆1�̇�) of 1.0 for a single mode GS/JS model for values of |𝑎| in the
range 0.0 ≤ |𝑎| ≤ 1.0. There are several interesting features of these
plots, (i) the parallel moduli are far more sensitive to the value of 𝑎
than the orthogonal moduli, (ii) for 𝐷𝑒 ≈ 2.0 and above, 𝐺′′

∥ is almost
independent of the value of |𝑎| whilst 𝐺′

∥ increases with |𝑎|.

2.6. Newtonian solvents

In the presence of a Newtonian solvent, with viscosity 𝜂1, both
∗
∥(𝜔, �̇�) and 𝐺∗

⟂(𝜔, �̇�) for the CRM and GS models to carry the additional
erm 𝑖𝜔𝜂1 [5]. Hence,

′′
∥ (�̇� , 𝜔) =

𝜂0𝜔(1 + 𝜔2𝜆21 − 𝜆21�̇�
2(1 − 𝑎2))

(1 + 𝜆21�̇�
2(1 − 𝑎2) − 𝜔2𝜆21)

2 + 4𝜔2𝜆21
+ 𝜂1𝜔 (2.53)

and

𝐺′′
⟂(�̇� , 𝜔) =

𝜂0𝜔
1 + 𝜆21�̇�

2(1 − 𝑎2)

×
⎡

⎢

⎢

⎣

(1 + 1
4𝜆

2
1�̇�

2(1 − 𝑎2))2 + 𝜔2𝜆21(1 +
3
4𝜆

2
1�̇�

2(1 − 𝑎2))

(1 + 1
4𝜆

2
1�̇�

2(1 − 𝑎2) − 𝜔2𝜆21)
2 + 4𝜔2𝜆21

⎤

⎥

⎥

⎦

+ 𝜂1𝜔

(2.54)

In the limits 𝑎 = 0 and 𝑎 = 1, in the presence of a Newtonian solvent, the
CRM and UCM models may be referred to as the co-rotational Jeffreys
5

model (CRJ) and the Oldroyd-B fluid, respectively. f
3. Experimental methods

3.1. Materials

A 4.1 wt% cetylpyridinium chloride (CPyCl) and sodium salicylate
(NaSal) (Sigma-Aldrich) were dissolved at a molar ratio of 2:1 in 0.5 M
sodium chloride (NaCl) solutions prepared using deionised H2O. Appro-
priate quantities of dry of NaCl, NaSal and CPyCl, in powdered form,
were added to H2O in a fume hood. The mixtures were stirred for 24 h
at 40 ◦C (in a sealed beaker atop a heated plate) to completely disperse
he powder before measurements were performed. All chemicals were
sed as received without further purification. At a concentration of 4.1
t% CpyCl this formulation has been reported to display shear thinning

haracteristics in contrast to higher concentrations which have been
hown to exhibit shear banding characteristics [28–30]. In the present
ork we restrict our attention to ‘non-shear banding’ formulations.

.2. Rheometry

Rheological measurements were performed on a TA Instruments
RES-G2 rheometer adapted to permit orthogonal superposition experi-
ents. The instrument was fitted with a double gap concentric cylinder
ith inside and outside cup diameters of 27.732 mm and 33.995 mm,

espectively, and inside and outside bob diameters of 29.396 mm and
2.080 mm, respectively. The geometry features rectangular windows
t the top of the bob and the bottom of the cup, the former allows the
ree surface of the sample to sit within the window hence minimising
urface tension effects during orthogonal experiments. The latter allows
ample to move freely between the ‘measurement annulus’ and a sam-
le reservoir which sits within the inner cup; in this manner, pumping
lows are minimised and a uniform velocity gradient is achieved during
rthogonal superposition experiments [11,31]. The submersed height
f the bob was 43.6 mm with an operating gap of 8 mm. Prior to
easurements being performed, geometry end-effect correction factors
ere calibrated using a 970 mPa s Newtonian Silicone Oil (Brookfield).
easurements were performed at 20 ◦C with temperature control being

achieved via the TA Instruments Advanced Peltier System. A thin layer
of silicone oil was added to the free surface of the sample (positioned in
the centre of the bob windows) to prevent solvent evaporation during
measurement. The sample was loaded and conditioned (at rest) for
900 s at the desired temperature before being pre-sheared at 1 s−1 for
60 s. The sample was then allowed to rest for a further 60 s before
rheological measurements were performed.

Rheological characterisation involved (i) determination of the lin-
ear viscoelastic range (LVR) using a strain sweep, (ii) acquisition of
frequency sweep data 0.64 rad/s ≤ 𝜔 ≤ 100 rad/s at a strain am-
plitude within the LVR, (ii) acquisition of a steady state flow sweep
which was performed in the reverse direction (100 s−1 to 0.1 s−1)
iii) identification of the ‘parallel superposition linear range’ (PS-LVR)
sing oscillatory strain sweeps at each unidirectional shear rate (iv)
cquisition of parallel superposition frequency sweep data at the strain
mplitude within the PS-LVR, (v) identification of the OS-LVR for
rthogonal superposition measurements using orthogonal strain sweeps
for which the strain range is limited by a maximum axial displacement
f 50 μm), and (vi) acquisition of orthogonal superposition frequency
weep data at a strain amplitude within the OS-LVR. All experiments
ere undertaken in triplicate with data processing being undertaken on

he averaged data.
Rheometric slip artefacts (i.e. local velocity gradients close to the

eometry walls — distinct from the ‘slip’ of the GS/JS models) are
ifficult to assess in the concentric cylinder geometries necessary for
erforming orthogonal superposition experiments. However, we have
ecently used the same WLM formulation in a study of start-up shear

lows in which no evidence of rheometric slip was observed [32].
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Fig. 1. Superposition moduli as a function of Deborah number for 𝑊 𝑖 = 1.0 for a single mode GS model for 𝑎 = 0.00 (CRM), |𝑎| = 0.25, 0.5, 0.75 and |𝑎| = 1.00 (UCM for 𝑎 = 1.00
and LCM for 𝑎 = −1.00).
3.3. Data processing

Data was processed using two fitting algorithms. The first (proce-
dure A) assumed a weakly nonlinear response in that the underlying
linear viscoelastic spectrum was not permitted to be a function of
shear rate, the second (procedure B) allowed the underlying viscoelas-
tic spectrum to be rate dependent thus permitting strongly-nonlinear
behaviour [18].

3.3.1. Data analysis procedure A: Weakly non-linear
To parameterise the weakly non-linear CRJ model, linear viscoelas-

tic data (𝐺′(𝜔), 𝐺′′(𝜔)) and viscometry data were fitted to a single mode
CRM model with a Newtonian solvent thus involving 3 parameters
([𝜆1, 𝜂0, 𝜂1]). Similarly, to parameterise the GS model, linear viscoelastic
data (𝐺′(𝜔), 𝐺′′(𝜔)) and the viscometry data were fitted to a single-
mode GS model with a Newtonian solvent and the expression for the
viscosity of the GS model, namely,

𝜂(�̇�) =
𝜂0

1 + 𝜆21�̇�
2(1 − 𝑎2)

+ 𝜂1 (3.1)

Thus the parameterisation of the GS model involved 4 parameters
([𝜆1, 𝜂0, 𝜂1, 𝑎]).

The parameterised models were then used to predict the parallel and
orthogonal data (𝐺′

∥, 𝐺
′′
∥ and 𝐺′

⟂, 𝐺′′
⟂, respectively) for the CRJ (𝑎 = 0)

and GS models.

3.3.2. Data analysis procedure B: Strongly non-linear
Analysis procedure B involved treating the data such that each shear

rate defined a discrete and independent material state. Parallel and
orthogonal moduli were simultaneously fitted at each shear rate. This
approach admitted the possibility of shear-induced modification of the
underlying relaxation spectrum thus allowing strong non-linearity [18].
6

4. Results & discussion

4.1. Weakly non-linear analysis

We begin by evaluating the CRJ model’s ability to describe the dy-
namics of the WLM system using a weakly non-linear analysis. Fig. 2A
and B show the SAOS and viscometry data for the sample, respectively.
The parameters of the model were determined from the SAOS data and
viscometry data. The lines on Fig. 2A and B show the best fit to this data
as determined using a nonlinear least squares routine which minimised
the RMS relative errors between the experimental data (SAOS and 𝜂(�̇�))
and the model [𝜆1 = 0.49 s, 𝜂0 = 26.63 Pa s, 𝜂1 = 0.06 Pa s]. Having
parameterised the CRJ model, the real parts of the superposition moduli
(in both parallel and orthogonal configurations, 𝐺′

∥(𝜔, �̇�) and 𝐺′
⟂(𝜔, �̇�))

were evaluated using Eqs. (2.38) and (2.49) with 𝑎 = 0. Whilst the
imaginary parts required the addition of the solvent viscosity (𝜂1) term
and hence were calculated using Eqs. (2.53) and (2.54).

Fig. 2C through G show experimental data and the parameterised
CRJ model over a range of shear rates for the PSR experiment whilst
Fig. 2H through L show equivalent data for the OSR experiment. At
low rates, �̇� < 1 s−1, the model and experimental data are in good
agreement. However, as the shear rate increases �̇� ≥ 1 s−1, the weakly
non-linear analysis based on the CRJ model does not describe the
data with significant discrepancies appearing in (i) both the real and
imaginary parts of the superposition moduli and, (ii) the viscosity data
of Fig. 2B. The CRJ model is known to excessively shear thin where
the ratio 𝜂1∕𝜂0 < 1∕3 [33]. This ratio evaluates as ≈0.02 for the current
parameterisation and hence the criterion for realistic shear thinning is
clearly not met. It is hence unsurprising that the CRJ model fails in
terms of predicting the superposition moduli at high rates.

We hence conclude that, for the specific WLM system studied herein,
a weakly non-linear analysis of the superposition moduli based on the
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Fig. 2. Weakly non-linear analysis (analysis A) for the corotational Jeffrey’s Model. Real and imaginary parts of the complex moduli are shown as blue circles and red squares,
respectively, with open symbols referring to negative moduli. Lines correspond to the CRJ model with dashed lines indicating negative moduli.
CRJ model does not capture the appropriate dynamics of the system at
�̇� > 1 s−1. A recent paper by Lennon et al. [25] employing the MAPS
protocol (Medium Amplitude Parallel Superposition) concluded that
the CRJ model was able to capture the weakly non-linear behaviour of
an almost identical WLM formulation. It is important to note, however,
that the MAPS protocol employed in [25] used oscillatory flows, at a
number of frequencies simultaneously, with no steady flow component,
whilst in the PSR/OSR protocols employed herein, the material is
7

subjected to a sustained unidirectional flow. The two results are hence
not in direct conflict.

The parameter 𝑎 in the GS/JS model serves to modify the shear-
thinning characteristics of the CRJ model. Increasing 𝑎 shifts the shear
thinning region to higher �̇� with the limit 𝑎 = 1 shifting it to infinitely
high rates such that shear thinning does not occur. We now evaluate the
ability of GS/JS model (using a weakly non-linear analysis) to capture
the dynamics of the WLM sample under superposition flows. As for the
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Fig. 3. Weakly non-linear analysis (analysis A) for the Gordon–Schowalter Model. Real and imaginary parts of the complex moduli are shown as blue circles and red squares,
respectively, with open symbols referring to negative moduli. Lines correspond to the GS model with dashed lines indicating negative moduli. In sub figure B, the CRJ model is
also shown (as a dashed line) for reference.
CRM model, we parameterise the model based on SAOS and viscometry
data (see fits shown in Fig. 3A and B) before comparing the model’s
superposition moduli with the experimental data. It is notable that
significant deviation is still observed in both the superposition data
at �̇� > 1 s−1 and the viscometry data for �̇� > 4 s−1 indicating, as for
the CRJ model, that a weakly nonlinear application of the GS model is
insufficient to capture the dynamics of the specific WLM system studied
herein under superposition flows.
8

4.2. Strongly non-linear analysis

In Section 4.1 the CRJ and GS models were parameterised based
on SAOS and viscometry data alone. Consequently, the superposition
moduli may considered to be predictions to which experimental data
can be compared in order to evaluate the model’s validity for the fluid
being studied. In this respect, both the CRJ and GS models were un-
suitable for the specific worm-like micellular system being investigated
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Fig. 4. Strongly non-linear analysis (analysis B) for the Corotational Jeffreys Model. Real and imaginary parts of the complex moduli are shown as blue circles and red squares,
respectively, with open symbols referring to negative moduli. Lines correspond to the CRJ model with dashed lines indicating negative moduli.
at shear rates for which shear thinning is observed. In this section, we
relax the requirement for the underlying relaxation characteristics of
the material to be independent of shear-rate, treating each shear rate
as defining an independent material state characterised by its parallel
and orthogonal moduli. This approach permits strong non-linearity
in which rate-dependent model parameters indicate microstructural
modification by the imposed flow conditions.

Fig. 4 shows the results of this ‘strongly non-linear analysis’ (re-
ferred to as analysis B in Section 3.3.2) for the CRJ model. The fitting
procedure was unable to determine model parameters that satisfied
the data at rates higher than 1 s−1 indicating that, even by permitting
strong non-linearity into the analysis, the CRJ is unsuitable for this
specific formulation. Undertaking a similar analysis based on the GS/JS
model generates significantly better agreement between the experimen-
tal data and the GS/JS model as shown in Fig. 5. Even at the highest
shear rate studied (�̇� = 10 s−1) the strongly non-linear GS/JS model is
able to capture both sets of superposition moduli very well.

Fig. 7 and Table 1 show the GS model parameters as a function
of shear rate. Interestingly, 𝑎, which is often interpreted as a ‘slip’
parameter increases with shear rate (for �̇� > 0.4 s−1) such that the
system appears to transition from the CRJ model (𝑎 = 0) towards the
9

Oldroyd-B model (𝑎 = 1). In both Fig. 7C and Table 1, the value of 𝑎
at 0.1 s−1 has been fixed at 0.0 since the data closely resembles the
SAOS data and hence the parameter has negligible effect. Interestingly,
the relaxation time, 𝜆1 (Fig. 7A) appears to be largely insensitive to
the shear rate whilst 𝜂0 begins to decrease significantly for �̇� > 1
s−1. This suggests that changes in the superposition moduli for the
specific WLM system studied herein, are driven predominantly by a
change in deformation type rather than a change in microstructure
(though a shear-sensitive 𝜂0 would suggest microstructural changes
remain important).

In a recent publication, Ramlawi et al. [17] considered the weakly
nonlinear response of the GS/JS model in terms of a Medium Amplitude
Oscillatory Shear (MAOS) experiment. As part of their contribution,
they provided a framework for visualising the non-affine deformation of
GS/JS type models in terms of the deformation of a Lagrangian element.
Following this approach, Fig. 6 compares the deformation patterns for
𝑎 = 0, i.e. pure rotation, 𝑎 = 0.5 and 𝑎 = 1.0, i.e. different combinations
of stretching and rotation. The deformation rate of the bulk solvent is
shown as a dashed line.

The data suggest that as the imposed shear rate increases, the
microstructural elements of the fluid undergo deformation involving an



Journal of Non-Newtonian Fluid Mechanics 327 (2024) 105216A. Ogunkeye et al.
Fig. 5. Strongly non-linear analysis (analysis B) for the Gordon–Schowalter Model. Real and imaginary parts of the complex moduli are shown as blue circles and red squares,
respectively, with open symbols referring to negative moduli. Lines correspond to the GS model with dashed lines indicating negative moduli.
Fig. 6. Visualisation of the nonaffine deformation for 𝑎 = 0 (black), 𝑎 = 0.5 (blue) and 𝑎 = 1 (red) at accumulated strains of 0 ≤ 𝛾 ≤ 2. The dashed line corresponds to the
accumulated strain of the bulk deformation/solvent.
increasing degree of stretching, which disrupts the micellular network,
thus resulting in a decreased viscosity.

Whilst the superposition moduli can be described well by a strongly
non-linear GS/JS analysis, the model parameters at each shear rate
do not generate the correct value of the viscosity. Fig. 8 shows the
experimental viscosity data (open symbols) and the viscosity as calcu-
lated from the model parameters at each of the 5 shear rates for which
superposition moduli are available. The model and the experimental
data agree at low rates (�̇� ≤ 1.0 s−1) but the model fails increasingly as
10
the shear rate increases above 1.0 s−1 suggesting that the model does
not capture the required physics.

5. Conclusions

In the present work, expressions for the superposition moduli for the
Gordon–Schowalter/Johnson–Segalman model have been derived for
the first time. Included, as special cases, within the GS/JS model are the
corotational Maxwell Model (which was considered by Curtis & Davies
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Fig. 7. Variation of GS model parameters as a function of shear rate.

Fig. 8. Viscosity as calculated from strongly non-linear JS parameters.
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Table 1
JS parameters.
�̇� 𝜆1 𝜂0 𝜂1 𝑎
(s−1) (s) (Pa s) (Pa s) (–)

0.1 0.62 28.8 0.06 0.0000a

0.4 0.59 26.4 0.06 0.0024
1.0 0.58 25.7 0.06 0.6189
4.0 0.62 22.9 0.06 0.9328
10.0 0.68 18.0 0.05 0.9902

a At very low rates, the expressions for the superposition moduli are insensitive to the
value of ‘𝑎’ hence, in the table above its value has been fixed at 𝑎 = 0.0.

in [5], the upper and lower convected Maxwell models, and, with the
addition a Newtonian solvent contribution, the corotational Jeffreys
model and the Oldroyd-B fluid (the superposition moduli of which
were first considered by Booij in 1966 [24]). It is also conjectured that
shear thinning is necessary, but not sufficient, for the appearance of
negative superposition moduli. Further, the ability of the GS/JS model
(and its associated special cases) to describe the superposition moduli
of a specific Worm Like Micellular system has been evaluated using
(i) weakly and (ii) strongly non-linear analyses. The weakly non-linear
analysis (in which the model parameters have been determined based
on the linear viscoelastic and viscometry data alone) was found to be
unable to describe the superposition moduli at shear rates beyond the
onset of shear thinning. However, by permitting the model parameters
to become shear rate dependent, thus admitting strong non-linearity
(in the context of Malkin’s classifications [18]), the GS/JS model was
found to fit the superposition moduli at all rates extremely well. The
shear rate-dependent GS/JS parameters suggest that the onset of shear
thinning in the specific WLM system studied herein is associated with
a gradual change in the deformation experienced by the microstruc-
tural elements of the fluid, the stretching element of the deformation
becoming increasingly important as �̇� increases.
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Appendix. Expansion of the stress tensor about the viscometric
case for orthogonal superposition

Noting that the stress tensor is symmetrical we can write the fol-
lowing system of 6 simultaneous linear differential equations:

𝜏11 + 𝜆�̇�11 − 𝜆1𝜏12�̇�(1 + 𝑎) = 0

𝜏12 + 𝜆1�̇�12 −
𝜆1
2

[

𝜏22�̇�(1 + 𝑎) + 𝜏11�̇�(𝑎 − 1) + 𝜏13𝜖�̇�(𝑎 − 1)
]

= �̇�𝜂0

𝜏13 + 𝜆1�̇�13 −
𝜆1
2
(1 + 𝑎)[𝜏23�̇� + 𝜏12𝜖�̇�] = 0

22 + 𝜆1�̇�22 + 𝜆1
[

(1 − 𝑎)𝜏12�̇� + (1 − 𝑎)𝜏32𝜖�̇�
]

= 0

23 + 𝜆1�̇�23 +
𝜆1
2
(1 − 𝑎)𝜏13�̇� +

𝜆1
2
(1 − 𝑎)𝜏33𝜖�̇� −

𝜆1
2
𝜏22𝜖�̇�(1 + 𝑎) = 𝜖�̇�𝜂0

𝜏33 + 𝜆1�̇�33 = 0

Setting 𝜖 = 0 we obtain the ‘viscometric case’...

𝜏(0)11 =
𝜂0𝜆1�̇�2(1 + 𝑎)

1 + 𝜆21�̇�
2(1 − 𝑎2)

(0)
22 = −

𝜂0𝜆1�̇�2(1 − 𝑎)
1 + 𝜆21�̇�

2(1 − 𝑎2)

(0)
12 =

𝜂0�̇�
1 + 𝜆21�̇�

2(1 − 𝑎2)

ith 𝜏13 = 𝜏23 = 𝜏33 = 0. We now expand about the viscometric case
sing (2.26) such that, to first order in 𝜖:
(0)
11 + 𝜖𝜏(1)11 + 𝜆𝜖�̇�(1)11 − 𝜆1𝜏

(0)
12 �̇�(1 + 𝑎) − 𝜆1𝜖𝜏

(1)
12 �̇�(1 + 𝑎) = 0

𝜏(0)12 + 𝜖𝜏(1)12 + 𝜆1𝜖�̇�
(1)
12 −

𝜆1
2

[

𝜏(0)22 �̇�(1 + 𝑎) + 𝜖𝜏(1)22 �̇�(1 + 𝑎) + 𝜏(0)11 �̇�(𝑎 − 1)

+𝜖𝜏(1)11 �̇�(𝑎 − 1) + 𝜏(0)13 𝜖�̇�(𝑎 − 1)
]

= �̇�𝜂0

𝜏(0)13 + 𝜖𝜏(1)13 + 𝜖𝜆1�̇�
(1)
13 −

𝜆1
2
(1 + 𝑎)[𝜏(0)23 �̇� + 𝜖𝜏(1)23 �̇� + 𝜏(0)12 𝜖�̇�] = 0

(0)
22 + 𝜖𝜏(1)22 + 𝜆1𝜖�̇�

(1)
22 + 𝜆1

[

(1 − 𝑎)𝜏(0)12 �̇� + 𝜖(1 − 𝑎)𝜏(1)12 �̇� + (1 − 𝑎)𝜏(0)32 𝜖�̇�
]

= 0

𝜏(0)23 + 𝜖𝜏(1)23 + 𝜆1𝜖�̇�
(1)
23 +

𝜆1
2
(1 − 𝑎)𝜏(0)13 �̇� +

𝜆1
2
(1 − 𝑎)𝜖𝜏(1)13 �̇� +

𝜆1
2
(1 − 𝑎)𝜏(0)33 𝜖�̇�

−
𝜆1
2
𝜏(0)22 𝜖�̇�(1 + 𝑎) = 𝜖�̇�𝜂0

𝜏(0)33 + 𝜖𝜏(1)33 + 𝜆1𝜖�̇�
(1)
33 = 0

Substituting the expressions for the viscometric case and recalling
earlier definitions of 𝛼 and 𝛽,

𝛼 =
𝜂0𝜆1�̇�(1 + 𝑎)

2 2 2
12

1 + 𝜆1�̇� (1 − 𝑎 )
𝛽 =
𝜂0

1 + 𝜆21�̇�
2(1 − 𝑎2)

we can write:

𝜏(1)11 + 𝜆�̇�(1)11 − 𝜆1𝜏
(1)
12 �̇�(1 + 𝑎) = 0

𝜏(1)12 + 𝜆1𝜖�̇�
(1)
12 −

𝜆1
2

[

𝜖𝜏(1)22 �̇�(1 + 𝑎) + 𝜖𝜏(1)11 �̇�(𝑎 − 1)
]

= �̇�𝜂0 − 𝛽�̇�

(1)
13 + 𝜆1�̇�

(1)
13 − 1

2
𝜆1�̇�(1 + 𝑎)𝜏(1)23 = 1

2
𝛼�̇�

𝜏(1)22 + 𝜆1�̇�
(1)
22 + 𝜆1�̇�(1 − 𝑎)𝜏(1)12 = 0

(1)
23 + 𝜆1�̇�

(1)
23 +

𝜆1
2
(1 − 𝑎)𝜏(1)13 �̇� = 1

2
(𝛽 + 𝜂0)�̇�

𝜖𝜏(1)33 + 𝜆1𝜖�̇�
(1)
33 = 0

The equations above involving orthogonal components (i.e 𝜏13) form
pair of linear differential equations:
(1)
13 + 𝜆1�̇�

(1)
13 − 1

2
𝜆1�̇�(1 + 𝑎)𝜏(1)23 = 1

2
𝛼�̇�

𝜏(1)23 + 𝜆1�̇�
(1)
23 +

𝜆1
2
�̇�(1 − 𝑎)𝜏(1)13 = 1

2
(𝛽 + 𝜂0)�̇�

which appear in the main manuscript.
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