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Abstract

Voltage-clamp experiments are commonly utilised to characterise cellular ion

channel kinetics. In these experiments, cells are stimulated using a known

time-varying voltage, referred to as the voltage protocol, and the resulting cel-

lular response, typically in the form of current, is measured. Parameters of

models that describe ion channel kinetics are then estimated by solving an

inverse problem which aims to minimise the discrepancy between the

predicted response of the model and the actual measured cell response. In this

paper, a novel framework to evaluate the information content of voltage-clamp

protocols in relation to ion channel model parameters is presented. Additional

quantitative information metrics that allow for comparisons among various

voltage protocols are proposed. These metrics offer a foundation for future

optimal design frameworks to devise novel, information-rich protocols. The

efficacy of the proposed framework is evidenced through the analysis of seven

voltage protocols from the literature. By comparing known numerical results

for inverse problems using these protocols with the information-theoretic met-

rics, the proposed approach is validated. The essential steps of the framework

are: (i) generate random samples of the parameters from chosen prior distribu-

tions; (ii) run the model to generate model output (current) for all samples;

(iii) construct reduced-dimensional representations of the time-varying current

output using proper orthogonal decomposition (POD); (iv) estimate

information-theoretic metrics such as mutual information, entropy equivalent

variance, and conditional mutual information using non-parametric methods;

(v) interpret the metrics; for example, a higher mutual information between a

parameter and the current output suggests the protocol yields greater informa-

tion about that parameter, resulting in improved identifiability; and

Abbreviations: CMI, conditional mutual information; EEV, entropy equivalent variance; MCMC, Markov chain Monte Carlo; MI, mutual
information; ODE, ordinary differential equation; PC, principal component; PCA, principal component analysis; PDF, probability density function;
POD, proper orthogonal decomposition; SVD, singular value decomposition.
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(vi) integrate the information-theoretic metrics into a single quantitative crite-

rion, encapsulating the protocol's efficacy in estimating model parameters.

KEYWORD S

experimental design, identifiability, information theory, ion channel kinetics, parameter
estimation

1 | INTRODUCTION

The use of mathematical models in biomedical engineering has the potential to increase the speed of drug discovery
and assess clinical safety in pharmaceutical research.1–4 By developing robust models for physiological processes, the
effects of pharmacological agents can be predicted and evaluated for safety before proceeding with lengthier and more
expensive trials. However, these models usually have a large number of unknown parameters, which are typically esti-
mated through experimental measurements.

One physiological process prone to interference from pharmaceuticals is the hERG potassium ion channel.5 This
channel carries the rapid delayed rectifier potassium current, IKr, which, among other things, helps co-ordinate the
beating of the heart. There is great interest in the modelling of IKr channel dynamics within cardiac cells, as this chan-
nel is prone to blockade by certain pharmacological agents, which can lead to potentially life-endangering arrhythmic
side-effects.6 It is worth mentioning that this is not a phenomenon exclusive to hERG; Naþ and Ca2þ ion channels also
play fundamental roles in generating and propagating the cardiac action potential,7 and are also susceptible to blockade
by pharmaceutical agents, either as a side-effect8 or therapeutically to treat certain cardiac disorders.9

IKr channel dynamics are voltage-dependent and time-dependent, and characterised by a number of parameters that
determine the relationship between the channel current and the time-varying voltage signal applied to the channel.
The experimental data with which to estimate these parameters are often gathered through voltage-clamp
experiments,10,11 wherein a cell is stimulated by a known voltage signal, and the resultant current is measured. This
voltage signal is referred to as the voltage protocol.

The protocols typically last several minutes, and results in the gradual damage and destruction of the cell. This
results in a decrease in data quality as the experiment progresses, and often times means that the experiment will have
to be carried out across multiple cells. In Reference 12, six classically used voltage protocols are analysed. Additionally,
a novel short voltage protocol is proposed, which primarily consists of a sum of three sinusoidal waves. This new proto-
col has the advantage of being far shorter than previously used voltage protocols, which improves data quality, allows
models to be characterised for individual cells, and makes investigations into cell-to-cell variability practical.

The results of the investigation in Reference 12 concluded that when model parameters were estimated with the
novel protocol, the model was able to reproduce the experimental measurements for not only the novel voltage proto-
col, but also the other six classical protocols. This demonstrated the superiority of the novel protocol.

However, the focus of the investigation was on estimating the parameter values based on a Bayesian inference
scheme, rather than the design of the voltage protocol itself. The novel protocol was largely constructed through experi-
ence and broad understanding of how variations in voltage affect the measured current through the model parameters.
This is to say that a systematic method for construction of novel protocols and comparing their efficacy quantitatively,
while being computationally practical and highly desirable, is lacking a conclusive approach in literature, although a
systematic method for designing and optimising voltage protocols using Bayesian inference was described in Reference
13. When faced with multiple options voltage protocols, such as during the optimal design of a novel protocol, the
extension of the methodology in Reference 12 would be to carry out the entire process of solving the inverse problem
for each new candidate protocol—which would be costly and time-consuming due to the experimental procedure and
subsequent Markov Chain Monte Carlo (MCMC) analysis for Bayesian inference.

In this article, a new computational approach based on information theory is used to assess the ability of different
voltage-clamp protocols in estimating the parameters of a model describing ion channel kinetics.12 Emphasis is also
given on computational efficiency—this pipeline is easily parallelisable and is less computationally intensive than sev-
eral other methods for electrophysiological simulations.14,15 This would allow candidate protocols to be assessed in
terms of individual parameter identifiability without experimental data, only by using simulated data and estimates of
key metrics central to information theory. Essentially, this framework would allow the experiment designer to compare
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the information contained by the candidate protocols for each parameter, and their aggregates. As a result, the candi-
date protocol which yields the highest information for the parameters can be given a higher preference for selection.
Optimising over a space of candidate protocols would, in theory, yield a protocol with the maximum possible informa-
tion gain for each parameter, resulting in an optimally designed experiment.16

The information-theoretic metrics are demonstrated for the seven protocols presented.12 For each voltage protocol,
the core steps of the framework are:

1. Generate random samples of the parameters from chosen prior distributions;
2. Run the model to generate model output (current) for all samples;
3. Construct reduced-dimensional representations of the time-varying current output using Proper Orthogonal

Decomposition;
4. Estimate information-theoretic metrics (between the current output and the parameters) such as mutual informa-

tion, entropy equivalent variance, and conditional mutual information using non-parametric methods;
5. Interpret the metrics; for example, a higher mutual information between a parameter and the current output sug-

gests the protocol yields greater information about that parameter, resulting in improved identifiability; and
6. Integrate the information-theoretic metrics into a single quantitative criterion, encapsulating the protocol's efficacy

in estimating model parameters.

The remaining paper is organised as follows. In the next section, the methodology used in the present work is
explained in detail, and organised into sections dedicated to each of the aforementioned steps of the framework. In
Section 3, the results of an investigation using the framework to compare voltage protocols found in literature are pres-
ented and discussed, as well as discussions surrounding the characteristics and general applicability of the proposed
framework. Finally, additional details and supplementary investigations that do not fit within the main body of the arti-
cle are presented and discussed in the Supporting Information.

2 | METHODOLOGY

This section presents methodological details of the adopted model for ion channel kinetics, description of voltage proto-
cols, parameter priors and associated sampling, data preprocessing, dimensionality reduction, and finally the
information-theoretic metrics and their estimation. The overall framework is shown in Figure 1.

2.1 | Model for ion channel kinetics

The mathematical model used to characterise the IKr channel is a Markov model17 based on the Hodgkin–Huxley set of
equations18,19 that approximate the cellular ionic kinetics. In this implementation, the model used is a deterministic
mean-field approximation for the stochastic ion channel model. The channel is described as four states: closed ([C]),
open ([O]), inactivated ([I]), and closed and inactivated ([IC]), and as such, the values of these states represent the prob-
ability of an individual IKr channel being in that corresponding state, or equivalently, the proportion of the channels
found within a cell membrane being in that state. The system of ordinary differential equations that describes these
channel states is as follows:

d C½ �
dt
¼� k1þk3ð Þ C½ �þk2 O½ �þk4 IC½ �, ð1Þ

d I½ �
dt
¼� k2þk4ð Þ I½ �þk3 O½ �þk1 IC½ �, ð2Þ

d O½ �
dt
¼� k2þk3ð Þ O½ �þk1 C½ �þk4 I½ �, ð3Þ
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where k1–k4 are the transition rates associated with the states, and the eight unknown parameters P1–P8 characterise
the exponential voltage-dependence of these rates. These relationships are shown below:

k1¼ P1 exp P2V tð Þð Þ, ð4Þ

k2¼ P3 exp �P4V tð Þð Þ, ð5Þ

k3¼ P5 exp P6V tð Þð Þ, ð6Þ

k4¼ P7 exp �P8V tð Þð Þ: ð7Þ

The fourth channel state, [IC], is not represented by an ODE and is instead constrained by the sum of probabilities
being equal to one:

IC½ � ¼ 1� C½ �þ I½ �þ O½ �ð Þ: ð8Þ

FIGURE 1 Structure of the methodology adopted for the proposed information-theoretic approach.
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Solving the system of ODEs for a time-dependent voltage input, V tð Þ, yields the values for each of the channel states
over time. An example of such a solution (using protocol Pr7 from Reference 12 and using reference parameter values;
see Section 2.3) is shown in Figure 2. Since the IKr current can only flow when the channel is open and activated ([O]),
the current can be modelled as a standard Ohmic expression, dependent on the proportion of channels that are open:

IKr tð Þ¼GKr O½ � V tð Þ�EKð Þ, ð9Þ

where GKr is the conductance of the channel, V is the voltage applied across the cell membrane, and EK is the resting
potential. GKr is unique as a parameter as it does not affect the system of ODEs being solved. Instead, it simply scales
the magnitude of the current curve according to the maximum conductance of the channel. It is important to note how-
ever, that this does not mean that an estimate for GKr can be obtained independently from the other parameters, as the
values of [O] are unknown a priori. As such, it may be possible to fit a IKr curve identically to different sets of parame-
ters; those with a low conductance but high [O] values and those with a high conductance and low [O] values. Due to
this unique identifiability challenge, specific measures have to be taken to estimate GKr, such as those described in Ref-
erence 12 and Appendix 4.2 in Data S1, which are independent from the main protocol design. For example, the large
voltage steps present at the start of Pr6 and Pr7 used to estimate the lower bound of GKr can be implemented in any
voltage protocol, and it would therefore stand to reason that any candidate protocol could be adapted in this manner to
improve the identifiability of GKr. For this reason, while GKr was sampled and treated in the same fashion as the other
unknown parameters, it will be excluded from the information theoretic analysis of the project, as the ability of each
protocol to identify the ODE model parameters is of principal interest.

The resting potential for potassium ions, EK , was determined in Reference 12 by measuring the concentration gradi-
ent of Kþ and evaluating the Nernst equation for each experiment. Since EK is not influenced by the voltage protocol,
and only a minor degree of variability was observed, an average of these results was used for evaluating Equation (9) in
this work.

FIGURE 2 Voltage trace of protocol Pr7, along with the ordinary differential equation solutions for the reference parameters P
!

ref

(described in Section 2.3) at each time step. The characteristic sum-of-sinusoids section occurs between t= 3000 and t= 6500ms. The

[IC] channel state is omitted, as it is simply defined as in Equation (8).
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2.2 | Voltage protocols

A total of seven candidate voltage protocols, referred to as Pr1–Pr7, are analysed. A full description of each protocol,
and the rationale behind their designs can be found in the original work.12 The first five protocols are square step sig-
nals, based on previous experiments in literature,20,21 and designed to induce activated (Pr1–Pr3), inactivated (Pr4), and
deactivated (Pr5) ion channel states. It is worth mentioning that these protocols are typically used to characterise spe-
cific processes, such as the activation or inactivation of the ion channel, in relative isolation. For a full explanation of
the design of Pr2–Pr5, the reader is referred to.22 The sixth voltage protocol (Pr6) is a combination of simulated cardiac
action potentials, including a range of different cells, species, and some signals exhibiting arrhythmic or otherwise path-
ological behaviour, and has hitherto been used exclusively as a validation protocol. The seventh protocol (Pr7) is the
novel short-duration sinusoidal protocol proposed in Reference 12, and unlike Pr1–Pr5, is designed to characterise
the entire model using the results obtained from one experiment. Voltage protocol Pr7 is presented in Figure 2, and the
six remaining protocols are shown in Appendix 4.1 in Data S1. An additional protocol, consisting of Pr2–Pr5 appended
to each other, is introduced in the brief investigation outlined in Appendix 4.5 in Data S1.

2.3 | Parameter sampling and reference values

The ODE system is characterised by eight parameters P
!¼ P1,P2, � � �P8½ �. For the purposes of this investigation, the

results of the Bayesian inference scheme in Reference 12 will serve as reference parameters, P
!

ref . These parameters
were found to be the closest-fitting parameters to the experimental current traces,12 and as such yield physiologically
relevant results.

Suitable prior distributions are chosen for random sampling in the following manner. Initially, the prior distribu-
tions were identical to the one used for the Bayesian inference scheme in Reference 12, but this was found to result in
many samples yielding physiologically unlikely IKr curves. By examining the samples where this occurred, it was found
that this behaviour occurred for samples with parameter values significantly higher than P

!
ref , implying that the upper

bounds are too high. The prior distribution for P
!

was, thus, redefined with a decreased upper bound. The lower and
upper bounds for all the parameters for the adopted uniform prior distributions are shown in Table 1.

The prior distributions are randomly sampled to generate n¼ 10,000 parameter vectors P
!

i, where i¼ 1,2, � � �,nf g.
For each protocol individually, the model is simulated for every parameter sample P

!
i to generate the corresponding cur-

rent output IKr,i. The choice of n¼ 10,000 is justified by analysis of the IKr curve modes following principal component
analysis (PCA), which is described in Section 2.4.

As an additional step, for each parameter vector sample, the transition rates k1 – k4 are computed, and if any of
these rates are outside the physiologically feasible range of 1:67�10�5 to 1000ms�1, the parameter vector is resampled.
This step was taken to ensure the same sampling procedure as in Reference 12 was followed; transition rates below
1:67�10�5 ms�1 would result in a practically redundant level of voltage dependence, and the upper bound of
1000ms�1 extends beyond what is physiologically expected from hERG.

TABLE 1 Prior distribution of each model parameter.

Parameter Lower bound Upper bound

P1 10�07ms�1 0:1ms�1

P2 10�07 mV�1 0:1mV�1

P3 10�07ms�1 0:1ms�1

P4 10�07 mV�1 0:1mV�1

P5 10�07ms�1 0:1ms�1

P6 10�07 mV�1 0:1mV�1

P7 10�07ms�1 0:1ms�1

P8 10�07 mV�1 0:1mV�1
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2.4 | Data processing and dimensionality reduction

For every P
!
i, the current output IKr,i obtained by numerical solution of the model is function of time and obtained at

discrete time-intervals t1, t2, � � �, tmf g. The dimension of this current output vector is quite large. For example, Pr7 is 8 s
long, and if a discrete time interval of 0.1ms is utilised, then m¼ 80,000 (the total number of time steps).

The non-parametric methods available for the estimation of information-theoretic quantities (Section 2.5) provide
poor estimates when vector sizes are in such high dimensions.23 Thus, dimensionality reduction of the IKr,i vector is
proposed. This is performed through the use of PCA.24,25 The data matrix M �ℝn�m, whose ith row contains the cur-
rent output IKr,i corresponding to the parameter P

!
i, is factorised through singular value decomposition (SVD) as:

M¼UΣVT, ð10Þ

where Σ �ℝn�m is a diagonal (rectangular) matrix containing the singular values of M, and U �ℝn�n and V �ℝm�m

are orthogonal matrices. This is equivalent to the columns of UΣ being the principal component scores, and the col-
umns of V being the eigenvectors, or ‘modes’. Dimensionality reduction from m-dimensions to k-dimensions (with
k�m) is achieved by only considering the first k dominant modes and discarding other modes. For all the protocols,
k¼ 3 was found to be sufficient, which captured an average of 98% of the variance across all protocols, with a minimum
explained variance of 95.4% for Pr7, thus preserving most of the data content in the reduced dimensional space. Follow-
ing this, the m-dimensional IKr,i vectors are represented as three-dimensional vectors, which is a suitable size for reli-
able estimation of the information-theoretic quantities. SVD was implemented by a randomised truncated method
described in Reference 26. The distribution of the first k principal components (the reduced dimensionality representa-
tion) is shown in Figure 3.

Analysis of the eigenvectors/modes was used to justify the number of samples used; increasing the sample size
beyond n¼ 10,000 did not significantly change the shape of the modes, as can be seen in Figure 4.

Finally, the distributions of the parameters and PCs were transformed to standard normal distributions (zero mean
and unit variance), in order to improve the performance of the non-parametric estimators for the information-theoretic

FIGURE 3 Probability density functions for the transformed data sets. While the distributions for each principal component are

significantly more Gaussian than they would otherwise be, it is not possible to make them perfectly Gaussian using homeomorphic

transformations. Note that the width of the transformed distribution has been scaled by a factor of 100 to allow for presentation on the

same axes.
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quantities. This is because, as a result of the local Gaussian approximations used in the entropy estimators,27,28 applying
data that resembles a Gaussian distribution would result in a more accurate approximation between the estimator and
the true distribution, thereby lowering the error.

For the transformed principal component scores, this was implemented using a simple power transform of y¼ xλ,
where the optimal value of λ is determined by a minimisation algorithm29 employed in tandem with a test for nor-
malcy.30 This is implemented by finding the λ that yields the lowest squared kurtosis and skew, since normal distribu-
tions are characterised by possessing close to zero skew and kurtosis. For the parameter samples P

!
i, a log transform

was found to be sufficient to achieve normalcy. Note that the application of homeomorphic transformations such as
these to entire datasets does not affect the information-theoretic quantities of interest.31

2.5 | Information-theoretic quantities of interest

The information-theoretic quantities of interest are mutual information and conditional mutual information, which are
both derived from the central concept of entropy. For a continuous random variable X with probability density function
p xð Þ, the differential entropy H Xð Þ (in nats) is defined as:

H Xð Þ¼�
Z
S
p xð Þ ln p xð Þð Þdx, ð11Þ

where S is the support set of p xð Þ. Entropy quantifies the uncertainty in a random variable.32,33 By observing a related
random variable Y , the probability density of X would update from the prior distribution p xð Þ to the posterior distribu-
tion p xjyð Þ. The posterior uncertainty can be quantified again by the entropy H XjYð Þ. Thus, the amount of information
gained about X by observing Y is the difference between the prior and the posterior entropies. In this sense, gain in

FIGURE 4 Comparison of the modes/eigenvectors from principal component analysis with 10,000 and 20,000 samples. The parameter

sample sets were generated separately, that is, do not contain overlapping data. The lack of significant change in these modes indicates that

a sample size of 10,000 is sufficient.
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information is equivalent to reduction in uncertainty. This difference of entropies is also known as mutual information
MI X ;Yð Þ between X and Y , and can be written as

MI X ;Yð Þ¼H Xð Þ�H X jYð Þ¼H Xð ÞþH Yð Þ�H X ,Yð Þ: ð12Þ

In the context of parameter estimation and identifiability, the mutual information between the parameters and the
measurements is relevant, as it quantifies the information contained in the measurements about the parameters.

To quantify correlations between parameters, the information-theoretic quantity of conditional mutual information
(CMI) is relevant. It is defined as the expected value of the mutual information (MI) between two variables, X and Y ,
when a third variable Z is known34,35:

CMI X ,Y ;Zð Þ¼MI X ;Y jZð Þ¼H XjZð ÞþH Y jZð Þ�H X ,Y jZð Þ: ð13Þ

If X and Y are two parameters and Z represents the measurements, then CMI X ,Y ;Zð Þ quantifies the amount of
information that would be gained about X , in addition to what has already been gained by observing Z, if Y was also
known. In this sense, CMI X ,Y ;Zð Þ, quantifies the dependence/correlation between the parameters X and Y . For a more
detailed discussion on the information-theoretic quantities presented above, the reader is referred to References
31,33,36,37.

In an optimally designed experiment, it is desirable for there to be a strong correlation between the results of the
experiment, and the underlying parameters the experimenter is trying to identify. This is equivalent to maximising
the MI between the output of the model (which would be the measurement in an experiment) and the input parame-
ters. Additionally, to improve individual parameter identifiability it is usually desirable for the CMI between the combi-
nations of input parameters (given model output) to be minimised. This is because a high correlation between
parameters implies they may only be estimated jointly, not separately, despite the objective of the experiment being
identifying each individual parameter. It is for these reasons that MI and CMI are both used as the basis for evaluating
protocol performance.

In our setting, only samples (Section 3) from the joint density function of the parameters and the measurement (cur-
rent output from the model) are available. Since the underlying distributions are unknown, MI and CMI must be esti-
mated directly from the samples. Such estimation algorithms are either parametric, where the form of the density
function is known (or assumed) and its parameters estimated from the samples, or non-parametric, where such assump-
tions are not made and the density function is approximated through samples (kernel density estimation or nearest
neighbours); an overview of these techniques can be found in Reference 38. In this work, assuming the form of the pos-
terior pdf would be risky due to the stiffness of the ODE system, which results in a somewhat non-uniform distribution
of ‘acceptable’ parameters, that is, parameter vectors who yield physiologically viable IKr curves. While it would be pos-
sible to carry out an additional study to approximate the pdf, and use this to parametrise a parametric entropy estima-
tor, non-parametric entropy estimators have been shown to be accurate and computationally efficient for similar
applications.27,28,37 For this reason, the non-parametric k nearest-neighbours based estimators described in References
28,39 are used to estimate MI and CMI.

Once the estimates for MI and CMI are obtained, it is desirable to combine these into a single metric that can be
used to assess the individual parameter identifiability, as well as overall information content, of each protocol. Multiple
candidate criteria are considered. The first statistical criterion S1 is based on the criterion in Reference 37, that is maxi-
mised by increasing MI and decreasing average CMI. It is equivalent to the average MI across all parameters, minus the
average of all pairwise CMI values:

S1¼ 1
N

XN
i¼1

MI Pi;ζð Þ�2! N�2ð Þ!
N!

XN
i¼1

XN
j¼iþ1

CMI Pi;Pjjζ
� �

, ð14Þ

where Pi represents the random variable corresponding to the ith parameter, ζ represents the random variable
corresponding to the reduced dimensional current output, and the total number of parameters is N ¼ 8.

The intent behind this proposal is to create a measurement analogous37 to D-optimality,16,40 which is the process of
maximising the determinant of the Fisher information matrix of the experiment. In this analogy, the elements on the
main diagonal of the information matrix could be considered the MI, and the remaining elements each of the CMI
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combinations. This can be applied to other classical optimisation metrics; an analogue to A-optimality can be found by
simply summing the values of MI Pi;ζð Þ, and calculating the eigenvalues of the information matrices for E-optimality.
Caution must be exercised here, as while Fisher and Mutual information can be thought of as quantifying the same
relationship, and have been found to produce congruent results,37 they are still different quantities and are not inter-
changeable. A more detailed explanation on the similarities and differences can be found in Appendix 4.7 in Data S1.

Relying on the mean MIs and CMIs has a drawback that the measure S1 averages information gains across all the
parameters, and thus may be overly influenced by few parameters or fail to identify parameters with very low information

gain. While this is unavoidable to a certain extent, due to the fact that eight MIs and
8

2

� �
¼ 28 pairwise CMI values need

to be combined into a single metric, it is possible to adapt S1 to better describe the consistency of the protocol's ability
to identify individual parameters. One such metric could be to use the standard deviation of the MIs as a criterion:

S2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 MI Pi;ζð Þ�μð Þ2
N

s
, ð15Þ

where μ is the average MI for that protocol. To meet the objective of having a single criterion by which to compare pro-
tocols, Equations (14) and (15) can be combined to yield a third possible criterion:

S3¼ 1
N

XN
i¼1

MI Pi;ζð Þ�2 N�2ð Þ!
N !

XN
i¼1

XN
j¼iþ1

CMI Pi;Pjjζ
� ��η

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 MI Pi;ζð Þ�μð Þ2

N

s
, ð16Þ

where η is a weighting factor for the standard deviation. Maximising S3 implies maximising MIs (thus maximising indi-
vidual parameter information gains), minimising CMIs (thus minimising pairwise correlations in the parameter poste-
riors), and minimising the spread of MIs (thus penalising large variations in MIs).

It is worth considering that, despite being a measure of how evenly distributed the MIs are, S2 (and consequently
S3) still do not provide information about the minimum level of performance. Thus, another suitable metric can be the
minimum information content across all the parameters:

~S4¼ min MI P1;ζð Þ…MI PN ;ζð Þf g: ð17Þ

Depending on what the desired outcome of the protocol designer is, other metrics combining MIs and CMIs may
also be developed. Furthermore, a designer may even consider multiple metrics in a multi-objective design optimisation
framework to balance multiple metrics.

A drawback of MIs is that their magnitudes (measured in nats or bits) are difficult to interpret as they have little
physical interpretation aside from when the magnitudes are extremely high or low, implying identifiability or
unidentifiability. This is important for comparing voltage protocols or other experiment designs, as one of the objectives
of the analysis is finding the degree to which protocols out-perform one another on the basis of information content,
and balancing this with other considerations. To assist in the interpretation of MI as the degree of parameter
identifiability, a concept known as the entropy equivalent variance (EEV)31 is also calculated and employed in the com-
parison of voltage protocols.

The EEV is derived from the estimated MI and the variance (σ2) of the prior distribution for each variable:

EEV Pið Þ¼ σ2i
e2MI Pi;ζð Þ �1

ð18Þ

and represents the variance (error) of a hypothetical device that can directly measure each parameter in lieu of estimat-
ing the parameter from the measurements through an inverse problem, while providing identical MI. A protocol whose
EEV for a particular parameter is double that of another protocol's indicates that the distribution of the noise that cor-
rupts the hypothetical direct measurement of the parameter has twice the variance, which is a far more meaningful
interpretation than simply concluding that the first protocol contains x more nats or bits of information. Therefore, it
would follow reason to redefine ~S4 as S4 in terms of the EEVs as:

10 of 21 JENNINGS ET AL.
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S4¼ max EEV P1ð Þ…EEV PNð Þf g: ð19Þ

Note that unlike for S1 – S3 and ~S4, where higher magnitudes imply better protocols, for S4 lower magnitudes imply
better protocols.

2.6 | Summary of computer codes

The following pseudocodes provide a summary of the above sections, describing the structure and process of obtaining
information estimates for each protocol from the initial prior parameter distributions. In this work, the CVODE solver
as part of SUNDIALS41,42 was used due to the stiff nature of the ODE systems for certain parameter combinations, and
all codes were implemented in Python and C.

By far, the most computationally expensive process of the framework is the invocation of the ODE solver (Algorithm
1, line 27) for each of the 10,000 samples. The rest of the algorithms, such as dimensionality reduction and entropy

Algorithm 1 Obtaining samples of IKr

1: for i 1 to n do ► Where n is the number of samples i.e. 10,000
2: P

!
i a random sample from the (uniform) prior distribution of P

!

3: end for ► For each of these samples, ion channel current IKr is calculated for each protocol PR
4:
5: function ODESolve(P

!
,PR)

6: Let the channel states C½ �, I½ �, O½ � be defined as Y
!
for brevity

7: Defines voltage and time data V
!
and Tmax depending on the value of PR

8: Y
!

0 0:0,0:0,0:0½ �, t 0:1, j 1
9: hmax 0:1 ► The output timestep is set to 0.1ms, equal to the resolution of the protocols and original

experimental data. In reality, much smaller timesteps will be used by the ODE solver to achieve conver-
gent results.

10:
11: while True do
12: Vj interpolated from V

!
(unless PR¼¼ 7, where it is evaluated as a function of time)

13: IC½ �j 1� sum Y
!

j

� �
14: k1--k4 calculate transition rates at current time step from P

!
and Vj

15: dYdt
		! calculate rate of channel state change from Y

!
j�1 and k1–k4

16: Invoke ODE solver41,42 to calculate Y
!

j at the next increment of hmax

17: Calculate IKr at current time step and output to file
18: t tþhmax

19: if t¼¼Tmax OR any error occurs then
20: break
21: end if
22: end while
23: end function
24:
25: for PR 1 to 7 do
26: for i 1 to n do
27: IKr,i ODESolve(P

!
i,PR)

28: end for
29: Let M �ℝn�m be a data matrix for the current protocol, where m is equal to the number of time steps for

that protocol, and each row i corresponds to the calculated current IKr,i
30: end for

JENNINGS ET AL. 11 of 21
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estimation, incur fractions of the computational cost due to primarily comprising of simple, vectorized operations. The
principle advantage in cost offered by this methodology is the relatively low sample-size required when compared with
MCMC-based methods. Using this method, a full Bayesian analysis using MCMC simulation would be carried out to
generate posterior distributions of the parameters for each protocol. Protocols with a higher efficacy/information con-
tent would yield posterior distributions with a narrower variance; there would be less uncertainty in the parameter
values. This is in essence the same conclusion as can be drawn from a higher MI content estimated in this method, but
with MCMC requiring a far greater number of samples. For example, the MCMC simulation in Reference 12 ran for
250,000 samples, which is a 25-fold increase in computation. Additionally, other steps involved in Bayesian inference
schemes, such as global optimisation and adaptive sampling, can also incur high computational costs. A final advantage
is that simply simulating n samples is easily parallelisable and can be shared across several machines if required, com-
pared with a MCMC analysis which is characteristically state-dependent.

It is also worth considering that, depending on the number of samples and timesteps, a large amount of RAM is
used by the dimensionality reduction process (Algorithm 2, line 1) in loading the matrix UΣVT, which would restrict
this process to workstations and HPC clusters with sufficient memory capacity.

An overview of the computational cost of this method, and a comparison with a MCMC-sized workload, derived
from the single-core computational time of a single sample (using reference parameter values) is presented in Table 2.
The actual values may vary depending on parameter samples used. The computation times were obtained on an Intel
Core i9-13900K CPU with 64 GB DDR5 5200 MHz RAM, running SUNDIALS 2.4.0 compiled with GCC 12.3.0.

Algorithm 2 Dimensionality reduction and normalisation of M �ℝn�m, and estimation of
information-theoretic metrics and derivative criteria

1: UΣVT  factorised form of M, where the columns of UΣ consist of principal component scores, and V
contains the eigenvectors

2: M is truncated after the first k¼ 3 dominant modes, resulting in a reduced dimensionality data
matrix MDR �ℝn�k

3:
4: Let P

!
x be a parameter vector that contains all n samples for that specific parameter

5: for x 1 to 8 do
6: μ arithmetic mean of P

!
x

7: Pα
	!

x  log P
!
x
μ

� �
Note: The transformed parameters are used henceforth in place of the original param-

eters, but will also be referred to as P for notational simplicity.
8: end for
9:
10: for PR 1 to 7 do
11: Let M

!
DR,x be a vector containing all n scores of the principal component x for the current protocol

12: for x 1 to k do
13: ζx  M

!
DR,x raised to the power of λ, where λ is determined by optimising ζ using a normalcy test as

the criterion
14: end for
15: end for
16:
17: MI Pi;ζð Þ average mutual information of each parameter estimated for each protocol.
18: CMI Pi;Pjjζ

� �  average conditional mutual information of each unique parameter combination esti-
mated for each protocol

19: EEV Pið Þ  EEV estimated for each parameter and protocol based on MI estimates and variance of P
!
x

20: S1�S4 calculated from above information metrics

12 of 21 JENNINGS ET AL.
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3 | RESULTS AND DISCUSSION

The estimated information content of each protocol, in the form of the MI for each parameter, is presented in Table 3.
As explained in Section 2.4, the information content related to conductance is not considered a factor in the comparison
of voltage protocols, and a more detailed justification of this decision can be found in Appendix 4.2 in Data S1.

The results in Table 3 show that, at a glance, the MI content of each protocol is comparable, with only a few entries
that deviate greatly. For example, the MI of Pr1 for P6 stands out the most, at just 0.006 nats, implying poor
identifiability for this parameter. Pr1 also suffers with identifying P8, but to a lesser degree than P6. Other areas of
poor identifiability are Pr2 for P3, and Pr4 for P4 (0.03 and 0.06 nats, respectively). Such low values suggest that the
design of these protocols lacks features that are affected by these parameters, and variations in these parameters do not
significantly affect the simulated IKr curves. The remaining protocols are, overall, more consistent in providing informa-
tion about all the parameters. However, as previously mentioned, analysis of the information quantities expressed in
nats (or bits) carry a limited amount of physical interpretability, thereby making direct comparisons between them diffi-
cult and potentially misleading. By applying Equation 18, the MIs can be transformed to the more interpretable EEVs,
which are presented in Table 4.

Note that, while EEV is far more interpretable than information values expressed as nats or bits, the overall ranking
of the protocols is equivalent for the two metrics. In other words, the hypothetical conclusion ‘Protocol A contains more
information than Protocol B’ would hold true regardless of whether the information is expressed as MI or EEV; what
would be difficult to ascertain without the EEV is the extent to which A is better than B. This means that the three
criteria S1 – S3, despite being expressed in nats, would yield the same ranking of protocols if they were converted to
EEV-based metrics in the fashion of S4.

As can be seen from the MI values in Table 3, the ranking of each entry in terms of EEV and MI is equivalent, as
expected from the definition in Equation (18). In Table 5, the results of the proposed criteria, S1 – S4, are presented. At a
glance, it is clear that these metrics assign different rankings across the candidate protocols—sometimes dramatically
different, in the case of S4 (whose value is sought to be minimised whereas S1 – S3 are to be maximised in an optimal
protocol). While it is possible that each of these criteria are valid in their own right, due to them appraising different
aspects of an optimally designed protocol, to fulfil the requirement of this framework producing a single framework,

TABLE 2 Computation times associated with each voltage protocol.

Protocol Single sample n¼ 10,000 n¼ 250,000

Pr1 0.27 s 44 min 18.4 h

Pr2 0.26 s 43 min 18.5 h

Pr3 0.46 s 77 min 31.9 h

Pr4 0.38 s 63 min 26.6 h

Pr5 0.76 s 127 min 52.8 h

Pr6 0.10s 16 min 6.9 h

Pr7 0.07 s 11 min 4.7 h

TABLE 3 MI (nats) of each parameter for each voltage protocol.

Protocol P1 P2 P3 P4 P5 P6 P7 P8

Pr1 0.52 0.13 0.27 0.24 0.11 0.01 0.67 0.03

Pr2 0.20 0.22 0.03 0.28 0.25 0.28 0.22 0.39

Pr3 0.15 0.13 0.16 0.24 0.16 0.20 0.24 0.31

Pr4 0.23 0.14 0.11 0.06 0.26 0.43 0.23 0.53

Pr5 0.14 0.19 0.10 0.19 0.22 0.35 0.21 0.52

Pr6 0.26 0.12 0.19 0.08 0.26 0.38 0.43 0.21

Pr7 0.20 0.16 0.18 0.17 0.26 0.20 0.18 0.36
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further analysis of these results is required to select the most appropriate criterion S, and verify that it is indeed an accu-
rate representation of the information content of the candidate voltage protocols.

In order to facilitate interpretation of these results, data from Tables 3 and 5 were collated into information heat
maps for each of the protocols. Examples of this for Pr1 and Pr 7 are shown in Figure 5. The information content of
each protocol is given in a single figure, consisting of the MI and CMI estimates, as well as the S criterion for reference.
Heat maps for the remaining five protocols are presented in Appendix 4.4 in Data S1.

Figure 5 clearly shows that Pr1 possesses extremely high and low values across both the MI and CMI, with the max-
imum and minimum values across all the protocols for MI and CMI being found in its heat map. Recall that low MIs
and high CMIs are both detrimental to parameter identifiability. Thus, P1 and P7 appear to most identifiable with this
protocol. However, the CMI plot shows that P7, unlike P1, has high correlations with respect to other parameters.
This implies that most information about P7 is contained in the joint distributions of its combinations with other
parameters, that is, a high correlation exists in the posterior of P7 and its combinations with other parameters. Alterna-
tively viewed, this implies that if P7 was known or fixed, then other parameters would individually become much better
identifiable. On the other hand, Pr7 does not show large variations in MI and CMI content, implying moderately good
information content (MI) for all the parameters and moderate correlations between all pairwise combinations. In this
sense, Pr7 does seem superior to Pr1.

The heat maps also show that there does not seem to be a strong trend in identifiability across parameters between
protocols—that is to say, certain parameters do not seem to be intrinsically more or less identifiable than others. This
implies that it is possible to create ‘hybrid’ protocols that may yield results with consistently high information content
across parameters. A large number of different protocols could be simulated, and protocols with high information con-
tent for specific parameters (such as Pr1 for P1 and P7) could be selected to derive a new set of information-rich proto-
cols from. This could be achieved, in its simplest form, by appending truncated versions of the protocols to one another,
in a similar fashion to the method outlined in Appendix 4.5 in Data S1, and optimising the degree to which each
protocol is shortened in order to minimise protocol length. Another possibility would be identifying the most
information-rich features of the eigenvectors/modes of the current curves, in order to determine what type of current
variations yield high information about individual parameters.

The proposed single quantitative criteria of S1 – S4, can also be compared for each protocol, and the most appropri-
ate one selected. Such objective scalar metrics can also be used in an optimisation/optimal-design framework with

TABLE 4 Entropy equivalent variance of each parameter for each voltage protocol.

Protocol P1 P2 P3 P4 P5 P6 P7 P8

Pr1 0.43 3.30 1.30 1.57 2.87 82.3 0.33 19.5

Pr2 1.62 1.84 14.2 1.28 1.11 1.40 1.66 0.90

Pr3 2.18 3.35 2.38 1.58 1.93 2.14 1.48 1.22

Pr4 1.33 3.25 7.01 1.02 0.76 1.57 0.55 0.90

Pr5 2.30 2.18 3.98 2.10 1.28 1.03 1.77 0.57

Pr6 1.11 3.82 1.99 5.81 1.04 0.92 0.66 2.02

Pr7 1.61 2.69 2.17 2.43 1.02 2.11 2.13 1.01

TABLE 5 Summary of proposed information criteria for each voltage protocol.

Protocol S1 S2 S3 S4

Pr1 �0.06 0.21 �0.27 82.3

Pr2 �0.16 0.10 �0.26 14.2

Pr3 �0.14 0.06 �0.20 3.35

Pr4 �0.20 0.15 �0.35 7.01

Pr5 �0.21 0.13 �0.34 3.98

Pr6 �0.17 0.12 �0.29 5.81

Pr7 �0.14 0.07 �0.21 2.69
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parameterised voltage protocols to devise new and better protocols. The S1 – S4 values for the seven protocols are pro-
vided in Table 5, and show a general lack of concordance in how they rank each protocol. This is to be expected, as
most of the criteria are proposed from separate observations or rationalisations made about the data. It is also worth
highlighting that S1 and S3, based on information aggregates, are sought to be maximised, while S2 and S4, the average
variance and the worst-performing EEV, are sought to be minimised.

FIGURE 5 Heat maps displaying the information content (mutual information [MI], conditional mutual information [CMI]) for the

two chief voltage protocols of interest. Pr1 was selected as the main point of comparison for Pr7 due to it out-performing Pr7 in terms of S

criterion, which is based on average information content rather than more comprehensive techniques. Being the novel protocol of interest,

Pr7 scored second highest in terms of S, but has visibly far more consistent information content across all parameters when compared to Pr1.

The remaining five voltage protocols, shown in Appendix 4.3 in Data S1, show similar behaviour to Pr7, albeit with poorer Sx scores and

slightly higher variance in MI and CMI.
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According to S1, Pr1 is the best performing protocol, with Pr7 trailing by a significant margin (�0.06 for Pr1 and
�0.14 for Pr7). From the MI results in Table 3 and Figure 5, this is due to some of the high MI values present for Pr1,
although the shortcomings associated with relying on average information discussed in Section 2.5 immediately become
apparent as Pr1 is not sufficiently penalised for its extremely low identifiability for P6 and P8. While S2 does identify
those protocols with the most obvious gaps in parameter information (Pr1 and Pr4), it does not provide any information
beyond this, and therefore makes it hard to compare the remaining similar-performing protocols. Furthermore, while
in this case the outlier information values are very low, if a protocol were to have outliers in the form of extremely high
information, they would be penalised regardless. This makes S2 unsuitable as a standalone metric, although it could be
used for other analyses alongside more complete data. Its incorporation into S3 seems to have improved the perfor-
mance of S1, but still suffers from the aforementioned problems.

S4, while arguably simpler than the aggregate criteria due to being the worst-performing EEV for each protocol,
does meet the objective of the desired criterion, which is to provide a metric by which to compare protocols for their
ability to characterise the IKr channel model. Since the model cannot simulate reliable results without a good estimate
of all parameters, there is a need to ensure a minimum level of identifiability for each parameter. This requirement is
met by S4, as it becomes immediately apparent which protocols are the most consistently information-rich. Therefore,
as a singular metric to rate the performance of each protocol, S4 is the most appropriate for this task out of those pro-
posed, and will be used moving forwards in a design optimisation context.

Upon examining the results in Table 5, several conclusions can be drawn from the suitability of each S by contex-
tualising these results, and Pr1–Pr7 themselves, with the original investigation.12 The rationale behind basing the
design of Pr7 on a sum of three sinusoidal waves is stated as being to ‘sweep’ the time and voltage-dependent character-
istics of the IKr channel, which came from the experience and intuition of the experiment designer. The square-wave
based protocols, Pr1–Pr5, would therefore lack this element, and it would therefore not be surprising if these protocols
would fail to explore one or multiple characteristics of the ion channel. This can be seen in the apparently very low, or
‘missing’, information these protocols contain about certain parameters. The observation that these square-wave proto-
cols carry deficits in different parameters to one another is supported by the differences inherent in each protocol. For
example, Pr2 varies the length of each peak voltage, whereas Pr3 varies the magnitude of the peak voltage, and are oth-
erwise identical.

Pr7, on the other hand, does not appear to suffer from this flaw, which is reflected in its values for S4, but not neces-
sarily for S1 – S3. The fact that12 concludes that the model parameterised with Pr7 outperforms literature models is fur-
ther proof that S4 is an appropriate metric for judging the efficacy of a voltage protocol. It is worth keeping in mind
that the full Bayesian investigation in Reference 12 was only carried out for Pr7; replicating this with another protocol
and comparing the results with the predicted rankings for each S would be the surest way to confirm both the accuracy
of the information estimates, and the ranking scheme derived from them.

To verify that these observations are in fact due to the interactions between the voltage protocols and the parameters
of the cellular model, and not due to any conceptual errors in the framework and/or numerical errors in MI/CMI/EEV,
the veracity of the results can be tested by observing the change in the model output as the parameters of interest are
changed. When a protocol that contains a low amount of information for particular parameters is simulated or other-
wise carried out, one would expect the resulting IKr curve not to be significantly affected by perturbations of those
parameters. In other words, a simplified form of sensitivity analysis is carried out, which has previously been success-
fully implemented in the context of electrophysiological parameterisation.15,43 The expected outcome can be observed
in Figure 6, which shows (simulated) IKr curves being virtually indistinguishable in Pr1, even when P6 is increased by
as much as 25%, but the same change in P6 yielding a far more apparent change in Pr7.

It is also of note that Pr7 and Pr3 have highly similar results in terms of S2, S3, S4 and average (C)MI values, indicat-
ing that these two voltage protocols contain very similar amounts of information regarding the model parameters, and
is also consistent across parameters. However, this has to be considered along with the fact that Pr7 was designed to be
as short as possible in order to allow full sets of results to be obtained from individual cells. Indeed, Pr3 has a far greater
length, running for 57.8 s compared with just 8 s for Pr7. This can be interpreted as Pr7 having a higher information
density, or average rate of gain in information, than Pr3.

It might therefore follow that the resulting S scores are made less interpretable by the different lengths of the simu-
lated protocols. In other words, if a protocol is assigned a lower S than a longer protocol, would this difference in scores
be compensated if the shorter protocol were extended to the length of the higher scoring protocol? Although the MI
estimator calculates these results based on the protocols reduced to the same number of dimensions, the principal com-
ponents are by definition affected by the shape of their original protocol, including its length. There does not appear to
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be an obvious solution to this, as lengthening shorter protocols would defeat the advantages that they provide for exper-
imentalists, and truncating longer protocols would eliminate features which are required to identify certain parameters.

To illustrate this, Figure 7 shows how the EEV of P1 –P8 varies across the length of the protocol for Pr3, Pr5, and
Pr7. These three protocols were selected for the broad range of protocol lengths they represent, and were divided into

FIGURE 6 Model output for Pr1 and Pr7. A section of each plot, shown as the shaded area, is enlarged to highlight the extent to which

model output has changed for each protocol. Input parameters were equal to the reference parameters, with P6 increased by up to 25%. P6 was

selected due to its low identifiability for Pr1 and high identifiability for Pr7, interpreted from estimated entropy equivalent variance values.
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five ‘slices’, with the first slice comprising the first 20% of the protocol, the second slice comprising the first 40%, and so
on. While the overall trend for all parameters shows identifiability increasing as the protocol progresses, there are
instances where the EEV for certain parameters increases, implying that there are features that increase uncertainty for
these values. It is important to note that this is not ‘negative MI’, which cannot exist, but rather that the correlation
between output and parameter is weakened upon observing additional data, as each slice of a protocol is effectively a
different protocol derived from the original.

It would be prudent for experimentalists to consider this limitation of measuring overall information content, rather
than information density, if they wished to employ this technique to compare experiment designs. For example, if an
experiment designer wished to compare the information content of two different sinusoidal protocols, it would be rec-
ommended to either make the protocols of the same duration, or to accept a possible reduction in parameter
identifiability in exchange for the advantages of a shorter protocol, such as the ability to complete experiments on a sin-
gle cell, and reducing the effect of data quality degradation.

Another limitation to this framework is the requirement of an accurate numerical model, which could pose prob-
lems if the framework were to be applied to a system which has not been modelled in existing literature, and would be
especially problematic if there is no way to propose a reasonably accurate model from theoretical knowledge. While this
may be a significant drawback in newly emerging fields where the literature is sparse, this problem would also be

FIGURE 7 Graphs showing the approximate variation in entropy equivalent variance (EEV) across the duration of Pr3, Pr5, and Pr7.

The trends for each protocol show that EEV decreases as the protocol progresses, which is expected. As each ‘slice’ of the protocol was
processed in the framework as a separate protocol, some of these results show EEV increasing for specific parameters, as the rest of the

parameters decrease. This suggests that some features present in the protocols decrease the correlation between those parameters and the

output. Speculating further, this may be a result of information about some parameters coming at a cost of information to others, implying a

high conditional mutual information and low degree of independent identifiability. If the time-dependence of MI estimates is considered

important to an experimentalist, for example if they wished to know how identifiability is distributed in time so that they can design their

protocol to be information rich in the beginning, when the cell is at its healthiest, it might be useful to confirm this by comparing more

protocols and taking additional slices.
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shared by other techniques requiring a numerical model, such as machine learning. To confirm the framework's reli-
ance on accurately simulated synthetic data, a cursory investigation was carried out (for full details please refer to
Appendix 4.6 in Data S1). In this, the entire methodology was carried out for two protocols using an altered version of
the model described in Section 2.1, with major errors introduced into the governing equations. As expected, this had a
significant effect on the resulting MI and S criterion estimates, with some parameters having a near-zero estimated MI
level, which can be interpreted as the erroneous model effectively ignoring these parameters. It is worth mentioning
that, while the results are clearly invalid, they were very similar for the two protocols, and obtaining results such as
these could provide an indication to the experimentalist that the underlying numerical model possesses a serious flaw.
Interestingly, this means that a secondary purpose of the framework could be to confirm the veracity of a proposed
numerical model, whereby the framework yielding nonsensical MI/EEV estimates signifies the presence of high struc-
tural model error.

In addition to the proposed use of S1 – S4 to rank and compare protocols in general terms, the results obtained
through this framework could be used to draw conclusions about the information content for individual parameters,
which could be useful for an experiment designer who wishes to design a voltage protocol to measure a specific parame-
ter or combination of parameters. Indeed, Reference 22 explains how Pr2–Pr5 are designed in such a way to
parametrise-specific transition rates for the ion channel model, as opposed to the entire system, as is the case for Pr7.
For example, Pr2 is designed to characterise the time constant of activation for the channel, which corresponds to the
transition between [C] and [O] and [I] and [IC] in this paper. As such, one would expect there to be higher information
gain for the parameters associated with this state transition (P1 –P4). However, the data in Table 4 appears to contradict
this, as there is no clear correlation between information content and whether the parameter in question belongs to the
P1 – P4 group. Similar observations can be made for the rest of the protocols mentioned in Reference 22.

It seems likely that this discrepancy might be explained by differences in methodology between References 12 and
22; three of the four model fitting methods described in the latter paper focus on identifying the steady-state and time-
dependent transition rates, as opposed to the estimation of the values for P1 –P8 in the former. Since the transition rates
are expressed as functions of combinations of parameters, it stands to reason that while a protocol may be able to yield
results that can be used to accurately fit the transition rates, the identifiability for individual parameters may still be
low, as this is what the entropy estimators are attempting to quantify and nothing else. Another possible source for this
unexpected observation could be model error; perhaps the eight parameters used in this model could be expanded to a
greater number of parameters, hinting at relationships between parameters and channel states that are lost in the
model. It would be worth investigating this further, focusing on comparing the information content about model
parameters within a protocol of interest, rather than comparing protocols. For example, if the model were to be
characterised by the steady-state and time-dependent activation and inactivation transition rates, would the mutual
information of those parameters tally with what the protocol was designed to capture? With solely the results obtained
from this work, it is impossible to definitively state whether or not this is the case, but a brief investigation was carried
out in Appendix 4.6 in Data S1 in order to explore the effects of appending the results of multiple protocols, to reflect
the intended use for these protocols being to identify certain parameters in relative isolation.

Finally, we anticipate that this framework for evaluating voltage protocols would be applicable to a broad range of
Markovian models describing voltage-dependent ion channel dynamics, such as those describing Nav1:5 and L-type
Ca2þ channels. This is because there are no specific conditions or features unique to the dynamics presented in hERG
that would render the analysis invalid for other channels, and the overall framework does not depend on the model
selected for Section 2.1. However, it is possible that other models might exhibit more complex or inconclusive patterns
of results that would require the addition of a fourth (or fifth) POD element in Section 2.4, which in turn might reduce
the accuracy of the entropy estimators, who struggle in higher dimensions. While it would be useful to explore this,
only one ion channel was explored in this work for brevity, and IKr was selected both for its relation to the original
work,12 and its propensity for blockade as a side-effect for a very wide range of drugs.44

4 | CONCLUSION

This work has demonstrated how central concepts from information theory can be used to develop objective quantita-
tive criteria, with four proposals of S1 – S4, to compare the efficacy of voltage protocols characterising ion channel kinet-
ics. By simulating the response of the model for each candidate protocol, and estimating the associated changes in MI
and CMI, the ability of each protocol to identify each model parameter can be evaluated by these metrics. It is found
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that simply employing the average information content across all parameters neglected the crucial requirement of a
minimum level of identifiability for each parameter. Therefore, the criterion describing the minimum level of
identifiability, S4, is proposed as being most appropriate. It is worth noting that other combinations of MIs and CMIs
(and perhaps even higher than pairwise conditional mutual information) may also be considered based on the desires
of the experiment designer. For example, if the requirements were to be changed so that information regarding one
parameter is no longer important (e.g., it is already known), this can easily be taken into account, due to the available
breakdown of information content per parameter. Nevertheless, the ideas of MIs and CMIs provide suitable metrics,
which carry intuitive meaning of ‘information’ contained in a protocol. Furthermore, the proposed framework allows
for efficient computation of the information-theoretic metrics and can be adapted.

Plotting the MIs and CMIs as heat maps has proven to be a valuable tool for analysing the information content of
each protocol, as it allows for a quick and intuitive comparison between MI values, combinations of CMI, and the S
score of that protocol. When used in conjunction with S, these plots of information metrics fulfil the requirement of
providing a means through which to rank several candidate voltage protocols/experiment designs, while the criterion S
is appropriate for use when a single numerical value is required. The latter is useful to be employed in optimisation
frameworks, where S could be optimised over a space of parameterised candidate protocols.

Lastly, the results of the information-theoretic analysis are verified with sensitivity analysis and align with the
expected outcome (as argued in Reference 12) of Pr7 being the most optimally-designed voltage protocol for
characterising the ion channel model. This is based on the comparisons of average information gain, and minimum
level of identifiability across all the unknown parameters, along with the fact that it is the shortest protocol.12
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