
Generalized Early Stopping in Evolutionary Direct Policy
Search
ETOR ARZA, Basque Center for Applied Mathematics, Spain

LÉNI K. LE GOFF, Edinburgh Napier University, United Kingdom

EMMA HART, Edinburgh Napier University, United Kingdom

Lengthy evaluation times are common in many optimization problems such as direct policy search tasks,

especially when they involve conducting evaluations in the physical world, e.g. in robotics applications. Often

when evaluating solution over a fixed time period it becomes clear that the objective value will not increase

with additional computation time (for example when a two wheeled robot continuously spins on the spot). In

such cases, it makes sense to stop the evaluation early to save computation time. However, most approaches

to stop the evaluation are problem specific and need to be specifically designed for the task at hand. Therefore,

we propose an early stopping method for direct policy search. The proposed method only looks at the objective

value at each time step and requires no problem specific knowledge. We test the introduced stopping criterion

in five direct policy search environments drawn from games, robotics and classic control domains, and show

that it can save up to 75% of the computation time. We also compare it with problem specific stopping criteria

and show that it performs comparably, while being more generally applicable.

CCS Concepts: • Applied computing → Engineering; • Mathematics of computing → Mathematical
optimization; • Computing methodologies→ Simulation evaluation.

Additional Key Words and Phrases: Optimization, Early Stopping, Policy Learning

ACM Reference Format:
Etor Arza, Léni K. Le Goff, and Emma Hart. 2018. Generalized Early Stopping in Evolutionary Direct Policy

Search. J. ACM 37, 4, Article 0 (August 2018), 29 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Evolutionary algorithms (EAs) are increasingly being used in applications such as computer games

[De Souza 2014; Hastings et al. 2009] and robotics [Fleming and Purshouse 2002; Hoffmann 2001]

to learn control algorithms (policies), as well as being applied to classic control tasks such as the

benchmark suites available in OpenAi Gym [Brockman et al. 2016]. Often direct policy search

algorithms such as EAs require a large number of evaluations: when these evaluations are costly

in terms of time, this can result in extremely long learning times, which can be prohibitive in the

worst case. Unfortunately many applications of interest suffer from this problem. For example, the

protein folding problem [Dill et al. 2008] requires costly simulations, while applications that involve

a double optimization process are also considered very computationally costly. This includes for

example the joint optimization of robot morphology and control [Hart and Le Goff 2022; Le Goff

et al. 2021] in simulation (which typically use an outer loop to evolve body-plans and a nested

Authors’ addresses: Etor Arza, etorarza@gmail.com, Basque Center for Applied Mathematics, Alameda de Mazarredo, 14,

Bilbao, Bizkaia, Spain, 48009; Léni K. Le Goff, L.LeGoff2@napier.ac.uk, Edinburgh Napier University, 10 Colinton Road,

Edinburgh, Scotland, United Kingdom, EH10 5DT; Emma Hart, E.Hart@napier.ac.uk, Edinburgh Napier University, 10

Colinton Road, Edinburgh, Scotland, United Kingdom, EH10 5DT.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

0004-5411/2018/8-ART0 $15.00

https://doi.org/XXXXXXX.XXXXXXX

J. ACM, Vol. 37, No. 4, Article 0. Publication date: August 2018.

HTTPS://ORCID.ORG/0000-0002-8044-0334
HTTPS://ORCID.ORG/0000-0003-1749-9154
HTTPS://ORCID.ORG/0000-0002-5405-4413
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0000-0002-8044-0334
https://orcid.org/0000-0003-1749-9154
https://orcid.org/0000-0002-5405-4413
https://doi.org/XXXXXXX.XXXXXXX

0:2 Etor Arza, Léni K. Le Goff, and Emma Hart

inner-loop to evolve control), nested combinatorial optimization problems [Kobeaga et al. 2021;

Wu et al. 2021] or hyperparameter optimization [de Souza et al. 2022]. Specifically in robotics,

evaluations that need to be conducted directly on a physical robot to avoid any reality-gap tend to

be very time-consuming, while repeating lengthy evaluations also places considerable wear and

tear on machinery, potentially leading to unreliable objective-function values.

One approach to reducing the computational burden posed by expensive evaluation functions is to

use a surrogate model [Hwang and Martins 2018; Ranftl and von der Linden 2021]. Surrogate models

try to replace the costly objective function with a cheaper alternative, that is usually less accurate

but faster to compute [Alizadeh et al. 2020a]. This saves computation time because the number

of function evaluations of the costly objective functions is reduced. However, selecting a suitable

surrogate model can be challenging, typically involving the need to determine an appropriate

trade-off between size (i.e. how much information is necessary to compute the surrogate model),

the accuracy required, and computational effort (the time required for the surrogate modelling

process itself) [Alizadeh et al. 2020a] which then influences the choice of surrogate model.

Instead of reducing the number of evaluations, it is also possible to save computation time in

these types of problems by stopping the evaluation of non promising solutions early. With this

approach, given a fixed time budget in which to conduct evaluations which each have a maximum

budget of 𝑛 seconds, it is possible to compute more evaluations than if every potential evaluation

is run for exactly 𝑛 seconds. This is known as early stopping [Hutter et al. 2019; Li et al. 2017] or

capping [de Souza et al. 2022; Hutter et al. 2009]. Several early stopping approaches have been

proposed for hyperparameter optimization, including irace [de Souza et al. 2022; López-Ibáñez et al.
2016], sequential halving [Karnin et al. 2013] and hyperband [Li et al. 2017].

Early stopping has also been considered in the context of policy search. For example, when learning

to control a robot in a simulation, if the robot gets stuck (it does not move) it is useful to stop the

evaluation early [Le Goff et al. 2021]. However, there are two limitations associated with these

problem specific methods. First, these approaches, in some cases, can fail to stop the evaluation

even if it is clear that additional time is not going to improve the objective value. For example,

when a two wheeled robot continuously spins on the spot, it would still register as moving, but it

is completely useless to continue evaluating. Secondly, they require problem specific knowledge,

such as detecting when the robot is not moving, which might not always be trivial (for example

when dealing with robots in the real world).

The main contribution of this paper is to show that generic early stopping is applicable to direct

policy search via evolutionary algorithms. Similar to early stopping methods for hyperparameter

optimization [de Souza et al. 2022; Hutter et al. 2019; Karnin et al. 2013; Li et al. 2017] and unlike

current early stopping criteria for direct policy search, the proposed approach only needs the

objective value to decide when to stop the evaluation of the robots. We demonstrate both the

efficacy and generality of the method in a wide-ranging experimental section in five different

direct policy search environments, showing that the proposed approach significantly reduces the

optimization time of direct policy search algorithms in a wide variety of control tasks.

The paper is organized as follows. We first discuss some related work to position the proposed

method in the literature. In the next section, we provide a formal definition of the problem and

introduce the proposed early stopping method. In Section 4 we present the five part experimental

study on the applicability of the proposed method in direct policy search tasks. Finally, Section 5

concludes the article.

2 RELATEDWORK
Many direct policy search tasks in the literature use problem specific early stopping methods to

save computation time. One of the earliest examples is probably the cart pole control problem [Barto

J. ACM, Vol. 37, No. 4, Article 0. Publication date: August 2018.

Generalized Early Stopping in Evolutionary Direct Policy Search 0:3

et al. 1983]. In this problem, a cart needs to balance a pole by moving left or right (see the animation

on OpenAI’s website
1
). In the original implementation

2
by Sutton [1984], the evaluation is usually

stopped after 10
5
steps (episode length), but is terminated early when the pole is considered not

balanced for 100 steps. In the modern version
3
of the same problem by OpenAI, the episode length

is 500 and the evaluation is terminated early when the pole is not considered balanced, or the cart

has moved too much to one of the sides.

Another more modern example with early stopping is the Ant control task
4
in the MuJoCo environ-

ment in OpenAI gym [Brockman et al. 2016]. In this task, the control of an ant needs to be learned,

such that the traveled distance is maximized, while minimizing the energy expenditure and the

contact force (see the animation
5
). In this task, the episode length is 1000 steps, but an evaluation

is stopped early if the vertical position of the torso is not in the interval [0.2, 1.0], or if there are
numerical errors in the simulator.

A limitation of the early stopping criteria of these and other direct policy search tasks is that they

are highly problem specific. They need to be carefully designed, taking into account the problem

at hand. For example, in the previous ant example, choosing to stop the evaluation based on the

position of the torso is not trivial, and requires understanding of what is a desirable position of the

torso.

There has been plenty of work in early stopping based on the objective function alone, but most of it

has focused on hyperparameter optimization. Some of the best known early stopping approaches for

hyperparameter optimization are the irace algorithm [de Souza et al. 2022; López-Ibáñez et al. 2016],

the sequential halving algorithm [Hutter et al. 2019; Karnin et al. 2013] and hyperband [Falkner et al.

2018; Li et al. 2017; Zimmer et al. 2021]. Early stopping approaches work verywell in hyperparameter

optimization because the evaluation of solutions can be paused and resumed. Consequently, it is

possible to evaluate a set of solutions simultaneously and compare their partial objective values

with one other, discarding poorly performing candidates before continuing the evaluations. This is

not always possible in direct policy search tasks, especially those that run in the real-world. For

example, it would not make sense to pause the evaluation of a controller in a real-world robot,

evaluate a different controller in the same robot, and then resume the previous evaluation. The

same applies to simulation, where it is not trivial to implement a way to save the state of the

simulation and load it later.

More recently, de Souza et al. [2022] proposed a set of early stopping methods that only take into

account the objective function. The early stopping methods proposed by de Souza et al. [2022]

record the objective values of previous solutions during each time step. Then, when new solutions

are evaluated, it is possible to stop their evaluation early at time step 𝑡 if the solution is expected

to perform poorly with additional computation time. de Souza et al. [2022] propose two types of

methods: profile envelopes and area envelopes. A profile envelope is a reference objective function

𝑓 ∗ (𝑡) that serves as a stopping criterion for time step 𝑡 : assuming a maximization problem with a

positively defined monotone increasing objective function 𝑓 , \ ’s evaluation is stopped at time step

𝑡 if 𝑓 ∗ (𝑡) > 𝑓 [𝑡] (\). The area envelope, on the other hand, is a stopping criterion that takes into

account the whole trajectory. Given a maximum performance area 𝐴—a positive real value—the

evaluation of \ is stopped at time step 𝑡 if
∫ 𝑡

𝑥=0
𝑓 [𝑥] (\)𝑑𝑥 < 𝐴.

Although it might be possible to adapt de Souza et al. [2022]’s methods for direct policy learning,

they are not directly applicable, as they were designed specifically for hyperparameter optimization.

1
https://www.gymlibrary.dev/_images/cart_pole.gif

2
http://incompleteideas.net/sutton/book/code/pole.c

3
https://www.gymlibrary.dev/environments/classic_control/cart_pole/

4
https://www.gymlibrary.dev/environments/mujoco/ant/

5
https://www.gymlibrary.dev/_images/ant.gif

J. ACM, Vol. 37, No. 4, Article 0. Publication date: August 2018.

https://web.archive.org/web/20230324042842/https://www.gymlibrary.dev/_images/cart_pole.gif
https://web.archive.org/web/20221231160811/http://incompleteideas.net/sutton/book/code/pole.c
https://web.archive.org/web/20221207031552/https://www.gymlibrary.dev/environments/classic_control/cart_pole/
https://web.archive.org/web/20221211213854/https://www.gymlibrary.dev/environments/mujoco/ant/
https://web.archive.org/web/20221214135341/https://www.gymlibrary.dev/_images/ant.gif

0:4 Etor Arza, Léni K. Le Goff, and Emma Hart

In this regard, their method assumes a monotone decreasing objective value which is not always

true for policy learning problems. In addition, [de Souza et al. 2022]’s method assumes that partially

evaluated solutions are eligible, which is true for hyperparameter optimization but not for direct

policy learning.

Early Stopping has also been considered in the field of multi-fidelity optimization in the context of

airfoil design optimization via computational fluid dynamics. Forrester et al. [2006] proposed using

early stopping to build more accurate surrogate models. Specifically, given a fixed computation

budget, a more accurate surrogate model can be obtained by evaluating more solutions for less

time each (via early stopping). When to stop the evaluation of the solution is decided by analyzing

the convergence of the surrogate with a previous version that was computed with less computation

time. Picheny and Ginsbourger [2013] further refined the method such that not all solutions need

to be evaluated with the same computation time, and solutions that are expected to perform poorly

can be stopped earlier. To achieve this, a Gaussian process is fitted that jointly models the design

parameter space and computational time.

By making certain assumptions on the objective function and considering 1 + _ evolution strategies,
Bongard [2010, 2011] proposed an early stopping mechanism for multi-objective evolution of robots,

based on the objective function. The approach involves stopping the evaluation of candidates once

it is impossible for them to beat the best found candidate in the current generation. This early

stopping approach has the very good property of not changing the final outcome while still saving

computation time. However, the applicability of Bongard’s method in the general case is very

limited, as it depends on both a specific definition of the objective function and the use of the 1 + _
evolution strategies algorithm.

6

Wang et al. [2022] also considered an early stopping approach on an exploration environment.

Their approach involves using Bayesian Optimization to efficiently choose the maximum episode

length and other relevant hyperparameters during training, obtaining a speedup over the default

training procedure. However, as with the approach by Bongard [2010], the approach by Wang et al.

[2022] is specific to the environment.

In summary, the early stopping approaches that have been tested in direct policy search tasks either

require problem specific knowledge, or a specific definition of the objective function and learning

algorithm. This motivates our proposal which addresses both these issues.

3 GENERALIZED EARLY STOPPING FOR DIRECT POLICY SEARCH (GESP)
We propose a simple early stopping method for direct policy search tasks that overcomes the

limitations discussed in the previous section. The proposed method is general and makes no

assumptions about the optimization problem or the objective function or the learning algorithm.

It uses the output of the objective function without the need of problem specific information.

Specifically, the proposed approach is applicable to the optimization problem defined as follows:

Definition 1. Let𝑇 be a maximum computation time budget, 𝑓 an objective function andΘ a solution
space. We define a optimization problem argmax\ ∈Θ 𝑓 (\) with these five additional properties:

(1) Computing 𝑓 (\) has a time cost 𝑡𝑚𝑎𝑥 .
(2) No further evaluations are possible once the computation budget 𝑇 is spent.

6
The objective function to be maximized needs to be a combination of other sub-objective functions in different sub-tasks,

assuming that the sub-objective values are always negative. With this objective function, it is not necessary to evaluate

the solution in every sub-task, as the objective value can only decrease with further evaluations. Consequently, once the

objective value of a solution is lower than the best candidate in the current population, the evaluation can be stopped, as it

is guaranteed that it will not outperform the best candidate. When considering this early stopping criterion in combination

with the use of the 1 + _ evolution strategies algorithm, the same final solution is obtained while saving computation time.

J. ACM, Vol. 37, No. 4, Article 0. Publication date: August 2018.

Generalized Early Stopping in Evolutionary Direct Policy Search 0:5

(3) Instead of computing 𝑓 (\) exactly, it can be approximated for any lower time cost 𝑡 < 𝑡𝑚𝑎𝑥 . We
denote the approximation in time 𝑡 as 𝑓 [𝑡] (\).

(4) The approximation with 𝑡𝑚𝑎𝑥 is the original objective value: 𝑓 (\) = 𝑓 [𝑡𝑚𝑎𝑥] (\).
(5) Approximate solutions with 𝑡 < 𝑡𝑚𝑎𝑥 are not eligible to be chosen as the best.

In addition, GESP is specifically designed for problems with these three additional properties.

Property 1: Incremental approximation (early stopping possible)
Given a solution \ , if it has been approximated with time 𝑡 , it is possible to resume the evaluation

until time 𝑡 + 𝑡𝛿 . This extension has time cost 𝑡𝛿 . In simpler terms, we can choose whether to stop

the evaluation at time step 𝑡 or resume evaluation, after observing 𝑓 [𝑡] (\).
Note that this property does not hold for all the problems in which an approximate objective

function exists. For example, the objective value on the wind turbine design problem by Zarketa-

Astigarraga et al. [2023] can be approximated by reducing the number of divisions on the blades

for the CDF calculation. The lower the number of divisions, the less time it takes to compute the

objective value, but the approximation is also less accurate. However, the number of subdivisions

needs to be chosen before the objective value is computed. Consequently, it is not possible to resume

the evaluation or increase the number of divisions without starting the evaluation again from

scratch.

For problems like this in which the objective function cannot be incrementally computed, other

time reducing methods are possible. For example, Echevarrieta et al. [2024] proposed a method that

can find the optimal cost for these types of problems. In the problem above, the method compares

the rankings of objective values with different numbers of divisions, and chooses the lowest (most

efficient) number of divisions that still ranks the solutions like the original objective function.

The policy learning problems and environments considered on this paper, on the other hand, can

all be early stopped. Reinforcement learning tasks in general can be stopped at each time step,

as they are modeled as a Markov Decision Process. Agents observe the state, interact with the

environment with an action, and receive a reward. This cycle is repeated many times and can be

interrupted every time the reward is observed.

Property 2: Resuming an evaluation is not possible
If the evaluation of a solution has already been early stopped and we started evaluating another

solution, then it is not possible to extend the evaluation of the previous solution. Well known

early stopping methods from the literature such as sequential halving [Karnin et al. 2013] or

hyperband [Li et al. 2017] are not applicable to problems where it is not possible to resume a

previous evaluation. In contrast, both de Souza et al. [2022]’s method and GESP are applicable on

problems with this property (although they can also be applied in problems that do not have this

property).

The limitation of being unable to resume the evaluation is very relevant in policy learning tasks,

specially, when they are carried out in the real world. For example, when carrying out direct policy

search in real robots, it does not make sense to evaluate policy𝐴 for 2 seconds, immediately change

to another policy 𝐵 for 3 seconds and then decide to go back to continue with the evaluation of

policy 𝐴. Restarting the evaluation of a robot takes time, as there is usually only one robot. The
robot needs to be reset to the initial state (often with human intervention) before another policy

can be evaluated. In addition, resuming the evaluation from a partially evaluated policy requires

resetting the robot to the state in which the evaluation was stopped, which is impossible in many

cases.

Property 3: Approximation quality

J. ACM, Vol. 37, No. 4, Article 0. Publication date: August 2018.

0:6 Etor Arza, Léni K. Le Goff, and Emma Hart

Algorithm 1: Evaluate solution with early stopping

Input:
𝑓 [𝑡] (·): The approximation of the objective function with time 𝑡 . 𝑓 [𝑡𝑚𝑎𝑥] (·) is the objective function.
\ : The solution to be evaluated.

𝑡𝑔𝑟𝑎𝑐𝑒 : The grace period parameter.

𝑡𝑚𝑎𝑥 : The maximum evaluation time.

1 if 𝑓 [𝑡] (\𝑏𝑒𝑠𝑡) = 𝜙 then
2 𝑓 [𝑡] (\𝑏𝑒𝑠𝑡) ← −∞, ∀𝑡 = 1, ..., 𝑡𝑚𝑎𝑥

3 for 𝑡 = 0, ..., 𝑡𝑚𝑎𝑥 do
4 compute 𝑓 [𝑡] (\)
5 if 𝑡 > 𝑡𝑔𝑟𝑎𝑐𝑒 and Equation (1) is satisfied then
6 return 𝑓 [𝑡] (\)
7 if 𝑓 [𝑡𝑚𝑎𝑥] (\) > 𝑓 [𝑡𝑚𝑎𝑥] (\𝑏𝑒𝑠𝑡) then
8 𝑓 [𝑡] (\𝑏𝑒𝑠𝑡) ← 𝑓 [𝑡] (\), ∀𝑡 = 1, ..., 𝑡𝑚𝑎𝑥

9 return 𝑓 [𝑡𝑚𝑎𝑥] (\)

Given any two solutions \1, \2, GESP assumes that the approximation of the objective function,

is usually able to properly identify the best of these solutions. Hence, if 𝑓 (\1) ≥ 𝑓 (\2) then the

probability of 𝑓 [𝑡] (\1) ≥ 𝑓 [𝑡] (\2) should be high, specially when 𝑡 is close to 𝑡𝑚𝑎𝑥 .

In other words, GESP and the rest of the early stopping methods in the literature assume that if a

solution performs poorly when approximated, then its objective value is also expected to be low.

This is an assumption that reasonably holds for hyperparameter optimization [Li et al. 2017], and

is required by all early stopping approaches. In the context of policy learning, this property implies

that the cumulative reward does not drastically change in a few steps. Instead, Property 3 implies

that the cumulative reward increases or decreases slowly throughout the episode.

Generalized Early Stopping for Direct Policy S.earch. Assuming a maximization optimization problem,

GESP involves stopping the evaluation of a solution at time step 𝑡 > 𝑡𝑔𝑟𝑎𝑐𝑒 when certain conditions

are met. Specifically, we stop the evaluation of a solution \ at time step 𝑡 if Equation (1) below is

satisfied.

max{𝑓 [𝑡] (\), 𝑓 [𝑡 − 𝑡𝑔𝑟𝑎𝑐𝑒] (\)} < min{𝑓 [𝑡] (\𝑏𝑒𝑠𝑡), 𝑓 [𝑡 − 𝑡𝑔𝑟𝑎𝑐𝑒] (\𝑏𝑒𝑠𝑡)} (1)

The grace period parameter 𝑡𝑔𝑟𝑎𝑐𝑒 is a parameter that establishes a minimum time for which all

candidates will be initially evaluated regardless of their objective value. In addition, it determines

the bonus evaluation time given to new candidate solutions. The evaluation of the new candidate

solution \ is stopped when its objective value at time step 𝑡 is worse than the objective value of the

best solution \𝑏𝑒𝑠𝑡 at time 𝑡 − 𝑡𝑔𝑟𝑎𝑐𝑒 . This gives new candidates 𝑡𝑔𝑟𝑎𝑐𝑒 extra time steps to achieve the

level of performance of the current best solution

In Algorithm 1 we show the pseudocode of GESP. First we initialize the reference objective values to

−∞ (lines 1-2). Then, starting with the first time step 𝑡 = 1, we evaluate the approximate objective

function 𝑓 [𝑡] (\) at that time step (line 4). Then, if 𝑡 > 𝑡𝑔𝑟𝑎𝑐𝑒 and Equation (1) are satisfied (line

5), the objective function of \ is approximated as 𝑓 [𝑡] (\) (line 6), \ is not evaluated in time step

𝑡 + 1 and beyond, and the reference objective values are not updated. Otherwise, we evaluate \

at time step 𝑡 + 1. Finally, if \ makes it to time step 𝑡𝑚𝑎𝑥 and a new best objective value is found

𝑓 [𝑡𝑚𝑎𝑥] (\𝑖) > 𝑓 [𝑡𝑚𝑎𝑥] (\𝑏𝑒𝑠𝑡), we replace the reference objective values with the new ones (lines

7-8).

J. ACM, Vol. 37, No. 4, Article 0. Publication date: August 2018.

Generalized Early Stopping in Evolutionary Direct Policy Search 0:7

Our approach is similar to de Souza et al. [2022]’s early stopping methods for hyperparameter

optimization. de Souza et al. [2022]’s approach generates a stopping criterion based on a set of

already evaluated solutions, such that the evaluation of new candidate solutions can be stopped

early when they perform relatively poorly. However, de Souza et al. [2022]’s approach is not

directly applicable to direct policy search, as it assumes a monotone objective function as well as

the eligibility of partially evaluated solutions. In the following, we discuss a few details that need to

be taken into account when proposing a early stopping method for direct policy search (in contrast

to hyperparameter optimization).

3.1 Applicability on direct policy search
Early stopping through the objective function alone usually assumes a monotone increasing

objective function, which is true for hyperparameter tuning. However, this assumption does not

hold for direct policy search. Specifically, early stopping without a monotone increasing objective

function creates two issues: and we propose two possible modifications of GESP to overcome them.

We motivate and explain these two issues with an example. Let us consider the reinforcement

learning pendulum task
7
. The reward in this task is inversely proportional to the speed and the

angle of the pendulum (assuming the angle at the upright position is 0). The goal in this task is to

maximize the sum of all the rewards in 𝑡𝑚𝑎𝑥 time steps, where the reward in each step is in the

interval (0,−16.27). This means that in each time step, the objective function can only be lower

than in the previous time step (the objective function is monotone decreasing). Consequently, if

early stopping is applied in this problem, the solutions that are stopped earlier will have a better

objective function than if they had been evaluated for the maximum time 𝑡𝑚𝑎𝑥 .

Issue (1) involves correctly reporting the best found solution. Unless we assume a monotone

increasing objective function, the best found solution might be a partially evaluated solution.

Consequently, if the issue is not addressed, the reported objective value could potentially be better

than the actual objective value.

For example, in the pendulum task, if the pendulum is initialized in the downwards position and a

policy \𝑤𝑜𝑟𝑠𝑡 applies no torque, then, then the reward is -16.27 (the worst possible reward) in each

time step (𝑓 [𝑡] (\𝑤𝑜𝑟𝑠𝑡) = −16.27 · 𝑡). However, when applying GESP, at time step 𝑡 = 𝑡𝑔𝑟𝑎𝑐𝑒 + 𝛿 , the
policy is likely to be early stopped. Recall that the evaluation is stopped if

max{𝑓 [𝑡] (\𝑤𝑜𝑟𝑠𝑡), 𝑓 [𝑡 − 𝑡𝑔𝑟𝑎𝑐𝑒] (\𝑤𝑜𝑟𝑠𝑡)} < min{𝑓 [𝑡] (\𝑏𝑒𝑠𝑡), 𝑓 [𝑡 − 𝑡𝑔𝑟𝑎𝑐𝑒] (\𝑏𝑒𝑠𝑡)} (2)

considering that the reward in each time step is defined on the interval (0,−16.27), 𝑡 = 𝑡𝑔𝑟𝑎𝑐𝑒 + 𝛿 ,
and 𝑓 [𝛿] (\𝑤𝑜𝑟𝑠𝑡) = −16.27 · 𝛿 , we simplify the above equation to

−16.27 · 𝛿 < 𝑓 [𝑡𝑔𝑟𝑎𝑐𝑒 + 𝛿] (\𝑏𝑒𝑠𝑡) (3)

Now, for the sake of simplicity, lets assume that the best policy \𝑏𝑒𝑠𝑡 so far is able to control the

pole on the first 𝑡 time steps such that the reward is −5 on average. Then, the above equation would

be simplified to

𝑓 [𝛿] (\𝑤𝑜𝑟𝑠𝑡) = −16.27 · 𝛿 < −5 · (𝑡𝑔𝑟𝑎𝑐𝑒 + 𝛿) (4)

0.443656 · 𝑡𝑔𝑟𝑎𝑐𝑒 < 𝛿 (5)

Thus, at time step 𝑡 = 2 · 𝑡𝑔𝑟𝑎𝑐𝑒 the evaluation will have already stopped, which will give the policy

\𝑤𝑜𝑟𝑠𝑡 an objective value of −32.54 · 𝑡𝑔𝑟𝑎𝑐𝑒 (or better). Now, if 𝑡𝑔𝑟𝑎𝑐𝑒 is set to 0.05 · 𝑡𝑚𝑎𝑥 , then the

7
https://www.gymlibrary.dev/environments/classic_control/pendulum/

J. ACM, Vol. 37, No. 4, Article 0. Publication date: August 2018.

https://web.archive.org/web/20220903205443/https://www.gymlibrary.dev/environments/classic_control/pendulum/

0:8 Etor Arza, Léni K. Le Goff, and Emma Hart

objective value of \𝑏𝑒𝑠𝑡 will be −5 · 𝑡𝑚𝑎𝑥 = −100 · 𝑡𝑔𝑟𝑎𝑐𝑒 . Thus, the reported objective value of the best
found solution \𝑏𝑒𝑠𝑡 will be more than 3 times worse than for the worst possible policy \𝑤𝑜𝑟𝑠𝑡 . Even

though \𝑤𝑜𝑟𝑠𝑡 is a terrible policy, it triggers the early stopping very quickly, and obtains a better

objective value than a policy that performs well and was evaluated for the entire episode. Hence,

without taking into account Issue (1), the best reported solution could be one that immediately

triggers the early stopping criterion. Overcoming this issue is simple with Modification (1): do not

update the best found solution unless the new best solution has been evaluated for the maximum

time 𝑡𝑚𝑎𝑥 .

Issue (2) is not as critical as Issue (1), and is related to the credit assignment during the optimization

process. Although Issue (2) does not produce an incorrect result per se, it might potentially set

back the optimization. In monotone increasing problems (such as hyperparameter optimization),

a poor solution that is early stopped might get a worse than deserved objective value, as with

additional evaluation time it might have been able to increase its objective value. This is usually

not considered a problem, as it is not expected that the learning algorithm is impacted in a negative

way. Basically early stopping in this case favors solutions that quickly converge towards good

objective values over those that are slow to converge. However, in problems with decreasing

objective functions (such as the pendulum task), poor solutions might be assigned an objective

value (due to early stopping) that is in fact better than the objective value that would have been

obtained if the evaluation was continued for the maximum evaluation time. This might pose a

challenge for the optimization algorithm.

For example, in the pendulum task, if a policy applies no torque then the pendulum does not move

and the evaluation is stopped early. This is a very poor policy, but since it triggers the early stopping

very quickly, it obtains a better objective value than a policy that is able to correctly balance the

pole and is evaluated for the entire episode. This is because in the pendulum task, the reward is

negative in each time step, and the total reward of the policy that optimally balances the pole

has many time steps with a negative reward (during which the pole is being moved towards the

balancing point). The learning algorithm might therefore optimize the policy to trigger the early

stopping as quickly as possible, which is obviously undesirable.

It is possible to overcome Issue (2) by modifying the objective function. It is enough to redefine

the objective function such that it is monotone increasing. To achieve this, we can add a constant

value 𝑘 to the objective function in each time step, ensuring that the redefined objective function is

monotone increasing. For instance, in the pendulum task (with a reward in the interval (0,−16.27)
in each time step), it is sufficient to redefine the objective function as 𝑓𝑛𝑒𝑤 [𝑡] (\) = 𝑓 [𝑡] (\) +𝑡 ·16.28.
By adding Modification (2), we also overcome Issue (1).

However, in this study, we deliberately chose not to redefine the objective function (we do not

apply Modification (2)). We propose GESP as a plug and play method that is compatible with as

many problems as possible and requires no modifications in the objective function and can work

alongside other problem specific stopping criteria. The purpose of the experimentation in this work

is to showcase the benefit of applying GESP on direct policy learning environments. In this sense,

modifying the objective functions of the environments would obscure the contribution of GESP.

Even with only Modification (1), we show that GESP rarely decreases the performance and signifi-

cantly speeds up the search process in a wide variety of tasks (despite Issue (2)), even in tasks with

monotone decreasing objective functions such as pendulum (Section 4.1).

4 EXPERIMENTATION
To validate the proposed approach, we run several experiments in different direct policy search

tasks with different evolutionary learning algorithms to demonstrate the benefit of using GESP. We

chose different tasks with different learning algorithms to show that GESP is applicable in different

J. ACM, Vol. 37, No. 4, Article 0. Publication date: August 2018.

https://web.archive.org/web/20220903205443/https://www.gymlibrary.dev/environments/classic_control/pendulum/

Generalized Early Stopping in Evolutionary Direct Policy Search 0:9

Name Environment

Learning

algorithm

Task

classic
control Classic control CMA-ES [Igel et al. 2006] cart pole and pendulum.

super
mario Super Mario NEAT [Stanley and Miikkulainen 2002]

Move the character “Mario” to the right as

much as possible.

mujoco Mujo-co CMA-ES [Igel et al. 2006]

half cheetah, inverted double pendulum, swim-
mer, ant, hopper and walker2d.

NIPES
explore

8 x 8 grid

with obstacles

NIPES [Le Goff et al. 2020]

Move a robot with four wheels and two sen-

sors and visit as many squares possible in 30

seconds.

L-System Based on

OpenAI gym

_ + ` ES with L-System encoding

[Veenstra and Glette 2020]

Learn the morphology and control of virtual

creatures and move to the right as much as

possible.

Table 1. Environments in the experimentation

scenarios and across a range of evolutionary algorithms. In some of these tasks, the original authors

have proposed a problem specific stopping criterion to save computation time, in which case, we

also compare GESP to the problem specific approach. The experimentation is carried out in five

different environments, each with different properties and learning algorithms. Table 1 lists the

environments considered.

Methodology
For each experiment, we record the best objective value found so far with respect to the computation

time (known as the attainment trajectory [Dreo and López-Ibáñez 2021]). Each experiment is

repeated 30 times, and the median and interquantile ranges are reported. When comparing two

attainment trajectories, we perform a pointwise two sided Mann-Whitney test [Arza et al. 2022;

Mann and Whitney 1947] with 𝛼 = 0.01. The test is performed pointwise with no familywise error

correction [Korpela et al. 2014].

When performing no correction, on average (if all the experiments were repeated∞ times), the

proportion of the points in which the test is falsely rejected is 0.01. We think that falsely rejecting

the null-hypothesis (finding a difference when in reality there is none) in a small proportion of the

optimization procedure is acceptable [Härdle et al. 2004].

Consequently, we expect that in a small proportion of all the points on the x-axis, the statistical

test is falsely rejected (difference is found when in reality there is none). As a consequence, in the

results figures in the paper, on average
8
we can expect to observe a false statistically significant

difference in 1% of the length.

We also added the best found values (the best value observed during our executions) instead of the

best known values (best values observed in the literature) as a reference. Two of the benchmarks

(supermario and L-System) are not very well known, and do not have best known values available.
Even for the tasks where the best known value is available, it depends on the type of optimization

algorithm considered. Specifically, in this work, we present a technique (GESP) that can speed-up

existing direct policy search algorithms. Therefore, the purpose of the experimentation is to

demonstrate the benefit of applying GESP to direct policy search algorithms (we are not trying to

introduce a state of the art policy learning algorithm). In many of the problems, the best known

value in the literature is very far from what can be achieved with direct policy search. For example,

the results available on OpenAI’s spinning up benchmark (also archived) an objective value of

8
As with every hypothesis test (frequentist) approach, on average in this context means if we were to repeat this same

experiment many times [Conover 1980].

J. ACM, Vol. 37, No. 4, Article 0. Publication date: August 2018.

https://spinningup.openai.com/en/latest/spinningup/bench.html
https://web.archive.org/web/20230602053435/https://spinningup.openai.com/en/latest/spinningup/bench.html

0:10 Etor Arza, Léni K. Le Goff, and Emma Hart

almost 15000 can be reached with the soft actor critic algorithm, while the best found with the

direct policy search method for this task in our work is around 3000.

4.1 Classic control tasks (classic control)
OpenAI Gym [Brockman et al. 2016] is a framework to study reinforcement learning. Among the

environments available in OpenAI Gym, we have the classic control tasks cart pole [Barto et al.

1983] and pendulum. In the garage
9
framework, there is an example script

10
(also archived) that

uses CMA-ES to learn the policy for the cart pole task. The same learning algorithm was considered

for pendulum. We set the grace period parameter to 20% of the maximum time: 𝑡𝑔𝑟𝑎𝑐𝑒 = 0.2 · 𝑡𝑚𝑎𝑥 .

The objective function in cart pole is the number of timesteps before it is terminated because out of

bounds or because the pole is no longer in the upright position (the reward is 1 in every time step).

Consequently, any approximation of the objective function that has not yet been terminated is

𝑓𝑐𝑎𝑟𝑡𝑝𝑜𝑙𝑒 [𝑡] (\) = 𝑡 . As mentioned before, pendulum has a monotone decreasing objective function

with a reward in the interval (0,−16.27) in each time step. The policies are learned with CMA-ES.

Let us first consider the cart pole experiment. Due to the definition of the objective function,

applying GESP has no effect in this case: the condition in Equation (1) will never be satisfied, and

no early stopping will happen. Consequently, we expect that there is no difference experimentally

between applying GESP and applying no early stopping (denoted as “Standard” in the figures in

the paper). In fact, since applying GESP has no effect, the null hypothesis is true for this task.

The result for the cart pole experiment shown in Figure 1a confirms this experimentally. Visually,

there is no difference between the two stopping criteria, also suggested by the lack of statistical

significant difference of the two sided Mann-Whitney test at 𝛼 = 0.01.

To confirm this hypothesis, we computed the ratio of solutions evaluated with and without GESP.

For instance, a ratio of 2.0 indicates that using GESP, twice as many solutions are evaluated in the

same amount of computation time. The ratio of solutions evaluated for the cart-pole is 1, as shown

in Figure 2, which means that the same amount of solutions are being evaluated with or without

GESP.

The results for the pendulum task are shown in Figure 1b. With GESP, a significant amount of time

is saved in this task and a final higher objective value is obtained. For instance, with GESP, the

median time to reach an objective value of -10 is less than 150 seconds using GESP, compared to

more than 300 seconds without. In addition, as shown in Figure 2, with GESP, more than twice as

many solutions are evaluated in the same amount of time, when compared with applying no early

stopping.

4.2 Playing Super Mario (super mario)
Verma [2020] proposed learning to play the video game “Super Mario” released in 1985 with

NEAT [Stanley and Miikkulainen 2002]. In this popular video game, a character Mario needs to

move to the right without dying and reach the end of the level. In Verma [2020]’s implementation,

the objective function is the horizontal distance that the character has moved.

A maximum episode length of 1000 steps is considered, although the episode also ends if the

character dies. Verma implemented an additional stopping criterion: if the character does not move

horizontally in 50 consecutive steps, then the episode also ends. In the following, we compare

this problem specific stopping criterion with GESP, and we also consider no stopping criterion

as a baseline. We set 𝑡𝑔𝑟𝑎𝑐𝑒 = 50 for a fair comparison with Verma’s problem specific termination

9
https://www.gymlibrary.dev/environments/classic_control/pendulum/

10
https://github.com/rlworkgroup/garage/blob/2d594803636e341660cab0e81343abbe9a325353/

src/garage/examples/np/cma_es_cartpole.py#L4

J. ACM, Vol. 37, No. 4, Article 0. Publication date: August 2018.

https://spinningup.openai.com/en/latest/algorithms/sac.html
https://web.archive.org/web/20220903205443/https://www.gymlibrary.dev/environments/classic_control/pendulum/
https://github.com/rlworkgroup/garage
https://github.com/rlworkgroup/garage/blob/2d594803636e341660cab0e81343abbe9a325353/src/garage/examples/np/cma_es_cartpole.py#L4
https://web.archive.org/web/20230529153930/https://github.com/rlworkgroup/garage/blob/2d594803636e341660cab0e81343abbe9a325353/src/garage/examples/np/cma_es_cartpole.py

Generalized Early Stopping in Evolutionary Direct Policy Search 0:11

0 20 40 60 80 100
Optimization time in seconds

100

150

200

250

300

350

400

Ob
je

ct
iv

e
va

lu
e

task: cart pole

Standard
GESP
p < 0.01
best-known

(a) cart pole

0 200 400 600 800 1000
Optimization time in seconds

103

102

101

100

0

Ob
je

ct
iv

e
va

lu
e

task: pendulum

(b) pendulum

Fig. 1. The objective value of the agents with and without GESP with respect to computation time (classic
control).

0.0 0.2 0.4 0.6 0.8 1.0
normalized optimization runtime budget

0.5

1.0

1.5

2.0

2.5

Pr
op

or
tio

n
of

 so
lu

tio
ns

 e
va

lu
at

ed

cart pole
pendulum

Fig. 2. Ratio of solutions evaluated with and without GESP in the same optimization time. A higher value
indicates that GESP was able to evaluate more solutions in the same time.

criterion. We trained the algorithm in the levels 1-4, 2-1, 4-1, 4-2, 5-1, 6-2 and 6-4. We show the

results in Figure 3.

In general, the results demonstrate that there is no big difference in performance between the

problem specific method and GESP. In some of the levels, the problem specific approach performs

better, but this difference disappears as the computation time increases. Both methods are clearly

better than using no stopping criteria.

Curiously enough, in level 5-1, there is no difference between the results obtained using either

of the stopping methods and the baseline method that does not use any stopping criterion. The

reason is probably that in this level, it is hard to get stuck: there are a large number of enemies

and few obstacles. We hypothesize that in this level, it is very easy to die, hence the execution is

terminated regardless of the other stopping criteria (and therefore GESP have no effect).

To validate this the hypothesis, we computed the ratio of solutions evaluated in the same optimiza-

tion time with and without GESP. We compute this ratio for all of the super mario levels, and we

show the result in Figure 4. As can be seen in the figure, in level 5-1 the ratio is almost 1, indicating

that GESP rarely stops the evaluation of the agents early in this level. This finding validates the

previous hypothesis.

J. ACM, Vol. 37, No. 4, Article 0. Publication date: August 2018.

https://web.archive.org/web/20211027022543/https://www.mariowiki.com/World_5-1_(Super_Mario_Bros.)

0:12 Etor Arza, Léni K. Le Goff, and Emma Hart

0 2 4 6 8 10 12
Optimization time in hours

0

500

1000

1500

2000

2500

Ob
je

ct
iv

e
va

lu
e

Level: 1-4

Standard
GESP
Problem Specific
best-found

0 2 4 6 8 10 12
Optimization time in hours

0

500

1000

1500

2000

Ob
je

ct
iv

e
va

lu
e

Level: 2-1

0 2 4 6 8 10 12
Optimization time in hours

0

500

1000

1500

2000

2500

3000

3500

Ob
je

ct
iv

e
va

lu
e

Level: 4-1

0 2 4 6 8 10 12
Optimization time in hours

0

500

1000

1500

2000

2500

Ob
je

ct
iv

e
va

lu
e

Level: 4-2

0 2 4 6 8 10 12
Optimization time in hours

0

500

1000

1500

2000

Ob
je

ct
iv

e
va

lu
e

Level: 5-1

0 2 4 6 8 10 12
Optimization time in hours

0
250
500
750

1000
1250
1500
1750
2000

Ob
je

ct
iv

e
va

lu
e

Level: 6-2

0 2 4 6 8 10 12
Optimization time in hours

0

500

1000

1500

2000

2500

Ob
je

ct
iv

e
va

lu
e

Level: 6-4

Fig. 3. The objective value of the agents with respect to computation time in super mario with GESP, with
the problem specific stopping criterion and without additional stopping criterion. Levels from top-left to
bottom-right: 1-4, 2-1, 4-1, 4-2, 5-1, 6-2, 6-4.

J. ACM, Vol. 37, No. 4, Article 0. Publication date: August 2018.

Generalized Early Stopping in Evolutionary Direct Policy Search 0:13

0.0 0.2 0.4 0.6 0.8 1.0
Normalized optimization runtime budget

1.0

1.5

2.0

2.5

3.0

3.5
Pr

op
or

tio
n

of
 so

lu
tio

ns
 e

va
lu

at
ed

1-4
2-1
4-1
4-2
5-1
6-2
6-4

Fig. 4. Ratio of solutions evaluated with and without GESP in the same optimization time. A higher value
indicates that GESP was able to evaluate more solutions in the same time.

J. ACM, Vol. 37, No. 4, Article 0. Publication date: August 2018.

0:14 Etor Arza, Léni K. Le Goff, and Emma Hart

4.3 Tasks in the Mujoco environment (mujoco)
Mujoco is a high performance physics simulator. OpenAI Gym has some tasks

11
defined in this

environment which have been extensively used in reinforcement learning research. In this section

of the experimentation, we experiment with the tasks half cheetah, swimmer, ant, hopper, walker2d.
In all of these tasks, the objective is to move the agent as far as possible from the initial position,

while minimizing energy use. We also consider the inverted double pendulum, in which the objective

is to keep a double pendulum balanced.

In all of these tasks, the policies are learned with CMA-ES [Igel et al. 2006] (with the same algorithm

that was considered in the classic control tasks in Section 4.1) and we set the grace period parameter

to 20% of the maximum time: 𝑡𝑔𝑟𝑎𝑐𝑒 = 0.2 · 𝑡𝑚𝑎𝑥 .

The results are shown in Figure 5. In the inverted double pendulum, hopper and walker2d tasks,

applying GESP made no difference in the performance and computation time. In the other three

tasks, by using GESP we are able to get a better objective value in the same amount of time, although

the difference was only statistically significant in ant (until 1600 seconds) and half cheetah tasks.

The tasks ant, hopper, walker2d and inverted double pendulum have problem specific stopping

criterion that stop the evaluation when the state of the agent is ‘unhealthy’. The definition of

"healthy agent" is different for each problem: for example, in the ant task, an agent is considered

healthy if all the state spaces are finite and the distance from the body of the ant to the floor is

in the interval [0.2, 1]. These additional stopping criteria are essential for the learned policy to

be realistic: we do not want a policy that tries to exploit the physics simulator’s bugs. However,

we hypothesize that these stopping criteria are already very good at avoiding wasting time in

undesirable states, and consequently, GESP has little room for further improvement.

To validate this hypothesis, we repeated the experimentation for the tasks ant, hopper and walker2d
but this time without the terminate when unhealthy stopping criterion enabled. We recorded the

performance with respect to the optimization time with GESP enabled and disabled. The results

are shown in Figure 6. With the terminate when unhealthy stopping criteria disabled, GESP is able

to save a lot of computation time in these three tasks, indicating that the method would be useful

if one did not have the in-depth understanding of the task required to create problem-specific

stopping criteria.

We show the ratio of extra evaluations computed with GESP in Figure 7. In the case of hopper and
walker2d, the ratio is almost 1, which means that GESP is unable to save computation time in these

two tasks. However, when we disable the terminate when unhealthy stopping criterion, the ratio is

a lot higher in these two tasks, which suggests that GESP is able to early stop under-performing

solutions. These results suggest that the hypothesis above is true.

In conclusion, GESP was able to save computation time in some of the tasks in this environment,

and it is specially useful when there are no problem specific stopping criteria available. However, it

can also save computation time alongside existing stopping criteria, although to a lesser extent (as

was the case for the ant task, as shown in Figure 5).

4.4 NIPES within the ARE framework (NIPES explore)
Recent research in the field of Evolutionary Robotics has attempted to lay a foundation for de-

veloping frameworks that enable the autonomous design and evaluation of robots [Eiben et al.

2021]. In contrast to much previous work in Evolutionary Robotics which typically focuses only on

control, recent approaches attempt to simultaneously evolve both body and control of a robot. For

example, joint optimization of body and control is accomplished in the framework known as ARE

(Autonomous Robot Evolution) [Le Goff et al. 2021] using a nested architecture which uses an EA in

11
https://www.gymlibrary.dev/environments/mujoco/

J. ACM, Vol. 37, No. 4, Article 0. Publication date: August 2018.

http://web.archive.org/web/20221006093330/https://www.gymlibrary.dev/environments/mujoco/
http://web.archive.org/web/20220903205441/https://www.gymlibrary.dev/environments/mujoco/ant/

Generalized Early Stopping in Evolutionary Direct Policy Search 0:15

0 500 1000 1500 2000 2500 3000
Optimization time in seconds

20

10

0

10

20

30

40

Ob
je

ct
iv

e
va

lu
e

task: ant

Standard
GESP
p < 0.01
best-known

0 200 400 600 800
Optimization time in seconds

100

200

300

400

Ob
je

ct
iv

e
va

lu
e

task: inverted double pendulum

0 1000 2000 3000 4000 5000
Optimization time in seconds

50

100

150

200

250

300

350

Ob
je

ct
iv

e
va

lu
e

task: swimmer

0 1000 2000 3000 4000
Optimization time in seconds

0

500

1000

1500

2000

2500

3000
Ob

je
ct

iv
e

va
lu

e
task: half cheetah

0 500 1000 1500 2000 2500 3000 3500
Optimization time in seconds

0

500

1000

1500

2000

Ob
je

ct
iv

e
va

lu
e

task: hopper

0 1000 2000 3000 4000 5000
Optimization time in seconds

0

500

1000

1500

2000

Ob
je

ct
iv

e
va

lu
e

task: walker2d

Fig. 5. The objective value of the agents with respect to computation time in the mujoco tasks with and
without GESP. Environments from top-left to bottom-right: ant, inverted double pendulum, swimmer, half
cheetah, hopper, walker2d.

an outer loop to evolve a body design and a learning algorithm within an inner loop to optimize its

controller. Le Goff et al. [2020] proposed a learning algorithm to learn the control policy of wheeled

robots in the inner loop dubbed NIPES for this purpose. The algorithm combines CMA-ES [Igel

et al. 2006] and novelty search [Lehman and Stanley 2011] in order to create a method that is a

more sample and time efficient algorithm than CMA-ES alone.

J. ACM, Vol. 37, No. 4, Article 0. Publication date: August 2018.

0:16 Etor Arza, Léni K. Le Goff, and Emma Hart

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Optimization time in seconds 1e4

2800

2600

2400

2200

2000

Ob
je

ct
iv

e
va

lu
e

task: ant

Standard
GESP
p < 0.01

0 500 1000 1500 2000 2500 3000 3500
Optimization time in seconds

500

1000

1500

2000

2500

Ob
je

ct
iv

e
va

lu
e

task: hopper

0 1000 2000 3000 4000 5000 6000 7000
Optimization time in seconds

500

1000

1500

2000

2500

3000

3500

Ob
je

ct
iv

e
va

lu
e

task: walker2d

Fig. 6. The objective value of the agents with and without GESP with respect to computation time, without
stopping the evaluation when the state of the agent is unhealthy. Environments from top to bottom: ant,
hopper, walker2d.

0.0 0.2 0.4 0.6 0.8 1.0
normalized optimization runtime budget

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Pr
op

or
tio

n
of

 so
lu

tio
ns

 e
va

lu
at

ed

half cheetah
inverted double pendulum
swimmer

hopper
ant

walker2d
Stop unhealthy disabled

Fig. 7. Ratio of solutions evaluated with and without GESP in the same optimization time. A higher value
indicates that GESP was able to evaluate more solutions in the same time. A dashed line indicates that the
results were obtained with the terminate when unhealthy stopping criterion disabled.

J. ACM, Vol. 37, No. 4, Article 0. Publication date: August 2018.

Generalized Early Stopping in Evolutionary Direct Policy Search 0:17

Fig. 8. A screenshot of the obstacles task.

0 2 4 6 8
Optimization time in hours

0.10

0.15

0.20

0.25

0.30

Ob
je

ct
iv

e
va

lu
e

best-found
Standard
GESP
p < 0.01

(a) Obstacles

0 2 4 6 8
Optimization time in hours

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ob
je

ct
iv

e
va

lu
e

best-found
Standard
GESP
p < 0.01

(b) Hard race

Fig. 9. The objective value of the agents with respect to computation time in the NIPES explore experiments,
with and without GESP. The black line represents that the difference is statistically significant at 𝛼 = 0.01

with a pointwise two sided Mann-Whitney test.

We evaluate GESP using two exploration tasks proposed by Le Goff et al. [2021] in which a wheeled

robot needs to explore an arena. The goal is for the robot to explore as much of an arena as possible

within 30 seconds. One arena has multiple obstacles hindering exploration, while the other has a

maze-like layout that requires the robot to navigate along corridors. Each arena is divided into 64

squares (see Figure 8), and the objective function is the proportion of squares visited.

We test NIPES with and without GESP in these two environments. We set the grace period parameter

𝑡𝑔𝑟𝑎𝑐𝑒 = 0.2 · 𝑡𝑚𝑎𝑥 to 20% of the maximum time (30 seconds as in the work by Le Goff et al. [2021]).

The results are shown in Figure 9.

In both environments (obstacles and hard race), GESP improves the objective value found for the

same optimization time, although the difference is not statistically significant at 𝛼 = 0.01. The

magnitude of the difference is not observable in the figure, and by looking at the ratio of number of

evaluations with or without GESP in Figure 10, we can see that GESP is able to evaluate between

40% and 70% more solutions in the same amount of time. This is less of a saving than in scenarios

previously described (e.g. Mujoco, Super-Mario and the classic control environments). A higher

number of repetitions (we use 30 repetitions in every experiment of this paper) might reveal a

statistically significant difference, which can also be observed at 𝛼 = 0.05 (not shown in the figure).

J. ACM, Vol. 37, No. 4, Article 0. Publication date: August 2018.

0:18 Etor Arza, Léni K. Le Goff, and Emma Hart

0.0 0.2 0.4 0.6 0.8 1.0
normalized optimization runtime budget

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Pr
op

or
tio

n
of

 so
lu

tio
ns

 e
va

lu
at

ed
Obstacles
Hard race

Fig. 10. Ratio of solutions evaluated with and without GESP in the same optimization time. A higher value
indicates that GESP was able to evaluate more solutions in the same time.

4.5 Robotics, Evolution and Modularity (L-System)
Veenstra and Glette proposed a simulation framework

12
to evolve the morphology and control of

2D creatures [Veenstra and Glette 2020] based on the OpenAI gym bipedal walker13 environment.

It is a gym environment for computationally cheap morphology search [Veenstra and Glette 2020].

Agents start at the horizontal position 4.67 and need to move to the right to increase their horizontal

position. They propose a problem specific stopping criterion that terminates the evaluation of

the current agent if its position in time 𝑡 is lower than or equal to 0.04 · 𝑡 . We set the time grace

parameter of GESP to 𝑡𝑔𝑟𝑎𝑐𝑒 = 130, which is what the amount of frames it takes for the problem

specific stopping criterion to terminate randomly generated agents. It is similar to the amount of

frames it takes to terminate a non moving agent at 117 frames.

The results are shown in Figure 11a. The problem specific approach obtains a better objective value

than GESP and using no stopping criterion (Standard) at the very beginning of the optimization

process. However, later on GESP takes over and is better than the other two approaches until 3.6

hours.

At the end of the training procedure, the problem specific stopping criterion obtains a poorer

objective value than the other two approaches. However, we suggest that this is an artifact of the

specific problem-specific stopping criteria suggested for this scenario: if the best agent produced

with the problem specific stopping criterion enabled is evaluated without any stopping criteria,

it is possible that it might in fact obtain a better performance value. On the other hand, GESP

overcomes this limitation, as only solutions evaluated for the entire episode length (for time 𝑡𝑚𝑎𝑥)

are candidates for the best found solution (thanks to Modification (1) introduced in Section 3.1).

To test whether this is the case, we repeated the experiments but reevaluating the best candidate in

each generation with all the stopping criteria disabled. The results are shown in Figure 11b. While

the performance with GESP and Standard do not change with respect to the previous experiments,

the same is not true for the problem-specific stopping criterion: in this case the problem specific

approach reaches a high objective value (> 20) slightly faster than GESP and considerably faster

than with all the stopping criteria disabled.

The problem specific approach terminates some of the high performing agents after a while, which

explains why the objective value increases more slowly for the problem specific approach without

12
https://github.com/FrankVeenstra/gym_rem2D

13
https://www.gymlibrary.dev/environments/box2d/bipedal_walker/

J. ACM, Vol. 37, No. 4, Article 0. Publication date: August 2018.

https://github.com/FrankVeenstra/gym_rem2D
https://web.archive.org/web/20220903205524/https://www.gymlibrary.dev/environments/box2d/bipedal_walker/

Generalized Early Stopping in Evolutionary Direct Policy Search 0:19

0 1 2 3 4
Optimization time in hours

0

10

20

30

40

Ob
je

ct
iv

e
va

lu
e

Standard
GESP

Problem Specific
best-found

(a) Objective value during training

0 1 2 3 4
Optimization time in hours

0

10

20

30

40

Ob
je

ct
iv

e
va

lu
e

(b) Objective value when reevaluating

Fig. 11. The objective value of the agents in the task proposed Veenstra and Glette [2020] (L-System). We
compared GESP, the problem specific stopping criterion, and no additional stopping criterion (Standard). The
best found objective value is reported with respect to the total computation time. a) shows the best objective
value observed during training, and b) shows the objective value of the best candidate in each generation
when it is reevaluated with no stopping criteria.

0.0 0.2 0.4 0.6 0.8 1.0
normalized optimization runtime budget

100

101

102

Pr
op

or
tio

n
of

 so
lu

tio
ns

 e
va

lu
at

ed GESP Problem Specific

Fig. 12. Ratio of solutions evaluated with and without GESP and the problem specific stopping criterion in
the same optimization time. A higher value indicates that with GESP (or the problem specific criterion), it
was possible to evaluate more solutions in the same amount of time.

re-evaluation. Especially at the beginning of the optimization, solutions get terminated very quickly,

because early agents move slowly. This makes the problem specific approach advantageous, because

we waste less time on agents that can barely move, but it also means that slow moving agents

that reach very far will not have a chance to be evaluated with time 𝑡𝑚𝑎𝑥 . GESP is different in

that promising agents will have the chance to be evaluated until time 𝑡𝑚𝑎𝑥 , because the purpose

is to maximize the observed objective value: we are trying to solve the problem introduced in

Definition 1.

J. ACM, Vol. 37, No. 4, Article 0. Publication date: August 2018.

0:20 Etor Arza, Léni K. Le Goff, and Emma Hart

The task in this framework is to move to the right as far as possible. However, by using the problem

specific stopping criterion, agents that move slower than 0.04 · 𝑡 will eventually be terminated. This

means that the task to be solved changes to move to the right as fast as possible.
For the purpose of the scenarios proposed in the paper by Veenstra and Glette [2020], we argue

that the stopping criterion they proposed is still more suitable than using no stopping criterion

or using GESP. The point of their paper is to compare different encoding methods, regardless of

the stopping criteria. By adding a problem specific stopping criterion, they significantly sped up

the learning process from about three hours of computation time to 30 minutes. With the problem

specific approach they are able to evaluate between 10 times and 100 times more solutions in the

same amount of time as shown in Figure 12. This also changed the objective function from "move

as far as possible" to "move as fast as possible", however the comparison of encoding methods is

also applicable to the modified version of the objective function.

GESP could also have been considered as the stopping criterion in their study instead of the problem

specific approach. GESP reduces the computation time to around 45 minutes, but unlike the problem

specific approach, the objective function does not change (it is still "move as far as possible").

4.6 On the parameter 𝑡𝑔𝑟𝑎𝑐𝑒
As previously explained, GESP proposes to stop the evaluation only after 𝑡𝑔𝑟𝑎𝑐𝑒 steps have been

computed (𝑡 > 𝑡𝑔𝑟𝑎𝑐𝑒) and Equation 1 is satisfied. In this sense, the 𝑡𝑔𝑟𝑎𝑐𝑒 parameter controls how

early will evaluations be stopped. A lower value of 𝑡𝑔𝑟𝑎𝑐𝑒 allows more time to be saved (it allows

the the evaluations to be stopped earlier), but it also increases the probability of terminating

good performing agents that observe a momentary low reward during their evaluation. If we set

𝑡𝑔𝑟𝑎𝑐𝑒 = 0, then any candidate solution will get discarded as soon as it does worse than the best

found solution in any time step. Inversely, if we set 𝑡𝑔𝑟𝑎𝑐𝑒 to 100% of the maximum episode length,

then no solutions will be terminated early, and this is equivalent to not applying GESP (we use

“Standard” to refer to this from now on).

Hence, there is a trade-off between the amount of computation time that can be saved vs. how

likely it is that the evaluation of a good performing agent will be terminated early. In this section,

we carried out two experiments to study the effect of the 𝑡𝑔𝑟𝑎𝑐𝑒 parameter. In a first experiment, we

compare different 𝑡𝑔𝑟𝑎𝑐𝑒 values to see which gives the best results. Then, in a second experiment, we

measure three interesting properties with respect to the 𝑡𝑔𝑟𝑎𝑐𝑒 parameter. For example, we measure

the probability of early stopping (and therefore missing) a new best found solution, which decreases

as 𝑡𝑔𝑟𝑎𝑐𝑒 increases.

4.6.1 Performance with respect to 𝑡𝑔𝑟𝑎𝑐𝑒 . In this first experiment, we compare different values of

the 𝑡𝑔𝑟𝑎𝑐𝑒 parameter. To this end, we run GESP with 𝑡𝑔𝑟𝑎𝑐𝑒 set to 0, 0.05, 0.2, 0.5 and 1.0 times the

maximum episode length. We record the best objective value observed on a subset of the tasks in

the previous section. The experiment is carried out on three super mario levels, the two classic
control tasks, four mujoco tasks and the L-systems task. We repeat the experiment 30 times for

each value of 𝑡𝑔𝑟𝑎𝑐𝑒 , with the boxplots of the results shown in Figure 13.

On the cart pole task, all of the parameter values perform roughly the same. This is the expected

result, as applying GESP has no effect and is equivalent
14
to Standard (we use Standard to refer to

using no early stopping, which is equivalent to setting 𝑡𝑔𝑟𝑎𝑐𝑒 = 1.0 · 𝑡𝑚𝑎𝑥 , or the rightmost boxplot

in each task on Figure 13).

On the rest of the tasks, we cannot say that a parameter value is better than the rest, as the

performance varies across tasks. However, applying GESP with 𝑡𝑔𝑟𝑎𝑐𝑒 = 0.0 · 𝑡𝑚𝑎𝑥 performs (on

14
By definition, GESP never stops the evaluation early on cart pole, as explained on Section 4.1.

J. ACM, Vol. 37, No. 4, Article 0. Publication date: August 2018.

Generalized Early Stopping in Evolutionary Direct Policy Search 0:21

average) worse than Standard in the rest of the tasks. This suggests that the parameter 𝑡𝑔𝑟𝑎𝑐𝑒 should

always be set to more than 0.0 · 𝑡𝑚𝑎𝑥 .

On the pendulum task, two of the super mario tasks and two of the mujoco tasks; the best

performance is observed with 𝑡𝑔𝑟𝑎𝑐𝑒 = 0.05 · 𝑡𝑚𝑎𝑥 . However, 𝑡𝑔𝑟𝑎𝑐𝑒 = 0.05 · 𝑡𝑚𝑎𝑥 also obtains a worse

performance than Standard on three of the tasks: super mario: level 5-1 andmujoco: swimmer and
hopper. On Section 4.2, we observed that GESP offered no improvement over Standard on super
mario: level 5-1. The reason is that there are a lot of enemies on level 5-1 that often kill Mario,

triggering the problem specific stopping criterion, and hence there is no need to add additional

stopping criteria. Consequently, GESP with 𝑡𝑔𝑟𝑎𝑐𝑒 = 0.05 · 𝑡𝑚𝑎𝑥 might be stopping the evaluation of

promising candidates early on super mario: level 5-1, while offering no significant time savings.

GESP with 𝑡𝑔𝑟𝑎𝑐𝑒 = 0.05 · 𝑡𝑚𝑎𝑥 provides a huge drop in performance onmujoco: swimmer, which
can also be explained by the low probability of not missing a new best solution (studied in the

second part of the Experimentation on the 𝑡𝑔𝑟𝑎𝑐𝑒 parameter, on Section 4.6.2).

GESP 𝑡𝑔𝑟𝑎𝑐𝑒 = 0.2 · 𝑡𝑚𝑎𝑥 offers the best performance in general, while avoiding the big drops

in performance on some of the tasks. While 𝑡𝑔𝑟𝑎𝑐𝑒 = 0.05 · 𝑡𝑚𝑎𝑥 can sometimes speed up the

optimization process more than 𝑡𝑔𝑟𝑎𝑐𝑒 = 0.2 · 𝑡𝑚𝑎𝑥 , the latter does not worsen the observed objective

value in any of the tasks. Therefore, and based on these results, we recommend 𝑡𝑔𝑟𝑎𝑐𝑒 = 0.2 · 𝑡𝑚𝑎𝑥

as the default parameter.

To sum up, in this experiment we observed that:

• Setting 𝑡𝑔𝑟𝑎𝑐𝑒 to 0.2·𝑡𝑚𝑎𝑥 provides the optimal balance (among the tested configurations) between

maximizing the optimization time saved without compromising the performance in some of

the tasks.

• The parameter value 𝑡𝑔𝑟𝑎𝑐𝑒 = 0.0 · 𝑡𝑚𝑎𝑥 provides a poor performance.

• The optimal value for the parameter 𝑡𝑔𝑟𝑎𝑐𝑒 varies across tasks.

4.6.2 A closer look on 𝑡𝑔𝑟𝑎𝑐𝑒 . To further study the 𝑡𝑔𝑟𝑎𝑐𝑒 parameters, we conduct another experiment.

On the same tasks as in the previous experiment, we run the direct policy search algorithms 30

times per task with no problem specific stopping criterion, and we record the objective value

observed at each time step. Then, we analyze these observed partial objective values by applying

early stopping with GESP for different values of 𝑡𝑔𝑟𝑎𝑐𝑒 , assuming that the search trajectory does

not change. Although this assumption is not as realistic as the previous experiment, it allows us to

study the behaviour of GESP changes with respect to 𝑡𝑔𝑟𝑎𝑐𝑒 .

Specifically, we measure three interesting proportions when 𝑡𝑔𝑟𝑎𝑐𝑒 is set from 0.0 to 1.0 times

𝑡𝑚𝑎𝑥 . First we compute the proportion of best solution not missed, which is the probability that the

best found solution with GESP is the same as without it. We also measure steps computed, which
measures the efficiency of 𝑡𝑔𝑟𝑎𝑐𝑒 in terms of the ratio of steps computed with and without GESP.

For instance, a steps computed of 0.7 implies that, on average, the number of steps computed per

policy was 30% lower with GESP. Finally, we recorded GESP improves result, which is an upper

bound
15
of the probability that with GESP the final result is equal or better than without it.

The results are shown in Figure 14. All the proportions are constantly 1.0 in cartpole, as applying
GESP has no effect. For the rest of the tasks, the best solution not missed proportion starts low, and

quickly increases as 𝑡𝑔𝑟𝑎𝑐𝑒 increases. Except on the two lasts tasks, a value of 𝑡𝑔𝑟𝑎𝑐𝑒 = 0.2 · 𝑡𝑚𝑎𝑥

is enough for this proportion to be higher than 0.8, which means that in general, setting 𝑡𝑔𝑟𝑎𝑐𝑒 =

0.2·𝑡𝑚𝑎𝑥 has associated a high probability of not missing the best solution. In contrast, the proportion

of steps computed raises more slowly with 𝑡𝑔𝑟𝑎𝑐𝑒 .

15
It is an upper bound because in this experiment, we assume that the search trajectory (the solutions that are visited) are

the same with and without GESP, which is not true. With GESP, the policies are not evaluated completely, hence the search

procedure is less efficient.

J. ACM, Vol. 37, No. 4, Article 0. Publication date: August 2018.

0:22 Etor Arza, Léni K. Le Goff, and Emma Hart

0.0

200

300

400

Ob
je

ct
iv

e
va

lu
e

0.05 0.2 0.5 1.0

classic: cart pole

0.0
1000

750

500

250

0

Ob
je

ct
iv

e
va

lu
e

0.05 0.2 0.5 1.0

classic: pendulum

0.0

500

1000

1500

Ob
je

ct
iv

e
va

lu
e

0.05 0.2 0.5 1.0

super mario: level 5 1

0.0

400

600

800

1000

Ob
je

ct
iv

e
va

lu
e

0.05 0.2 0.5 1.0

super mario: level 6 2

0.0
250

500

750

1000

Ob
je

ct
iv

e
va

lu
e

0.05 0.2 0.5 1.0

super mario: level 6 4

0.0
20

15

10

5

0

Ob
je

ct
iv

e
va

lu
e

0.05 0.2 0.5 1.0

mujoco: ant

0.0

500

1000

Ob
je

ct
iv

e
va

lu
e

0.05 0.2 0.5 1.0

mujoco: hopper

0.0
0

1000

2000

Ob
je

ct
iv

e
va

lu
e

0.05 0.2 0.5 1.0

mujoco: half cheetah

0.0

100

200

300

Ob
je

ct
iv

e
va

lu
e

0.05 0.2 0.5 1.0

mujoco: swimmer

0.0

10

20

30

Ob
je

ct
iv

e
va

lu
e

0.05 0.2 0.5 1.0

L System

Fig. 13. Box-plots showing the performance with 𝑡𝑔𝑟𝑎𝑐𝑒 set to 0, 0.05, 0.2, 0.5 and 1.0 times 𝑡𝑚𝑎𝑥 . The red
dashed horizontal line represents the average, and the black line inside the box is the median (higher is better).
Note that setting 𝑡𝑔𝑟𝑎𝑐𝑒 = 1.0 · 𝑡𝑚𝑎𝑥 is equivalent to not applying GESP (Standard), as no solution is stopped
early with this value of the parameter.

J. ACM, Vol. 37, No. 4, Article 0. Publication date: August 2018.

Generalized Early Stopping in Evolutionary Direct Policy Search 0:23

speedup with GESP* Additional Conclusions

first half last half

classic
control 1 out of 2 1 out of 2

GESP has no effect in cart pole. GESP works in pendulum even

though it has a monotone decreasing objective function.

super mario 6 out of 7 4 out of 7

GESP makes no improvement when the environment itself stops

the evaluation early (mario touches an enemy and dies).

mujoco 2 out of 5 1 out of 5

GESP generates additional speedup when the problem specific

stopping criteria are disabled.

NIPES
explore 0 out of 2 0 out of 2

The speedup with GESP is small in magnitude, and is not statis-

tically significant at 𝛼 = 0.01.

L-System 1 out of 1 1 out of 1

Unlike the problem specific stopping criterion, GESP does not

change the definition of the objective function.

*Number of scenarios in which GESP obtained a better score in the first/last half of the

optimization process for the same amount of computation time.

Table 2. Summary of the experimental results.

Hence, setting 𝑡𝑔𝑟𝑎𝑐𝑒 = 0.2 · 𝑡𝑚𝑎𝑥 has associated a high proportion of best solution not missed, while
steps computed is as low as possible. In contrast, with a value of 𝑡𝑔𝑟𝑎𝑐𝑒 = 0.0, it is very likely that

the best found solution will be missed with GESP, which explains why it was the worst parameter

setting in the experiment in the previous section.

Regarding GESP improves result, it is generally high, but again this is an upper bound of the

probability that GESP improves the result. In swimmer, GESP improves result is very low when

𝑡𝑔𝑟𝑎𝑐𝑒 is set to 0.0 and 0.05 times 𝑡𝑚𝑎𝑥 , which explains why these parameter values performed so

poorly in the previous experiment.

In short, in this experiment we saw that:

• Setting 𝑡𝑔𝑟𝑎𝑐𝑒 to 0.2 · 𝑡𝑚𝑎𝑥 provides a good balance between maximizing the optimization time

saved without compromising the probability of finding the same best solution.

• The parameter value 𝑡𝑔𝑟𝑎𝑐𝑒 = 0.0 is likely to miss the best found solution.

• The probability of best solution not missed and the proportion of steps computed go to 1.0 as we

increase 𝑡𝑔𝑟𝑎𝑐𝑒 , but the former increases much faster.

4.7 Discussion and future work
In the previous sections, we experimented with GESP in five different direct policy search envi-

ronments (see Table 2 for a summary of the experimentation). GESP maintained or improved the

performance of the candidate solutions trained for the same amount of computation time in all the

tasks considered in the paper. In general, the biggest improvement with GESP was observed when

GESP early stopped the evaluation of poorly performing candidates.

However, in some tasks, there was no improvement when applying GESP. When other terminating

criteria already stopped the evaluation, GESP produced no further improvement. We observed this

for level 5-1 in super mario and for walker2d and hopper inmujoco, where GESP provided no

benefit but also did not negatively impact the performance.

We have shown that applying GESP to direct policy search is generally beneficial. Firstly, in the

experimentation carried out, GESP never made the results worse: in the worst case, it made no

difference. In addition, unlike problem specific approaches, it does not require problem specific

knowledge and is simpler to implement than other approaches such as surrogate models. Moreover,

it does not change the objective function (unlike for example the problem specific stopping criterion

in L-System).

J. ACM, Vol. 37, No. 4, Article 0. Publication date: August 2018.

0:24 Etor Arza, Léni K. Le Goff, and Emma Hart

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0
classic: cart pole

best solution not missed
steps computed
gesp improves result

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00
classic: pendulum

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00
super mario: level 5 1

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00
super mario: level 6 2

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00
super mario: level 6 4

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00
mujoco: ant

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00
mujoco: hopper

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00
mujoco: half cheetah

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00
mujoco: swimmer

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.25

0.50

0.75

1.00
L System

Fig. 14. Proportions of best solution not missed, steps computed, and GESP improves result as a function of
𝑡𝑔𝑟𝑎𝑐𝑒/𝑡𝑚𝑎𝑥 on different tasks. The x-axis represents 𝑡𝑔𝑟𝑎𝑐𝑒 as a fraction of 𝑡𝑚𝑎𝑥 , where fore example a value
of 0.3 implies 𝑡𝑔𝑟𝑎𝑐𝑒 = 0.3 · 𝑡𝑚𝑎𝑥 .

J. ACM, Vol. 37, No. 4, Article 0. Publication date: August 2018.

Generalized Early Stopping in Evolutionary Direct Policy Search 0:25

Beyond direct policy search. The reinforcement learning algorithms considered in this paper carry

out direct policy search through evolutionary algorithms. These algorithms are simple to implement

and understand how they work. They do not require value function estimations, and because of

their simplicity, are more unlikely to suffer from unstability issues. Despite the advantages of direct

policy search methods in terms of ease of implementation, understanding and low computation cost,

their performance is much lower than other more elaborate techniques that use value estimation,

or even other policy learning methods such as Proximal Policy Optimization [Schulman et al. 2017].

These more advanced techniques consider larger policy spaces and more complex algorithms to

find better policies that can be achieved with direct policy search.

However, we argue that the purpose of this paper is not to maximize the performance of the agents

in the environments. Instead, the purpose of this paper is to introduce a general early stopping

for direct policy search that requires no problem specific information and is applicable in many

environments. For that matter, we chose existing direct policy search approaches in the literature,

and tried to show the benefit that early stopping can bring to these policy learning algorithms.

As direct policy search methods are much simpler than other state of the art approaches, the

performance difference with respect to state of the art reinforcement learning algorithms is large.

As future work, the proposed methodology could be adapted to other more sophisticated episodic

learning approaches beyond direct policy search through evolutionary algorithms.

Constraints. The proposed methodology is in general applicable even when constraints are con-

sidered. In the case of A priori constraints [Digabel and Wild 2015] (checking for the feasibility

of a solution requires no additional computation), GESP can be applied only to feasible solutions,

after the feasibility check, with no additional changes required. When the constraint is simulation

based [Digabel and Wild 2015], the constraint can be thought of as a problem specific stopping

criterion: when the solution is found to be unfeasible, the evaluation is stopped.

An example of such a constraint is present in the ant mujoco task, where the goal is for an ant

shaped robot to move as far as possible from the initial position. In this task, the evaluation of

a solution is terminated when any of the state variables of the ant are not correctly defined, or

torso and the floor is not inside the interval [0.2, 1.0], which are essentially feasibility checks. The

experimentation with GESP also considers this ant environment with the mentioned constraint,

and in short, we observed that GESP can work alongside these kinds of problem specific stopping

criteria.

Deceptive reward. Finally, it remains to be seen whether the method can be applicable on tasks

in which there is a deceptive reward, i.e. when the reward may deceptively encourage the agent

to perform actions that prevent it from discovering the globally optimal behaviour, leading to

convergence to a local optimum. Deceptive rewards are challenging in evolutionary robotics in

general, because they can lead to premature convergence [Doncieux and Mouret 2014]. In such

cases, a policy search algorithm must be able to select solutions with a low reward to be able to

eventually reach the best solutions. A good example of such task is maze-solving (e.g. the hard

maze used in the work of Lehman and Stanley [2011]) in which reward is often measured as a

Euclidean distance from the end-point. On such tasks, early stopping methods (like GESP) are

unlikely to work well as a poor reward can lead to early termination.

The field of multi-fidelity optimization features a similar challenge to the deceptive rewards problem.

When the fidelity of the model is too low, the optimization algorithm can converge to a solution that

is optimal on low fidelity models, but it is not optimal on the real objective function [Alizadeh et al.

2020b; Cutler et al. 2015; Liu et al. 2016; Robinson et al. 2006]. This is known as false convergence,

and analogous to learning a policy that is too greedy because early stopping was used.

J. ACM, Vol. 37, No. 4, Article 0. Publication date: August 2018.

0:26 Etor Arza, Léni K. Le Goff, and Emma Hart

Even though GESP is unlikely to work in direct policy search with deceptive rewards, it might

still be interesting to test it to gain more understanding with respect to how the method might be

adapted in future to cope with this kind of reward. In addition, there are other potential changes

that might improve the applicability of GESP in these settings. For example, novelty search [Lehman

and Stanley 2011] has shown promising results in problems with deceptive rewards, and GESP

could be adapted in this context such that candidate solutions that do not show novel behaviour

(and also have poor performance) are terminated early.

GESP is a very simple stopping criterion, in which the evaluation is stopped when it performs worse

than the best found solution with extra 𝑡𝑔𝑟𝑎𝑐𝑒 evaluation time. The contribution of this work is to

show that general early stopping is applicable to direct policy search through a simple to implement

method. However, it might also be possible to consider other more sophisticated early stopping

criteria by aggregating several evaluations, as in de Souza et al. [2022]’s work. Although they are

not directly compatible with direct policy search problems, as future work, it would be interesting

to adapt de Souza et al. [2022]’s methods for policy learning. Comparing different general early

stopping criteria for direct policy search is also an interesting idea for future work.

5 CONCLUSION
In this paper, we introduced GESP: an early stopping method for optimization problems suitable to

both increasing and decreasing objective functions. Unlike problem specific early stopping criteria,

GESP is general and applicable to many problems: it does not use domain specific knowledge.

In a wide ranging set of experiments, we showed that adding GESP as an additional stopping

criterion usually saves a significant amount of computation time in direct policy search tasks, and

allows a better objective value to be found in the same computation time. Moreover, GESP did

not decrease the objective value in any of the tested environments. We also compared GESP to

problem specific stopping criteria, and concluded that in general, GESP had a similar performance

to problem specific approaches while being more generally applicable.

We do not claim that GESP is better than problem specific approaches. Neither do we propose that

GESP is a substitute to them. They both have strengths: problem specific approaches can exploit

domain knowledge, because the researcher implementing them might have insight into when an

agent is wasting time. GESP, on the other hand, does not require domain knowledge and is applicable

‘out of the box’ to many problems. We argue that GESP is a useful early stopping mechanism

applicable to problems that have no problem specific early stopping approaches. Moreover, it can

also be introduced in addition to problem specific approaches. GESP is most useful for optimization

problems that have costly and lengthy function evaluations. We have evaluated the method in

the context of a number of classic control problems and in a robotics domain, however, there are

obvious opportunities to extend the approach to other domains which have an expensive objective

function, for example optimization of production processes [Chen et al. 2021].

Code to reproduce all the experiments in the paper together with a brief explanation on how to

apply the method are available in a GitHub repository https://github.com/EtorArza/GESP.

ACKNOWLEDGMENTS
Etor Arza is partially supported by the Basque Government through the BERC 2022-2025 and the

ELKARTEK program KONFLOT KK-2022/00100 and by the Spanish Ministry of Economy and

Competitiveness, through BCAM Severo Ochoa excellence accreditation SEV-2023-2026 and the

research project PID2019-106453GA-I00/AEI/10.13039/501100011033. Emma Hart and Léni Le Goff

are supported by the Edinburgh Napier University through EPSRC EP/R035733/1.

J. ACM, Vol. 37, No. 4, Article 0. Publication date: August 2018.

https://github.com/EtorArza/GESP

Generalized Early Stopping in Evolutionary Direct Policy Search 0:27

REFERENCES
Reza Alizadeh, Janet K. Allen, and Farrokh Mistree. 2020a. Managing Computational Complexity Using Surrogate Models:

A Critical Review. Research in Engineering Design 31, 3 (July 2020), 275–298. https://doi.org/10.1007/s00163-020-00336-7

Reza Alizadeh, Janet K. Allen, and Farrokh Mistree. 2020b. Managing Computational Complexity Using Surrogate Models:

A Critical Review. Research in Engineering Design 31 (2020), 275–298.

Etor Arza, Josu Ceberio, Ekhiñe Irurozki, and Aritz Pérez. 2022. Comparing Two Samples Through Stochastic Dominance:

A Graphical Approach. Journal of Computational and Graphical Statistics (June 2022), 1–38. https://doi.org/10.1080/

10618600.2022.2084405

Andrew G Barto, Richard S Sutton, and Charles W Anderson. 1983. Neuronlike Adaptive Elements That Can Solve Difficult

Learning Control Problems. IEEE transactions on systems, man, and cybernetics SMC-13, 5 (1983), 834–846.

Josh Bongard. 2010. The Utility of Evolving Simulated Robot Morphology Increases with Task Complexity for Object

Manipulation. Artificial life 16, 3 (2010), 201–223.
Josh Bongard. 2011. Innocent Until Proven Guilty: Reducing Robot Shaping From Polynomial to Linear Time. IEEE

Transactions on Evolutionary Computation 15, 4 (Aug. 2011), 571–585. https://doi.org/10.1109/TEVC.2010.2096540

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba. 2016.

OpenAI Gym. arXiv:1606.01540 [cs] (June 2016). arXiv:1606.01540 [cs]
Guodong Chen, Yong Li, Kai Zhang, Xiaoming Xue, Jian Wang, Qin Luo, Chuanjin Yao, and Jun Yao. 2021. Efficient

Hierarchical Surrogate-Assisted Differential Evolution for High-Dimensional Expensive Optimization. Information
Sciences 542 (2021), 228–246.

William Jay Conover. 1980. Practical Nonparametric Statistics. Wiley.

Mark Cutler, Thomas J. Walsh, and Jonathan P. How. 2015. Real-World Reinforcement Learning via Multifidelity Simulators.

IEEE Transactions on Robotics 31, 3 (2015), 655–671. https://doi.org/10.1109/TRO.2015.2419431

Marcelo de Souza, Marcus Ritt, and Manuel López-Ibáñez. 2022. Capping Methods for the Automatic Configuration of

Optimization Algorithms. Computers & Operations Research 139 (March 2022), 105615. https://doi.org/10.1016/j.cor.2021.

105615

Thibaud De Souza. 2014. The Blind Game Designer - Darwinism in a Fast Pace, Casual Action Game.

Sébastien Le Digabel and Stefan M. Wild. 2015. A Taxonomy of Constraints in Simulation-Based Optimization. (2015).

https://doi.org/10.48550/ARXIV.1505.07881

Ken A. Dill, S. Banu Ozkan, M. Scott Shell, and Thomas R. Weikl. 2008. The Protein Folding Problem. Annual Review of
Biophysics 37, 1 (June 2008), 289–316. https://doi.org/10.1146/annurev.biophys.37.092707.153558

Stephane Doncieux and Jean-Baptiste Mouret. 2014. Beyond Black-Box Optimization: A Review of Selective Pressures for

Evolutionary Robotics. Evolutionary Intelligence 7, 2 (Aug. 2014), 71–93. https://doi.org/10.1007/s12065-014-0110-x

Johann Dreo and Manuel López-Ibáñez. 2021. Extensible Logging and Empirical Attainment Function for IOHexperimenter.

arXiv preprint arXiv:2109.13773 (2021). arXiv:2109.13773
Judith Echevarrieta, Etor Arza, and Aritz Pérez. 2024. Speeding-up Evolutionary Algorithms to Solve Black-Box Optimization

Problems. IEEE Transactions on Evolutionary Computation (2024). https://doi.org/10.1109/TEVC.2024.3352450

Agoston E. Eiben, Emma Hart, Jon Timmis, Andy M. Tyrrell, and Alan F. Winfield. 2021. Towards Autonomous Robot

Evolution. In Software Engineering for Robotics, Ana Cavalcanti, Brijesh Dongol, Rob Hierons, Jon Timmis, and Jim

Woodcock (Eds.). Springer International Publishing, Cham, 29–51. https://doi.org/10.1007/978-3-030-66494-7_2

Stefan Falkner, Aaron Klein, and Frank Hutter. 2018. BOHB: Robust and Efficient Hyperparameter Optimization at Scale. In

Proceedings of the 35th International Conference on Machine Learning (Proceedings of Machine Learning Research, Vol. 80),
Jennifer Dy and Andreas Krause (Eds.). PMLR, 1437–1446.

P.J Fleming and R.C Purshouse. 2002. Evolutionary Algorithms in Control Systems Engineering: A Survey. Control
Engineering Practice 10, 11 (Nov. 2002), 1223–1241. https://doi.org/10.1016/S0967-0661(02)00081-3

Alexander IJ Forrester, Neil W Bressloff, and Andy J Keane. 2006. Optimization Using Surrogate Models and Partially

Converged Computational Fluid Dynamics Simulations. Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences 462, 2071 (2006), 2177–2204.

Wolfgang Härdle, Marlene Müller, Stefan Sperlich, and Axel Werwatz. 2004. Nonparametric and Semiparametric Models.
Springer Series in Statistics, Vol. 1. Springer.

Emma Hart and Léni K Le Goff. 2022. Artificial Evolution of Robot Bodies and Control: On the Interaction between Evolution,

Learning and Culture. Philosophical Transactions of the Royal Society B 377, 1843 (2022), 20210117.

Erin J. Hastings, Ratan K. Guha, and Kenneth O. Stanley. 2009. Evolving Content in the Galactic Arms Race Video Game. In

2009 IEEE Symposium on Computational Intelligence and Games. 241–248. https://doi.org/10.1109/CIG.2009.5286468

F. Hoffmann. Sept./2001. Evolutionary Algorithms for Fuzzy Control System Design. Proc. IEEE 89, 9 (Sept./2001), 1318–1333.

https://doi.org/10.1109/5.949487

Frank Hutter, Holger H Hoos, Kevin Leyton-Brown, and Thomas Stützle. 2009. ParamILS: An Automatic Algorithm

Configuration Framework. Journal of Artificial Intelligence Research 36 (2009), 267–306.

J. ACM, Vol. 37, No. 4, Article 0. Publication date: August 2018.

https://doi.org/10.1007/s00163-020-00336-7
https://doi.org/10.1080/10618600.2022.2084405
https://doi.org/10.1080/10618600.2022.2084405
https://doi.org/10.1109/TEVC.2010.2096540
https://arxiv.org/abs/1606.01540
https://doi.org/10.1109/TRO.2015.2419431
https://doi.org/10.1016/j.cor.2021.105615
https://doi.org/10.1016/j.cor.2021.105615
https://doi.org/10.48550/ARXIV.1505.07881
https://doi.org/10.1146/annurev.biophys.37.092707.153558
https://doi.org/10.1007/s12065-014-0110-x
https://arxiv.org/abs/2109.13773
https://doi.org/10.1109/TEVC.2024.3352450
https://doi.org/10.1007/978-3-030-66494-7_2
https://doi.org/10.1016/S0967-0661(02)00081-3
https://doi.org/10.1109/CIG.2009.5286468
https://doi.org/10.1109/5.949487

0:28 Etor Arza, Léni K. Le Goff, and Emma Hart

Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. 2019. Automated Machine Learning: Methods, Systems, Challenges.
Springer Nature.

John T. Hwang and Joaquim R.R.A. Martins. 2018. A Fast-Prediction Surrogate Model for Large Datasets. Aerospace Science
and Technology 75 (April 2018), 74–87. https://doi.org/10.1016/j.ast.2017.12.030

Christian Igel, Thorsten Suttorp, and Nikolaus Hansen. 2006. A Computational Efficient Covariance Matrix Update and a

(1+1)-CMA for Evolution Strategies. In Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation
- GECCO ’06. ACM Press, Seattle, Washington, USA, 453. https://doi.org/10.1145/1143997.1144082

Zohar Karnin, Tomer Koren, and Oren Somekh. 2013. Almost Optimal Exploration in Multi-Armed Bandits. In International
Conference on Machine Learning. PMLR, 1238–1246.

Gorka Kobeaga, María Merino, and Jose A Lozano. 2021. On Solving Cycle Problems with Branch-and-Cut: Extending

Shrinking and Exact Subcycle Elimination Separation Algorithms. Annals of Operations Research 305, 1 (2021), 107–136.

Jussi Korpela, Kai Puolamäki, and Aristides Gionis. 2014. Confidence Bands for Time Series Data. Data Mining and Knowledge
Discovery 28, 5 (Sept. 2014), 1530–1553. https://doi.org/10.1007/s10618-014-0371-0

Léni K. Le Goff, Edgar Buchanan, Emma Hart, Agoston E. Eiben, Wei Li, Matteo de Carlo, Matthew F. Hale, Mike Angus,

Robert Woolley, Jon Timmis, Alan Winfield, and Andrew M. Tyrrell. 2020. Sample and Time Efficient Policy Learning

with CMA-ES and Bayesian Optimisation. In The 2020 Conference on Artificial Life. MIT Press, Online, 432–440. https:

//doi.org/10.1162/isal_a_00299

Léni K. Le Goff, Edgar Buchanan, Emma Hart, Agoston E. Eiben, Wei Li, Matteo De Carlo, Alan F. Winfield, Matthew F.

Hale, Robert Woolley, Mike Angus, Jon Timmis, and Andy M. Tyrrell. 2021. Morpho-Evolution with Learning Using a

Controller Archive as an Inheritance Mechanism. arXiv:2104.04269 [cs] (Sept. 2021). arXiv:2104.04269 [cs]
Joel Lehman and Kenneth O. Stanley. 2011. Abandoning Objectives: Evolution Through the Search for Novelty Alone.

Evolutionary Computation 19, 2 (June 2011), 189–223. https://doi.org/10.1162/evco_a_00025

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. 2017. Hyperband: A Novel Bandit-

Based Approach to Hyperparameter Optimization. The Journal of Machine Learning Research 18, 1 (2017), 6765–6816.

Bo Liu, Slawomir Koziel, and Qingfu Zhang. 2016. A Multi-Fidelity Surrogate-Model-Assisted Evolutionary Algorithm for

Computationally Expensive Optimization Problems. Journal of Computational Science 12 (2016), 28–37.
Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez Cáceres, Mauro Birattari, and Thomas Stützle. 2016. The Irace

Package: Iterated Racing for Automatic Algorithm Configuration. Operations Research Perspectives 3 (2016), 43–58.

https://doi.org/10.1016/j.orp.2016.09.002

H. B. Mann and D. R. Whitney. 1947. On a Test of Whether One of Two Random Variables Is Stochastically Larger than the

Other. The Annals of Mathematical Statistics 18, 1 (1947), 50–60. jstor:2236101
Victor Picheny and David Ginsbourger. 2013. A Nonstationary Space-Time Gaussian Process Model for Partially Converged

Simulations. SIAM/ASA Journal on Uncertainty Quantification 1, 1 (2013), 57–78. https://doi.org/10.1137/120882834

Sascha Ranftl and Wolfgang von der Linden. 2021. Bayesian Surrogate Analysis and Uncertainty Propagation. In The
40th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. MDPI, 6.

https://doi.org/10.3390/psf2021003006

Theresa Robinson et al. 2006. Multifidelity Optimization for Variable-Complexity Design. In 11th AIAA/ISSMO Multidisci-
plinary Analysis and Optimization Conference.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal Policy Optimization

Algorithms. arXiv preprint arXiv:1707.06347 (2017). arXiv:1707.06347

Kenneth O. Stanley and Risto Miikkulainen. 2002. Evolving Neural Networks through Augmenting Topologies. Evolutionary
Computation 10, 2 (June 2002), 99–127. https://doi.org/10.1162/106365602320169811

Rrichard S. Sutton. 1984. Temporal Aspects of Credit Assignment in Reinforcement Learning. Ph. D. Dissertation. University of

Massachusetts.

Frank Veenstra and Kyrre Glette. 2020. How Different Encodings Affect Performance and Diversification When Evolving

the Morphology and Control of 2D Virtual Creatures. In ALIFE: Proceedings of the Artificial Life Conference. MIT Press,

592–601.

Vivek Verma. 2020. Applying Neural Networks and Neuroevolution of Augmenting Topologies to Play Super Mario Bros.

Yijia Wang, Matthias Poloczek, and Daniel R. Jiang. 2022. Subgoal-Based Exploration via Bayesian Optimization.

arXiv:1910.09143 [cs, math]

Sheng-Hao Wu, Zhi-Hui Zhan, and Jun Zhang. 2021. SAFE: Scale-Adaptive Fitness Evaluation Method for Expensive

Optimization Problems. IEEE Transactions on Evolutionary Computation 25, 3 (June 2021), 478–491. https://doi.org/10.

1109/TEVC.2021.3051608

Ander Zarketa-Astigarraga, Alain Martin-Mayor, Aimar Maeso, Borja De Miguel, Manex Martinez-Agirre, and Markel

Penalba. 2023. A Computationally Efficient Ga-Based Optimisation Tool for the Design of Power Take-Off Systems in

Realistic Wave Climates: The Wells Turbine Case. https://doi.org/10.2139/ssrn.4379648

J. ACM, Vol. 37, No. 4, Article 0. Publication date: August 2018.

https://doi.org/10.1016/j.ast.2017.12.030
https://doi.org/10.1145/1143997.1144082
https://doi.org/10.1007/s10618-014-0371-0
https://doi.org/10.1162/isal_a_00299
https://doi.org/10.1162/isal_a_00299
https://arxiv.org/abs/2104.04269
https://doi.org/10.1162/evco_a_00025
https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1137/120882834
https://doi.org/10.3390/psf2021003006
https://arxiv.org/abs/1707.06347
https://doi.org/10.1162/106365602320169811
https://arxiv.org/abs/1910.09143
https://doi.org/10.1109/TEVC.2021.3051608
https://doi.org/10.1109/TEVC.2021.3051608
https://doi.org/10.2139/ssrn.4379648

Generalized Early Stopping in Evolutionary Direct Policy Search 0:29

Lucas Zimmer, Marius Lindauer, and Frank Hutter. 2021. Auto-Pytorch: Multi-Fidelity MetaLearning for Efficient and

Robust AutoDL. IEEE Transactions on Pattern Analysis and Machine Intelligence 43, 9 (Sept. 2021), 3079–3090. https:

//doi.org/10.1109/TPAMI.2021.3067763

submitted March 14, 2024

J. ACM, Vol. 37, No. 4, Article 0. Publication date: August 2018.

https://doi.org/10.1109/TPAMI.2021.3067763
https://doi.org/10.1109/TPAMI.2021.3067763

	Abstract
	1 Introduction
	2 Related work
	3 Generalized Early Stopping for Direct Policy Search (GESP)
	3.1 Applicability on direct policy search

	4 Experimentation
	4.1 Classic control tasks (classic control)
	4.2 Playing Super Mario (super mario)
	4.3 Tasks in the Mujoco environment (mujoco)
	4.4 NIPES within the ARE framework (NIPES explore)
	4.5 Robotics, Evolution and Modularity (L-System)
	4.6 On the parameter tgrace
	4.7 Discussion and future work

	5 Conclusion
	Acknowledgments
	References

