

VOLUME XX, 2023 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2022.Doi Number

SkipGateNet: A Lightweight CNN-LSTM Hybrid
Model with Learnable Skip Connections for
Efficient Botnet Attack Detection in IoT
Mohammed S. Alshehri1, Jawad Ahmad2, *, Sultan Almakdi1, Mimonah Al Qathrady3, Yazeed
Yasin Ghadi4, and William J. Buchanan 2
1 Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran 61441 Saudi Arabia
2 School of Computing, Engineering and the Built Environment, Edinburgh Napier University, Edinburgh EH10 5DT, UK
3 Department of Information Systems, College of Computer Science and Information Systems, Najran University, Najran 61441 Saudi Arabia
4 Department of Computer Science, Al Ain University, Abu Dhabi 112612, United Arab Emirates

Corresponding author: Jawad Ahmad (e-mail: j.ahmad@napier.ac.uk).

“This work was supported by the Deanship of Scientific Research at Najran University under the General Research Funding Program Grant
NU/DRP/SERC/12/46.”

ABSTRACT The rise of Internet of Things (IoT) has led to increased security risks, particularly from
botnet attacks that exploit IoT device vulnerabilities. This situation necessitates effective Intrusion
Detection Systems (IDS), that are accurate, lightweight, and fast (having less inference time), designed
particularly to detect botnet attacks in resource constrained IoT devices. This paper proposes SkipGateNet,
a novel deep learning model designed for detecting Mirai and Bashlite botnet attacks in resource
constrained IoT and fog computing environments. SkipGateNet is a lightweight, fast model combining 1D-
Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) layers. The novelty of this
model lies in the integration of ‘Learnable Skip Connections’. These connections feature gating
mechanisms that enhance detection by focusing on relevant features and ignoring irrelevant ones. They add
adaptability to the architecture, performing feature selection and propagating only essential features to
deeper layers. Tested on the N-BaIoT dataset, SkipGateNet efficiently detects ten types of botnet attacks,
with a remarkable test accuracy of 99.91%. It is also compact (2596.87 KB) and demonstrates a quick
inference time of 8.0 milliseconds, suitable for real-time implementation in resource-limited settings. While
evaluating its performance, parameters like precision, recall, accuracy, and F1 score were considered, along
with statistical reliability measures like Cohen’s Kappa Coefficient and Matthews Correlation Coefficient.
These highlight its reliability and effectiveness in IoT security challenges. The paper also compares
SkipGateNet to existing models and four other deep learning architectures, including two sequential CNN
architectures, a simple CNN+LSTM architecture, and a CNN+LSTM with standard skip connections.
SkipGateNet surpasses all in accuracy and inference time, demonstrating its superiority in addressing IoT
security issues.

INDEX TERMS Botnets, Botnet attacks, Bashlite, Intrusion Detection, Mirai.

I. INTRODUCTION
The Internet of Things (IoT) is an emerging technology
that allows automated data sensing, collection, and
transmission. It uses interconnected devices ranging from
computers, sensors, vehicles, phones, and home
appliances and supports various applications, such as
intelligent transportation, smart grids, smart homes, smart
cities, and smart agriculture [1, 2]. This widespread
adoption of IoT devices has increased susceptibility to

various security threats, particularly botnet attacks that
exploit IoT device vulnerabilities [3]. Recent reports have
revealed that 41% of attacks exploit IoT device
vulnerabilities due to 98% of the IoT device traffic being
unencrypted [4]. The botnets, such as BASHLITE and
Mirai, pose significant threats to IoT networks due to their
capacity to compromise many devices and the variety of
attacks they employ [5]. These security issues become
even more critical, particularly in the context of fog

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3371992

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 2 VOLUME XX, 2023

computing – a decentralized processing and storage
paradigm that enables data handling closer to the network
edge. Fog computing's unique constraints and operational
context demand specialized intrusion detection solutions.
These solutions need to address the limited computational
resources, low-latency requirements, and the dynamic
nature of fog-based IoT networks, thus contributing to the
body of knowledge in this area [6, 7]. The Mirai botnet
attack emerged in 2016 and compromised various
vulnerable IoT devices, including cameras and routers, to
conduct large-scale distributed denial of service (DDoS)
attacks such as Ack flooding, Syn flooding, UDP
flooding, UDP plain flooding, etc. [8]. Similarly, the
Bashlite botnet (also known by other names such as
Gafgyt, Q-Bot, Torlus, Lizard-Stresser, and Lizkebab)
targets IoT devices and has been responsible for launching
DDoS attacks, spreading malware, and exploiting device
vulnerabilities through certain types of attacks including
Scan, Junk, UDP, TCP, and COMBO [9]. Therefore,
efficient and effective intrusion detection systems (IDS)
are required to counteract the threat of botnet attacks,
especially for edge devices and fog computing
environments.

IDS plays a crucial role in detecting and mitigating cyber
threats. The anomaly-based IDS, in particular, are designed
to identify unusual patterns in network traffic, which may
indicate the presence of an attack. As the use of IoT has been
increasing recently, the need for effective anomaly-based
IDS has become indispensable [10]. While the traditional
machine learning models have widely been used for intrusion
detection in IoT networks [11], they face certain challenges,
e.g., limited scalability, inadequate performance in dealing
with complex and evolving attack patterns, and difficulty in
handling high-dimensional data, [12], etc. Therefore, there is
a pressing need to develop new and efficient deep learning
models that can be used in IDS, particularly designed for
detecting botnet attacks in IoT devices. In recent years, deep
learning models have emerged as a promising alternative,
demonstrating superior performance in handling large-scale,
high-dimensional data and capturing complex patterns
(features) in the data [13]. Most of the existing deep learning-
based solutions for intrusion detection are not lightweight
and pose latency issues, making them unsuitable for
implementation in edge devices in IoT networks or fog
computing. However, deep learning models, if designed
specifically for the type of attacks or keeping in view the
challenges in the IoT networks, can perform efficiently and
adequately well.

 To address the aforementioned challenges, this paper
presents a lightweight and efficient deep-learning model
tailored specifically to detect the Mirai and Bashlite botnet
attacks. The proposed model is based on a combination and
tailored arrangement of 1D-Convolutional Neural Networks
(CNN) and Long Short-Term Memory (LSTM) layers. The
novelty of the proposed model lies in using ‘Learnable Skip

Connections’. Traditional skip connections allow information
to bypass one or more layers, and flow directly from one part
of the network to another. Unlike standard skip connections,
which pass the information without any modulation,
learnable skip connections incorporate gating mechanisms to
control the flow of information dynamically. Essentially,
these mechanisms learn to regulate what information is
useful to propagate forward and what can be omitted. The
learnable skip connections add a level of adaptability to our
proposed architecture. These connections perform a kind of
feature selection, determining which features are important
enough to be directly propagated to deeper layers. As a
result, the network becomes better at focusing on the most
relevant patterns in the data, leading to improved model
performance. Moreover, the learnable skip connections
contribute to the overall compactness of the SkipGateNet,
maintaining the model's lightweight characteristics. The
gating mechanisms, despite their adaptive capabilities, don't
introduce an extensive number of parameters into the
network, keeping the computational costs manageable. This
is particularly advantageous for IoT settings, where
computational resources are often limited, such as real-time
servers and processors that work as edge devices or Fog
Nodes.

The main contributions of this paper are:
1) This paper introduces a novel convolutional and

recurrent neural network architecture, SkipGateNet,
designed specifically for IoT botnet attack detection. A
key aspect of this architecture is the use of ‘Learnable
Skip Connections’. These connections are capable of
dynamically controlling the flow of information across
the network, enabling the model to focus on salient
features and ignore irrelevant ones, thus enhancing its
detection capabilities.

2) Gating mechanisms have been integrated into the
learnable skip connection blocks. Each learnable skip
connection employs a 1D convolution layer followed by
a sigmoid activation function to create a gate. Integration
of gating mechanisms enables adaptive feature selection
in the proposed model. This process allows the model to
pay attention to more informative features, thereby
mitigating the impact of noise or irrelevant features that
are prevalent in IoT data streams.

3) SkipGateNet is compact, light and highly efficient
having a size of only 2596.87 KBs, a total of only
683,083 parameters and a fast inference time of only 8
milliseconds. This makes SkipGateNet an efficient
solution for botnet attack detection in resource-
constrained IoT networks.

4) Four deep learning architectures have been
implemented, trained and tested on the same dataset to
compare their accuracies and inference times with the
proposed SkipGateNet model. Experimented models
include two sequential CNN architectures with dense

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3371992

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 M. S. Alshehri et al.: SkipGateNet: A Lightweight CNN-LSTM Hybrid Model
with Learnable Skip Connections for Efficient Botnet Attack Detection in IoT

VOLUME XX, 2023 3

layers, a simple CNN+LSTM architecture with dense
layers, and a CNN+LSTM architecture with standard
skip connections. The proposed SkipGateNet
outperformed all these architectures exhibiting an
accuracy of 99.91% and 8.0 milliseconds inference time.

The rest of the paper is organized as follows. Section 1
introduces the problem domain and the need for the
development of new and improved deep learning models for
botnet detection. Section 2 discusses the related work and the
existing solutions available for botnet detection. In Section 3,
the approach for detecting botnet attacks is outlined. Section
4 is devoted to the dataset used for the study, with a detailed
explanation of the data pre-processing and splitting
techniques. The main contribution of this paper is given in
Section 5, where the proposed model with learnable skip
connections—SkipGateNet is presented in detail. Section 6 is
dedicated to the performance evaluation and results. In
Section 7, we present a comparative analysis of our proposed
model against deep learning models in the literature and self-
implemented architectures, as well as against traditional
machine learning models. Lastly, Section 8 concludes the
paper by summarizing the key findings and contributions of
the paper.

II. RELATED WORK
Recently, various machine learning (ML) and deep learning
(DL) algorithms have been utilized for intrusion detection
applications. However, most of them did not focus on the
inference time and size of the utilized models. Speaking of
employing machine learning techniques in particular, a
handful of IDS can be found in which ML techniques have
been employed; for instance, the authors in [14] use ML
classification to secure IoT devices against attacks like DoS.
The authors utilize three datasets, i.e., UNSW-NB15, NSL-
KDD, and CIDDS-001, to benchmark the proposed
classifiers. Similarly, the authors in [15] have proposed semi-
distributed and distributed methods to address the limitations
of centralized IDS for resource-constrained devices,
achieving comparable detection accuracy to superior
centralized IDS with inherent trade-offs between accuracy
and building time performance. Although these methods
seem suitable for resource-constrained devices, such as those
used in fog computing, their inference time has not been
discussed. Furthermore, a cross-layer-based IDS has been
proposed for detecting malicious activities in mobile ad-hoc
networks (MANETs) and other IoT networks in [16]. The
authors claimed 98% and 90 % detection rates for high and
low power velocity scenarios, respectively. Moreover, the
study in [17] discusses shallow and deep machine learning-
based IDS in IoT environments. It evaluated their
performance using five benchmark datasets (NSL-KDD,
IoTDevNet, DS2OS, IoTID20, and IoT Botnet dataset). The
authors claim that deep ML IDS works better than shallow
ML IDS, especially in the case of IoT attack detection.
Besides, in [18], six ML models are utilized to compare and

evaluate the performance of three different Feature
Extractors (FE). The evaluation has been carried out on three
benchmark datasets (UNSW-NB15, ToN-IoT, and CSE-CIC-
IDS2018). The authors concluded that the choice of datasets
significantly alters the performance of the applied techniques,
highlighting the need for a universal benchmark feature set.
Although the paper analyzed the performance of the feature
extractors, it does not mention their inference time, model
size, or suitability for resource constrained devices. In
addition, an IDS that integrates the MapReduce framework
with machine learning (ML) techniques is presented in [19].
Utilizing a dataset with multiple network attacks, the model
exhibited a detection accuracy of 95.7% validation accuracy
implying that combining MapReduce and ML is beneficial in
intrusion detection. Regarding machine learning-based IDS
for Fog computing, the authors in [20] propose a novel
distributed IDS using fog computing to detect DDoS attacks
in blockchain-enabled IoT networks. The model trains
Random Forest (RF) and an optimized gradient tree boosting
system (XGBoost) on distributed fog nodes, with RF
outperforming XGBoost in certain scenarios. While some
proposed techniques are designed for IoT networks and
resource-constrained devices, most do not explicitly discuss
their inference time, model size, and suitability in intrusion
detection systems intended for fog nodes or edge devices.

In addition to traditional machine learning techniques,
various deep learning techniques have also been proposed for
intrusion detection systems. For example, in [21], the authors
introduce a DL artificial neural network (ANN) model for
detecting botnet attacks. The model is trained and evaluated
on the CTU-13 dataset and can efficiently identify botnets,
achieving 99.6% accuracy. Similarly, the authors in [22]
presented a hybrid IDS for the Internet of Medical Things
(IoMT). This system combines CNN and LSTM networks
and exhibits an average accuracy of 97.63%. Some hybrid
deep learning models have also been presented, such as the
authors in [23] an IDS utilizing a hybrid approach of
machine learning (ML) and deep learning (DL) techniques.
The model uses SMOTE for data balancing and XGBoost for
feature selection, aiming to handle large and imbalanced
datasets efficiently. The authors tested the model on two
datasets: KDDCUP’99 and CIC-MalMem-2022, achieving
exceptional accuracy of 99.99% and 100% respectively, with
no overfitting issues.

Regarding intrusion detection systems designed for
botnets, the authors in [24] leveraged latent representations
of network traffic features from CNNs to detect and classify
botnet attacks. Moreover, the work in [25] presented an ML
algorithm utilizing explainable AI. It used the IRA-CIC-
DoHBrw-2020 dataset. The authors claimed a high precision
and F1 score of 99.91% and a recall of 99.92%. In addition,
the authors in [26] studied smart home security attack
properties and suggested effective intrusion prevention
mechanisms using various ML models and feature sets.
Besides, the authors in [27] have developed a malware

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3371992

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 4 VOLUME XX, 2023

detection system, the FedMalDE, as named by the authors.
Their framework is based on federated learning and
knowledge transfer techniques. They employed a subgraph
aggregated capsule network (SACN) for capturing malicious
behaviors. While these papers showcase various deep
learning techniques for intrusion detection systems, the
majority do not explicitly discuss the inference time and
model size.

 Moreover, researchers have also utilized various deep
learning techniques for the classification of various attacks,
e.g., in [28], the authors employed a CNN-LSTM algorithm
on the N-BaIoT dataset, achieving an F1-score, precision and
recall of 0.88, 93.04% and 91.91%, respectively, with an
overall accuracy of 90.88%. Similarly, in [29], a deep belief
network (DBN) algorithm was applied to the N-BaIoT
dataset, yielding a higher F1-score of 0.92. The precision and
recall were reported as 98.27% and 92.82%, respectively,
resulting in an accuracy of 95.60%. Another study [30]
utilized the CNN-LSTM algorithm on the N-BaIoT dataset,
achieving an F1-score of 0.93. The precision and recall were
reported as 93.48% and 93.675%, respectively, resulting in
an overall accuracy of 94.30%. Moreover, the authors in [31]
explored the use of autoencoders on the N-BaIoT dataset, but
specific performance metrics such as F1-score, precision, and
recall were not provided. However, the accuracy was
reported as 90.2%. Lastly, in reference [32], both
autoencoders and DNN algorithms were utilized on the N-
BaIoT dataset. The F1-score achieved was 0.80, with a
precision of 99% and a recall of 66%. The overall accuracy
was reported as 97.21%. These results demonstrate the
performance of different algorithms on the N-BaIoT dataset,
highlighting their effectiveness in detecting and classifying
IoT network traffic. However, it is important to note that the
design and arrangement of deep learning layers, dataset
preprocessing techniques, and other factors like
hyperparameters can influence the results obtained in each
study. Therefore, further investigation and comparative
analysis are required to determine the most suitable algorithm
for the N-BaIoT dataset for botnet detection.

The recent literature review reveals that while various
deep learning-based IDS have been proposed for detecting
botnet attacks in IoT networks, they present limitations in
size, inference time, and suitability for deployment in
resource-constrained devices, such as edge IoT devices that
work as fog nodes. This research gap highlights the need for
lightweight and efficient deep learning-based intrusion
detection systems, which can easily be deployed in real-time
scenarios, especially for IoT devices in fog computing
environments.

III. BOTNET ATTACK DETECTION APPROACH
The proposed SkipGateNet model is intended to be

deployed in anomaly-based IDS for resource constrained
devices in IOT and fog computing. A general overview of
such type of IDS is depicted in Fig. 1. Such an IDS

comprises a series of components, including a fog node,
traffic capture, data filtering, feature selection using a deep
learning model, a warning logger, and alert notification. A
Fog Node is a decentralized computing infrastructure that
extends cloud computing capabilities closer to the edge of the
network. In the IDS framework given in Fig. 1, the Fog Node
acts as the primary point for capturing, filtering, and
analyzing network traffic, thereby improving response time
and reducing the load on the central server. The IDS uses
network sensors or agents to collect and store the raw data
packets, which are then forwarded to the Data Filtering
component. This process helps gather the necessary
information to detect malicious activities and identify
potential security threats. By capturing, filtering, and
analyzing network traffic in real time, the system can identify
and respond to potential threats before they cause significant
damage. Such intrusion detection systems leverage tailored
deep learning models and preferably a distributed computing
approach to provide a robust and efficient solution for
detecting network intrusions. In addition to processing data
efficiently, this approach provides real-time analysis while
reducing latency and bandwidth consumption.

Detecting botnet attacks is a critical challenge in
maintaining the security and integrity of modern IoT
networks.

FIGURE 1. A general depiction of an IDS in a Fog Computing Network.

FIGURE 2. The utilized approach to detect botnet attacks using deep
learning.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3371992

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 M. S. Alshehri et al.: SkipGateNet: A Lightweight CNN-LSTM Hybrid Model
with Learnable Skip Connections for Efficient Botnet Attack Detection in IoT

VOLUME XX, 2023 5

The deep learning approach utilized in this paper to
identify botnet activities is given in Fig. 2. The process
involves key steps, such as dataset formulation, data pre-
processing, data splitting, building a tailored deep learning
model, model training, evaluation, and detection. The first
step involves collecting a comprehensive dataset containing
normal and botnet traffic data. N-BaIoT dataset has been
utilized for this purpose. The next step is data pre-processing.
It includes data balancing to ensure equal representation of
normal and botnet traffic, standardization to scale the input
features to a similar range, and one hot encoding to convert
categorical features into a binary format. These techniques
help improve the model's learning capability and reduce the
risk of overfitting. After pre-processing, the dataset is split
into training and testing sets. In this paper, an 80-20 split is
used, where the larger portion is reserved for training and
validation of the model, and the smaller portion is used to
evaluate the model's performance on unseen data.

The deep learning model is then trained on the prepared
training dataset. Keras Tuner has been utilized in this paper
for the optimization of hyper-parameters. During this phase,
the model learns to identify patterns and features that
distinguish botnet traffic from normal traffic. Once the
training is complete, the model is evaluated on the test
dataset using various performance metrics, such as accuracy,
precision, recall, and F1-score. In addition, the reliability
parameters, i.e., Cohen’s Kappa coefficient and Mathew’s
Correlation Coefficient, have also been calculated to confirm
the reliability of the proposed model.

IV. DATASET
In this paper, the N-BaIoT [33] dataset has been utilized.

The N-BaIoT dataset is a comprehensive collection of
network traffic data specifically designed and collected for
detecting botnet attacks targeting IoT devices [5]. The dataset
consists of benign and malicious traffic data captured from
various types of IoT devices, including cameras, routers, and
smart home appliances. It comprises a total of 7,062,606
instances. Each instance represents a network traffic
snapshot, captured, and processed to facilitate the
identification of both benign and malicious activities in IoT
networks. The dataset includes 115 distinct features extracted
from network traffic data. These features are derived from
several temporal windows, capturing various aspects of the
traffic, such as originating IP, source MAC and IP address,
communication channels, and TCP/UDP sockets. The
features are calculated over five-time windows (100ms,
500ms, 1.5sec, 10sec, and 1min), and they are designed to be
computed quickly and incrementally, supporting real-time
anomaly detection. The attributes extracted from the packet
stream cover statistical measures like weight, mean, standard
deviation, radius, magnitude, covariance, and Pearson
correlation coefficient, among others. These attributes are
grouped under different headers like stream aggregation (H,

HH, HpHp, HH_jit) and timeframe (with varying decay
factors such as L5, L3, L1, etc.).

The N-BaIoT dataset features authentic traffic data from
nine commercial IoT devices infected with Mirai and
BASHLITE malware, incorporating ten different IoT attacks
(five types of attacks from each botnet). The Mirai attacks
involved automatic network scanning for vulnerable devices
(Scan), Ack flooding (Ack), Syn flooding (Syn), UDP
flooding (UDP), and a limited option UDP flooding
optimized for higher packets per second (UDPplain). On the
other hand, the BASHLITE attacks include network scanning
for vulnerable devices (Scan), the transmission of spam data
(Junk), UDP flooding (UDP), TCP flooding (TCP), and a
combination of spam data transmission and establishing a
connection to a specified IP address and port (COMBO). The
class-wise detail of the complete dataset is given in Table I.

A. DATASET PREPARATION AND PREPROCESSING
To effectively manage the extensive size of the dataset and

to utilize the complete dataset in both the training and testing
phases of the proposed model, the dataset is divided into ten
equal-sized subsets. There is no overlapping in these subsets,
i.e., no samples from a subset are repeated in any other
subset. Details of the data subsets for all classes are given in
Table II. An Incremental learning strategy has been
employed for the subset-wise training of the model. This
approach allows the model to sequentially learn from the
subsets of data, integrating new information while retaining
previously acquired knowledge. One of the major challenges
in sequential incremental learning is catastrophic forgetting.
Catastrophic forgetting occurs in neural networks when they
learn new tasks sequentially; the training on the new data can
lead to the loss of previously learned information. To resolve
this, elastic weight consolidation (EWC) technique has been
utilized. EWC selectively slows down the learning on certain
weights based on how important they are to previously
learned data. This technique helped the proposed model to be
trained on each subset one after the other, while minimizing
the forgetting of what it learned from the previous subsets.

TABLE I
DETAILS OF THE DATASET

Sr. Classes No. of Samples

1 mirai_udp 1,229,999
2 gafgyt_udp 946,366
3 gafgyt_tcp 859,850
4 mirai_syn 733,299
5 mirai_ack 643,821
6 benign 555,932
7 mirai_scan 537,979
8 mirai_udpplain 523,304
9 gafgyt_combo 515,156
10 gafgyt_junk 261,789
11 gafgyt_scan 255,111
 Total Samples 7,062,606

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3371992

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 6 VOLUME XX, 2023

TABLE II
SUBSETS OF CLASSES FOR THE TRAINING PURPOSES

Sr. Classes Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 Subset 6 Subset 7 Subset 8 Subset 9 Subset 10 Total

1 mirai_udp 123000 123000 123000 123000 123000 123000 123000 123000 123000 122999 1,229,999
2 gafgyt_udp 94637 94637 94637 94637 94637 94637 94636 94636 94636 94636 946,366
3 gafgyt_tcp 85985 85985 85985 85985 85985 85985 85985 85985 85985 85985 859,850
4 mirai_syn 73330 73330 73330 73330 73330 73330 73330 73330 73330 73329 733,299
5 mirai_ack 64383 64382 64382 64382 64382 64382 64382 64382 64382 64382 643,821
6 benign 55594 55594 55593 55593 55593 55593 55593 55593 55593 55593 555,932
7 mirai_scan 53798 53798 53798 53798 53798 53798 53798 53798 53798 53797 537,979
8 mirai_udpplain 52331 52331 52331 52331 52330 52330 52330 52330 52330 52330 523,304
9 gafgyt_combo 51516 51516 51516 51516 51516 51516 51515 51515 51515 51515 515,156
10 gafgyt_junk 26179 26179 26179 26179 26179 26179 26179 26179 26179 26178 261,789
11 gafgyt_scan 25512 25511 25511 25511 25511 25511 25511 25511 25511 25511 255,111
 Total Samples 7,062,606

In the context of the N-BaIoT dataset utilized in this paper,

EWC is implemented by first training the model on the initial
subset and calculating a loss function that represents the
model's performance on this subset. Following this, for each
subsequent subset, a new loss function is computed,
reflecting the model's performance on the new data. The
crucial aspect of EWC is in its penalty term, which is added
to the loss function. This term identifies crucial parameters
(weights) in the neural network that are significant for the
performance on the previous subset. By adding a penalty for
significant changes to these weights, EWC effectively retains
the model's performance on earlier subsets while allowing it
to learn from new data.

B. DATA SPLITTING
To test the performance of the proposed model, each subset
was divided into three sets: training, validation, and testing.
An 80-20 split ratio was utilized for the training-testing set,
i.e., allocating 80% of the data for training and 20% for
testing. The training set was further divided using an 80-20
split ratio, with 80% of the data dedicated to training and
20% to validation. This second split is beneficial for
evaluating the performance of the deep learning model
during training by measuring its accuracy on the validation
set. This data splitting ensured that the deep learning model
was trained on a distinct set of data and tested on a non-
overlapping dataset, i.e., this testing data was not included in
the training and validation set.

V. THE PROPOSED MODEL WITH LEARNABLE SKIP
CONNECTIONS

This paper presents SkipGateNet, a deep learning model
based on the combination and tailored arrangement of 1D-
CNN and LSTM layers having ‘Learnable Skip
Connections’. The novelty of the proposed model lies in
using learnable skip connections having gating mechanisms
to control the flow of information dynamically. The

architecture of the proposed model is given in Fig. 3. Before
digging into the proposed model's architectural details, and it
is essential to first describe the details of the utilized layers,
i.e., 1D-CNN, LSTM, and the Learnable Skip Connections.
The following subsections explain the utilization of layers in
the proposed model.

A. 1D-CNN
A 1D CNN is a convolutional neural network that handles
one-dimensional input data. It alternates between convolution
layers and pooling layers to extract features. These layers are
explained as follows.
Convolutional layers
In a 1D CNN layer, as depicted in Fig. 4, each convolutional
feature 𝑋𝑋𝑛𝑛(𝑛𝑛 = 1,2,3, . . ,𝑁𝑁) is linked with multiple input
features through a local weight matrix 𝑊𝑊𝑛𝑛 having
dimensions 𝑃𝑃 × 𝑄𝑄. Here, 𝑃𝑃 refers to the number of filters, 𝑄𝑄
represents the length of the convolutional kernel (or filter).
Each filter (of length 𝑄𝑄) convolves across the input data to
produce a feature map, and there are 𝑃𝑃 number of such
feature maps due to 𝑃𝑃 filters. A single unit of a convolutional
feature is mathematically expressed as follows [34]:

𝑥𝑥𝑛𝑛,𝑘𝑘 = 𝛼𝛼 ���𝑖𝑖𝑝𝑝,𝑞𝑞+𝑘𝑘−1𝑤𝑤𝑝𝑝,𝑛𝑛,𝑞𝑞 + 𝑤𝑤0,𝑛𝑛

𝑄𝑄

𝑞𝑞=1

𝑃𝑃

𝑝𝑝=1

� (2)

Where
𝑥𝑥𝑛𝑛,𝑘𝑘 represents the 𝑘𝑘th unit of the feature 𝑋𝑋𝑛𝑛.
α represents the activation function.
𝑖𝑖𝑝𝑝,𝑞𝑞 represents the 𝑘𝑘th unit of the input feature 𝐼𝐼𝑝𝑝.
𝑤𝑤𝑝𝑝,𝑛𝑛,𝑞𝑞 represents the unit 𝑞𝑞 of the weight matrix 𝑊𝑊𝑝𝑝,𝑛𝑛.

Similarly, the convolution operation or linking of the
convolutional feature to the input features via the weight
matrix can be expressed mathematically as (3).

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3371992

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 M. S. Alshehri et al.: SkipGateNet: A Lightweight CNN-LSTM Hybrid Model
with Learnable Skip Connections for Efficient Botnet Attack Detection in IoT

VOLUME XX, 2023 7

FIGURE 3. Architecture of the proposed model.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3371992

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 8 VOLUME XX, 2023

FIGURE 4. 1D CNN depicting an input layer, a convolution layer, and a
pooling layer

FIGURE 5. Structure of an LSTM cell.

𝑋𝑋𝑛𝑛 = 𝛼𝛼 ��𝐼𝐼𝑝𝑝 ∗ 𝑊𝑊𝑝𝑝𝑛𝑛

𝑃𝑃

𝑝𝑝=1

� (𝑛𝑛 = 1,2, . . ,𝑁𝑁) (3)

Where
𝐼𝐼𝑝𝑝 represents the 𝑝𝑝th input feature.
∗ represents the convolution operator.

1) POOLING LAYERS
The function of a pooling layer in a 1D CNN is to reduce the
dimensionality of the input features while preserving the
most important information. The pooling operation helps
capture the essential patterns in the data, which aids in
identifying potential intrusions. Also, it reduces
computational complexity, making the model more efficient
and less prone to overfitting.

Pooling functions normally include an average function
and a maximum function. For the maximum pooling
function, the pooling layer is defined as (4) [34].

𝜌𝜌𝑛𝑛,𝑘𝑘 =
𝑀𝑀
𝑚𝑚𝑚𝑚𝑥𝑥
𝑚𝑚 = 1

�𝑥𝑥𝑛𝑛,(𝑘𝑘−1)×𝑠𝑠+𝑚𝑚� (4)

Where
𝑀𝑀 represents the pooling size.
𝑠𝑠 represents the stride size.

And for the average pooling function, the pooling layer
output is defined as (5) [34].

𝜌𝜌𝑛𝑛,𝑘𝑘 = 𝛽𝛽 ��𝑥𝑥𝑛𝑛,(𝑘𝑘−1)×𝑠𝑠+𝑚𝑚�
𝑀𝑀

𝑚𝑚=1

 (5)

Where
𝛽𝛽 represents the scale factor.
𝑠𝑠 represents the stride size.

It is believed that maximum pooling performance is better
than average pooling [35]. In this paper, the maximum
pooling (MaxPooling 1D) has been employed.

B. LSTM
For a standard RNN, if the input sequence 𝑖𝑖 = (𝑖𝑖1, 𝑖𝑖2, … , 𝑖𝑖𝑁𝑁)
is known, (6) and (7) can be used to find the hidden layer
sequence 𝑙𝑙 = (𝑙𝑙1, 𝑙𝑙2, … , 𝑙𝑙𝑁𝑁) and the output 𝑗𝑗 = (𝑗𝑗1, 𝑗𝑗2, … , 𝑗𝑗𝑁𝑁),
respectively, by using an iterative method from 𝑛𝑛 = 1 to 𝑁𝑁
[35].

𝑙𝑙𝑛𝑛 = ∆(𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛 + 𝑊𝑊𝑖𝑖𝑖𝑖𝑙𝑙𝑛𝑛−1 + 𝑢𝑢𝑖𝑖) (6)

𝑗𝑗𝑛𝑛 = 𝑊𝑊𝑖𝑖𝑙𝑙𝑙𝑙𝑛𝑛 + 𝑢𝑢𝑙𝑙 (7)

Where
𝑖𝑖𝑛𝑛(𝑛𝑛 = 1,2, … ,𝑁𝑁) is a P dimensional vector.
𝑙𝑙𝑛𝑛(𝑛𝑛 = 1,2, … ,𝑁𝑁) is a Q dimensional vector.
𝑗𝑗𝑛𝑛(𝑛𝑛 = 1,2, … ,𝑁𝑁) is an R dimensional vector.
𝑊𝑊𝑖𝑖𝑖𝑖 represents the input-hidden layer weight matrix.
𝑢𝑢 represents the bias vector.
∆() represents the activation function.

LSTMs are believed to perform better than simple RNNs. To
better grasp (8) to (12), a simple LSTM cell is depicted in
Fig. 5. The activation function ∆() is calculated as follows
[36]:

𝑒𝑒𝑛𝑛 = 𝜎𝜎 (𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛 + 𝑊𝑊𝑖𝑖𝑖𝑖𝑙𝑙𝑛𝑛−1 + 𝑊𝑊ℎ𝑖𝑖ℎ𝑛𝑛−1 + 𝑢𝑢𝑖𝑖) (8)

𝑟𝑟𝑛𝑛 = 𝜎𝜎 (𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛 + 𝑊𝑊𝑖𝑖𝑖𝑖𝑙𝑙𝑛𝑛−1 + 𝑊𝑊ℎ𝑖𝑖ℎ𝑛𝑛−1 + 𝑢𝑢𝑖𝑖 (9)

ℎ𝑛𝑛 = 𝑟𝑟𝑛𝑛ℎ𝑛𝑛−1 + 𝑒𝑒𝑛𝑛 tanh(𝑊𝑊𝑖𝑖ℎ𝑖𝑖𝑛𝑛 + 𝑊𝑊𝑖𝑖ℎ𝑙𝑙𝑛𝑛−1 + 𝑢𝑢ℎ) (10)

𝑧𝑧𝑡𝑡 = 𝜎𝜎 (𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛 + 𝑊𝑊𝑖𝑖𝑖𝑖𝑙𝑙𝑛𝑛−1 + 𝑊𝑊ℎ𝑖𝑖ℎ𝑛𝑛−1 + 𝑢𝑢𝑖𝑖 (11)

𝑣𝑣𝑡𝑡 = 𝑧𝑧𝑡𝑡 tanh(ℎ𝑡𝑡) (12)

Where
𝜎𝜎 represents the sigmoid function.
𝑒𝑒, 𝑟𝑟, ℎ, 𝑧𝑧 represent the input gate, forgetting gate, output gate,
and the cell activation vector, respectively.

C. LEARNABLE SKIP CONNECTIONS
Traditional skip or residual connections were introduced as a
solution to the vanishing gradient problem in deep networks.
These connections allow information to bypass one or more
layers, and flow directly from one part of the network to

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3371992

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 M. S. Alshehri et al.: SkipGateNet: A Lightweight CNN-LSTM Hybrid Model
with Learnable Skip Connections for Efficient Botnet Attack Detection in IoT

VOLUME XX, 2023 9

FIGURE 6. A learnable skip connection with gating mechanism.

another. This strategy aids in backpropagation by creating an
unobstructed path for gradients to flow, enabling successful
training of deeper networks.

This research presents a novel method of enhancing these
skip connections with learnability. Unlike standard skip

connections, learnable skip connections incorporate gating
mechanisms to control the flow of information dynamically.
Essentially, these mechanisms learn to regulate what
information is useful to propagate forward and what can be
omitted. A learnable skip connection with gating mechanism
is depicted in Fig. 6.

In the proposed SkipGateNet model, each learnable skip
connection employs a 1D convolution layer followed by a
sigmoid activation function to create a gate. The 1D
convolution layer acts as a learnable filter, learning the
importance of each feature in the data. This output is then
passed through a sigmoid function, which scales the values
between 0 and 1, effectively determining the proportion of
information that should be forwarded through the skip
connection. This dynamic information flow is given in Fig. 7
and the gating mechanism is mathematically expressed as;

𝑔𝑔𝑚𝑚𝑔𝑔𝑒𝑒 = 𝑠𝑠𝑖𝑖𝑔𝑔𝑚𝑚𝑠𝑠𝑖𝑖𝑠𝑠(𝐶𝐶𝑠𝑠𝑛𝑛𝑣𝑣1𝐷𝐷(𝑝𝑝𝑠𝑠𝑠𝑠𝑙𝑙)) (13)

𝑠𝑠𝑘𝑘𝑖𝑖𝑝𝑝_𝑐𝑐𝑠𝑠𝑛𝑛 = 𝑀𝑀𝑢𝑢𝑙𝑙𝑔𝑔𝑖𝑖𝑝𝑝𝑙𝑙𝑀𝑀() ([𝑠𝑠𝑘𝑘𝑖𝑖𝑝𝑝_𝑐𝑐𝑠𝑠𝑛𝑛,𝑔𝑔𝑚𝑚𝑔𝑔𝑒𝑒]) (14)

Where 'Conv1D (pool)' denotes the 1D convolution operation
on the pooling layer output, 'sigmoid' is the sigmoid
activation function, and 'Multiply()' represents the element-
wise multiplication operation between the original skip
connection and the gate output.

FIGURE 7. Information flow in Learnable Skip Connection

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3371992

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 10 VOLUME XX, 2023

The learnable skip connections with gating mechanisms
add a level of adaptability to our architecture. These
connections perform a kind of feature selection, determining
which features are important enough to be directly
propagated to deeper layers. As a result, the network
becomes better at focusing on the most relevant patterns in
the data, leading to improved model performance. In the
context of the proposed model SkipGateNet, the integration
of learnable skip connections provides a significant
advantage in dealing with botnet attack detection in IoT. IoT
data streams are often noisy and have many redundant
features. By using learnable skip connections, our model can
learn to focus on the most pertinent information while
ignoring irrelevant data, significantly improving detection
accuracy.

It is pertinent to mention here that the learnable skip
connections were originally introduced in [37]. The authors
used a Select, Attend, and Transfer (SAT) gate architecture.
The SAT Gate employs a sparsity-constrained selection
mechanism for channel selection, followed by an attention
mechanism for spatial focus. However, the learnable skip
connections used in this paper use a convolution-based
gating mechanism with sigmoid functions that dynamically
adjusts the flow of information based on the learned
importance of features.

D. ARCHITECTURAL DETAILS OF THE PROPOSED
MODEL

As illustrated in Fig. 3, the proposed SkipGateNet model
comprises three convolutional blocks, each containing
multiple convolutional layers enhanced by learnable skip
connections with gating mechanisms. These skip connections
facilitate the seamless flow of information throughout the
network. After the third convolutional block, the output is
processed through two Long Short-Term Memory (LSTM)
layers. These LSTM layers are designed to address the
vanishing gradient problem associated with traditional
RNNs, enabling the model to learn long-term dependencies
effectively. Subsequently, the output of the LSTM layers is
directed through a series of dense layers to generate the final
predictions for each input sample. The inclusion of learnable
skip connections with gating mechanisms allows the model
to dynamically adapt the information flow, improving the
model's performance on complex tasks.

The complete overview of the model architecture is given
in Table III. The deep learning model architecture begins
with an input tensor of dimensions 115 x 1. The first layer is
a 1D convolutional layer with 64 filters, a kernel size of 3,
and 'same' padding, which generates a 115 x 64 output tensor
with 256 parameters. Next, a max-pooling layer with a pool
size of 2 reduces the output shape to 57 x 64 without adding
any parameters. Subsequently, two 1D convolutional layers
with 128 filters, a kernel size of 3, and 'same' padding are
added.

TABLE III
THE ARCHITECTURE OF THE PROPOSED MODEL

Layers Output Shape Parameters Connected to Layer

input_3 (InputLayer) [(None, 115, 1)] 0 []
conv1d_65 (Conv1D) (None, 115, 64) 256 ['input_3[0][0]']
max_pooling1d_15
(MaxPooling1D)

(None, 57, 64) 0 ['conv1d_65[0][0]']

conv1d_66 (Conv1D) (None, 57, 128) 8320 ['max_pooling1d_15[0][0]']
conv1d_69 (Conv1D) (None, 57, 128) 8320 ['max_pooling1d_15[0][0]']
conv1d_67 (Conv1D) (None, 57, 128) 24704 ['max_pooling1d_15[0][0]']
multiply_15 (Multiply) (None, 57, 128) 0 ['conv1d_66[0][0]',
conv1d_68 (Conv1D) (None, 57, 128) 49280 ['conv1d_67[0][0]']
add_15 (Add) (None, 57, 128) 0 ['multiply_15[0][0]',
max_pooling1d_16 (MaxPooling1D (None, 28, 128) 0 ['add_15[0][0]']
conv1d_70 (Conv1D) (None, 28, 128) 16512 ['max_pooling1d_16[0][0]']
conv1d_73 (Conv1D) (None, 28, 128) 16512 ['max_pooling1d_16[0][0]']
conv1d_71 (Conv1D) (None, 28, 128) 49280 ['max_pooling1d_16[0][0]']
multiply_16 (Multiply) (None, 28, 128) 0 ['conv1d_70[0][0]',
conv1d_72 (Conv1D) (None, 28, 128) 49280 ['conv1d_71[0][0]']
add_16 (Add) (None, 28, 128) 0 ['multiply_16[0][0]',
max_pooling1d_17 (MaxPooling1D (None, 14, 128) 0 ['add_16[0][0]']
conv1d_74 (Conv1D) (None, 14, 128) 33024 ['max_pooling1d_17[0][0]']
conv1d_77 (Conv1D) (None, 14, 128) 33024 ['max_pooling1d_17[0][0]']
conv1d_75 (Conv1D) (None, 14, 128) 98560 ['max_pooling1d_17[0][0]']
multiply_17 (Multiply) (None, 14, 128) 0 ['conv1d_74[0][0]',
conv1d_76 (Conv1D) (None, 14, 128) 196864 ['conv1d_75[0][0]']
add_17 (Add) (None, 14, 128) 0 ['multiply_17[0][0]',
lstm_10 (LSTM) (None, 14, 128) 82176 ['add_17[0][0]']
lstm_11 (LSTM) (None, 32) 12416 ['lstm_10[0][0]']
flatten_5 (Flatten) (None, 32) 0 ['lstm_11[0][0]']
dense_10 (Dense) (None, 64) 2112 ['flatten_5[0][0]']
dense_11 (Dense) (None, 32) 2080 ['dense_10[0][0]']
dense_12 (Dense) (None, 11) 363 ['dense_11[0][0]']

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3371992

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 M. S. Alshehri et al.: SkipGateNet: A Lightweight CNN-LSTM Hybrid Model
with Learnable Skip Connections for Efficient Botnet Attack Detection in IoT

VOLUME XX, 2023 11

TABLE IV
SUMMARY OF THE PROPOSED MODEL PRESENTING ITS SIZE AND TOTAL PARAMETERS

Total Parameters Trainable parameters Non-Trainable parameters Model Size in KB

683,083 683,083 0 2596.87

These convolutional layers, along with a Multiply layer
representing the gating mechanism, are connected to the
previous layers. This combination results in a 57 x 128
output tensor. An Add layer then merges the outputs of the
gated convolutional layers. The architecture repeats this
pattern for the next convolutional block. The second block
starts with a max-pooling layer, followed by two
convolutional layers and a gating mechanism, resulting in
another 28 x 128 output tensor. The third convolutional block
follows a similar pattern, with two convolutional layers and a
gating mechanism generating a 14 x 128 output tensor.

Subsequently, two LSTM layers with 64 units each are
added. The first LSTM layer, connected to the previous Add
layer, has 82,176 parameters and outputs a 14 x 64 tensor.
The second LSTM layer, connected to the first LSTM layer,
has 12,416 parameters and outputs a 32-dimensional vector.

The architecture concludes with three dense layers. The
first dense layer with 64 units connects to a Flatten layer,
which reshapes the input tensor into a 1D vector, and has
2,112 parameters. The second dense layer connects to the
first dense layer, has 32 units, and contributes 2,080
parameters. The final dense layer comprises 11 units,
corresponding to the 11 classes, and has 363 parameters.

This model architecture is well-suited for classifying
multiple classes and particularly excels in managing complex
data due to the added learnable skip connections with gating
mechanisms. The blend of 1D convolutional layers, max-
pooling layers, multiply layers for gating, LSTM layers, and
dense layers results in a powerful deep learning model
capable of producing accurate classifications.

E. SIZE AND PARAMETERS OF THE PROPOSED
MODEL

A summary of the proposed deep learning model presenting
the total parameters and its size is given in Table IV. The
model consists of a total of 683,083 parameters, all of which
are trainable. The table displays the model size as 2596.87
KB, which represents the memory required to store the
model and its associated parameters.

A smaller model size is generally preferred, as it enables
easier deployment on devices with limited memory capacity,
such as edge devices and fog nodes. This compactness allows
the model to be more efficient, making it suitable for the real-
time classification of IoT attacks across various IoT
platforms.

VI. PERFORMANCE EVALUATION AND RESULTS

A. PERFORMANCE PARAMETERS

To assess the performance of each model, the key
performance parameters, such as precision, recall, accuracy,
and F1-score, have been computed. These parameters were
calculated using (15) to (18). The quantities involved in the
calculation of the aforementioned performance parameters,
specifically True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN), are obtained from
confusion matrices. Precision, recall, and F1 score serve as
metrics for evaluating the performance of a classification
model, while accuracy is employed to gauge the overall
correctness of predictions made by a model.

𝑃𝑃𝑟𝑟𝑒𝑒𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 =
𝑛𝑛𝑛𝑛𝑃𝑃

𝑛𝑛𝑛𝑛𝑃𝑃 + 𝑛𝑛𝑛𝑛𝑃𝑃
 (15)

𝑅𝑅𝑒𝑒𝑐𝑐𝑚𝑚𝑙𝑙𝑙𝑙 =
𝑛𝑛𝑛𝑛𝑃𝑃

𝑛𝑛𝑛𝑛𝑁𝑁 + 𝑛𝑛𝑛𝑛𝑃𝑃
 (16)

𝐴𝐴𝑐𝑐𝑐𝑐𝑢𝑢𝑟𝑟𝑚𝑚𝑐𝑐𝑀𝑀 =
𝑛𝑛𝑛𝑛𝑃𝑃 + 𝑛𝑛𝑛𝑛𝑁𝑁

𝑛𝑛𝑛𝑛𝑃𝑃 + 𝑛𝑛𝑛𝑛𝑃𝑃 + 𝑛𝑛𝑛𝑛𝑁𝑁 + 𝑛𝑛𝑛𝑛𝑁𝑁
 (17)

𝑛𝑛1 − 𝑠𝑠𝑐𝑐𝑠𝑠𝑟𝑟𝑒𝑒 = 2 x
𝑃𝑃𝑟𝑟𝑒𝑒𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 𝑥𝑥 𝑅𝑅𝑒𝑒𝑐𝑐𝑚𝑚𝑙𝑙𝑙𝑙
𝑃𝑃𝑟𝑟𝑒𝑒𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 + 𝑅𝑅𝑒𝑒𝑐𝑐𝑚𝑚𝑙𝑙𝑙𝑙

 (18)

B. RELIABILITY PARAMETERS
Cohen’s Kappa coefficient and Matthews Correlation
Coefficient are two metrics frequently used to evaluate the
performance of a classification model. This paper calculates
both to gauge the reliability of the proposed model.

1) COHEN’S KAPPA COEFFICIENT
The Cohen’s Kappa coefficient quantifies the agreement
between predicted and actual classifications while accounting
for the possibility of chance agreement [38]. Ranging from -1
to 1. A score of 1 indicates perfect agreement, 0 signifies
chance agreement, and -1 demonstrates perfect disagreement.

The Kappa coefficient or the Kappa statistic is a measure
of two accuracies, i.e., the observed accuracy and the
expected accuracy, which depend on the obtained confusion
matrices [38, 39]. The observed accuracy is defined as the
ratio of actual predicted labels from all the labels in a
confusion matrix and can be calculated by using (17).
Whereas the expected accuracy, which is dependent on the
predicated and actual labels, can be calculated using (18).
After obtaining the observed and expected accuracies, the
kappa coefficient can easily be calculated using (19).

𝑂𝑂𝑂𝑂𝑠𝑠 𝐴𝐴𝑐𝑐𝑐𝑐 =
𝑛𝑛𝑃𝑃𝑖𝑖 + 𝑛𝑛𝑁𝑁𝑖𝑖

𝑛𝑛𝑃𝑃𝑖𝑖 + 𝑛𝑛𝑁𝑁𝑖𝑖 + 𝑛𝑛𝑃𝑃𝑖𝑖 + 𝑛𝑛𝑁𝑁𝑖𝑖
 (17)

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3371992

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 12 VOLUME XX, 2023

𝐸𝐸𝑥𝑥𝑝𝑝 𝐴𝐴𝑐𝑐𝑐𝑐 =
(∑ (𝑃𝑃𝑟𝑟𝑒𝑒𝑠𝑠_𝑙𝑙𝑚𝑚𝑂𝑂𝑒𝑒𝑙𝑙𝑠𝑠𝑖𝑖 × 𝐴𝐴𝑐𝑐𝑔𝑔𝑢𝑢𝑚𝑚𝑙𝑙_𝑙𝑙𝑚𝑚𝑂𝑂𝑒𝑒𝑙𝑙𝑠𝑠))

𝑛𝑛𝑃𝑃𝑖𝑖 + 𝑛𝑛𝑁𝑁𝑖𝑖 + 𝑛𝑛𝑃𝑃𝑖𝑖 + 𝑛𝑛𝑁𝑁𝑖𝑖
 (18)

𝐾𝐾𝑚𝑚𝑝𝑝𝑝𝑝𝑚𝑚 =
𝑂𝑂𝑂𝑂𝑠𝑠 𝐴𝐴𝑐𝑐𝑐𝑐 − 𝐸𝐸𝑥𝑥𝑝𝑝 𝐴𝐴𝑐𝑐𝑐𝑐

1 − 𝐸𝐸𝑥𝑥𝑝𝑝 𝐴𝐴𝑐𝑐𝑐𝑐
 (19)

Where 𝑖𝑖 ∈ 0,1,2,3, … ,9,10, and it represents the 11 classes
used in this study.

2) MATTHEWS CORRELATION COEFFICIENT
 The Matthews correlation coefficient (MCC) is a

metric measuring the quality of classification when the data
is imbalanced [40]. Considering true and false positives as
well as true and false negatives, the MCC ranges from -1 to
1. A score of 1 indicates perfect prediction, 0 signifies
random prediction, and -1 demonstrates completely wrong
prediction. MCC is calculated using (20).

𝑀𝑀𝐶𝐶𝐶𝐶 =
𝑛𝑛𝑃𝑃𝑖𝑖 × 𝑛𝑛𝑁𝑁𝑖𝑖 − 𝑛𝑛𝑃𝑃𝑖𝑖 × 𝑛𝑛𝑁𝑁𝑖𝑖𝑖𝑖

�(𝑛𝑛𝑃𝑃𝑖𝑖 + 𝑛𝑛𝑃𝑃𝑖𝑖)(𝑛𝑛𝑃𝑃𝑖𝑖 + 𝑛𝑛𝑁𝑁𝑖𝑖)(𝑛𝑛𝑁𝑁𝑖𝑖 + 𝑛𝑛𝑃𝑃𝑖𝑖)(𝑛𝑛𝑁𝑁𝑖𝑖 + 𝑛𝑛𝑁𝑁𝑖𝑖)
 (20)

C. RESULTS AND DISCUSSION

1) TRAINING AND VALIDATION RESULTS
 The performance of the proposed model during

training was assessed using key metrics, including training
accuracy, validation accuracy, training loss, and validation
loss at various epochs. These metrics help in evaluating the
overfitting and underfitting of the trained models. Fig. 8 (a)
and Fig. 8 (b) display the training loss versus validation loss
and the training accuracy versus validation accuracy graphs
of the proposed model, respectively. The proposed model
demonstrates a low training loss 0.096% and an excellent
training accuracy of 99.93%. The training performance of the
proposed model is also given in Table V.

2) CLASS-WISE CLASSIFICATION REPORT
The performance of the proposed model on the test dataset

has also been measured using the key performance
parameters, i.e., precision, recall, F1-score, and accuracy. A
class-wise classification report that presents the proposed
model's class-wise performance is given in Table VI. The
confusion matrices for the testing and validation dataset have
also been generated and are shown in Fig. 9 and Fig. 11.
Fig.9 shows the confusion matrices of the model’s
performance on each subset of the dataset, whereas Fig. 11
shows an aggregate confusion matrix of the complete test
dataset. The confusion matrices help in the calculation of the
aforementioned performance parameters. The proposed

model’s exceptional performance is evident from the results
given in Table VI. In addition to the performance of each
class, the macro-averages of precision, recall, and F1-score
stand at 99.00, signifying overall strong performance. The
total accuracy of the model is 99.91%, depicting that the
model has correctly classified 99.91% of instances in the
dataset. Moreover, the class-wise comparison of the
classification is also given in Fig. 10.

3) RELIABILITY PARAMETERS’ RESULTS
As described earlier, Cohen’s Kappa coefficient and

Matthews Correlation Coefficient have been calculated to
check the proposed models' reliability. Table VII presents
each class's Kappa coefficient and Matthews Correlation
Coefficient (MCC) values. For the Kappa coefficient, a score

(a)

(b)

FIGURE 8. Training Curves on complete dataset (a) Training loss vs.
validation loss, and (b) Training accuracy vs. validation accuracy

TABLE V
AGGREGATE TRAINING PERFORMANCE OF THE PROPOSED MODEL FOR ALL SUBSETS

Model Epochs Training Loss Validation Loss Training Accuracy Validation

The Proposed Model

1 1.336 1.381 39.32% 38.05%
.
.
99 0.031 0.1101 99.38% 97.01%
100 0.096 0.0915 99.93% 99.95%

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3371992

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 M. S. Alshehri et al.: SkipGateNet: A Lightweight CNN-LSTM Hybrid Model
with Learnable Skip Connections for Efficient Botnet Attack Detection in IoT

VOLUME XX, 2023 13

(a) (b)

⋮ ⋮

(i) (j)

FIGURE 9. Confusion matrices of Testing dataset for all 10 subsets: (a) Subset 1, (b) Subset 2, ⋯, (j) Subset 9, and (j) Subset 10.

FIGURE 10. Class-wise comparison of the aggregate classification parameters.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3371992

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 14 VOLUME XX, 2023

FIGURE 11. Aggregate confusion matrix for the complete dataset.

TABLE VI

CLASSIFICATION REPORT OF EACH CLASS ON THE TEST DATASET

Class Aggregate
Precision

Aggregate
Recall

Aggregate
F1-score

Test
Samples

benign 0.998469 0.999396 0.998932 110888
gafgyt_combo 0.998754 0.992856 0.995766 102458
gafgyt_junk 0.986533 0.997651 0.991957 52780
gafgyt_scan 0.998955 0.999585 0.99927 50586
gafgyt_tcp 0.99967 0.999624 0.999647 172909
gafgyt_udp 0.99976 0.999405 0.999582 188068
mirai_ack 0.999953 0.999945 0.999949 128481
mirai_scan 0.999945 0.999714 0.999829 108405
mirai_syn 0.99998 0.999829 0.999905 146905
mirai_udp 0.999972 0.999923 0.999947 246493
mirai_udpplain 0.999971 0.999865 0.999918 104096
Macro Average 0.99 0.99 0.99 1412069
Accuracy 99.91%

TABLE VII
RESULTS OF RELIABILITY PARAMETERS

Class Kappa MCC

benign 0.999831 0.99035
gafgyt_combo 0.999388 0.99002
gafgyt_junk 0.999388 0.98004
gafgyt_scan 0.999948 0.99501
gafgyt_tcp 0.999912 0.99505
gafgyt_udp 0.999887 0.99005
mirai_ack 0.999991 0.99506
mirai_scan 0.999974 0.99026
mirai_syn 0.99998 0.98965
mirai_udp 0.999981 0.99368
mirai_udpplain 0.999988 0.99007

of 1 indicates perfect agreement, 0 signifies chance
agreement, and -1 demonstrates perfect disagreement. It can
be seen from Table VII that all values are quite close to 1 or
0.99, which more precisely confirms the performance
reliability of the proposed model. Similarly, the MCC values
for all classes are also 0.99, further validating the proposed
model's performance.

4) HYPERPARAMETERS TUNING RESULTS.
Hyper-parameters are parameters that are not learned by

the machine learning algorithm during training but are set
before training commences. These parameters govern the
algorithm's behavior and can significantly influence the
model's performance. In deep learning, these parameters
include the learning rate, batch size, number of epochs,
optimizer, activation functions, and number of layers, among

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3371992

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 M. S. Alshehri et al.: SkipGateNet: A Lightweight CNN-LSTM Hybrid Model
with Learnable Skip Connections for Efficient Botnet Attack Detection in IoT

VOLUME XX, 2023 15

TABLE VIII
DETAILS OF HYPERPARAMETERS

Parameter Value Test Accuracy

Learning Rate

1e-2 99.41%
1e-3 99.95%
1e-4 90.75%
1e-5 96.36%
1e-6 88.41%
1e-7 34.08%

Dense Layers Units
32 98.35%
64 99.95%
128 98.75%

LSTM layers units
32 99.75%
64 99.95%
128 98.75%

others. Table VIII provides the hyper-parameters tuned in
this study, which have been optimized using the Keras Tuner.
These parameters include the learning rate, the number of
units in the dense layers, and the number of units in the
LSTM layers. Various values for each hyper-parameter were
tested, and the corresponding test accuracy is reported in the
table. The proposed model’s overall test accuracy of 99.91%
shows the fine-tuning of these parameters.

5) INFERENCE TIME
Inference time refers to the duration required for a model

to process the input data and generate a prediction or
classification regarding the presence of malicious activity or
an intrusion attempt. Lower inference times are generally
preferred, especially for edge devices and fog computing
environments, as they enable faster decision-making and
more effective intrusion prevention. Table IX shows the
inference time of all layers of the proposed model, along with
the average inference time of the model. The overall average
inference time of the proposed model is only 8 ms, which
makes it suitable for intrusion detection systems intended for
edge devices and fog computing environments.

VII. COMPARITIVE ANALYSIS OF THE PROPOSED
MODEL

A. COMPARISON WITH DL MODELS IN LITERATURE
AND SELF-IMPLEMENTED ARCHITECTURES

In addition to being lightweight, compact in size and fast, the
proposed SkipGateNet model was intended to detect botnet
attacks effectively. The performance of the SkipGateNet has
been compared with the five recent state-of-the-art works that
used deep learning (including CNN+LSTM) on the same
dataset (N-BaIoT). It is evident from the results shown in
Table X that the proposed SkipGateNet outperformed all
models in terms of F1-score, precision, recall and accuracy,
validating the efficient detection of botnet attacks.

In addition, four different types of deep learning
architectures also have been implemented, trained and tested
on the same dataset for comparison purposes. Experimented
models include:

TABLE IX
INFERENCE TIME OF ALL LAYERS OF THE PROPOSED MODEL

Layers Inference time in ms

input_3 (InputLayer) 17.657
conv1d_65 (Conv1D) 1.321
max_pooling1d_15
(MaxPooling1D) 15.258

conv1d_66 (Conv1D) 16.954
conv1d_69 (Conv1D) 13.857
conv1d_67 (Conv1D) 11.258
multiply_15 (Multiply) 1.112
conv1d_68 (Conv1D) 14.256
add_15 (Add) 12.632
max_pooling1d_16
(MaxPooling1D 14.256

conv1d_70 (Conv1D) 1.005
conv1d_73 (Conv1D) 18.528
conv1d_71 (Conv1D) 10.756
multiply_16 (Multiply) 9.865
conv1d_72 (Conv1D) 19.256
add_16 (Add) 2.056
max_pooling1d_17
(MaxPooling1D 2.025

conv1d_74 (Conv1D) 2.349
conv1d_77 (Conv1D) 5.256
conv1d_75 (Conv1D) 5.658
multiply_17 (Multiply) 4.256
conv1d_76 (Conv1D) 2.589
add_17 (Add) 2.056
lstm_10 (LSTM) 2.654
lstm_11 (LSTM) 2.799
flatten_5 (Flatten) 5.665
dense_10 (Dense) 5.657
dense_11 (Dense) 6.656
dense_12 (Dense) 4.346
Average inference time 7.999 ≈ 8.0

• Model A: a sequential CNN having 5 convolution layers

and 3 dense layers.
• Model B: a sequential CNN having 7 convolution layers

and 3 dense layers.
• Model C: a CNN+LSTM having 7 convolution layers, 2

LSTM layers, and a dense layer.
• Model D: a CNN+LSTM with simple skip connections,

7 convolution layers, 2 LSTM layers, and a dense layer.
The architectural details of the model are given in Fig. 12

and the comparison of these models with the proposed
SkipGateNet model in terms of test accuracy, inference time,
total parameters, and size in KBs is given in Table XI. It can
be seen that the proposed SkipGateNet has highest accuracy
of 99.91% in the fastest inference time of 8 milliseconds. The
simple sequential CNNs have less inference time but they
exhibit low accuracies and fail to extract features efficiently.

B. COMPARISON WITH MACHINE LEARNING
MODELS

The proposed deep learning model has been intended to
detect botnet attacks in edge devices and fog computing
environments and is presented to be more accurate and faster
than the existing traditional machine learning techniques.
Therefore, several traditional machine learning models have

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3371992

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 16 VOLUME XX, 2023

TABLE X
COMPARISON OF THE PROPOSED SKIPGATENET WITH OTHER DL MODELS WITH SAME DATASET

Paper Dataset Algorithm F1-score Precision Recall Accuracy

[28] N-BaIot CNN-LSTM 0.88 93.04% 91.91% 90.88%
[29] N-BaIoT DBN 0.92 98.27% 92.82% 95.60%
[30] N-BaIoT CNN-LSTM 0.93 93.48% 93.675 94.30%
[31] N-BaIoT Auto encoders - - - 90.2%
[32] N-BaIoT Auto encoders, DNN 0.80 99% 66% 97.21%
[41] N-BaIoT Auto encoders 0.99 99% 99% -
The Proposed
SkipGateNet

N-BaIoT CNN-LSTM with learnable
skip connections

0.99 99% 99% 99.91%

(a) (b) (c) (d)

FIGURE 12. Architectures of implemented models on same dataset for
comparison purposes; (a) Model A: a sequential CNN with 5 convolution
layers, (b) Model B: a sequential CNN with 7 convolution layers, (c)
Model C: a CNN+LSTM architecture, and (d) Model D: a CNN+LSTM with
simple skipping connections.

been implemented on the same dataset to compare its
performance and inference time. Five traditional machine
learning models have been implemented for the comparison
with the proposed model, i.e., Logistic Regression, Random
Forest, SVM, Naïve Bayes, and K Neighbors Classifier.
Models have been compared on two metrics, test accuracy
and inference time. It can be seen from Table XII that the
proposed deep learning model has the highest accuracy of
99.91% and has a minimum inference time of just 8.0 ms.

TABLE XI
COMPARISON OF THE PROPOSED MODEL WITH SIMILAR ARCHITECTURES

Models Test
accuracy

Infer-
ence time

(ms)

Size in
KB

Total
Parame-

ters
Model A 92.19% 8.1 2645.65 1,437,515
Model B 95.34% 9.9 2684.97 1,733,195
Model C 96.53% 10.4 2697.12 1,661,803
Model D 99.15% 8.3 2618.07 739,915
The Proposed
SkipGateNet

99.91% 8.0 2596.87 683,083

TABLE XII
COMPARISON OF THE PROPOSED MODEL WITH ML MODELS

Models Test Accuracy Inference Time in ms

Logistic Regression 82.56% 11.8
Random forest 99.05% 10.7
SVM 82.45% 9.6
Naïve Bayes 60. 48% 10.3
K Neighbors Classifier 98.98% 9.3
The Proposed
SkipGateNet

99.91% 8.0

VIII. ABLATION STUDY
An ablation study involves systematically removing or
altering certain components of the model to understand the
impact of each component on the model's performance. We
used the same dataset and experimental setup as for the
baseline or proposed. Different components of the model
were removed and then added step-by-step or removed to
compare their performance. It can be seen in Table XIII that
simple sequential convolutional components exhibited low
accuracies with large model sizes. Adding skip connections
helped in reducing the model size and improving the
accuracy. While adding the learnable skip connections,
significantly improved the accuracy of the model with the
smallest size and fast inference time. The ablation study
validated the efficacy of the proposed architecture to detect
botnet attacks.

TABLE XIII
RESULTS OF THE ABLATION STUDY

Exp.
No. Components Accuracy Inference

Time (ms)
Model

Size (KB)
1 1 Convolutional Block 95.38% 5.12 10,976.19
2 2 Convolutional Blocks 96.66% 6.89 5,365.12
3 3 Convolutional Block 98.21% 9.20 7,912.00
4 1 Convolutional Block +

Simple Skip
Connections

98.25% 6.49 10,282.61

5 2 Convolutional Blocks
+ Simple Skip
Connections

98.69% 9.11 6,134.25

6 3 Convolutional Blocks
+ Simple Skip
Connections

99.72% 11.36 6,951.73

7 3 Convolutional Blocks
+ Learnable Skip
Connections

99.70% 7.78 5,560.08

8 3 Convolutional Blocks
+ Learnable Skip
Connections + LSTM
(The Proposed Model)

99.91% 7.99 ≈ 8.0 2,596.87

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3371992

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 M. S. Alshehri et al.: SkipGateNet: A Lightweight CNN-LSTM Hybrid Model
with Learnable Skip Connections for Efficient Botnet Attack Detection in IoT

VOLUME XX, 2023 17

IX. CONCLUSION
This paper addressed the critical need for effective and
efficient Intrusion Detection Systems (IDS) to detect botnet
attacks, especially in IoT and Fog computing environments.
Such resource-constrained environments need small sizes
and fast yet powerful decision-making models to detect
malicious intrusions in the network. For the challenges
mentioned above, a 1D-CNN and LSTM-based deep neural
network with learnable skip connections was proposed and
presented in this paper. This combination of convolutional
and LSTM layers enables the model to learn both temporal
and spatial features in the data, while the learnable skip
connections are capable of dynamically controlling the flow
of information across the network, enabling the model to
focus on salient features and ignore irrelevant ones, thus
enhancing its detection capabilities. The proposed model was
trained and tested on actual IoT network traffic data (the N-
BaIoT dataset). This dataset features authentic traffic data
from nine commercial IoT devices, including cameras,
routers, and smart home appliances infected with the Mirai
and BASHLITE malware, incorporating a total of 10
different IoT attacks. With a compact size of 2596.87 KB, an
inference time of 8.0 milliseconds, and a test accuracy of
99.91%, the proposed model proved to be well-suited to be
deployed in resource-constrained environments. The
proposed SkipGateNet model outperformed all models in
comparison in terms of accuracy and inference time.
Furthermore, the future research could explore the integration
of SkipGateNet with federated learning for distributed IoT
environments, and the application of transfer learning to
enhance its adaptability to different IoT domains and attack
types.

ACKNOWLEDGMENT
The authors are thankful to the Deanship of Scientific
Research at Najran University for funding this work under
the General Research Funding program grant code
(NU/DRP/SERC/12/46).

REFERENCES
[1] N. Mishra and S. Pandya, “Internet of Things Applications, Security

Challenges, Attacks, Intrusion Detection, and Future Visions: A
Systematic Review,” IEEE Access, vol. 9, pp. 59353–59377, 2021,
doi: https://doi.org/10.1109/access.2021.3073408.

[2] Y. Li, Y. Zuo, H. Song, and Z. Lv, “Deep Learning in Security of
Internet of Things,” IEEE Internet of Things Journal, vol. 9, no. 22,
pp. 22133–22146, 2021, doi:
https://doi.org/10.1109/jiot.2021.3106898.

[3] D. Ucci, L. Aniello, and R. Baldoni, “Survey of machine learning
techniques for malware analysis,” Computers & Security, vol. 81, pp.
123–147, Mar. 2019, doi: https://doi.org/10.1016/j.cose.2018.11.001.

[4] M. K. Kagita, N. Thilakarathne, T. R. Gadekallu, P. K. Reddy, and S.
Singh , “A Review on Cyber Crimes on the Internet of Things,” in
Deep Learning for Security and Privacy Preservation in IoT, N.
Kumar, Ed., Springer, 2022, pp. 83–98.

[5] Y. Meidan et al., “N-BaIoT—Network-Based Detection of IoT
Botnet Attacks Using Deep Autoencoders,” IEEE Pervasive
Computing, vol. 17, no. 3, pp. 12–22, Jul. 2018, doi:
https://doi.org/10.1109/mprv.2018.03367731.

[6] H. Atlam, R. Walters, and G. Wills, “Fog Computing and the Internet
of Things: A Review,” Big Data and Cognitive Computing, vol. 2,
no. 2, p. 10, Apr. 2018, doi: https://doi.org/10.3390/bdcc2020010.

[7] V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal, and B. Sikdar,
“A Survey on IoT Security: Application Areas, Security Threats, and
Solution Architectures,” IEEE Access, vol. 7, pp. 82721–82743,
2019, doi: https://doi.org/10.1109/access.2019.2924045.

[8] A. Sharifi and S. Goli-Bidgoli, “IFogLearn++: A new platform for
fog layer’s IoT attack detection in critical infrastructure using
machine learning and big data processing,” Computers and Electrical
Engineering, vol. 103, p. 108374, Oct. 2022, doi:
https://doi.org/10.1016/j.compeleceng.2022.108374.

[9] M. M. Salim, S. Rathore, and J. H. Park, “Distributed denial of
service attacks and its defenses in IoT: a survey,” The Journal of
Supercomputing, vol. 76, no. 7, Jul. 2019, doi:
https://doi.org/10.1007/s11227-019-02945-z.

[10] M. Antonakakis et al., “Understanding the Mirai Botnet,” in 26th
USENIX security symposium , 2017, pp. 1093–1110.

[11] H. Liu and B. Lang, “Machine Learning and Deep Learning Methods
for Intrusion Detection Systems: A Survey,” Applied Sciences, vol.
9, no. 20, p. 4396, Oct. 2019, doi:
https://doi.org/10.3390/app9204396.

[12] S. Omar, A. Ngadi, and H. H. Jebur, “Machine Learning Techniques
for Anomaly Detection: An Overview,” International Journal of
Computer Applications, vol. 79, no. 2, pp. 33–41, Oct. 2013, doi:
https://doi.org/10.5120/13715-1478.

[13] M. Mohammadi, A. Al-Fuqaha, S. Sorour, and M. Guizani, “Deep
Learning for IoT Big Data and Streaming Analytics: A Survey,”
IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp.
2923–2960, 2018, doi: https://doi.org/10.1109/comst.2018.2844341.

[14] Verma and V. Ranga, “Machine Learning Based Intrusion Detection
Systems for IoT Applications,” Wireless Personal Communications,
vol. 111, no. 4, Nov. 2019, doi: https://doi.org/10.1007/s11277-019-
06986-8.

[15] M. A. Rahman, A. T. Asyhari, L. S. Leong, G. B. Satrya, M. Hai
Tao, and M. F. Zolkipli, “Scalable machine learning-based intrusion
detection system for IoT-enabled smart cities,” Sustainable Cities
and Society, vol. 61, p. 102324, Oct. 2020, doi:
https://doi.org/10.1016/j.scs.2020.102324.

[16] Amouri, V. T. Alaparthy, and S. D. Morgera, “A Machine Learning
Based Intrusion Detection System for Mobile Internet of Things,”
Sensors, vol. 20, no. 2, p. 461, Jan. 2020, doi:
https://doi.org/10.3390/s20020461.

[17] N. Islam et al., “Towards Machine Learning Based Intrusion
Detection in IoT Networks,” Computers, Materials & Continua, vol.
69, no. 2, pp. 1801–1821, 2021, doi:
https://doi.org/10.32604/cmc.2021.018466.

[18] M. Sarhan, S. Layeghy, N. Moustafa, M. Gallagher, and M.
Portmann, “Feature extraction for machine learning-based intrusion
detection in IoT networks,” Digital Communications and Networks,
Sep. 2022, doi: https://doi.org/10.1016/j.dcan.2022.08.012.

[19] M. Asif, S. Abbas, M. A. Khan, A. Fatima, M. A. Khan, and S.-W.
Lee, “MapReduce based intelligent model for intrusion detection
using machine learning technique,” Journal of King Saud University
- Computer and Information Sciences, vol. 34, no. 10, Dec. 2021,
doi: https://doi.org/10.1016/j.jksuci.2021.12.008..

[20] R. Kumar, P. Kumar, R. Tripathi, G. P. Gupta, S. Garg, and M. M.
Hassan, “A distributed intrusion detection system to detect DDoS
attacks in blockchain-enabled IoT network,” Journal of Parallel and
Distributed Computing, vol. 164, pp. 55–68, Jun. 2022, doi:
https://doi.org/10.1016/j.jpdc.2022.01.030.

[21] A. A. Ahmed, W. A. Jabbar, A. S. Sadiq, and H. Patel, “Deep
learning-based classification model for botnet attack detection,”
Journal of Ambient Intelligence and Humanized Computing, vol. 13,
no. 7, Mar. 2020, doi: https://doi.org/10.1007/s12652-020-01848-9.

[22] N. Faruqui et al., “SafetyMed: A Novel IoMT Intrusion Detection
System Using CNN-LSTM Hybridization,” Electronics, vol. 12, no.
17, pp. 3541–3541, Aug. 2023, doi:
https://doi.org/10.3390/electronics12173541.

[23] Md. A. Talukder et al., “A dependable hybrid machine learning
model for network intrusion detection,” Journal of Information

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3371992

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

 18 VOLUME XX, 2023

Security and Applications, vol. 72, no. 10, p. 103405, Feb. 2023, doi:
https://doi.org/10.1016/j.jisa.2022.103405.

[24] T. Hasan et al., “Securing Industrial Internet of Things Against
Botnet Attacks Using Hybrid Deep Learning Approach,” IEEE
Transactions on Network Science and Engineering, pp. 1–1, 2022,
doi: https://doi.org/10.1109/TNSE.2022.3168533.

[25] T. Zebin, S. Rezvy, and Y. Luo, “An Explainable AI-Based Intrusion
Detection System for DNS Over HTTPS (DoH) Attacks,” IEEE
Transactions on Information Forensics and Security, vol. 17, pp.
2339–2349, 2022, doi: https://doi.org/10.1109/tifs.2022.3183390.

[26] P. Illy, G. Kaddoum, K. Kaur, and S. Garg, “ML-Based IDPS
Enhancement With Complementary Features for Home IoT
Networks,” IEEE Transactions on Network and Service
Management, vol. 19, no. 2, pp. 772–783, Jun. 2022, doi:
https://doi.org/10.1109/tnsm.2022.3141942.

[27] Pei, X. Deng, S. Tian, L. Zhang, and K. Xue, “A Knowledge
Transfer-based Semi-Supervised Federated Learning for IoT
Malware Detection,” IEEE Transactions on Dependable and Secure
Computing, vol. 20, no. 3, pp. 1–1, 2022, doi:
https://doi.org/10.1109/tdsc.2022.3173664.

[28] H. Alkahtani and T. H. H. Aldhyani, “Botnet Attack Detection by
Using CNN-LSTM Model for Internet of Things Applications,”
Security and Communication Networks, vol. 2021, pp. 1–23, Sep.
2021, doi: https://doi.org/10.1155/2021/3806459.

[29] Tran Viet Khoa et al., “Collaborative Learning Model for
Cyberattack Detection Systems in IoT Industry 4.0,” in 2020 IEEE
Wireless Communications and Networking Conference (WCNC),
IEEE, 2020.

[30] G. De La Torre Parra, P. Rad, K.-K. R. Choo, and N. Beebe,
“Detecting Internet of Things attacks using distributed deep
learning,” Journal of Network and Computer Applications, vol. 163,
p. 102662, Aug. 2020, doi:
https://doi.org/10.1016/j.jnca.2020.102662.

[31] N. Sakthipriya, V. Govindasamy, and V. Akila, “A Comparative
Analysis of various Dimensionality Reduction Techniques on N-
BaIoT Dataset for IoT Botnet Detection,” in 2023 2nd International
Conference on Paradigm Shifts in Communications Embedded
Systems, Machine Learning and Signal Processing (PCEMS), 2023.

[32] M. A. Pynadath, K. J. Pavithra, and S. Elton Lobo, “Anomaly
Detection and Multi-Output Classification of IoT Attacks,” in 2023

International Conference on Inventive Computation Technologies
(ICICT), IEEE, 2023.

[33] Kaggle, “N-BaIoT Dataset to Detect IoT Botnet Attacks,”
www.kaggle.com, 2020.
https://www.kaggle.com/datasets/mkashifn/nbaiot-dataset

[34] K. Yang, Z. Huang, X. Wang, and X. Li, “A Blind Spectrum Sensing
Method Based on Deep Learning,” Sensors, vol. 19, no. 10, p. 2270,
May 2019, doi: https://doi.org/10.3390/s19102270.

[35] V. Suárez-Paniagua and I. Segura-Bedmar, “Evaluation of pooling
operations in convolutional architectures for drug-drug interaction
extraction,” BMC Bioinformatics, vol. 19, no. S8, Jun. 2018, doi:
https://doi.org/10.1186/s12859-018-2195-1.

[36] F. Gers, N. Schraudolph, and J. Schmidhuber, “Learning Precise
Timing with LSTM Recurrent Networks,” Journal of Machine
Learning Research, vol. 3, pp. 115–143, 2002.

[37] Taghanaki, Saeid Asgari et al., “Select, Attend, and Transfer: Light,
Learnable Skip Connections,” in Machine Learning in Medical
Imaging, H. Suk, M. Liu, P. Yan, and C. Lian, Eds., Cham: Springer
International Publishing, 2019, pp. 417–425.

[38] E. Yilmaz and H. Demirhan, “Weighted kappa measures for ordinal
multi-class classification performance,” Applied Soft Computing,
vol. 134, p. 110020, Jan. 2023, doi:
https://doi.org/10.1016/j.asoc.2023.110020.

[39] G. M. Foody, “Explaining the unsuitability of the kappa coefficient
in the assessment and comparison of the accuracy of thematic maps
obtained by image classification,” Remote Sensing of Environment,
vol. 239, p. 111630, Mar. 2020, doi:
https://doi.org/10.1016/j.rse.2019.111630.

[40] Chicco and G. Jurman, “The Matthews correlation coefficient
(MCC) should replace the ROC AUC as the standard metric for
assessing binary classification,” BioData Mining, vol. 16, no. 1, Feb.
2023, doi: https://doi.org/10.1186/s13040-023-00322-4.

[41] M. Catillo, A. Pecchia, and U. Villano, “A Deep Learning Method
for Lightweight and Cross-Device IoT Botnet Detection,” Applied
Sciences, vol. 13, no. 2, p. 837, Jan. 2023, doi:
https://doi.org/10.3390/app13020837.

Mohammed S. Alshehri received the B.S.
degree in Computer Science from the King
Khalid University, Abha, KSA, in 2010, and
received M.S degree in Computer Science from
the University of Colorado, Denver, USA, in
2014. Mohammed received the Ph.D. degree in
Computer Science from the University of
Arkansas, Fayetteville, USA, in 2021.
Mohammed also received a graduate certificate
in Cybersecurity from the University of

Arkansas, Fayetteville, USA, in 2021. Mohammed joined, moderator
volunteer, IEEE CS DVP-SYP Virtual Conference in 2021. Mohammed
has gained multiple professional certificates during his graduate life, such
as: Security+, Network+, and CISM. Mohammed's areas of interest
contains Cyber Security, Computer Networks, Cloud-Fog-Edge
Computing, IoT, Blockchain, Machine Learning, and Deep Learning.
Mohammed is currently joining Najran University, Najran, KSA as
assistant professor in the department of Computer Science.

Jawad Ahmad is an experienced researcher
with more than ten years of cutting-edge research
and teaching experience in prestigious institutes,
including Edinburgh Napier University, U.K.,
Glasgow Caledonian University, U.K., Hongik
University, South Korea, and HITEC University,
Taxila, Pakistan. He has co-authored more than
150 research articles, in international journals
and peer-reviewed international conference
proceedings. He has taught various courses both

at Undergraduate (UG) and Postgraduate (PG) levels during his career. He
regularly organizes timely special sessions and workshops for several
flagship IEEE conferences. His research interests include cybersecurity,
machine learning and deep learning, chaos theory and multimedia
encryption.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3371992

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://doi.org/10.3390/app13020837

 M. S. Alshehri et al.: SkipGateNet: A Lightweight CNN-LSTM Hybrid Model
with Learnable Skip Connections for Efficient Botnet Attack Detection in IoT

VOLUME XX, 2023 19

Mimonah Al Qathrady. Mimonah Al Qathrady received her Ph.D. in
Computer Engineering (CE) in 2020 from the University of Florida (UF),
Gainesville, USA. She obtained her MSc in CE in 2013 from UF, and her
Bachelor of Information Systems from King Khalid University, Abha,
Saudi Arabia, 2007. Since 2020, she has been working as an assistant
professor in Najran University. Her research interests include IoT data
analysis and modeling, and applications in mobility modeling, encounter
and infection tracing, and security fields; as well as build- ing data-driven
systems incorporating machine and deep learning. She worked on several
projects, such as MobiBench, as well as being the lead investigator in a
multitude of projects, such as i-Hospital and AI in IoT. She received
granter group fellowship award. She was the coordinator of NOMADS lab
at UF, and she is a member of ACM and IEEE.

Sultan Almakdi received the B.S. degree in
computer science from King Khalid University,
Abha, Saudi Arabia, in 2010, the M.S. degree in
computer science from the University of
Colorado Denver, Denver, USA, in 2014, and the
Ph.D. degree in computer science from the
University of Arkansas, Fayettiville, USA, in
2020. He is currently working as an Assistant
Professor with the Department of Computer
Science and Infor- mation Systems, Najran
University, Saudi Arabia. His research interests

include cloud security, fog security, edge computing security, the IoT
security, and computer security. He received a Graduate Certificate in
cybersecurity from the University of Arkansas, in 2020.

William J. Buchanan is currently a Professor
with the School of Computing, Edinburgh Napier
University. He was awarded an OBE in the
Queen’s Birthday awards, in June 2017. He also
leads the Centre for Distributed Computing,
Networks, and Security and The Cyber Academy,
and works in the areas of security, cloud security,
Web-based infrastructures, e-crime, cryptography,
triage, intrusion detection systems, digital
forensics, mobile computing, agent-based

systems, and security risk. He has one of the most extensive academic sites
in the World and is involved in many areas of novel research and teaching
in computing. He has published more than 27 academic books, and more
than 250 academic research articles, along with several awards for
excellence in knowledge transfer, and for teaching. He was named as one
of the Top 100 people for Technology in Scotland from 2012 to 2017.
Recently, he was included in the FutureScot Top 50 Scottish Tech People
Who Are Changing The World. He is a Fellow of the BCS and the IET.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2024.3371992

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

