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ABSTRACT The rise of Internet of Things (IoT) has led to increased security risks, particularly from 
botnet attacks that exploit IoT device vulnerabilities. This situation necessitates effective Intrusion 
Detection Systems (IDS), that are accurate, lightweight, and fast (having less inference time), designed 
particularly to detect botnet attacks in resource constrained IoT devices. This paper proposes SkipGateNet, 
a novel deep learning model designed for detecting Mirai and Bashlite botnet attacks in resource 
constrained IoT and fog computing environments. SkipGateNet is a lightweight, fast model combining 1D-
Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) layers. The novelty of this 
model lies in the integration of ‘Learnable Skip Connections’. These connections feature gating 
mechanisms that enhance detection by focusing on relevant features and ignoring irrelevant ones. They add 
adaptability to the architecture, performing feature selection and propagating only essential features to 
deeper layers. Tested on the N-BaIoT dataset, SkipGateNet efficiently detects ten types of botnet attacks, 
with a remarkable test accuracy of 99.91%. It is also compact (2596.87 KB) and demonstrates a quick 
inference time of 8.0 milliseconds, suitable for real-time implementation in resource-limited settings. While 
evaluating its performance, parameters like precision, recall, accuracy, and F1 score were considered, along 
with statistical reliability measures like Cohen’s Kappa Coefficient and Matthews Correlation Coefficient. 
These highlight its reliability and effectiveness in IoT security challenges. The paper also compares 
SkipGateNet to existing models and four other deep learning architectures, including two sequential CNN 
architectures, a simple CNN+LSTM architecture, and a CNN+LSTM with standard skip connections. 
SkipGateNet surpasses all in accuracy and inference time, demonstrating its superiority in addressing IoT 
security issues. 

INDEX TERMS Botnets, Botnet attacks, Bashlite, Intrusion Detection, Mirai.  

I. INTRODUCTION 
The Internet of Things (IoT) is an emerging technology 
that allows automated data sensing, collection, and 
transmission. It uses interconnected devices ranging from 
computers, sensors, vehicles, phones, and home 
appliances and supports various applications, such as 
intelligent transportation, smart grids, smart homes, smart 
cities, and smart agriculture [1, 2]. This widespread 
adoption of IoT devices has increased susceptibility to 

various security threats, particularly botnet attacks that 
exploit IoT device vulnerabilities [3]. Recent reports have 
revealed that 41% of attacks exploit IoT device 
vulnerabilities due to 98% of the IoT device traffic being 
unencrypted [4]. The botnets, such as BASHLITE and 
Mirai, pose significant threats to IoT networks due to their 
capacity to compromise many devices and the variety of 
attacks they employ [5]. These security issues become 
even more critical, particularly in the context of fog 
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computing – a decentralized processing and storage 
paradigm that enables data handling closer to the network 
edge. Fog computing's unique constraints and operational 
context demand specialized intrusion detection solutions. 
These solutions need to address the limited computational 
resources, low-latency requirements, and the dynamic 
nature of fog-based IoT networks, thus contributing to the 
body of knowledge in this area [6, 7]. The Mirai botnet 
attack emerged in 2016 and compromised various 
vulnerable IoT devices, including cameras and routers, to 
conduct large-scale distributed denial of service (DDoS) 
attacks such as Ack flooding, Syn flooding, UDP 
flooding, UDP plain flooding, etc. [8]. Similarly, the 
Bashlite botnet (also known by other names such as 
Gafgyt, Q-Bot, Torlus, Lizard-Stresser, and Lizkebab) 
targets IoT devices and has been responsible for launching 
DDoS attacks, spreading malware, and exploiting device 
vulnerabilities through certain types of attacks including 
Scan, Junk, UDP, TCP, and COMBO [9]. Therefore, 
efficient and effective intrusion detection systems (IDS) 
are required to counteract the threat of botnet attacks, 
especially for edge devices and fog computing 
environments. 

IDS plays a crucial role in detecting and mitigating cyber 
threats. The anomaly-based IDS, in particular, are designed 
to identify unusual patterns in network traffic, which may 
indicate the presence of an attack. As the use of IoT has been 
increasing recently, the need for effective anomaly-based 
IDS has become indispensable [10]. While the traditional 
machine learning models have widely been used for intrusion 
detection in IoT networks [11], they face certain challenges, 
e.g., limited scalability, inadequate performance in dealing 
with complex and evolving attack patterns, and difficulty in 
handling high-dimensional data, [12], etc. Therefore, there is 
a pressing need to develop new and efficient deep learning 
models that can be used in IDS, particularly designed for 
detecting botnet attacks in IoT devices. In recent years, deep 
learning models have emerged as a promising alternative, 
demonstrating superior performance in handling large-scale, 
high-dimensional data and capturing complex patterns 
(features) in the data [13]. Most of the existing deep learning-
based solutions for intrusion detection are not lightweight 
and pose latency issues, making them unsuitable for 
implementation in edge devices in IoT networks or fog 
computing. However, deep learning models, if designed 
specifically for the type of attacks or keeping in view the 
challenges in the IoT networks, can perform efficiently and 
adequately well. 

   To address the aforementioned challenges, this paper 
presents a lightweight and efficient deep-learning model 
tailored specifically to detect the Mirai and Bashlite botnet 
attacks. The proposed model is based on a combination and 
tailored arrangement of 1D-Convolutional Neural Networks 
(CNN) and Long Short-Term Memory (LSTM) layers. The 
novelty of the proposed model lies in using ‘Learnable Skip 

Connections’. Traditional skip connections allow information 
to bypass one or more layers, and flow directly from one part 
of the network to another. Unlike standard skip connections, 
which pass the information without any modulation, 
learnable skip connections incorporate gating mechanisms to 
control the flow of information dynamically. Essentially, 
these mechanisms learn to regulate what information is 
useful to propagate forward and what can be omitted. The 
learnable skip connections add a level of adaptability to our 
proposed architecture. These connections perform a kind of 
feature selection, determining which features are important 
enough to be directly propagated to deeper layers. As a 
result, the network becomes better at focusing on the most 
relevant patterns in the data, leading to improved model 
performance. Moreover, the learnable skip connections 
contribute to the overall compactness of the SkipGateNet, 
maintaining the model's lightweight characteristics. The 
gating mechanisms, despite their adaptive capabilities, don't 
introduce an extensive number of parameters into the 
network, keeping the computational costs manageable. This 
is particularly advantageous for IoT settings, where 
computational resources are often limited, such as real-time 
servers and processors that work as edge devices or Fog 
Nodes.   

 
The main contributions of this paper are: 
1) This paper introduces a novel convolutional and 

recurrent neural network architecture, SkipGateNet, 
designed specifically for IoT botnet attack detection. A 
key aspect of this architecture is the use of ‘Learnable 
Skip Connections’. These connections are capable of 
dynamically controlling the flow of information across 
the network, enabling the model to focus on salient 
features and ignore irrelevant ones, thus enhancing its 
detection capabilities. 

2) Gating mechanisms have been integrated into the 
learnable skip connection blocks. Each learnable skip 
connection employs a 1D convolution layer followed by 
a sigmoid activation function to create a gate. Integration 
of gating mechanisms enables adaptive feature selection 
in the proposed model. This process allows the model to 
pay attention to more informative features, thereby 
mitigating the impact of noise or irrelevant features that 
are prevalent in IoT data streams.  

3) SkipGateNet is compact, light and highly efficient 
having a size of only 2596.87 KBs, a total of only 
683,083 parameters and a fast inference time of only 8 
milliseconds. This makes SkipGateNet an efficient 
solution for botnet attack detection in resource-
constrained IoT networks.  

4) Four deep learning architectures have been 
implemented, trained and tested on the same dataset to 
compare their accuracies and inference times with the 
proposed SkipGateNet model. Experimented models 
include two sequential CNN architectures with dense 
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layers, a simple CNN+LSTM architecture with dense 
layers, and a CNN+LSTM architecture with standard 
skip connections. The proposed SkipGateNet 
outperformed all these architectures exhibiting an 
accuracy of 99.91% and 8.0 milliseconds inference time. 

The rest of the paper is organized as follows. Section 1 
introduces the problem domain and the need for the 
development of new and improved deep learning models for 
botnet detection. Section 2 discusses the related work and the 
existing solutions available for botnet detection. In Section 3, 
the approach for detecting botnet attacks is outlined. Section 
4 is devoted to the dataset used for the study, with a detailed 
explanation of the data pre-processing and splitting 
techniques. The main contribution of this paper is given in 
Section 5, where the proposed model with learnable skip 
connections—SkipGateNet is presented in detail. Section 6 is 
dedicated to the performance evaluation and results. In 
Section 7, we present a comparative analysis of our proposed 
model against deep learning models in the literature and self-
implemented architectures, as well as against traditional 
machine learning models. Lastly, Section 8 concludes the 
paper by summarizing the key findings and contributions of 
the paper. 

II. RELATED WORK 
Recently, various machine learning (ML) and deep learning 
(DL) algorithms have been utilized for intrusion detection 
applications. However, most of them did not focus on the 
inference time and size of the utilized models. Speaking of 
employing machine learning techniques in particular, a 
handful of IDS can be found in which ML techniques have 
been employed; for instance, the authors in [14] use ML 
classification to secure IoT devices against attacks like DoS. 
The authors utilize three datasets, i.e., UNSW-NB15, NSL-
KDD, and CIDDS-001, to benchmark the proposed 
classifiers. Similarly, the authors in [15] have proposed semi-
distributed and distributed methods to address the limitations 
of centralized IDS for resource-constrained devices, 
achieving comparable detection accuracy to superior 
centralized IDS with inherent trade-offs between accuracy 
and building time performance. Although these methods 
seem suitable for resource-constrained devices, such as those 
used in fog computing, their inference time has not been 
discussed. Furthermore, a cross-layer-based IDS has been 
proposed for detecting malicious activities in mobile ad-hoc 
networks (MANETs) and other IoT networks in [16]. The 
authors claimed 98% and 90 % detection rates for high and 
low power velocity scenarios, respectively. Moreover, the 
study in [17] discusses shallow and deep machine learning-
based IDS in IoT environments. It evaluated their 
performance using five benchmark datasets (NSL-KDD, 
IoTDevNet, DS2OS, IoTID20, and IoT Botnet dataset). The 
authors claim that deep ML IDS works better than shallow 
ML IDS, especially in the case of IoT attack detection. 
Besides, in [18], six ML models are utilized to compare and 

evaluate the performance of three different Feature 
Extractors (FE). The evaluation has been carried out on three 
benchmark datasets (UNSW-NB15, ToN-IoT, and CSE-CIC-
IDS2018). The authors concluded that the choice of datasets 
significantly alters the performance of the applied techniques, 
highlighting the need for a universal benchmark feature set. 
Although the paper analyzed the performance of the feature 
extractors, it does not mention their inference time, model 
size, or suitability for resource constrained devices. In 
addition, an IDS that integrates the MapReduce framework 
with machine learning (ML) techniques is presented in [19]. 
Utilizing a dataset with multiple network attacks, the model 
exhibited a detection accuracy of 95.7% validation accuracy 
implying that combining MapReduce and ML is beneficial in 
intrusion detection. Regarding machine learning-based IDS 
for Fog computing, the authors in [20] propose a novel 
distributed IDS using fog computing to detect DDoS attacks 
in blockchain-enabled IoT networks. The model trains 
Random Forest (RF) and an optimized gradient tree boosting 
system (XGBoost) on distributed fog nodes, with RF 
outperforming XGBoost in certain scenarios. While some 
proposed techniques are designed for IoT networks and 
resource-constrained devices, most do not explicitly discuss 
their inference time, model size, and suitability in intrusion 
detection systems intended for fog nodes or edge devices. 

In addition to traditional machine learning techniques, 
various deep learning techniques have also been proposed for 
intrusion detection systems. For example, in [21], the authors 
introduce a DL artificial neural network (ANN) model for 
detecting botnet attacks. The model is trained and evaluated 
on the CTU-13 dataset and can efficiently identify botnets, 
achieving 99.6% accuracy. Similarly, the authors in [22] 
presented a hybrid IDS for the Internet of Medical Things 
(IoMT). This system combines CNN and LSTM networks 
and exhibits an average accuracy of 97.63%. Some hybrid 
deep learning models have also been presented, such as the 
authors in [23] an IDS utilizing a hybrid approach of 
machine learning (ML) and deep learning (DL) techniques. 
The model uses SMOTE for data balancing and XGBoost for 
feature selection, aiming to handle large and imbalanced 
datasets efficiently. The authors tested the model on two 
datasets: KDDCUP’99 and CIC-MalMem-2022, achieving 
exceptional accuracy of 99.99% and 100% respectively, with 
no overfitting issues. 

Regarding intrusion detection systems designed for 
botnets, the authors in [24] leveraged latent representations 
of network traffic features from CNNs to detect and classify 
botnet attacks. Moreover, the work in [25] presented an ML 
algorithm utilizing explainable AI. It used the IRA-CIC-
DoHBrw-2020 dataset. The authors claimed a high precision 
and F1 score of 99.91% and a recall of 99.92%. In addition, 
the authors in [26] studied smart home security attack 
properties and suggested effective intrusion prevention 
mechanisms using various ML models and feature sets. 
Besides, the authors in [27] have developed a malware 
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detection system, the FedMalDE, as named by the authors. 
Their framework is based on federated learning and 
knowledge transfer techniques. They employed a subgraph 
aggregated capsule network (SACN) for capturing malicious 
behaviors. While these papers showcase various deep 
learning techniques for intrusion detection systems, the 
majority do not explicitly discuss the inference time and 
model size.  

 Moreover, researchers have also utilized various deep 
learning techniques for the classification of various attacks, 
e.g., in [28], the authors employed a CNN-LSTM algorithm 
on the N-BaIoT dataset, achieving an F1-score, precision and 
recall of 0.88, 93.04% and 91.91%, respectively, with an 
overall accuracy of 90.88%. Similarly, in [29], a deep belief 
network (DBN) algorithm was applied to the N-BaIoT 
dataset, yielding a higher F1-score of 0.92. The precision and 
recall were reported as 98.27% and 92.82%, respectively, 
resulting in an accuracy of 95.60%. Another study [30] 
utilized the CNN-LSTM algorithm on the N-BaIoT dataset, 
achieving an F1-score of 0.93. The precision and recall were 
reported as 93.48% and 93.675%, respectively, resulting in 
an overall accuracy of 94.30%. Moreover, the authors in [31] 
explored the use of autoencoders on the N-BaIoT dataset, but 
specific performance metrics such as F1-score, precision, and 
recall were not provided. However, the accuracy was 
reported as 90.2%. Lastly, in reference [32], both 
autoencoders and DNN algorithms were utilized on the N-
BaIoT dataset. The F1-score achieved was 0.80, with a 
precision of 99% and a recall of 66%. The overall accuracy 
was reported as 97.21%. These results demonstrate the 
performance of different algorithms on the N-BaIoT dataset, 
highlighting their effectiveness in detecting and classifying 
IoT network traffic. However, it is important to note that the 
design and arrangement of deep learning layers, dataset 
preprocessing techniques, and other factors like 
hyperparameters can influence the results obtained in each 
study. Therefore, further investigation and comparative 
analysis are required to determine the most suitable algorithm 
for the N-BaIoT dataset for botnet detection. 

The recent literature review reveals that while various 
deep learning-based IDS have been proposed for detecting 
botnet attacks in IoT networks, they present limitations in 
size, inference time, and suitability for deployment in 
resource-constrained devices, such as edge IoT devices that 
work as fog nodes. This research gap highlights the need for 
lightweight and efficient deep learning-based intrusion 
detection systems, which can easily be deployed in real-time 
scenarios, especially for IoT devices in fog computing 
environments. 

III. BOTNET ATTACK DETECTION APPROACH 
The proposed SkipGateNet model is intended to be 

deployed in anomaly-based IDS for resource constrained 
devices in IOT and fog computing. A general overview of 
such type of IDS is depicted in Fig. 1. Such an IDS 

comprises a series of components, including a fog node, 
traffic capture, data filtering, feature selection using a deep 
learning model, a warning logger, and alert notification. A 
Fog Node is a decentralized computing infrastructure that 
extends cloud computing capabilities closer to the edge of the 
network. In the IDS framework given in Fig. 1, the Fog Node 
acts as the primary point for capturing, filtering, and 
analyzing network traffic, thereby improving response time 
and reducing the load on the central server. The IDS uses 
network sensors or agents to collect and store the raw data 
packets, which are then forwarded to the Data Filtering 
component. This process helps gather the necessary 
information to detect malicious activities and identify 
potential security threats. By capturing, filtering, and 
analyzing network traffic in real time, the system can identify 
and respond to potential threats before they cause significant 
damage. Such intrusion detection systems leverage tailored 
deep learning models and preferably a distributed computing 
approach to provide a robust and efficient solution for 
detecting network intrusions. In addition to processing data 
efficiently, this approach provides real-time analysis while 
reducing latency and bandwidth consumption. 

Detecting botnet attacks is a critical challenge in 
maintaining the security and integrity of modern IoT 
networks. 

 
FIGURE 1. A general depiction of an IDS in a Fog Computing Network. 

 
FIGURE 2. The utilized approach to detect botnet attacks using deep 
learning. 
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The deep learning approach utilized in this paper to 
identify botnet activities is given in Fig. 2. The process 
involves key steps, such as dataset formulation, data pre-
processing, data splitting, building a tailored deep learning 
model, model training, evaluation, and detection. The first 
step involves collecting a comprehensive dataset containing 
normal and botnet traffic data. N-BaIoT dataset has been 
utilized for this purpose. The next step is data pre-processing. 
It includes data balancing to ensure equal representation of 
normal and botnet traffic, standardization to scale the input 
features to a similar range, and one hot encoding to convert 
categorical features into a binary format. These techniques 
help improve the model's learning capability and reduce the 
risk of overfitting. After pre-processing, the dataset is split 
into training and testing sets. In this paper, an 80-20 split is 
used, where the larger portion is reserved for training and 
validation of the model, and the smaller portion is used to 
evaluate the model's performance on unseen data. 

The deep learning model is then trained on the prepared 
training dataset. Keras Tuner has been utilized in this paper 
for the optimization of hyper-parameters. During this phase, 
the model learns to identify patterns and features that 
distinguish botnet traffic from normal traffic. Once the 
training is complete, the model is evaluated on the test 
dataset using various performance metrics, such as accuracy, 
precision, recall, and F1-score. In addition, the reliability 
parameters, i.e., Cohen’s Kappa coefficient and Mathew’s 
Correlation Coefficient, have also been calculated to confirm 
the reliability of the proposed model. 

IV. DATASET 
In this paper, the N-BaIoT [33] dataset has been utilized. 

The N-BaIoT dataset is a comprehensive collection of 
network traffic data specifically designed and collected for 
detecting botnet attacks targeting IoT devices [5]. The dataset 
consists of benign and malicious traffic data captured from 
various types of IoT devices, including cameras, routers, and 
smart home appliances. It comprises a total of 7,062,606 
instances. Each instance represents a network traffic 
snapshot, captured, and processed to facilitate the 
identification of both benign and malicious activities in IoT 
networks. The dataset includes 115 distinct features extracted 
from network traffic data. These features are derived from 
several temporal windows, capturing various aspects of the 
traffic, such as originating IP, source MAC and IP address, 
communication channels, and TCP/UDP sockets. The 
features are calculated over five-time windows (100ms, 
500ms, 1.5sec, 10sec, and 1min), and they are designed to be 
computed quickly and incrementally, supporting real-time 
anomaly detection. The attributes extracted from the packet 
stream cover statistical measures like weight, mean, standard 
deviation, radius, magnitude, covariance, and Pearson 
correlation coefficient, among others. These attributes are 
grouped under different headers like stream aggregation (H, 

HH, HpHp, HH_jit) and timeframe (with varying decay 
factors such as L5, L3, L1, etc.).  

The N-BaIoT dataset features authentic traffic data from 
nine commercial IoT devices infected with Mirai and 
BASHLITE malware, incorporating ten different IoT attacks 
(five types of attacks from each botnet). The Mirai attacks 
involved automatic network scanning for vulnerable devices 
(Scan), Ack flooding (Ack), Syn flooding (Syn), UDP 
flooding (UDP), and a limited option UDP flooding 
optimized for higher packets per second (UDPplain). On the 
other hand, the BASHLITE attacks include network scanning 
for vulnerable devices (Scan), the transmission of spam data 
(Junk), UDP flooding (UDP), TCP flooding (TCP), and a 
combination of spam data transmission and establishing a 
connection to a specified IP address and port (COMBO). The 
class-wise detail of the complete dataset is given in Table I. 

A. DATASET PREPARATION AND PREPROCESSING 
To effectively manage the extensive size of the dataset and 

to utilize the complete dataset in both the training and testing 
phases of the proposed model, the dataset is divided into ten 
equal-sized subsets. There is no overlapping in these subsets, 
i.e., no samples from a subset are repeated in any other 
subset. Details of the data subsets for all classes are given in 
Table II. An Incremental learning strategy has been 
employed for the subset-wise training of the model. This 
approach allows the model to sequentially learn from the 
subsets of data, integrating new information while retaining 
previously acquired knowledge. One of the major challenges 
in sequential incremental learning is catastrophic forgetting. 
Catastrophic forgetting occurs in neural networks when they 
learn new tasks sequentially; the training on the new data can 
lead to the loss of previously learned information. To resolve 
this, elastic weight consolidation (EWC) technique has been 
utilized. EWC selectively slows down the learning on certain 
weights based on how important they are to previously 
learned data. This technique helped the proposed model to be 
trained on each subset one after the other, while minimizing 
the forgetting of what it learned from the previous subsets.  

 
 

TABLE I 
DETAILS OF THE DATASET 

Sr. Classes No. of Samples 

1 mirai_udp 1,229,999 
2 gafgyt_udp 946,366 
3 gafgyt_tcp 859,850 
4 mirai_syn 733,299 
5 mirai_ack           643,821 
6 benign 555,932 
7 mirai_scan 537,979 
8 mirai_udpplain 523,304 
9 gafgyt_combo 515,156 
10 gafgyt_junk 261,789 
11 gafgyt_scan 255,111 
 Total Samples 7,062,606 
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TABLE II 
SUBSETS OF CLASSES FOR THE TRAINING PURPOSES  

Sr. Classes Subset 1 Subset 2 Subset 3 Subset 4 Subset 5 Subset 6 Subset 7 Subset 8 Subset 9 Subset 10 Total 

1 mirai_udp 123000 123000 123000 123000 123000 123000 123000 123000 123000 122999 1,229,999 
2 gafgyt_udp 94637 94637 94637 94637 94637 94637 94636 94636 94636 94636 946,366 
3 gafgyt_tcp 85985 85985 85985 85985 85985 85985 85985 85985 85985 85985 859,850 
4 mirai_syn 73330 73330 73330 73330 73330 73330 73330 73330 73330 73329 733,299 
5 mirai_ack           64383 64382 64382 64382 64382 64382 64382 64382 64382 64382 643,821 
6 benign 55594 55594 55593 55593 55593 55593 55593 55593 55593 55593 555,932 
7 mirai_scan 53798 53798 53798 53798 53798 53798 53798 53798 53798 53797 537,979 
8 mirai_udpplain 52331 52331 52331 52331 52330 52330 52330 52330 52330 52330 523,304 
9 gafgyt_combo 51516 51516 51516 51516 51516 51516 51515 51515 51515 51515 515,156 
10 gafgyt_junk 26179 26179 26179 26179 26179 26179 26179 26179 26179 26178 261,789 
11 gafgyt_scan 25512 25511 25511 25511 25511 25511 25511 25511 25511 25511 255,111 
 Total Samples          7,062,606 

 
In the context of the N-BaIoT dataset utilized in this paper, 

EWC is implemented by first training the model on the initial 
subset and calculating a loss function that represents the 
model's performance on this subset. Following this, for each 
subsequent subset, a new loss function is computed, 
reflecting the model's performance on the new data. The 
crucial aspect of EWC is in its penalty term, which is added 
to the loss function. This term identifies crucial parameters 
(weights) in the neural network that are significant for the 
performance on the previous subset. By adding a penalty for 
significant changes to these weights, EWC effectively retains 
the model's performance on earlier subsets while allowing it 
to learn from new data.  

B. DATA SPLITTING 
To test the performance of the proposed model, each subset 
was divided into three sets: training, validation, and testing. 
An 80-20 split ratio was utilized for the training-testing set, 
i.e., allocating 80% of the data for training and 20% for 
testing. The training set was further divided using an 80-20 
split ratio, with 80% of the data dedicated to training and 
20% to validation. This second split is beneficial for 
evaluating the performance of the deep learning model 
during training by measuring its accuracy on the validation 
set. This data splitting ensured that the deep learning model 
was trained on a distinct set of data and tested on a non-
overlapping dataset, i.e., this testing data was not included in 
the training and validation set. 

V. THE PROPOSED MODEL WITH LEARNABLE SKIP 
CONNECTIONS 

This paper presents SkipGateNet, a deep learning model 
based on the combination and tailored arrangement of 1D- 
CNN and LSTM layers having ‘Learnable Skip 
Connections’. The novelty of the proposed model lies in 
using learnable skip connections having gating mechanisms 
to control the flow of information dynamically. The 

architecture of the proposed model is given in Fig. 3. Before 
digging into the proposed model's architectural details, and it 
is essential to first describe the details of the utilized layers, 
i.e., 1D-CNN, LSTM, and the Learnable Skip Connections. 
The following subsections explain the utilization of layers in 
the proposed model. 

A. 1D-CNN 
A 1D CNN is a convolutional neural network that handles 
one-dimensional input data. It alternates between convolution 
layers and pooling layers to extract features. These layers are 
explained as follows.  
Convolutional layers 
In a 1D CNN layer, as depicted in Fig. 4, each convolutional 
feature 𝑋𝑋𝑛𝑛(𝑛𝑛 =  1,2,3, . . ,𝑁𝑁) is linked with multiple input 
features through a local weight matrix 𝑊𝑊𝑛𝑛 having 
dimensions 𝑃𝑃 × 𝑄𝑄. Here, 𝑃𝑃 refers to the number of filters, 𝑄𝑄 
represents the length of the convolutional kernel (or filter). 
Each filter (of length 𝑄𝑄) convolves across the input data to 
produce a feature map, and there are 𝑃𝑃 number of such 
feature maps due to 𝑃𝑃 filters. A single unit of a convolutional 
feature is mathematically expressed as follows [34]: 

𝑥𝑥𝑛𝑛,𝑘𝑘 = 𝛼𝛼 ���𝑖𝑖𝑝𝑝,𝑞𝑞+𝑘𝑘−1𝑤𝑤𝑝𝑝,𝑛𝑛,𝑞𝑞 +  𝑤𝑤0,𝑛𝑛

𝑄𝑄

𝑞𝑞=1

𝑃𝑃

𝑝𝑝=1

� (2) 

 
Where 
𝑥𝑥𝑛𝑛,𝑘𝑘 represents the 𝑘𝑘th unit of the feature 𝑋𝑋𝑛𝑛. 
α represents the activation function. 
𝑖𝑖𝑝𝑝,𝑞𝑞 represents the 𝑘𝑘th unit of the input feature 𝐼𝐼𝑝𝑝. 
𝑤𝑤𝑝𝑝,𝑛𝑛,𝑞𝑞 represents the unit 𝑞𝑞 of the weight matrix 𝑊𝑊𝑝𝑝,𝑛𝑛. 
 
Similarly, the convolution operation or linking of the 
convolutional feature to the input features via the weight 
matrix can be expressed mathematically as (3). 
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FIGURE 3. Architecture of the proposed model. 
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FIGURE 4. 1D CNN depicting an input layer, a convolution layer, and a 
pooling layer 
 

 
FIGURE 5. Structure of an LSTM cell. 
 

𝑋𝑋𝑛𝑛 = 𝛼𝛼 ��𝐼𝐼𝑝𝑝 ∗ 𝑊𝑊𝑝𝑝𝑛𝑛

𝑃𝑃

𝑝𝑝=1

�  (𝑛𝑛 = 1,2, . . ,𝑁𝑁) (3) 

Where 
𝐼𝐼𝑝𝑝 represents the 𝑝𝑝th input feature. 
∗ represents the convolution operator. 

1) POOLING LAYERS 
The function of a pooling layer in a 1D CNN is to reduce the 
dimensionality of the input features while preserving the 
most important information. The pooling operation helps 
capture the essential patterns in the data, which aids in 
identifying potential intrusions. Also, it reduces 
computational complexity, making the model more efficient 
and less prone to overfitting. 

Pooling functions normally include an average function 
and a maximum function. For the maximum pooling 
function, the pooling layer is defined as (4) [34]. 

𝜌𝜌𝑛𝑛,𝑘𝑘 =
𝑀𝑀
𝑚𝑚𝑚𝑚𝑥𝑥
𝑚𝑚 = 1

�𝑥𝑥𝑛𝑛,(𝑘𝑘−1)×𝑠𝑠+𝑚𝑚� (4) 

Where 
𝑀𝑀 represents the pooling size. 
𝑠𝑠 represents the stride size. 

And for the average pooling function, the pooling layer 
output is defined as (5) [34]. 

𝜌𝜌𝑛𝑛,𝑘𝑘 = 𝛽𝛽 ��𝑥𝑥𝑛𝑛,(𝑘𝑘−1)×𝑠𝑠+𝑚𝑚�
𝑀𝑀

𝑚𝑚=1

 (5) 

Where 
𝛽𝛽 represents the scale factor. 
𝑠𝑠 represents the stride size. 

 
It is believed that maximum pooling performance is better 
than average pooling [35]. In this paper, the maximum 
pooling (MaxPooling 1D) has been employed. 

B. LSTM 
For a standard RNN, if the input sequence 𝑖𝑖 = (𝑖𝑖1, 𝑖𝑖2, … , 𝑖𝑖𝑁𝑁) 
is known, (6) and (7) can be used to find the hidden layer 
sequence 𝑙𝑙 = (𝑙𝑙1, 𝑙𝑙2, … , 𝑙𝑙𝑁𝑁) and the output 𝑗𝑗 = (𝑗𝑗1, 𝑗𝑗2, … , 𝑗𝑗𝑁𝑁), 
respectively, by using an iterative method from 𝑛𝑛 = 1 to 𝑁𝑁 
[35]. 

𝑙𝑙𝑛𝑛 = ∆(𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛 + 𝑊𝑊𝑖𝑖𝑖𝑖𝑙𝑙𝑛𝑛−1 + 𝑢𝑢𝑖𝑖) (6) 

𝑗𝑗𝑛𝑛 = 𝑊𝑊𝑖𝑖𝑙𝑙𝑙𝑙𝑛𝑛 + 𝑢𝑢𝑙𝑙 (7) 

Where 
𝑖𝑖𝑛𝑛(𝑛𝑛 = 1,2, … ,𝑁𝑁) is a P dimensional vector. 
𝑙𝑙𝑛𝑛(𝑛𝑛 = 1,2, … ,𝑁𝑁) is a Q dimensional vector. 
𝑗𝑗𝑛𝑛(𝑛𝑛 = 1,2, … ,𝑁𝑁) is an R dimensional vector. 
𝑊𝑊𝑖𝑖𝑖𝑖  represents the input-hidden layer weight matrix. 
𝑢𝑢 represents the bias vector. 
∆( ) represents the activation function. 

 
LSTMs are believed to perform better than simple RNNs. To 
better grasp (8) to (12), a simple LSTM cell is depicted in 
Fig. 5. The activation function ∆( ) is calculated as follows 
[36]: 

𝑒𝑒𝑛𝑛 =  𝜎𝜎 (𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛 + 𝑊𝑊𝑖𝑖𝑖𝑖𝑙𝑙𝑛𝑛−1 + 𝑊𝑊ℎ𝑖𝑖ℎ𝑛𝑛−1 + 𝑢𝑢𝑖𝑖) (8) 

𝑟𝑟𝑛𝑛 =  𝜎𝜎 (𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛 + 𝑊𝑊𝑖𝑖𝑖𝑖𝑙𝑙𝑛𝑛−1 + 𝑊𝑊ℎ𝑖𝑖ℎ𝑛𝑛−1 + 𝑢𝑢𝑖𝑖 (9) 

ℎ𝑛𝑛 =  𝑟𝑟𝑛𝑛ℎ𝑛𝑛−1 + 𝑒𝑒𝑛𝑛 tanh(𝑊𝑊𝑖𝑖ℎ𝑖𝑖𝑛𝑛 + 𝑊𝑊𝑖𝑖ℎ𝑙𝑙𝑛𝑛−1 + 𝑢𝑢ℎ) (10) 

𝑧𝑧𝑡𝑡 =  𝜎𝜎 (𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖𝑛𝑛 + 𝑊𝑊𝑖𝑖𝑖𝑖𝑙𝑙𝑛𝑛−1 + 𝑊𝑊ℎ𝑖𝑖ℎ𝑛𝑛−1 + 𝑢𝑢𝑖𝑖 (11) 

𝑣𝑣𝑡𝑡 =  𝑧𝑧𝑡𝑡 tanh(ℎ𝑡𝑡) (12) 

Where 
𝜎𝜎 represents the sigmoid function. 
𝑒𝑒, 𝑟𝑟, ℎ, 𝑧𝑧 represent the input gate, forgetting gate, output gate, 
and the cell activation vector, respectively. 

C. LEARNABLE SKIP CONNECTIONS 
Traditional skip or residual connections were introduced as a 
solution to the vanishing gradient problem in deep networks. 
These connections allow information to bypass one or more 
layers, and flow directly from one part of the network to  
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FIGURE 6. A learnable skip connection with gating mechanism. 
 
another. This strategy aids in backpropagation by creating an 
unobstructed path for gradients to flow, enabling successful 
training of deeper networks. 

This research presents a novel method of enhancing these 
skip connections with learnability. Unlike standard skip 

connections, learnable skip connections incorporate gating 
mechanisms to control the flow of information dynamically. 
Essentially, these mechanisms learn to regulate what 
information is useful to propagate forward and what can be 
omitted. A learnable skip connection with gating mechanism 
is depicted in Fig. 6. 

In the proposed SkipGateNet model, each learnable skip 
connection employs a 1D convolution layer followed by a 
sigmoid activation function to create a gate. The 1D 
convolution layer acts as a learnable filter, learning the 
importance of each feature in the data. This output is then 
passed through a sigmoid function, which scales the values 
between 0 and 1, effectively determining the proportion of 
information that should be forwarded through the skip 
connection. This dynamic information flow is given in Fig. 7 
and the gating mechanism is mathematically expressed as; 

𝑔𝑔𝑚𝑚𝑔𝑔𝑒𝑒 = 𝑠𝑠𝑖𝑖𝑔𝑔𝑚𝑚𝑠𝑠𝑖𝑖𝑠𝑠(𝐶𝐶𝑠𝑠𝑛𝑛𝑣𝑣1𝐷𝐷(𝑝𝑝𝑠𝑠𝑠𝑠𝑙𝑙)) (13) 

𝑠𝑠𝑘𝑘𝑖𝑖𝑝𝑝_𝑐𝑐𝑠𝑠𝑛𝑛 = 𝑀𝑀𝑢𝑢𝑙𝑙𝑔𝑔𝑖𝑖𝑝𝑝𝑙𝑙𝑀𝑀() ([𝑠𝑠𝑘𝑘𝑖𝑖𝑝𝑝_𝑐𝑐𝑠𝑠𝑛𝑛,𝑔𝑔𝑚𝑚𝑔𝑔𝑒𝑒]) (14) 

Where 'Conv1D (pool)' denotes the 1D convolution operation 
on the pooling layer output, 'sigmoid' is the sigmoid 
activation function, and 'Multiply()' represents the element-
wise multiplication operation between the original skip 
connection and the gate output. 

 

 
FIGURE 7. Information flow in Learnable Skip Connection 
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The learnable skip connections with gating mechanisms 
add a level of adaptability to our architecture. These 
connections perform a kind of feature selection, determining 
which features are important enough to be directly 
propagated to deeper layers. As a result, the network 
becomes better at focusing on the most relevant patterns in 
the data, leading to improved model performance. In the 
context of the proposed model SkipGateNet, the integration 
of learnable skip connections provides a significant 
advantage in dealing with botnet attack detection in IoT. IoT 
data streams are often noisy and have many redundant 
features. By using learnable skip connections, our model can 
learn to focus on the most pertinent information while 
ignoring irrelevant data, significantly improving detection 
accuracy. 

It is pertinent to mention here that the learnable skip 
connections were originally introduced in [37]. The authors 
used a Select, Attend, and Transfer (SAT) gate architecture. 
The SAT Gate employs a sparsity-constrained selection 
mechanism for channel selection, followed by an attention 
mechanism for spatial focus. However, the learnable skip 
connections used in this paper use a convolution-based 
gating mechanism with sigmoid functions that dynamically 
adjusts the flow of information based on the learned 
importance of features. 

D. ARCHITECTURAL DETAILS OF THE PROPOSED 
MODEL 

As illustrated in Fig. 3, the proposed SkipGateNet model 
comprises three convolutional blocks, each containing 
multiple convolutional layers enhanced by learnable skip 
connections with gating mechanisms. These skip connections 
facilitate the seamless flow of information throughout the 
network. After the third convolutional block, the output is 
processed through two Long Short-Term Memory (LSTM) 
layers. These LSTM layers are designed to address the 
vanishing gradient problem associated with traditional 
RNNs, enabling the model to learn long-term dependencies 
effectively. Subsequently, the output of the LSTM layers is 
directed through a series of dense layers to generate the final 
predictions for each input sample. The inclusion of learnable 
skip connections with gating mechanisms allows the model 
to dynamically adapt the information flow, improving the 
model's performance on complex tasks. 

The complete overview of the model architecture is given 
in Table III. The deep learning model architecture begins 
with an input tensor of dimensions 115 x 1. The first layer is 
a 1D convolutional layer with 64 filters, a kernel size of 3, 
and 'same' padding, which generates a 115 x 64 output tensor 
with 256 parameters. Next, a max-pooling layer with a pool 
size of 2 reduces the output shape to 57 x 64 without adding 
any parameters. Subsequently, two 1D convolutional layers 
with 128 filters, a kernel size of 3, and 'same' padding are 
added.  

TABLE III 
THE ARCHITECTURE OF THE PROPOSED MODEL 

Layers Output Shape Parameters Connected to Layer 

input_3 (InputLayer) [(None, 115, 1)] 0 [] 
conv1d_65 (Conv1D) (None, 115, 64) 256 ['input_3[0][0]'] 
max_pooling1d_15 
(MaxPooling1D) 

(None, 57, 64) 0 ['conv1d_65[0][0]'] 

conv1d_66 (Conv1D) (None, 57, 128) 8320 ['max_pooling1d_15[0][0]'] 
conv1d_69 (Conv1D) (None, 57, 128) 8320 ['max_pooling1d_15[0][0]'] 
conv1d_67 (Conv1D) (None, 57, 128) 24704 ['max_pooling1d_15[0][0]'] 
multiply_15 (Multiply) (None, 57, 128) 0 ['conv1d_66[0][0]', 
conv1d_68 (Conv1D) (None, 57, 128) 49280 ['conv1d_67[0][0]'] 
add_15 (Add) (None, 57, 128) 0 ['multiply_15[0][0]', 
max_pooling1d_16 (MaxPooling1D (None, 28, 128) 0 ['add_15[0][0]'] 
conv1d_70 (Conv1D) (None, 28, 128) 16512 ['max_pooling1d_16[0][0]'] 
conv1d_73 (Conv1D) (None, 28, 128) 16512 ['max_pooling1d_16[0][0]'] 
conv1d_71 (Conv1D) (None, 28, 128) 49280 ['max_pooling1d_16[0][0]'] 
multiply_16 (Multiply)   (None, 28, 128) 0 ['conv1d_70[0][0]', 
conv1d_72 (Conv1D) (None, 28, 128) 49280 ['conv1d_71[0][0]'] 
add_16 (Add) (None, 28, 128) 0 ['multiply_16[0][0]', 
max_pooling1d_17 (MaxPooling1D (None, 14, 128) 0 ['add_16[0][0]'] 
conv1d_74 (Conv1D) (None, 14, 128) 33024 ['max_pooling1d_17[0][0]'] 
conv1d_77 (Conv1D) (None, 14, 128) 33024 ['max_pooling1d_17[0][0]'] 
conv1d_75 (Conv1D) (None, 14, 128) 98560 ['max_pooling1d_17[0][0]'] 
multiply_17 (Multiply) (None, 14, 128) 0 ['conv1d_74[0][0]', 
conv1d_76 (Conv1D) (None, 14, 128) 196864 ['conv1d_75[0][0]'] 
add_17 (Add) (None, 14, 128) 0 ['multiply_17[0][0]', 
lstm_10 (LSTM) (None, 14, 128) 82176 ['add_17[0][0]'] 
lstm_11 (LSTM) (None, 32) 12416 ['lstm_10[0][0]'] 
flatten_5 (Flatten) (None, 32) 0 ['lstm_11[0][0]'] 
dense_10 (Dense) (None, 64) 2112 ['flatten_5[0][0]'] 
dense_11 (Dense) (None, 32) 2080 ['dense_10[0][0]'] 
dense_12 (Dense) (None, 11) 363 ['dense_11[0][0]'] 
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TABLE IV 
SUMMARY OF THE PROPOSED MODEL PRESENTING ITS SIZE AND TOTAL PARAMETERS 

Total Parameters Trainable parameters Non-Trainable parameters Model Size in KB 

683,083 683,083 0 2596.87 

 
These convolutional layers, along with a Multiply layer 
representing the gating mechanism, are connected to the 
previous layers. This combination results in a 57 x 128 
output tensor. An Add layer then merges the outputs of the 
gated convolutional layers. The architecture repeats this 
pattern for the next convolutional block. The second block 
starts with a max-pooling layer, followed by two 
convolutional layers and a gating mechanism, resulting in 
another 28 x 128 output tensor. The third convolutional block 
follows a similar pattern, with two convolutional layers and a 
gating mechanism generating a 14 x 128 output tensor. 

Subsequently, two LSTM layers with 64 units each are 
added. The first LSTM layer, connected to the previous Add 
layer, has 82,176 parameters and outputs a 14 x 64 tensor. 
The second LSTM layer, connected to the first LSTM layer, 
has 12,416 parameters and outputs a 32-dimensional vector. 

The architecture concludes with three dense layers. The 
first dense layer with 64 units connects to a Flatten layer, 
which reshapes the input tensor into a 1D vector, and has 
2,112 parameters. The second dense layer connects to the 
first dense layer, has 32 units, and contributes 2,080 
parameters. The final dense layer comprises 11 units, 
corresponding to the 11 classes, and has 363 parameters. 

This model architecture is well-suited for classifying 
multiple classes and particularly excels in managing complex 
data due to the added learnable skip connections with gating 
mechanisms. The blend of 1D convolutional layers, max-
pooling layers, multiply layers for gating, LSTM layers, and 
dense layers results in a powerful deep learning model 
capable of producing accurate classifications. 

E. SIZE AND PARAMETERS OF THE PROPOSED 
MODEL 

A summary of the proposed deep learning model presenting 
the total parameters and its size is given in Table IV. The 
model consists of a total of 683,083 parameters, all of which 
are trainable. The table displays the model size as 2596.87 
KB, which represents the memory required to store the 
model and its associated parameters.  

A smaller model size is generally preferred, as it enables 
easier deployment on devices with limited memory capacity, 
such as edge devices and fog nodes. This compactness allows 
the model to be more efficient, making it suitable for the real-
time classification of IoT attacks across various IoT 
platforms. 

VI. PERFORMANCE EVALUATION AND RESULTS 

A. PERFORMANCE PARAMETERS 

To assess the performance of each model, the key 
performance parameters, such as precision, recall, accuracy, 
and F1-score, have been computed. These parameters were 
calculated using (15) to (18). The quantities involved in the 
calculation of the aforementioned performance parameters, 
specifically True Positive (TP), True Negative (TN), False 
Positive (FP), and False Negative (FN), are obtained from 
confusion matrices. Precision, recall, and F1 score serve as 
metrics for evaluating the performance of a classification 
model, while accuracy is employed to gauge the overall 
correctness of predictions made by a model. 
 

𝑃𝑃𝑟𝑟𝑒𝑒𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 =
𝑛𝑛𝑛𝑛𝑃𝑃

𝑛𝑛𝑛𝑛𝑃𝑃 + 𝑛𝑛𝑛𝑛𝑃𝑃
 (15) 

𝑅𝑅𝑒𝑒𝑐𝑐𝑚𝑚𝑙𝑙𝑙𝑙 =
𝑛𝑛𝑛𝑛𝑃𝑃

𝑛𝑛𝑛𝑛𝑁𝑁 + 𝑛𝑛𝑛𝑛𝑃𝑃
 (16) 

𝐴𝐴𝑐𝑐𝑐𝑐𝑢𝑢𝑟𝑟𝑚𝑚𝑐𝑐𝑀𝑀 =
𝑛𝑛𝑛𝑛𝑃𝑃 + 𝑛𝑛𝑛𝑛𝑁𝑁

𝑛𝑛𝑛𝑛𝑃𝑃 + 𝑛𝑛𝑛𝑛𝑃𝑃 + 𝑛𝑛𝑛𝑛𝑁𝑁 + 𝑛𝑛𝑛𝑛𝑁𝑁
 (17) 

𝑛𝑛1 − 𝑠𝑠𝑐𝑐𝑠𝑠𝑟𝑟𝑒𝑒 = 2 x
𝑃𝑃𝑟𝑟𝑒𝑒𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 𝑥𝑥 𝑅𝑅𝑒𝑒𝑐𝑐𝑚𝑚𝑙𝑙𝑙𝑙 
𝑃𝑃𝑟𝑟𝑒𝑒𝑐𝑐𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠𝑛𝑛 + 𝑅𝑅𝑒𝑒𝑐𝑐𝑚𝑚𝑙𝑙𝑙𝑙

 (18) 

B. RELIABILITY PARAMETERS 
Cohen’s Kappa coefficient and Matthews Correlation 
Coefficient are two metrics frequently used to evaluate the 
performance of a classification model. This paper calculates 
both to gauge the reliability of the proposed model. 

1) COHEN’S KAPPA COEFFICIENT 
The Cohen’s Kappa coefficient quantifies the agreement 
between predicted and actual classifications while accounting 
for the possibility of chance agreement [38]. Ranging from -1 
to 1. A score of 1 indicates perfect agreement, 0 signifies 
chance agreement, and -1 demonstrates perfect disagreement.  

The Kappa coefficient or the Kappa statistic is a measure 
of two accuracies, i.e., the observed accuracy and the 
expected accuracy, which depend on the obtained confusion 
matrices [38, 39]. The observed accuracy is defined as the 
ratio of actual predicted labels from all the labels in a 
confusion matrix and can be calculated by using (17). 
Whereas the expected accuracy, which is dependent on the 
predicated and actual labels, can be calculated using (18). 
After obtaining the observed and expected accuracies, the 
kappa coefficient can easily be calculated using (19). 

𝑂𝑂𝑂𝑂𝑠𝑠 𝐴𝐴𝑐𝑐𝑐𝑐 =
𝑛𝑛𝑃𝑃𝑖𝑖 + 𝑛𝑛𝑁𝑁𝑖𝑖

𝑛𝑛𝑃𝑃𝑖𝑖 + 𝑛𝑛𝑁𝑁𝑖𝑖 + 𝑛𝑛𝑃𝑃𝑖𝑖 + 𝑛𝑛𝑁𝑁𝑖𝑖
 (17) 
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𝐸𝐸𝑥𝑥𝑝𝑝 𝐴𝐴𝑐𝑐𝑐𝑐 =
(∑ (𝑃𝑃𝑟𝑟𝑒𝑒𝑠𝑠_𝑙𝑙𝑚𝑚𝑂𝑂𝑒𝑒𝑙𝑙𝑠𝑠𝑖𝑖 ×  𝐴𝐴𝑐𝑐𝑔𝑔𝑢𝑢𝑚𝑚𝑙𝑙_𝑙𝑙𝑚𝑚𝑂𝑂𝑒𝑒𝑙𝑙𝑠𝑠)) 

𝑛𝑛𝑃𝑃𝑖𝑖 +  𝑛𝑛𝑁𝑁𝑖𝑖 + 𝑛𝑛𝑃𝑃𝑖𝑖 + 𝑛𝑛𝑁𝑁𝑖𝑖
 (18) 

𝐾𝐾𝑚𝑚𝑝𝑝𝑝𝑝𝑚𝑚 =
𝑂𝑂𝑂𝑂𝑠𝑠 𝐴𝐴𝑐𝑐𝑐𝑐 −  𝐸𝐸𝑥𝑥𝑝𝑝 𝐴𝐴𝑐𝑐𝑐𝑐 

1 − 𝐸𝐸𝑥𝑥𝑝𝑝 𝐴𝐴𝑐𝑐𝑐𝑐
 (19) 

Where 𝑖𝑖 ∈ 0,1,2,3, … ,9,10, and it represents the 11 classes 
used in this study. 

2) MATTHEWS CORRELATION COEFFICIENT 
       The Matthews correlation coefficient (MCC) is a 

metric measuring the quality of classification when the data 
is imbalanced [40]. Considering true and false positives as 
well as true and false negatives, the MCC ranges from -1 to 
1. A score of 1 indicates perfect prediction, 0 signifies 
random prediction, and -1 demonstrates completely wrong 
prediction. MCC is calculated using (20). 

𝑀𝑀𝐶𝐶𝐶𝐶 =
𝑛𝑛𝑃𝑃𝑖𝑖 × 𝑛𝑛𝑁𝑁𝑖𝑖 −  𝑛𝑛𝑃𝑃𝑖𝑖 × 𝑛𝑛𝑁𝑁𝑖𝑖𝑖𝑖  

�(𝑛𝑛𝑃𝑃𝑖𝑖 + 𝑛𝑛𝑃𝑃𝑖𝑖)(𝑛𝑛𝑃𝑃𝑖𝑖 + 𝑛𝑛𝑁𝑁𝑖𝑖)(𝑛𝑛𝑁𝑁𝑖𝑖 + 𝑛𝑛𝑃𝑃𝑖𝑖)(𝑛𝑛𝑁𝑁𝑖𝑖 + 𝑛𝑛𝑁𝑁𝑖𝑖)
  (20) 

C. RESULTS AND DISCUSSION 

1) TRAINING AND VALIDATION RESULTS 
       The performance of the proposed model during 

training was assessed using key metrics, including training 
accuracy, validation accuracy, training loss, and validation 
loss at various epochs. These metrics help in evaluating the 
overfitting and underfitting of the trained models. Fig. 8 (a) 
and Fig. 8 (b) display the training loss versus validation loss 
and the training accuracy versus validation accuracy graphs 
of the proposed model, respectively. The proposed model 
demonstrates a low training loss 0.096% and an excellent 
training accuracy of 99.93%. The training performance of the 
proposed model is also given in Table V. 

2) CLASS-WISE CLASSIFICATION REPORT 
The performance of the proposed model on the test dataset 

has also been measured using the key performance 
parameters, i.e., precision, recall, F1-score, and accuracy. A 
class-wise classification report that presents the proposed 
model's class-wise performance is given in Table VI. The 
confusion matrices for the testing and validation dataset have 
also been generated and are shown in Fig. 9 and Fig. 11. 
Fig.9 shows the confusion matrices of the model’s 
performance on each subset of the dataset, whereas Fig. 11 
shows an aggregate confusion matrix of the complete test 
dataset. The confusion matrices help in the calculation of the 
aforementioned performance parameters. The proposed 

model’s exceptional performance is evident from the results 
given in Table VI. In addition to the performance of each 
class, the macro-averages of precision, recall, and F1-score 
stand at 99.00, signifying overall strong performance. The 
total accuracy of the model is 99.91%, depicting that the 
model has correctly classified 99.91% of instances in the 
dataset. Moreover, the class-wise comparison of the 
classification is also given in Fig. 10. 

3) RELIABILITY PARAMETERS’ RESULTS 
As described earlier, Cohen’s Kappa coefficient and 

Matthews Correlation Coefficient have been calculated to 
check the proposed models' reliability. Table VII presents 
each class's Kappa coefficient and Matthews Correlation 
Coefficient (MCC) values. For the Kappa coefficient, a score  

 

 
(a) 

 
(b) 

FIGURE 8. Training Curves on complete dataset (a) Training loss vs. 
validation loss, and (b) Training accuracy vs. validation accuracy 

 

TABLE V 
AGGREGATE TRAINING PERFORMANCE OF THE PROPOSED MODEL FOR ALL SUBSETS 

Model Epochs Training Loss Validation Loss Training Accuracy Validation 

The Proposed Model 

1 1.336 1.381 39.32% 38.05% 
. . . . . 
. . . . . 
99 0.031 0.1101 99.38% 97.01% 
100 0.096 0.0915 99.93% 99.95% 
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(a) (b) 

  

⋮ ⋮ 
  

  
(i) (j) 

FIGURE 9. Confusion matrices of Testing dataset for all 10 subsets: (a) Subset 1, (b) Subset 2, ⋯, (j) Subset 9, and (j) Subset 10. 

 
FIGURE 10. Class-wise comparison of the aggregate classification parameters. 
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FIGURE 11. Aggregate confusion matrix for the complete dataset. 

 
TABLE VI 

CLASSIFICATION REPORT OF EACH CLASS ON THE TEST DATASET 

Class Aggregate 
Precision 

Aggregate 
Recall 

Aggregate 
F1-score 

Test 
Samples  

benign 0.998469 0.999396 0.998932 110888 
gafgyt_combo 0.998754 0.992856 0.995766 102458 
gafgyt_junk 0.986533 0.997651 0.991957 52780 
gafgyt_scan 0.998955 0.999585 0.99927 50586 
gafgyt_tcp 0.99967 0.999624 0.999647 172909 
gafgyt_udp 0.99976 0.999405 0.999582 188068 
mirai_ack 0.999953 0.999945 0.999949 128481 
mirai_scan 0.999945 0.999714 0.999829 108405 
mirai_syn  0.99998 0.999829 0.999905 146905 
mirai_udp 0.999972 0.999923 0.999947 246493 
mirai_udpplain 0.999971 0.999865 0.999918 104096 
Macro Average  0.99 0.99 0.99 1412069 
Accuracy 99.91% 

 

TABLE VII 
RESULTS OF RELIABILITY PARAMETERS 

Class Kappa MCC 

benign 0.999831 0.99035 
gafgyt_combo 0.999388 0.99002 
gafgyt_junk 0.999388 0.98004 
gafgyt_scan 0.999948 0.99501 
gafgyt_tcp 0.999912 0.99505 
gafgyt_udp 0.999887 0.99005 
mirai_ack 0.999991 0.99506 
mirai_scan 0.999974 0.99026 
mirai_syn  0.99998 0.98965 
mirai_udp 0.999981 0.99368 
mirai_udpplain 0.999988 0.99007 

 
 

of 1 indicates perfect agreement, 0 signifies chance 
agreement, and -1 demonstrates perfect disagreement. It can 
be seen from Table VII that all values are quite close to 1 or 
0.99, which more precisely confirms the performance 
reliability of the proposed model. Similarly, the MCC values 
for all classes are also 0.99, further validating the proposed 
model's performance. 
 

4) HYPERPARAMETERS TUNING RESULTS. 
Hyper-parameters are parameters that are not learned by 

the machine learning algorithm during training but are set 
before training commences. These parameters govern the 
algorithm's behavior and can significantly influence the 
model's performance. In deep learning, these parameters 
include the learning rate, batch size, number of epochs, 
optimizer, activation functions, and number of layers, among 
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TABLE VIII 
DETAILS OF HYPERPARAMETERS 

Parameter Value Test Accuracy 

Learning Rate 

1e-2 99.41% 
1e-3 99.95% 
1e-4 90.75% 
1e-5 96.36% 
1e-6 88.41% 
1e-7 34.08% 

Dense Layers Units 
32 98.35% 
64 99.95% 
128 98.75% 

LSTM layers units 
32 99.75% 
64 99.95% 
128 98.75% 

 
others. Table VIII provides the hyper-parameters tuned in 
this study, which have been optimized using the Keras Tuner. 
These parameters include the learning rate, the number of 
units in the dense layers, and the number of units in the 
LSTM layers. Various values for each hyper-parameter were  
tested, and the corresponding test accuracy is reported in the 
table. The proposed model’s overall test accuracy of 99.91% 
shows the fine-tuning of these parameters. 

5) INFERENCE TIME  
Inference time refers to the duration required for a model 

to process the input data and generate a prediction or 
classification regarding the presence of malicious activity or 
an intrusion attempt. Lower inference times are generally 
preferred, especially for edge devices and fog computing 
environments, as they enable faster decision-making and 
more effective intrusion prevention. Table IX shows the 
inference time of all layers of the proposed model, along with 
the average inference time of the model. The overall average 
inference time of the proposed model is only 8 ms, which 
makes it suitable for intrusion detection systems intended for 
edge devices and fog computing environments. 

VII. COMPARITIVE ANALYSIS OF THE PROPOSED 
MODEL 

A. COMPARISON WITH DL MODELS IN LITERATURE 
AND SELF-IMPLEMENTED ARCHITECTURES 

In addition to being lightweight, compact in size and fast, the 
proposed SkipGateNet model was intended to detect botnet 
attacks effectively. The performance of the SkipGateNet has 
been compared with the five recent state-of-the-art works that 
used deep learning (including CNN+LSTM) on the same 
dataset (N-BaIoT). It is evident from the results shown in 
Table X that the proposed SkipGateNet outperformed all 
models in terms of F1-score, precision, recall and accuracy, 
validating the efficient detection of botnet attacks. 

In addition, four different types of deep learning 
architectures also have been implemented, trained and tested 
on the same dataset for comparison purposes. Experimented 
models include: 

 

TABLE IX 
INFERENCE TIME OF ALL LAYERS OF THE PROPOSED MODEL 

Layers Inference time in ms 

input_3 (InputLayer) 17.657 
conv1d_65 (Conv1D) 1.321 
max_pooling1d_15 
(MaxPooling1D) 15.258 

conv1d_66 (Conv1D) 16.954 
conv1d_69 (Conv1D) 13.857 
conv1d_67 (Conv1D) 11.258 
multiply_15 (Multiply) 1.112 
conv1d_68 (Conv1D) 14.256 
add_15 (Add) 12.632 
max_pooling1d_16 
(MaxPooling1D 14.256 

conv1d_70 (Conv1D) 1.005 
conv1d_73 (Conv1D) 18.528 
conv1d_71 (Conv1D) 10.756 
multiply_16 (Multiply)   9.865 
conv1d_72 (Conv1D) 19.256 
add_16 (Add) 2.056 
max_pooling1d_17 
(MaxPooling1D 2.025 

conv1d_74 (Conv1D) 2.349 
conv1d_77 (Conv1D) 5.256 
conv1d_75 (Conv1D) 5.658 
multiply_17 (Multiply) 4.256 
conv1d_76 (Conv1D) 2.589 
add_17 (Add) 2.056 
lstm_10 (LSTM) 2.654 
lstm_11 (LSTM) 2.799 
flatten_5 (Flatten) 5.665 
dense_10 (Dense) 5.657 
dense_11 (Dense) 6.656 
dense_12 (Dense) 4.346 
Average inference time 7.999 ≈ 8.0 

 
• Model A: a sequential CNN having 5 convolution layers 

and 3 dense layers. 
• Model B: a sequential CNN having 7 convolution layers 

and 3 dense layers. 
• Model C: a CNN+LSTM having 7 convolution layers, 2 

LSTM layers, and a dense layer. 
• Model D: a CNN+LSTM with simple skip connections, 

7 convolution layers, 2 LSTM layers, and a dense layer. 
The architectural details of the model are given in Fig. 12 

and the comparison of these models with the proposed 
SkipGateNet model in terms of test accuracy, inference time, 
total parameters, and size in KBs is given in Table XI. It can 
be seen that the proposed SkipGateNet has highest accuracy 
of 99.91% in the fastest inference time of 8 milliseconds. The 
simple sequential CNNs have less inference time but they 
exhibit low accuracies and fail to extract features efficiently. 

B. COMPARISON WITH MACHINE LEARNING 
MODELS 

The proposed deep learning model has been intended to 
detect botnet attacks in edge devices and fog computing 
environments and is presented to be more accurate and faster 
than the existing traditional machine learning techniques. 
Therefore, several traditional machine learning models have  
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TABLE X 
COMPARISON OF THE PROPOSED SKIPGATENET WITH OTHER DL MODELS WITH SAME DATASET 

Paper Dataset Algorithm F1-score Precision Recall Accuracy 

[28]  N-BaIot CNN-LSTM 0.88 93.04% 91.91% 90.88% 
[29]  N-BaIoT DBN 0.92 98.27% 92.82% 95.60% 
[30]  N-BaIoT CNN-LSTM 0.93 93.48% 93.675 94.30% 
[31]  N-BaIoT Auto encoders - - - 90.2% 
[32]  N-BaIoT Auto encoders, DNN 0.80 99% 66% 97.21% 
[41] N-BaIoT Auto encoders 0.99 99% 99% - 
The Proposed 
SkipGateNet 

N-BaIoT CNN-LSTM with learnable 
skip connections 

0.99 99% 99% 99.91% 

 

    
(a) (b) (c) (d) 

FIGURE 12. Architectures of implemented models on same dataset for 
comparison purposes; (a) Model A: a sequential CNN with 5 convolution 
layers, (b) Model B: a sequential CNN with 7 convolution layers, (c) 
Model C: a CNN+LSTM architecture, and (d) Model D: a CNN+LSTM with 
simple skipping connections. 

been implemented on the same dataset to compare its 
performance and inference time. Five traditional machine 
learning models have been implemented for the comparison 
with the proposed model, i.e., Logistic Regression, Random 
Forest, SVM, Naïve Bayes, and K Neighbors Classifier. 
Models have been compared on two metrics, test accuracy 
and inference time. It can be seen from Table XII that the 
proposed deep learning model has the highest accuracy of 
99.91% and has a minimum inference time of just 8.0 ms. 

 
 
 

TABLE XI 
COMPARISON OF THE PROPOSED MODEL WITH SIMILAR ARCHITECTURES 

Models Test 
accuracy 

Infer- 
ence time 

(ms) 

Size in 
KB 

Total 
Parame- 

ters 
Model A 92.19% 8.1 2645.65 1,437,515 
Model B 95.34% 9.9 2684.97 1,733,195 
Model C 96.53% 10.4 2697.12 1,661,803 
Model D 99.15% 8.3 2618.07 739,915 
The Proposed 
SkipGateNet 

99.91% 8.0 2596.87 683,083 

TABLE XII 
COMPARISON OF THE PROPOSED MODEL WITH ML MODELS 

Models Test Accuracy Inference Time in ms 

Logistic Regression 82.56%  11.8 
Random forest 99.05% 10.7 
SVM 82.45% 9.6 
Naïve Bayes 60. 48% 10.3 
K Neighbors Classifier 98.98% 9.3 
The Proposed 
SkipGateNet  

99.91% 8.0 

VIII. ABLATION STUDY 
An ablation study involves systematically removing or 
altering certain components of the model to understand the 
impact of each component on the model's performance. We 
used the same dataset and experimental setup as for the 
baseline or proposed. Different components of the model 
were removed and then added step-by-step or removed to 
compare their performance. It can be seen in Table XIII that 
simple sequential convolutional components exhibited low 
accuracies with large model sizes. Adding skip connections 
helped in reducing the model size and improving the 
accuracy. While adding the learnable skip connections, 
significantly improved the accuracy of the model with the 
smallest size and fast inference time. The ablation study 
validated the efficacy of the proposed architecture to detect 
botnet attacks. 

TABLE XIII 
RESULTS OF THE ABLATION STUDY 

Exp. 
No. Components Accuracy Inference 

Time (ms) 
Model 

Size (KB) 
1 1 Convolutional Block 95.38% 5.12 10,976.19 
2 2 Convolutional Blocks 96.66% 6.89 5,365.12 
3 3 Convolutional Block 98.21% 9.20 7,912.00 
4 1 Convolutional Block + 

Simple Skip 
Connections 

98.25% 6.49 10,282.61 

5 2 Convolutional Blocks 
+ Simple Skip 
Connections 

98.69% 9.11 6,134.25 

6 3 Convolutional Blocks 
+ Simple Skip 
Connections 

99.72% 11.36 6,951.73 

7 3 Convolutional Blocks 
+ Learnable Skip 
Connections 

99.70% 7.78 5,560.08 

8 3 Convolutional Blocks 
+ Learnable Skip 
Connections + LSTM 
(The Proposed Model) 

99.91% 7.99 ≈ 8.0 2,596.87 
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IX. CONCLUSION 
This paper addressed the critical need for effective and 
efficient Intrusion Detection Systems (IDS) to detect botnet 
attacks, especially in IoT and Fog computing environments. 
Such resource-constrained environments need small sizes 
and fast yet powerful decision-making models to detect 
malicious intrusions in the network. For the challenges 
mentioned above, a 1D-CNN and LSTM-based deep neural 
network with learnable skip connections was proposed and 
presented in this paper. This combination of convolutional 
and LSTM layers enables the model to learn both temporal 
and spatial features in the data, while the learnable skip 
connections are capable of dynamically controlling the flow 
of information across the network, enabling the model to 
focus on salient features and ignore irrelevant ones, thus 
enhancing its detection capabilities. The proposed model was 
trained and tested on actual IoT network traffic data (the N-
BaIoT dataset). This dataset features authentic traffic data 
from nine commercial IoT devices, including cameras, 
routers, and smart home appliances infected with the Mirai 
and BASHLITE malware, incorporating a total of 10 
different IoT attacks. With a compact size of 2596.87 KB, an 
inference time of 8.0 milliseconds, and a test accuracy of 
99.91%, the proposed model proved to be well-suited to be 
deployed in resource-constrained environments. The 
proposed SkipGateNet model outperformed all models in 
comparison in terms of accuracy and inference time. 
Furthermore, the future research could explore the integration 
of SkipGateNet with federated learning for distributed IoT 
environments, and the application of transfer learning to 
enhance its adaptability to different IoT domains and attack 
types. 
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