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Abstract—The impressive development of facial manipulation
techniques has raised severe public concerns. identity-aware
methods, especially suitable for protecting celebrities, are seen
as one of promising face forgery detection approaches with
additional reference video. However, without in-depth observa-
tion of fake video’s characteristics, most existing identity-aware
algorithms are just naive imitation of face verification model and
fail to exploit discriminative information. In this paper, we argue
that it is necessary to take both spatial and temporal perspectives
into consideration for adequate inconsistency clues and propose
a novel forgery detector named SpatioTemporal IDentity Network
(STIDNet). To effectively capture heterogeneous spatiotemporal
information in a unified formulation, our STIDNet is following
a knowledge distillation architecture that the student identity
extractor receives supervision from a Spatial Information Encoder
(SIE) and a Temporal Information Encoder (TIE) through multi-
teacher training. Specifically, a regional sensitive identity model-
ing paradigm is proposed in SIE by introducing facial blending
augmentation but with uniform identity label, thus encourage
model to focus on spatial discriminative region like outer face.
Meanwhile, considering the strong temporal correlation between
audio and talking face video, our TIE is devised in a cross-modal
pattern that the audio information is introduced to supervise
model exploiting temporal personalized movements. Benefit from
knowledge transfer from SIE and TIE, STIDNet is able to cap-
ture individual’s essential spatiotemporal identity attributes and
sensitive to even subtle identity deviation caused by manipulation.
Extensive experiments indicate the superiority of our STIDNet
compared with previous works. Moreover, we also demonstrate
STIDNet is more suitable for real world implementation in terms
of model complexity and reference set size.

Index Terms—Face Forgery Detection, Knowledge Distillation,
Video Forensics, Deep Learning.

I. INTRODUCTION

ITH the development of deep learning and generative
W adversarial networks [1]-[15], recent advancements in
face manipulation techniques enable the creation of incredibly
realistic fake videos (so called deepfakes) [3], [4], [16]-
[23]. Potential indiscriminate usage of this technology arouses
public’s concern of protecting personal portraits from manipu-
lation, especially for famous people like politicians, celebrities
and corporate leaders. On the one hand, it is easier to collect
a large quantity of their video material from internet. On the
other hand, malicious spread of their fake videos may bring
serious consequences, such as slandering reputation [24] or
guiding public opinion [25].

Previous researches devoted to detecting forgery content are
mostly based on anomaly-aware: they represent forgery detec-
tion as a binary classification task and try to obtain forensic
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Fig. 1. Fake video’s typical spatiotemporal inconsistencies. For spatial
inconsistency (left), the outer face of manipulated image presents to be
inconsistent with that of reference image in identity information. For temporal
inconsistency (right), the manipulated video gets a large number of differences
with pristine videos in temporal identity characteristics. For instance, the
manipulated video changes head pose frequently while this individual in
reference videos is used to maintaining a stable head pose during talking.
Besides, some personalized movements are not reflected in manipulated
videos, such as frown, narrowed eyes, vigorous mouth movements and
exposed lower teeth.

clues by exploiting generation artifacts [26]-[30] or perceiving
fake video’s unnatural phenomenon, e.g. discordant headpose
[31] or abnormal eye blinking pattern [32]. Because of simple
binary classification strategy and limited manipulated samples
during training, their performances drop dramatically when
encountering unseen manipulation methods. Although recent
methods try to improve generalization by locating blending
boundary [33], [34], tracking lip movements [35], [36] and
realizing feature disentanglement [37], [38], these anomaly-
aware attempts can only mitigate but arduous to solve the
generalization problem.

Inspired by observation of inevitable identity deviation
during manipulation [39]-[42], it is feasible to turn this binary
classification problem to an identity verification task, i.e.,
distinguish whether the person from suspect video is the
same one in reference videos. This identity-aware idea pays
attention to obtain characteristic identity information instead
of manipulated content to improve generalization ability. How-
ever, present researches on identity-aware detection are still
preliminary. For instance, they just naively imitate the face
verification algorithms [39] or even directly use pretrained
face verification model [41] to extract identity information.
Obviously, this attempts lack observation of manipulated con-
tent’s characteristic and result in poor discriminative ability
for forgery detection. To obtain discriminative identity in-
formation, ID-Reveal [40] tries to capture temporal identity
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information by modeling 3D facial sequence in an adversarial
training manner. However, predicting 3D parameters frame by
frame leads to high compute consumption. Besides, overly
focusing on temporal information while ignoring spatial clues
causes poor detection performance. After this, a recent method
ICT-Ref [42] is devoted to detecting identity inconsistency
of manipulated face and gets remarkable performance. But it
extremely relies on a huge reference set, making it impossible
to implement in real world scenario.

In fact, identity inconsistency between pristine and manip-
ulated videos extensively exists in both spatial and temporal
perspectives. Figure 1 (left) demonstrates the typical process of
fake content generation. The inner face of target image is ma-
nipulated with identity transferred from source image, and then
is blended with target image’s outer face. For spatial aspect,
this mixture operation results in an identity deviation between
manipulated face and source face, mainly reflected in the outer
region that provided by target. Meanwhile, for temporal aspect,
the temporal identity characteristics, such as head movement
pattern, facial expression habit and specific pronunciation
movements like raising eyebrow or pursing lips, is followed
by target face instead of source face, leading to a temporal
inconsistency between manipulated video and reference video
with source identity. As shown in Figure 1 (right), these fake
videos may look extremely realistic individually, but we can
still tell the temporal characteristic difference compared with
the real sample from the same person. Moreover, considering
audio’s temporal properties and its strong correlation with
facial motion, such as lip movements and head pose pattern,
it will be easier to distinguish temporal identity difference
with the help of audio track. Based on the above observation,
we argue that it is significant to simultaneously focus on
spatial and temporal information for a good identity-aware face
forgery detection model.

In this paper, to effectively capture heterogeneous spa-
tiotemporal information in a unified formulation, we propose
a multi-teacher multi-modal knowledge distillation architec-
ture, termed SpatioTemporal IDentity Network (STIDNet). The
STIDNet consists of two exceptional teacher networks (i.e.,
the spatial teacher network and temporal teacher network)
and a student identity extractor. While distinguishing input
video’s identity label, student network simultaneously receives
transferred knowledge from two teacher networks for ob-
taining spatiotemporal discriminative identity representation.
Specifically, for the spatial teacher, a novel Spatial Information
Encoder (SIE) is devised to exploit regional sensitive identity
information. During the training of SIE, we adopt the facial
blending augmentation by randomly changing inner face con-
tent while maintaining the uniform identity label, encouraging
model to capture outer face forensic clues. Meanwhile, for
the temporal teacher, although existing methods try to encode
temporal identity information by analyzing action units [43]
or behavior habits [39], they are all based on single modality
and handcrafted features, leading to insufficient mining of
temporal clues. Instead of focusing on single modality, we
develop a new temporal modeling paradigm named Temporal
Information Encoder (TIE), which introduces the audio infor-
mation for exploiting temporal personalized movements in a

cross-model training manner. Notably, the training of STIDNet
is totally under a generic audio-visual dataset (such as Vox-
Celeb2 [44]) without manipulation, thus model is not limited
to existing manipulation methods and the generalization ability
is guaranteed. Besides, benefit from knowledge distillation
framework, our method is able to get competitive performance
with a much lighter student backbone during identification,
improving the real world implementation flexibility.

In experiments, we quantitatively verify the effectiveness of
our STIDNet. With spatiotemporal knowledge distillation from
SIE and TIE, our method outperforms existing methods on
various datasets and exhibits excellent robustness to common
video corruptions. Besides, through the comparison of model
complexity and reference set size, our STIDNet is more
suitable for application in the real world.

Our contributions are as follows:

e We propose the STIDNet, a novel face forgery de-
tection model that focusing on spatiotemporal identity
inconsistencies of manipulated videos with knowledge
distillation.

« A novel spatial information encoder is devised to guide
network to exploit spatial discriminative identity informa-
tion, and a temporal information encoder is recommended
to supervise network comprehending temporal informa-
tion through cross-modal learning.

o We achieve state-of-the-art performance in adequate gen-
eralization and robustness experiments with a light back-
bone.

II. RELATED WORKS
A. Face Forgery Detection

Anomaly-Aware approaches. Most of the existing face
forgery detection methods can be regarded as anomaly-
aware fundamentally [26]-[33], [35]-[38], [45]-[47]. Earlier
attempts pay attention to handcrafted features such as head
pose [31], eye blinking [32] or face warping artifacts [26].
Rossler et al. [27] demonstrate that simply training a Xception
network [1] can achieve remarkable intra-dataset performance.
Recently, some works focus on exploiting the frequency
domain [30] or tracking dynamic inconsistency [48] to mine
forensic clues. However, despite their impressive intra-dataset
detection precision, these models’ performances always have
great decline when encountering unseen manipulation meth-
ods.

To improve generalization performance, several researches
attempt to refine anomaly-aware approaches by designing
complex optimization losses or introducing auxiliary tasks. For
example, based on the observation of universal inconsistent
lip movements in fake videos, a series of lip-related auxiliary
tasks have been utilized for capturing general manipulation
clues [35], [36]. Besides, Zheng et al. [46] reduce the spa-
tial kernel sizes of convolutions to 1 to enhance temporal
representations for detecting unseen manipulation methods.
Moreover, facial feature disentanglement is also introduced
for generalization improvement [37], [38]. Nevertheless, these
attempts under binary supervision can’t get rid of manipulated
training samples and are hard to solve generalization problem
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radically. In this paper, Instead of anomaly-aware idea, we turn
to identity-aware detection and represent forgery detection as
a verification task, thus the manipulated content isn’t involved
in training and the generalization performance is guaranteed.
Identity-Aware approaches. Recently, the conception of
identity-aware detection has been proposed to extract some-
one’s personal traits that usually been modified during ma-
nipulation. Present attempts are mostly naive imitation of
face verification models and ignore analyzing spatiotemporal
generation characteristics of fake video [39], [41]. In addition
to above preliminary attempts, Cozzolin et al. [40] introduce
3D facial parameters and adversarial learning for temporal
identity extraction, but it ignores rich spatial information and
results in poor performance. Besides, a recent method ICT-
Ref [42] tries to exploit identity inconsistency of manipulated
face with transformer architecture. However, its performance
heavily relies on a huge reference set with various identities,
which is difficult for real world implementation. In this paper,
we propose a STIDNet to extract identity feature from spa-
tiotemporal perspectives simultaneously. Besides, knowledge
transfer with two experienced teacher networks also prompts
our STIDNet to exploit comprehensive information and reduce
the reliance on reference data in real world scenario.

B. Knowledge Distillation

Recent research on knowledge distillation [49]-[59] are
mainly devoted to realizing the model compression and
knowledge transfer. Typical knowledge distillation methods
generally follow a teacher-student learning strategy, where
the student models with lightweight architecture or limited
information are optimized to align with teacher model seman-
tically. Specifically, various distillation strategies are studied
for efficient knowledge transfer. Romero et al. [52] regard the
middle-layer output from teacher model as a kind of essential
hint information, and optimize several guided layers in student
model to fit this specific feature distribution. Moreover, instead
of learning individual feature representation as the transferred
knowledge, Park et al. [58] point out that the structured rela-
tion between features generally convey more essential informa-
tion, and propose a relational knowledge distillation strategy
for modeling the relation between features. In addition, ICKD
[59] is proposed to model the inter-channel correlation for
knowledge distillation. The diversity and homology in feature
space are exploited respectively for effective teacher-student
alignment.

Except for the single-modal attempts, multi-modal super-
vision signals are also utilized for promoting the knowledge
distillation performance. For example, Aytar et al. [55] employ
a visual teacher model to guide the student to learn richer
sound representation. Moreover, the multi-modal information
is introduced in CCL [56] for promoting the video classifica-
tion performance. And an experienced visual teacher is proven
to be beneficial for depth estimation in [57].

However, existing knowledge distillation methods are not
specially designed for face forgery detection, where tracing
subtle forensics clues becomes the main issue. These direct
teacher-student alignment strategies universally will force the

student model to fit large teacher arduously, thus make subtle
forensics clues drown in complex facial information. On the
contrary, in our STIDNet, only the student identity extractor
is utilized to process the whole facial video individually.
Afterward, two experienced teacher models are designed to
give fine-grained supervisions from spatial and temporal per-
spectives respectively, which further purifies the student model
representation and promotes the subtle forensics clues tracing.

C. Spatiotemporal Modeling

Spatiotemporal modeling is widely utilized in various video-
based tasks [60]-[64] for spatiotemporal dependence analysis
and temporal variation perception. For example, in the field of
few-shot action recognition, a recent research STRM [60] is
proposed for effective spatiotemporal relation modeling. Both
the spatial local patch features and temporal global frame
features are aggregated for action representation enhancement.
Besides, to improve the pedestrian trajectory prediction perfor-
mance, a graph-based spatiotemporal transformer is introduced
in [61] for trajectory modeling. The spatial relation between
pedestrians are adopted to encourage the temporal trajectory
prediction. Moreover, a spatiotemporal curriculum dropout
strategy [62] is proposed to discard the difficult spatiotemporal
graph node at the beginning of training, which encourages
model to learn the robust spatiotemporal dependence step by
step.

Furthermore, facial videos generally contain abundant ex-
pressions and movements information. Thus, it is of great
benefit to introduce spatiotemporal modeling into various
face-related tasks. For instance, Xia et al. [63] propose a
multi-branch spatiotemporal network for facial expression
recognition, where both the appearance and optical flow are
considered for a comprehensive spatiotemporal representation.
Besides, to improve the face anti-spoofing performance, Wang
et al. [64] propose a spatiotemporal propagation module to
process both spatial depth information and temporal movement
feature simultaneously.

However, existing attempts merely learn spatiotemporal
representation by the intrinsic modeling of input video, which
are hard to introduce external priors for effective forgery
detection. For spatial aspect, without the guidance of regional
sensitive information, existing methods generally fail to ex-
ploit discriminative local region. Meanwhile, for temporal
aspect, normal methods neglect the strong temporal correlation
between talking face video and audio information. Lack of
audio supervision generally results in poor temporal identity
representation ability. Different from this, in the STIDNet, two
well-designed teachers are proposed to provide essential spa-
tiotemporal prior for forgery detection. An innovative spatial
information encoder is devised to guide model to trace the
spatial local identity inconsistency, and a temporal information
encoder is recommended to help trace temporal identity clues
through cross-modal learning.

III. PROPOSED METHOD

To simultaneously capture spatiotemporal forensic clues
for effective forgery detection, we propose the STIDNet in
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Fig. 2. Preparation of the SIE. We augment the original image by swapping
other individual’s inner face. Then all images are uniformly labeled with the
original identity, accordingly a specific face recognition model is trained as
our SIE.

a multi-teacher multi-modal knowledge distillation manner.
An overview of our STIDNet is illustrated in Figure 4,
which mainly consists a student identity extractor and two
teacher networks, i.e., the Spatial Information Encoder (SIE)
and Temporal Information Encoder (TIE). Firstly, in Section
III-A, we introduce the preparation of two teacher networks
for comprehensive spatiotemporal forensics clues exploiting.
Afterward in Section III-B, with two experienced teacher
networks, we describe how to utilize these effective spatiotem-
poral supervisions and train the STIDNet through knowledge
distillation. Finally, in Section III-C, we demonstrate the
inference phase of STIDNet for identity-aware face forgery
detection.

A. Spatial and Temporal Information Encoders

In this section, we introduce the preparation of the Spatial
Information Encoder (SIE) and Temporal Information Encoder
(TIE) as our spatial and temporal teacher models respectively.
Spatial Information Encoder. To encode the spatial identity
information, a direct attempt is adopting the off-the-shelf face
recognition model [65], [66] for feature extraction. Unfortu-
nately, existing face recognition algorithms are more inclined
to characterize the inner face information, and ignore the outer
face region because of its less discriminative in recognition
task. On the contrary, as we analyzed above, outer face
usually plays a more important role in face forgery detection.
Therefore, it is necessary to retrain a face recognition model
that more sensitive to outer face identity.

To address the above issue, in this paper we propose a
novel regional sensitive Spatial Information Encoder (SIE)
with effective facial blending augmentation, which can provide
essential outer face identity information for forgery detection.
The detail of face blending augmentation and SIE training

The top n target faces
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tar tar
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Fig. 3. Illustration of facial blending augmentation. The augmented faces
are various in inner face region, while they share the same outer face identity.

process is illustrated in Figure 2. For each original facial
image, we firstly augment it to obtain abundant facial images
with various inner regions, then we utilize these faces to train
a SIE that is sensitive to the outer face identity.

Firstly, for the facial blending augmentation, we propose
to randomly swap the inner identity of input facial image,
accordingly restrict model’s attention to inner region and guide
it to focus on outer face identity. Specifically, inspired by
[33], we propose to apply the augmentation with a facial
landmark matching strategy. As illustrated in Figure 2 (top),
given a pristine original image I°7%, firstly we extract its
facial landmarks with the pretrained landmark detector [67].
Then we apply the Landmarks Nearest Search in a large-scale
facial database to search the rop n similar images with various
identities. a target set {I{9"}™ . is constructed with these n
images. Meanwhile, the landmark convex hull of the original
image 7°" is computed as an initial facial mask. To promise
the flexibility of the mask region among various manipulation
techniques, we further adopt random shape deformation and
Gaussian blur to initial mask to obtain the final mask. Finally,
we separately compute the outer face region of original image
I°"" and inner face regions of n target images {I!%"}" _,
according to this facial mask, and blend them together one
by one to get the n augmented images {/%*9}" _,. Figure 3
gives an example of augmented faces, it can be observed that
the augmented faces are various in inner face region, while
they share the same outer face identity as original image I°"%.

With the help of face blending augmentation, we can extend
one original image I°™ to total n+1 facial images, that share
the consistent outer face identity but with various inner face
identities. Then we utilize these images to train a regional
sensitive SIE. As shown in Figure 2 (bottom), during the
training of SIE, we uniformly categorize the both original
and augmented images into the identity label of the original
image 1D°". Then we train the SIE under a face recognition
protocol, i.e., distinguishing the identity label of input images.
Therefore, to effectively identify the input images, our SIE is
more inclined to focus on outer face region and exploit outer
face identity information for more discriminative face forgery
detection. Notably, we uniformly sample k images with various
backgrounds as the original images for each ID°" during
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identity extractor distinguishing the identity information. In inference phase, we distinguish the authenticity by comparing similarity between test clip and

pristine reference clips.

implementation. That is, for each identity, total k£ X (n + 1)
images can be obtained after facial blending augmentation,
which effectively promises the background diversity of input
images during the training of SIE.

Temporal Information Encoder. For the temporal identity
representation, previous works usually delve into single-modal
features and make less progress [39], [40]. Actually, the
audio data encodes rich context information temporally and
appears in strong correlation with visual content in talking face
video [36], [47], [55], [56]. Thus, we propose to apply audio
information in TIE and transfer this temporal supervision
signal in a cross-modal manner.

To effectively manage audio information, we employ a
pretrained Wav2Vec2 [68] model as the baseline of our TIE.
The Wav2Vev2 model is trained under a self-supervise learn-
ing manner and exploits the semantic context representation
encoded from input raw audio. It achieves impressive perfor-
mances in various downstream tasks after finetuning. In our
STIDNet, we directly employ the original Wav2Vec2 model
to obtain temporal supervision signal.

B. Spatiotemporal Knowledge Distillation

After obtaining the experienced SIE and TIE as the spa-
tiotemporal teachers, in this section we will further describe
how to utilize these effective spatiotemporal supervisions and
train the STIDNet through knowledge distillation. The overall
spatiotemporal knowledge distillation framework is illustrated
in Figure 4. Firstly we give the formulation of our STIDNet,
afterward the loss functions for optimization are introduced in
detail.

Formulation. We assume access to a large talking face dataset
D without any manipulation. A sample z € D consists of
a video clip z¥ € RT»*HXWX3 and its corresponding one-
dimensional raw audio z* € R”e, where T,, H and W
respectively represent the number of frames, image height and

width, T, is the length of input raw audio. In addition, we
randomly sample a single frame image 2! € R¥>*W>3 from
z". The identity label of z”, z* and 2% is denoted as 1.

As the knowledge distillation process illustrated in Figure
4 (left), our multi-teacher knowledge distillation architecture
consists two pretrained teacher networks STFE, TIE and a
student identity extractor g, where g is a lightweight video
backbone for video identity extraction. While the student g
trying to distinguish the input video clip’s identity label,
supervision signals from STE and T E can help the student to
focus on spatiotemporal discriminative forensic clues. Specif-
ically, for the single image 2’ and raw audio 2%, two frozen
teachers respectively obtain embeddings ¢! = STE(z') and
e® = TIFE(z%), which are then passed through two projection
heads proj® and proj® to project embeddings to the common
space, z° = proji(e’) and z* = proj®(e®). Besides, for the
video input z?, our student g extracts its feature z¥ = g(2").

With the obtained image, audio and video features b, x®
and zY, on the one hand, the video feature x" is used to dis-
tinguish input video’s identity label in an identity recognition
training manner. On the other hand, the image feature xt and
audio feature = simultaneously supervise the student g captur-
ing abundant spatiotemporal information through contrastive
learning, i.e., pulling together the positive pairs and pushing
away negative pairs.

Meanwhile, various researches [69]-[71] point that the
number of negative samples per batch plays a very important
role in contrastive learning. Therefore, we propose to establish
two memory banks for 2’ and z® to provide abundant neg-
ative samples during optimization. These memory banks are
constantly updating and we randomly sample a set of features
for training every batch. Notably, consider that the STE and
TIE are frozen and only parameters from proj® and proj®
are updating during training, concerns about the hysteresis of
memory banks are almost negligible.
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Loss functions. As we mentioned above, our video identity
extractor g has two main optimization targets: distinguishing
input video clip’s identity and receiving the supervision from
teacher networks SIE and TIFE. Following, we will explain
in detail separately.

Firstly, for the identity classification task, to enhance the
intra-class compactness and inter-class discrepancy of identity
features, the cosine-based loss [65] is introduced for optimiza-
tion rather than widely used cross-entropy loss.

e’ cos (0, +m)

1
es cos(0y, +m) + Z;il it escos0; (D

Lidentity = —log
Where the 6; is the angle between W; and z¥, W; € R?
denotes the j-th column of the last face recognition fully-
connected layer weight W € RN v € R? is the i-th
sample of the input batch and its identity label is y;. s is
a scale hyperparameter and m is the additive angular margin.
We set s = 30 and m = 0.2 by default.

Besides, for the knowledge distillation loss functions, given
the image feature 2’ and audio feature 2%, we propose to
respectively distill the spatiotemporal information to student
video network g by contrastive learning. Formally, The con-
trastive loss L,,; (based on InfoNCE [72]) between video and
image features can be derived as following.

o’ ) /7

TP oter )/

Lyi = —log 2
Where ¢ denotes computing cosine similarity, 7; is the temper-
ature. J;@ is the paired positive sample for ¥ in whole batch’s
image embeddings {z};}f;M. Here, B is the batch size and
M is the number of additional sampled image features from
image memory bank. The video-audio distillation loss between
¥ and z® has the same form with L,; and is denoted as L.
Moreover, the distillation temperature for video-audio paired

is denoted as 7,. Specifically, L, can be derived as following.

(@73 o

Ly, = —lOg - 3)
ZkB:—l—lM e(lﬁ(-’li”,(ﬂk)/TQ
Finally, the objective is given by
L= Lidentity + )\imageLvi + )\audioLva (4)

where Ajpage and Aguq4i0 are the scaling factors.

C. Inference Phase

Figure 4 (right) illustrates the inference phase of STIDNet.
Only the student identity extractor g is adopt during inference.
Given a suspect video and a set of reference videos from the
same individual . We firstly embed both of them with the
identity extractor g. Then we compute the similarity of sus-
pect embedding with each reference embeddings respectively.
Finally, the maximum similarity is determined as similarity
score. A lower score indicates that the suspect video is more
likely to be fake. On the contrary, an input video with high
score can be seen as the real one.

IV. EXPERIMENTS

In this section, firstly we describe the detailed introduction
about experimental setup in Section IV-A. Afterwards, in
Section IV-B, we provide the detection performance compar-
ison with state-of-the-art methods. Then in Section IV-C, the
robustness evaluation is conducted in our STIDNet. Finally,
Section IV-D reports the ablation experiment and visualization
results to analyze the STIDNet.

A. Experimental setup

Dataset. We use the VoxCeleb2 [44] dataset for training,
which contains 6,112 identities with more than 150,000 speech
videos. For forgery datasets, we choose the following widely
used benchmarks for test. (1) DeepFake Detection (DFD)
[23] contains 363 real and 3068 manipulated videos released
by Google. (2) preview DeepFake Detection Challenge
(pDFDC) [22] includes realistic facial manipulation videos
that are subjected to strong perturbations. (3) FaceForen-
sics++ (FF++) [27] consists of 1,000 real videos and 4,000
fake videos generated by four facial manipulation methods:
Deepfakes [17], Face2Face [19], FaceSwap [18] and Neu-
ralTextures [20]. (4) FaceShifter (FSh) [3] contains 1,000
fake videos generated from real videos in FF++. (5) Celeb-
Deepfake [21] is a challenging dataset for forgery detection.
It includes an original version CD1 with 408 real videos and
795 manipulated videos. Its extending version CD2 contains
590 real videos and 5639 fake videos. For the selection of
reference information, we follow the provision in [42] and
randomly sample 10 video clips of each protected individual
as reference set.
Evaluation metric. To solve the imbalance of real and fake
samples in forgery datasets, the widely applied AUC (area
under the Receiver Operating Characteristic curve) [33], [35]-
[40], [42], [45]-[47] is used as evaluation metric in experi-
ments.
Implementation details. Firstly, for the data preprocessing
and augmentation, we extract facial images from video with
pretrained face detector [67] frame by frame, and then resize
them to 112 x 112. The Horizontal Flipping with probability
0.5 is applied as image augmentation. Moreover, each video
clip 2V consists of 30 such facial frames sampled with 10
FPS sampling rate. The audio input z® is sampled with 16kHz
from synchronized audio track. And the image input 2 is a
single frame that is randomly sampled from video input z".
Furthermore, the original image 1°" that used for training SIE
follows the same preprocessing and augmentation strategy as
A

Besides, for the network structure, a 26-layer configuration
Channel-Separated Convolutional Network (CSN-26) [2] is
adopted as the video identity extractor g, and the STE back-
bone is a ResNet-18 [73]. In addition, we utilize the off-the-
shelf Wav2Vec2 model [68] with a combination of CNN and
transformer architecture as the T E. A single fully-connection
(FC) layer is employed as the projection heads proj’ and
proj® respectively. Moreover, the teacher networks STFE and
TIFE are kept frozen during training. During inference, only
the student identity extractor g is utilized.
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TABLE I

CROSS-DATASET GENERALIZATION. AUC SCORES (%) ON UNSEEN DATASETS. HERE WE MARK THE DATASET-REF METHODS WITH

DUE TO ITS

EXCESSIVELY HUGE REFERENCE SET AND LESS PRACTICABILITY. BEST RESULTS EXCEPT DATASET-REF METHODS ARE DENOTED IN BOLD.

Method [ DFD [ pDFDC [ FF++ [ FSh [ CD1 [ CD2 [ Avg
Multi-task [29] 65.2 - - - 72.3 61.1 66.2
Mesolnc4 [28] 59.1 74.0 63.4 - 42.3 53.6 58.5
Xception [27] 95.6 79.0 - - 75.0 77.8 81.9
DSP-FWA [26] 91.0 - 81.9 - 78.5 81.4 83.2
FFD [45] 76.6 69.0 92.3 - 74.2 77.8 78.0
Anomaly-Aware Face X-ray [33] 94.1 - 98.5 - 74.8 75.4 85.7
LipForensics [35] - - - 97.1 - 82.4 89.8
FTCN [46] - - - 98.8 - 86.9 92.9
RealForensics [47] - - - 99.7 - 86.9 93.3
Zhao et al. [36] - - - 97.8 - 84.2 91.0
ICT [42] 84.1 - 90.2 - 81.4 85.7 85.4
Dataset-Ref ICT-Ref [42] | )

Identity- A&B [39] - - -
Aware ID-Reveal [40] 96.0 91.0 89.5 - - 84.0 90.1
Individual-Ref DFR [41] 92.5 95.8 81.9 98.6 88.3 88.2 90.9
STIDNet(Ours) 96.1 99.4 95.8 99.9 92.1 91.4 95.8

Moreover, for the hyperparameter and optimization settings,
we set the knowledge distillation temperatures 7; and 7, in
Formula 2 and Formula 3 to 0.1, 0.5 respectively. And the
loss function hyperparameters Ajmage and Agudio in Formula
4 are set to 1 and 0.5. Meanwhile, our STIDNet is trained
by SGD optimizer with learning rate 1 x 10~! and weight
decay 5 x 10~%. We train for 50 epochs with the batch size of
B=32, and the learning rate is divided by 10 every 10 epochs.
Furthermore, we additionally sample M=512 samples from
image and audio memory banks respectively every mini-batch
during training. The maximum capacity of memory bank is
16,384 and the earlier incoming sample is preferentially dis-
carded once the capacity is exceeded. Besides, for preparation
of SIE, we extract k = 40 facial images every identity as the
original images. For each original image, we retrieve the top
n=10 target images for facial blending augmentation, i.e., total
40 x (10 4 1) = 440 images are utilized for training of SIE
per identity.

B. Comparison with State-of-the-art Methods

In this section, we compare our approach with state-of-
the-art methods from both anomaly-aware and identity-aware
categories. Consider that the generalization ability is the
most important property for detection model, our comparison
is following a cross-dataset protocol [33], [35], [36], [39],
[40], [42], [46], [47], i.e., all the methods are tested in the
manipulation dataset that unseen during training.
Comparison with anomaly-aware methods. The anomaly-
aware methods include Multi-task [29], Mesolnc4 [28], Xcep-
tion [27], DSP-FWA [26], FFD [45], Face X-ray [33], Lip-
Forensics [35], FTCN [46], RealForensics [47], Zhao et al.
[36], and ICT [42]. As shown in Table I, our STIDNet
gets the best detection performance in five forgery datasets,
suggesting that our model performs well when exposed to
unseen manipulation methods.

Comparison with other state-of-the-art anomaly-aware
methods, our STIDNet exhibits distinguished advantage in
several challenging datasets. Specifically, for the advanced
method FTCN [46] devoted to exploiting the temporal incoher-
ence clues, STIDNet outperforms it by 4.5% on the challeng-
ing CD2 dataset. Moreover, for another typical method Face
X-ray [33] that focuses on blending boundary detection, STID-
Net also outperforms it by 2.0% and 16% on the DFD and CD2
datasets respectively. We analyze that, general anomaly-aware
method merely perceive the inconsistency clues like temporal
incoherence and blending boundary from a single video.
However, for several challenging datasets like DFD and CD2,
the advanced manipulation techniques have eliminated most
of the inconsistency clues, and existing anomaly-aware meth-
ods are hard to exploit enough forensics information merely
relying on the single video. On the contrary, the additional
reference data in identity-aware methods provides kind of
strong prior knowledge for effective forgery detection. In our
STIDNet, we propose to comprehensively exploit this essential
identity prior from both spatial and temporal perspectives.
The effective multi-teacher knowledge distillation architecture
enables extraction of discriminative identity representation and
promotes the detection performance.

Compared with identity-aware methods. For identity-aware
methods, it is further divided into two secondary categories
Dataset-Ref and Individual-Ref according to the size of ref-
erence set. The Dataset-Ref methods need to build an ex-
tremely huge reference dataset including various individuals
and retrieve the paired identity during test. Meanwhile, a more
flexible and practical solution is the Individual-Ref method. It
only requires the reference data from single individual and
executes the verification task during test. In our compari-
son, the ICT-Ref [42] and A&B [39] belong to Dataset-Ref
methods, while the Individual-Ref methods include ID-Reveal
[40], DFR [41] and our STIDNet. Notably, The Dataset-Ref
methods consume a lot of resources and are impractical for
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Fig. 5. Robustness to various unseen corruptions. Model’s detection AUC to various severity of seven common video corruptions. "Avg” denotes the

average AUC across all corruptions. Our STIDNet exhibits strong robustness

real world implementation. On the one hand, these methods
require a large quantity of reference data to ensure detection
performance, which is dozens or even hundreds of times
compared with the demand of Individual-Ref methods. On the
other hand, it is impossible to establish such large reference
dataset in real world implementation for Dataset-Ref methods.

Table I presents the comparison of our STIDNet and other
identity-aware methods, where the Dataset-Ref methods are
marked with because of its excessively huge reference
set and less practicability. It can be observed that our STID-
Net achieves remarkable performance among all datasets.
Specifically, for another typical identity-aware method DFR,
STIDNet outperforms it on all six datasets, especially on
two challenging dataset DFD and CD2 by 3.6% and 3.2%
respectively. Meanwhile, our method also gets competitive
performance compared with Dataset-Ref method ICT-Ref in
the case of a much smaller reference set, which further
proves the effectiveness and practicability of our method with
limited reference data. In fact, compared with other methods
that merely exploit the identity information from restricted
perspective, our STIDNet proposes to comprehensively cap-
ture the spatiotemporal identity characteristics for effective
identity-aware forgery detection. In spatial perspective, an
innovate SIE is proposed to guide model to focus on es-
sential outer face identity. Meanwhile, in temporal aspect,
an audio teacher TIE is adopted for personalized temporal
identity characteristic modeling. This effective multi-teacher
knowledge distillation architecture enables the comprehensive
identity characteristics capturing in our STIDNet.

However, we also notice that our STIDNet gets an unsat-
isfied performance on the FF++ dataset, which is lower than
the state-of-the-art method by 2.7% on detection AUC. This
disadvantage is mainly due to the misclassification of face

while get remarkable detection AUC.

reenactment manipulation like NeuralTextures [20]. Specifi-
cally, STIDNet achieves 84.7% performance on the NeuralTex-
tures videos in FF++. Theoretically, identity-aware methods
are more suitable for detecting the fake videos that the identity
information is manipulated, i.e., the face swapping videos.
For face reenactment videos, the facial identity is intentionally
preserved unchanged, and it is hard to exploit enough identity
inconsistency clues. In fact, detecting face reenactment videos
is the general shortcoming for all identity-aware methods.
However, benefit from the focus on temporal identity char-
acteristics, our identity-aware STIDNet still makes certain
progress in detecting face reenactment videos, which reflects
in relatively high performance on FF++ compared with other
identity-aware methods.

C. Robustness to Common Corruptions

In addition to generalization ability, another significant indi-
cator for face forgery detector is the anti-corruption robustness
[30], [35], [36], [38], [42], [47]. Facial videos spread on
social media are usually subjected to common corruptions
and detector may fail to capture adequate forensic clues due
to video degradation. To demonstrate the robustness of our
model, we follow [35], [42], [47], [74] to assess robustness
to various perturbations. The FFD [45], ICT [42], ID-Reveal
[40] are selected for comparison and all the models are
tested on FF++ samples that were exposed to various unseen
corruptions. The perturbations are proposed in [74] and include
seven different operations, i.e., Color Saturation Change, Color
Contrast Change, Local Block-Wise Distortion, White Gaus-
sian Noise in Color Components, Gaussian Blur, Pixelation
and Video Compression. Each perturbation have five intensity
levels. Figure 5 demonstrates the model’s detection AUC
to various severity of seven video corruptions. It is evident
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TABLE 11
FRAMEWORK ABLATION. ANALYZING THE EFFECT OF SIE AND TIE.
AUC SCORES (%) ON CD2 AND DFD ARE PRESENTED.

Method | cp2 | DFD

only CSN 84.5 9238

CSN + SIE 91.0 95.5

CSN + TIE 85.7 93.4

STIDNet(Ours) 91.4 96.1
TABLE III

ABLATION ABOUT DESIGN OF SIE. ANALYZING THE DESIGN OF SIE.
WE HAVE FOUR DIFFERENT EXPERIMENT SETTINGS AND THE AUC
SCORES (%) ON CD2 AND DFD ARE PRESENTED.

Method | CD2 | DFD
STIDNet w/o SIE 85.7 93.4
FR 88.8 94.4
Masked Face 89.9 95.0
STIDNet(Ours) 91.4 96.1

that while achieving remarkable detection precision, the line
representing our STIDNet is almost horizontal against most
corruptions in different severity level. The Gaussian Noise
at level 5 is an exception that the video content is greatly
destroyed and other methods also get a significant decline here.
For the experiment result illustrated in Figure 5, we analyze
that the detection robustness problem is mainly due to the
gradually erased forensics clues by common corruptions. For
the compared methods like FFD, although these methods are
able to maintain satisfied detection performance on the clean
videos, it will be hard for them to exploit enough forensics
clues in the degradation videos, and results in poor robustness.
On the contrary, in our STIDNet, we propose to adequately
exploit the identity information from both spatial and temporal
aspects. This comprehensive perspective enables our model to
capture enough forensics clues even in a degradation scenario.
Moreover, the focus on semantic-level identity information
also promotes the robustness of our STIDNet.

D. Analysis of STIDNet

Framework ablation. As shown in Table II, we ablate the
importance of two teacher networks SIE and TIE by testing
the detection performance on CD2 and DFD dataset. It can be
observed that knowledge transfer from both SIE and TIE are
beneficial to face forgery detection. A CSN network [2] with
SIE get 6.5% and 2.7% AUC increase than simply training
a CSN model. At the same time, the supervision signal from
TIE also promotes the model to capture temporal clues and the
CSN + TIE performs better than only CSN by 1.2% and 0.6%.
Finally, our STIDNet with multi-teacher supervision gets the
best performance, suggesting that both spatial and temporal
information are significant for capturing identity inconsistency.
Design of SIE. In our framework, we use the SIE as spatial
teacher and train it with facial blending augmentation. Here
we discuss the effectiveness of introducing augmentation and
have four different experiment settings: (1) STIDNet w/o SIE:
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Fig. 6. (a) Effect of memory bank. AUC scores(%) as a function of the
number of samples from memory bank, the negative sample supplement from
memory banks promotes model’s performance. (b) Effect of reference set.
AUC scores(%) as a function of the number of references. The maximum
strategy gets the best performance compared with mean and median strategy.

0 1 2 3 4 5 6 7 8 9 10 11
Number of References

remove the SIE branch. (2) FR: using a pretrained face
recognition network [65] as SIE. (3) Masked Face: retrain
a face recognition network with input image that inner face
region is masked. Specifically, we directly utilize the facial
mask in facial blending augmentation (Section III-A) to mask
the inner face region, which promises the comparison fairness
with our STIDNet. (4) STIDNet (Ours): train the SIE with
facial blending augmentation. The detection AUC scores on
CD2 and DFD are presented in Table III. As expected, training
SIE with facial blending augmentation, i.e., our STIDNet,
gets the best performance compared with other three settings.
For FR, it can be observed that the addition of a simple
face recognition model can increase model’s performance by
3.1% and 1.0%, we analyze that the practiced teacher model
effectively supervise the backbone to focus on spatial identity
information. Besides, the Masked Face model gets a better
performance than FR because of its tendency to pay attention
to outer face region. Finally, our STIDNet with facial blending
augmentation get higher performance than Masked Face by
1.5% and 1.1%. In our opinion, although both two methods
are aimed to guide model to focus on outer face region, it is
evident that the blending measure is smoother than the direct
mask operation, thus guarantees the completeness of input
facial image. Consider that SIE works as teacher network for
providing supervision signal, training the SIE with blending
data is more suitable for knowledge transfer.

The effect of memory bank. In STIDNet, we introduce
the image and audio memory banks to provide abundant
negative samples for knowledge distillation. Figure 6a shows
the effectiveness of supplementary samples from memory
bank in DFD dataset. It can be seen that the design of
memory bank improves model’s discriminating ability and
results in higher AUC score, which proves that supplement of
negative samples effectively prompt the knowledge transfer.
Meanwhile, model’s detection performance increases with the
number of samples and tend to be stationary when it comes
to 512. As a result, we choose the 512 as sampling number
for balance between performance and computational cost.
The effect of reference set. Figure 6b illustrates the detection
AUC of STIDNet varies with size of reference set. Obviously,
a larger reference set can provide more information to forgery



JOURNAL OF KTEX CLASS FILES, JANUARY 2024

Effect of image temperature Effect of audio temperature

AUC(%)
g g B 2 B
o @ o N IS

<
8
©
I
=

©
8
o

0001 001 01 02 03 04 05 02 03 04 05 06 07 08
T Ta

(@) (b)

Fig. 7. Effect of temperature hyperparameters. Effect of image temperature
hyperparemeter 7; (a) and audio temperature hyperparameter 7, (b).

Effect of image loss scaling factor Effect of audio loss scaling factor

91.4

AUC(%)
8
3
AUC(%)
8
9

07 08 09 10 11 12 13 02 03 04 05 06 07 08

Aimage Aaudio

(@) (b)

Fig. 8. Effect of loss function scaling factors. Effect of the loss function
scaling factors Aimage (@) and Agydio (b).

detection. Same as the provision in [42], in our above experi-
ments we uniformly assign 10 video clips to each identity for
a fair comparison. Besides, It can be observed from Figure
6b that our STIDNet can still get 92.3% AUC even with 1
reference video clip, which means our model doesn’t rely on
a carefully selected reference set and shows great robustness.

Moreover, in our strategy, we calculate the maximum cosine
similarity among whole reference set as the final similarity
score. Figure 6b also provides the AUC of calculating mean
and median scores, while the maximum strategy gets the best
result. We analyze that the reference set generally contains
various facial videos with different facial expressions, emo-
tions and backgrounds, which reflects a degree of diversity.
Meanwhile, the identity-aware forgery detection is actually
a verification task, and the main target of our STIDNet is
searching for the “most similar” sample among various videos
as the reference data. Therefore, it is more suitable to take
the ”maximum cosine similarity strategy” with the increase of
reference set. Besides, other identity-aware methods such as
[40], [42] also adopt this relatively loose measurement strategy
for better performance.
Analysis of hyperparameters. To further analyze the effect
of hyperparameters in STIDNet, in Figure 7 and Figure 8 we
detailedly evaluate the model detection performance on CD2
dataset with various hyperparameter settings, including the
knowledge distillation temperatures 7;, 7, and the loss function
scaling factors \; and .

Firstly, for the temperatures 7;, 7, in Formula 2 and Formula
3, in Figure 7a, we set 7; to various values between 0.001 to
0.5 and fix 7, to be 0.5 for evaluation. Besides, in Figure 7b
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Fig. 9. t-SNE visualization. Four identities in DFD dataset are randomly
sampled for visualization, there is clear boundary between real and fake
samples.
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Fig. 10. Distribution of similarity scores. The probability density distribu-
tion of similarity score in DFD and CD2 datasets. It can be observed that
the boundary between real and fake is stably maintained around 0.7 among
different datasets.

we test the model performance on multiple 7, from 0.2 to 0.8
with 7, = 0.1. It can be observed that STIDNet achieves the
best performance with 7; = 0.1 and 7, = 0.5 respectively. We
analyze that, it is harder for model to transfer the knowledge
from other modalities than the inter-modal learning. Therefore,
a smaller video-image temperature 7; and a larger video-audio
temperature 7, is more beneficial for discriminative knowledge
distillation. Moreover, the video-image temperature 7; can not
be too small for better model convergence. Thus, the setting
of 7, = 0.1, 7, = 0.5 achieves the best performance, and we
implement it in the optimization of STIDNet.

Moreover, Figure 8 illustrates the effect of scaling factors
Aimage and Aqyugio in Formula 4. Specifically, Figure 8a
analyzes the effect of Ajpege With a fixed Aguaio = 0.5.
Similarly, Figure 8b shows the model performance with a
various Agqqudio from 0.2 to 0.8, and we accordingly set the
Aimage = 1. It can be observed that the setting of Ajp,qge = 1
and Agyu4i0 = 0.5 achieves the best performance respectively,
which also indicates that it is beneficial to assign a relative
larger weight for spatial perspective knowledge distillation.
Therefore, we uniformly set Ajppage = 1 and Agyugio = 0.5
during implementation.

Visualization. To intuitively show the forgery discriminating
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ability of STIDNet, we randomly sample four identities from
DFD dataset and adopt t-SNE [75] to visualize their identity
embeddings respectively. As is shown in Figure 9, Although
our STIDNet is trained under a totally generic dataset without
any manipulation, it still exhibits excellent discriminating
ability when managing manipulated faces. For the same iden-
tity, boundary between real and fake faces is clear and the
distribution appears good intra-class compactness.

To further illustrate feature distribution of real and fake
faces, Figure 10 presents the probability density distribution
of similarity score in DFD and CD2 datasets. We can observe
that the real and fake samples tend to appear as bimodal
distribution, while real faces get a higher similarity score
with the reference set. Moreover, the similarity score boundary
between real and fake samples is stably maintained around 0.7
among various datasets. It allows us to simply set the decision
threshold as 0.7 in real world scenario implementation, while
other methods like ID-Reveal [40] needs to test on a set of
data for determining threshold each time.

V. CONCLUSION

In this paper, we detailedly discuss the generation charac-
teristic of manipulated videos, and point out it is essential
to take both spatial and temporal perspectives into consid-
eration for effective identity-aware face forgery detection.
Correspondingly, a novel SpatioTemporal IDentity Network
(STIDNet) is proposed to comprehensively capture spatiotem-
poral identity forensics clues with multi-teacher knowledge
distillation. Extensive experiments demonstrate the superiority
and robustness of our method. In comparison with other
methods, it is surprising to find that our STIDNet can effec-
tively utilize the reference video as a kind of strong identity
prior, and accordingly promote the performance of forgery
detection. Moreover, two experienced teachers also provide
the equally essential spatiotemporal supervision in STIDNet,
thus promising the adequate forensics clues collection in
generalization and robustness evaluation. In the future, we
will explore how to take full advantage of the pretrained
identity extraction models, and further exploit more abundant
and discriminative identity characteristics for identity-aware
face forgery detection.
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