
From a Series of (Un)fortunate Events to Global
Explainability of Runtime Model-Based

Self-Adaptive Systems
Juan Marcelo Parra-Ullauri

SEA research group, EPS
Aston University

Birmingham, UK
j.parra-ullauri@aston.ac.uk

Antonio Garcı́a-Domı́nguez
SEA research group, EPS

Aston University
Birmingham, UK

a.garcia-dominguez@aston.ac.uk

Nelly Bencomo
Department of Computer Science

Durham University
Durham, UK

nelly.bencomo@durham.ac.uk

Abstract—Self-adaptive systems (SAS) increasingly use AI-
based approaches for their flexible decision-making, which often
appear to users as “black boxes”. These systems can exhibit
unexpected and surprising behaviours that may violate imposed
constraints. Runtime models (RTMs) have been used for SAS
management in order to provide capabilities needed to explain
reasons why the system present the current emergent behaviour.
Existing work on explanations derived from RTMs have focused
on justifying why the system has presented a specific behaviour
at a given time. Nevertheless, we argue that a more general scope
is required for understanding the entire evolution of the system,
rather than understanding the behaviour for a given instance or
situation. From the point of view of Explainable AI (XAI), the
latter type of explanations are called global explanations, whereas
understanding a single decision refers to local explanations.
Global explanations tend to promote trust on the system in
question, while local explanations tend to promote trust on a
specific decision. In this paper, we propose the use of event graph
models to construct global explanations from evolving RTMs.
Event graphs allow the representation of the system behaviour as
a state-time diagram, by indicating the occurrence of events and
their relationships. RTMs are incrementally queried to look for
situations of interest (i.e. events), using Complex Event Processing
(CEP) in order to analyze and correlate real-time events and
therefore, derive conclusions. The approach is applied to a AI-
enhanced SAS in the domain of mobile communications. The
encouraging results show that event graphs allow the system
to present a summarised overview of the system’s behaviour,
promoting understandability and trustworthiness.

Index Terms—Runtime Models, Global Explainability, Self-
Adaptive Systems, CEP, Event Graph Models, XAI

I. INTRODUCTION

The complexity of real-world problems requires modern
software systems to be able to autonomously adapt and modify
their behaviour at run-time, based on their observations to
cope with uncertain and dynamic environments [1]. In order
to tackle different complexities of these self-adaptive systems
(SAS), runtime models (RTMs) have been widely used [2].
RTMs underpins self-awareness, by allowing systems to ab-
stract their own state and behaviour in a way that is amenable
for automated adaptation strategies ([2], [3]). SAS can exhibit
unexpected and surprising behaviours due to their inherent

complexity ([4], [5]), which is exacerbated by the ubiquity
of Artificial Intelligence (AI)-based SAS [6].

RTMs provide abstraction, analysis and reasoning capabili-
ties needed to explain why the system shows a given emerging
behaviour [7]. Explainability in SAS can be described as the
capability of answering questions about the system’s past,
present and future behaviours. The answers to these questions
can explain why a decision was made or a particular state
was reached [8]. Moreover, explainability can be key to enable
understanding to promote the widespread adoption of SAS [8].
Current works on explanation of SAS based on RTMs have
focused on the justification of the system’s behaviour for a
specific point or points in time ([9], [10], [8]). Nonetheless, we
argue that a more general scope may be required to understand
the entire system’s reasoning rather than just a single decision
for a given point in time. An example is the case of developers
trying to comprehend how a system operates over time,
and to understand the logic and reasoning that lead to all
possible outcomes. According to the Explainable Artificial
Intelligence (XAI) and Explainable Reinforcement Learning
(XRL) community ([11], [12]), the latter type of explanations
are called global explanations, whereas understanding a single
decision refers to local explanations [13]. While a global
approach leads to users trusting a system, a local one leads
to trusting a specific decision [12]. On the other hand, event
graphs can conveniently model complex system behaviour as
state-time diagrams, by indicating the occurrence of events and
their relationships [14]. Furthermore, event graph models can
be constructed and visualized for system analysis, extracting
insights understandable to humans ([15], [16]).

In this paper, we propose the use of event graph mod-
els (which are built from the evolution of runtime mod-
els overtime) to represent global explanations in a human-
understandable way, based on the timeline of the running
system. For this purpose, runtime models are queried to
look for situations of interest (i.e., events) using Complex
Event Processing (CEP). CEP is an event-driven monitor-
ing approach [17] that can be used for extracting valuable
information from systems at runtime. Meaningful situations

(called complex events) can be specified by performing step-
wise correlation over streams of events [18]. These events
are analyzed and processed to build an event graph of the
system’s behaviour during execution, by focusing on specific
events triggered by state changes. In this paper, we present a
prototype of the system in a RL-based SAS to determine the
feasibility of the approach, while tackling XRL. The results
show that with the use of event graphs it is possible to
represent the system as a whole (global explanations) based on
events of interest. The approach can be used by developers and
operators to gain insights about the system. These explanations
could be used to prove or disprove hypotheses posed on the
system behaviour upon demand. A main contribution of the
paper is a demonstration of the potential for a new thread of
research that lies at the intersection of modeling and CEP to
support XAI.

The rest of the paper is structured as follows. Section II
presents the foundations that underlie this research. Section III
describes our envisioned proposal, and Section IV presents
the case study and its discussion. Section V compares this
work with other similar ones. Finally, Section VI presents the
conclusions and future work.

II. BACKGROUND

A. Why do we need Explanations?

Explanations provide a key capability to shape the human
understanding of the environment, especially when their per-
ceptions diverge from their expectations [19]. Explanations can
prove or refute user hypotheses or mental models about system
behaviour, and help fill the gaps in those incomplete mental
models for causal accountability [9]. Explaining the decision-
making of a system is becoming increasingly important to
enhance collaboration, and to increase confidence [20]. This
is ratified by the General Data Protection Regulation (GDPR)
law, which enshrines the right to explanation [21]. Considering
this, explanation-aware computing has received growing inter-
est due to the ubiquity and complexity of AI-based systems,
creating the notion of explainable AI (XAI) [11] to gain insight
into the “black boxes” associated with AI.

There are different arguments in favor of explanations in AI.
Adadi et al. stated four main ones in [13]: explain to justify
decisions impacting people, explain to control that the AI stays
within an envelope of good behaviour, explain to discover
knowledge from the learned behaviour, and explain to improve
the system by discovering its flaws. Besides the motivation for
explaining a system, it is also important to understand who or
what is going to consume the explanations. An explanation
could target humans (end-users and developers) or machines
(external systems that interact with the SAS, or the SAS
itself). If the consumer is the system itself, it is called a self-
explanation. Systems able to generate explanations for their
own internal use may be able to increase their robustness
in dealing with unexpected situations, as well as to improve
their future performance, by using explanations to refine their
internal models and reasoning processes [6]. In the present
work, we focus on explanations to control and explanations to

improve, targeting developers and SAS-knowledgeable users.
These two groups of users are familiar with developing and/or
using SAS and are hence interested in understanding, diag-
nosing, as well as refining such systems in a given application
context [22].

B. Types of explanations in XAI and XRL

There are different dimensions for classifying the ap-
proaches used in XAI and XRL [12], [13]. In this section
we focus on two dimensions: the scope of the explanations,
and the method for presenting the explanations.

(i) depending on the scope of the explanations, an approach
can be global or local [12]. Local explanations focus on
why the AI-system made a certain decision for one or a
group of instances (points in time) [12], whereas global
explanations focus on the whole AI-system and provide
an understanding of the overall decision process. A global
explanation aims to provide a general understanding of
how the system works [13].

(ii) depending on the presentation method, different ways to
communicate the explanations have been recognised [23].
Text-based explanations are the most common type pre-
sented in the form of natural language or logs ([24],
[25]). Visual representations such as graphs, plots, or
heatmaps among others are also used to depict explana-
tory information ([26], [27]). Other approaches include
expressive motions and indicators, as well as text-to-
speech for explaining robots [23].

The proposed approach aims to provide global explanations
that describe the overall system behaviour by tracking the
evolution of events on runtime models. The selected way for
presenting and communicating explanations are through visual
representations, specifically event graph models.

C. Tracking the Evolution of Runtime Models

Storage solutions for evolving models have traditionally
been divided into two types: file-based approaches such as
Git [28], or dedicated versioned model repositories such as
the Eclipse Connected Data Objects project [29]. Traditional
version control systems (VCS) by themselves do not provide
any support for scalable querying [7]. Barmpis et al. proposed
Hawk, a model indexer that mirrors model repositories stored
in traditional VCS into graph databases, simplifying and
speeding up queries [30].

In regard to using the runtime models of a SAS for ex-
plainability, different approaches have been proposed. Mouline
et al. presented a metamodel for interactive diagnosis of
adaptive systems which combines design-time and run-time
concerns [31]. The design-time parts cover the available
strategies and actions, whereas the run-time parts cover the
observations made and the decisions that were taken. The
authors propose allowing users to use temporal queries to find
out why a specific action was taken. Reynolds et al. proposed
in [10] automated provenance graphs to explain the behaviour
of SAS based on runtime models: provenance graphs relate the
entities, actors and activities in the system over time, recording

the reasons why the system reached its current state. Different
from provenance graphs, in our previous work [8] we proposed
temporal graphs and runtime models (i.e., temporal models) to
provide history-aware explanations. We proposed an execution
trace metamodel for linking the SAS goals and decisions to
its observations and reasoning. These works have focused on
justifying specific decisions (i.e., local explanations). However,
it is argued that an approach able to justify the whole logic of
a model and follow the entire reasoning is also required (i.e.,
global explanations).

D. Event-driven Monitoring, Complex Event Processing and
Event-Graph Models

In order to explain AI “black boxes”, their behaviour should
be observed. Event-driven monitoring is a common approach
to gain insights about a system [32]. This approach focuses
on detecting the occurrences of predefined events on one or
multiple incoming data streams, in order to notify interested
stakeholders and/or run some palliative processes [33]. Con-
cerning how to process those events in real time, complex
event processing (CEP) is a common choice ([34], [35],
[36]). CEP [17] is a technology that can capture, analyse
and correlate large amounts of data in real time in a domain-
agnostic way. CEP is used to identify complex meaningful cir-
cumstances and to respond to them as quickly as possible [34].
These situations are detected through a set of event patterns
that specify the conditions that incoming events to the system
must fulfil. An incoming event can be simple (something that
happens in the system at a point in time) or complex (patterns
of two or more events that happen over a period of time). Any
detected complex events can be fed back to the CEP system
for further matching which creates a hierarchy of complex
events types [36]. Event patterns are deployed to a CEP engine,
i.e., the software that allows the incoming data streams to be
analysed in real time according to the defined patterns [18].
Each CEP engine provides its own event processing language
(EPL) for defining the patterns to be deployed.

On the other hand, event graphs are a way of graphically
representing discrete-event simulation models [37]. System
dynamics are characterised by the events that change the
state of the system, and the logical and temporal relationships
among these events [14]. An event graph consists of nodes and
directed edges. Nodes represent events (changes in state), and
edges represent the temporal and logical relationships between
pairs of events [37]. Fig. 1 shows the basic building blocks of
an event graph. An event node n will change the system state
from s to fn(s). Each directed edge eod = (no, nd) indicates
that if the condition (i) is true when the origin event no occurs,
the destination event nd is to be scheduled after a time delay
t. If the event nd is always scheduled, the edge condition is
omitted, and the edge is called an unconditional edge. In the
present work, we show how event graphs constructed from
complex events triggered by CEP could be used to provide a
global explanation for the behaviour of a SAS.

no
t

eod
{s = fno(s)}

nd~

(i)

{s = fnd(s)}

Fig. 1: Basic building blocks of an event graph: events
(nodes n) and relationships (edges e) [14].

III. PROPOSAL: EVENT GRAPH MODELS FOR GLOBAL
EXPLAINABILITY

The previous section considered the available work on XAI
and XRL, tracking of model evolution, and complex event
processing. This section presents our proposal combining these
approaches to generate global explanations for SAS based
on runtime models. The solution proposed is based on the
definition of the black box explanation problem by Guidotti et
al. [38], to provide explanations through an interpretable and
transparent model [38]. The model should be able to mimic
the behaviour of the black box while being understandable
by humans. The main objective of our approach is to provide
global explanations to developers and knowledgeable users in
the SAS domain that describe the overall system behaviour
based on tracking the evolution of runtime models, helping to
control and to improve SAS. More specifically, we propose
the use of event-driven monitoring over the evolving runtime
models of the SAS to build and maintain an event graph (the
visual representation shown in Section II-B) that would explain
its behaviour shown over time.

We propose using CEP as the main technology to detect
temporal and causal dependencies between events, in order
to gain insights from events as they occur during execution.
Figure 2 depicts the proposed approach. It starts by detecting
simple events identified from the runtime models. These events
are filtered to detect the situations of interest. Afterwards,
the events are correlated using event patterns to group and
summarise the simple events. The results are finally displayed
as event graphs for visual global explainability. Further details
are listed below:

1) Simple Events: Simple events are occurrences of partic-
ular low-level patterns of something that happened at a point in
time [36]. These low-level occurrences can then be processed
and analysed to produce higher-level occurrences/events. For
example, the occurrence of a water drop (low-level) plus the
occurrence of the sound of a thunder (low-level) can suggest
that a storm (high-level) is approaching. A simple event has
a certain type and form. The form of an event may contain
fields, which are similar to class attributes in object-oriented
languages [39]. A simple event does not provide information
about the previous state. Furthermore, it does not have a
duration, existing only at a specific point of time [16]. In this
approach, simple events are the changes that take place in
the runtime model, such as the update of an instance of a

`
Cir

~

Sq

~

Ta

Event Filtering Event Grouping and
Summarising

Global
Explanations

RTM

`

Simple Events

Fig. 2: Global Explainability using Event Graphs

component. Whenever a change occurs in the model such as
creation and deletion of an instance, a simple event is detected.

2) Event Filtering: Before an explanation is constructed,
the simple events, identified as changes in the runtime model,
are classified. They produce complex events about the changes
in the high-level state of the SAS. The filtering can be per-
formed using different approaches, e.g., through incremental
graph pattern matching approaches as those from Ehmes et
al. [39], or through the use of EPL patterns in a CEP engine.
For this implementation, we use CEP for processing and
correlating events that match certain filtering criteria and help
to provide an understanding of the mechanism on which the
SAS based its decision making. The filtering patterns are
the criteria for relevant situations that will be the focus of
interest for the explanations. These patterns are implemented
and provided to the CEP engine by developers at design-time
and can be updated at runtime. When patterns are detected, the
engine automatically generates complex events that are sent to
the next stage for further processing. For example the creation
and deletion events are identified, tagged and let through to
the next stage for grouping and creation of the summary.

3) Event Grouping and Summarising: This stage enables
reaching the higher level of abstraction needed to provide the
summarised information and to convey explanations about the
system behaviour. The previous filtered events are grouped
by considering defined representative features such as its type
and time of occurrence. As in the event filtering stage, this
process is performed by using CEP. Event patterns containing
the grouping criteria are deployed to the CEP engine. These
patterns, when detected, generate higher-level complex events
that contain the information required to present an explanation,
which is performed in the next stage. For example, all the
creation events followed by a deletion event in the next point
in time are grouped as temporary occurrences.

4) Global Explanations through Event Graphs: Event
graphs are used to create a representation of the system
based on events of interest. This representation can offer an
approximation of how the system works, providing a global
explanation. By defining event patterns that analyse temporal
correlations between individual events, knowledge can be
derived in the form of complex events. Using complex events,

Fig. 3: Overview of the ABS (green) SAS from [40]

the aforementioned event graph is constructed with nodes
as events (e.g. creation and deletion), and edges to indicate
their temporal relationships. Afterwards, the event graph can
be visualised to facilitate the developer’s comprehension of
the system focused on events of interest (e.g. temporary
occurrences).

To demonstrate our envisioned solution for extracting global
explanations of a SAS, a substantial case study is presented
in the next section.

IV. CASE STUDY

A. System under study: Airborne Base Stations SAS

This section presents a SAS from the domain of mobile
communications. The case study (Fig. 3) shows airborne
base stations (ABS) that can potentially be deployed upon
a failure of the base stations (red in Fig. 3), which cause
communication difficulties for public safety and emergency
communications [40]. The SAS uses Reinforcement Learning
(RL) to move the ABS autonomously for providing con-
nectivity to as many users as possible [40]. RL is an AI
approach where agents learn actions based on their ability to
maximise a defined reward in a trial-and-error fashion [41]. In
RL, an agent is trained to select actions to interact with the
environment that maximise the cumulative reward resulting
from those interactions [12]. RL is usually introduced as a
Markov Decision Process (MDP), as it satisfies the Markov
property of sensation, action, and goal [40].

For the current implementation we have selected Q-
Learning as the RL algorithm. In Q-Learning, an agent uses an

action-value function Q to evaluate the expectation of the max-
imum future cumulative reward. The reward rt = Q(st, at) is
obtained from executing an action at at a given state st, which
provides agents with the capability of learning to act with the
aim of maximising the global reward [41].

The ABS SAS performs the necessary calculations to esti-
mate the Signal-to-Interference-plus-Noise Ratio (SINR) and
the Reference Signal Received Power (RSRP) towards its
goal of maximising rewards (users connected). The SINR and
RSRP values measure the signal quality of the communica-
tions between the ABS and end-user devices (e.g., mobile
phones). SINR and RSRP thresholds are used to determine
whether a station is considered to be “connected” or not [40].

B. Experimentation: Scenario

In this case study, the developers of the ABS SAS are
interested in studying the reasons why the system acted as
it did, both regarding single decisions and its overall perfor-
mance. For this purpose, a simulation of the SAS was run.
It consisted of a training run of 10 episodes and 2000 steps
for 2 ABSes with 1050 users scattered on a X-Y plane. The
observations and decisions made by the system during this
process are reshaped into the trace metamodel, as proposed
in our previous work [8]. The trace metamodel links the
system goals and decisions to its observations and reasoning
processes. An object diagram with an instance of the runtime
model at a certain step in the simulation is shown in Fig. 4.
The LOG contains DECISIONs and OBSERVATIONs for ABS
1 at Episode 9 and Step 199. The possible ACTIONs are
linked to their ACTIONBELIEFs that represent the estimated
values (Q-values), which maximise the cumulative MEASURE
(Global reward) at the given MEASURE (State).

As part of its use of RL, the system changes between
exploration and exploitation states. Exploration means trying
to discover new features of the environment by selecting a
sub-optimal action. On the other hand, exploitation is when
the agent chooses the best action according to what it already
knows [42]. The developers want to gain a general idea of
how the system changes between these two states: to do so,
the process depicted in Fig. 2 is followed.

C. Experimentation: Setup

1) Simple Events: These low-level occurrences represent
changes in the runtime model. To keep track of these changes,
each instance of the model is analysed. Examples of a simple
event are a DECISION being taken, or an ACTION being
performed.

2) Event Filtering: For the present prototype, we used
CEP to filter simple events focusing on decisions based on
their type (exploration or exploitation). Using the Esper1 CEP
engine, we defined event patterns for detecting situations of
interest and producing complex events about them. In order
to find when a decision was performed using exploration or
using exploitation, it is required to track the actual action

1https://www.espertech.com/esper/

Listing 1: Esper EPL pattern to select when the system
performs an action based on exploration.
@public @buseventtype @Name("Exploration")
expression selectedActionValue{

droneLog => case drone.qtable.action
when "east" then drone.qtable.position.east
when "west" then drone.qtable.position.west
when "south" then drone.qtable.position.south
when "north" then drone.qtable.position.north
when "stay" then drone.qtable.position.stay

end
}
expression maxValue{

droneLog => max(drone.qtable.position.east,
drone.qtable.position.west,
drone.qtable.position.south,
drone.qtable.position.north,
drone.qtable.position.stay)

}

insert into Exploration
select drone as Log
from pattern [every drone = DronesLog] as droneLog
where

maxValue(droneLog) != selectedActionValue(droneLog)
and maxValue(droneLog) != 0

taken and the Q-values (i.e., the ACTIONBELIEFs) for each
possible action at given state. On one hand, when the action
performed has the maximum Q-value then it could be said
that the decision was taken by exploitation. On the other
hand, if the action taken does not have the maximum Q-
value, the action is considered to be taken by exploration.
Considering the object diagram of Fig. 4, the ACTION selected
(represented by the reference from d1 to a5) was down, it can
be seen that it is the one with the maximum estimated value.
Thus, it can be concluded that the decision was performed
by exploitation. Listing 1 shows the Esper EPL pattern for
finding this situation. At each point in time, the Q-value of the
selected action (drone.qtable.action) is compared to
maxValue(), the maximum Q-value of the available actions.

3) Event Grouping and Summarisation: As mentioned in
Section II-D, complex events can be fed back to the system
to derive complex events based on other complex events. The
same CEP engine (Esper) is used to group and correlate events.
In this experiment, we focus on how the system chooses
between exploration and exploitation, tracking how often it
chooses each option, how often it stays within the same state,
and how often it changes from one state to the other. Aiming
to characterise this behaviour, a hierarchy of complex events
approach with 2 levels and 4 patterns was required. Complex
events marked as “Exploration” ER or “Exploitation” ET from
the event filtering stage are analysed on an event window for
the subsequent time point as shown in Fig. 5. If an action
performed by exploration at ti is followed by another action
performed by exploration at ti+1 (ER ⇒ ER), a counter is
incremented. The same process is applied for the different
scenarios: exploration followed by exploitation (ER ⇒ ET),
exploitation followed by exploitation (ET ⇒ ET), and ex-

:Log

right:ActionBelief

estimatedValue = 0.044150

d1:Decision

name = Decision Drone 1

o1:Observation

description = Observation for 9, 1999

m1:Measure

name = Drone

left:ActionBelief

estimatedValue = 0.007791

up:ActionBelief

estimatedValue = 0.105740

down:ActionBelief

estimatedValue = 0.245287

stay:ActionBelief

estimatedValue = -0.143230

m2:Measure

name = Episode

m3:Measure

name = Step

im1:IntegerMeasurement

value = 1

im2:IntegerMeasurement

value = 9

im3:IntegerMeasurement

value = 199

m4:Measure

name = Global reward

m5:Measure

name = Individual reward

im4:IntegerMeasurement

value = 203

im5:IntegerMeasurement

value = 69

m6:Measure

name = State

m7:Measure

name = SINR

dlm1:DoubleListMeasurem

value = [90, 10, 30]

dlm2:DoubleListMeasurem

value = [..,-inf,-inf,81

a1:Action

name = right

a2:Action

name = up

a3:Action

name = stay

a4:Action

name = left

a5:Action

name = down

Fig. 4: Runtime model object diagram based on the trace metamodel from [8]

ploitation followed by exploration (ET ⇒ ER).
Additionally, we wanted to analyze how these types of

actions affected the overall goal of the system (connecting as
many users as possible). With this purpose, further Esper EPL
event patterns following Algorithm 1 were defined. From the
different instances T of runtime model M , actions marked as
ER or ET are analysed and classified in the respective group.
Depending on the impact of an action on the reward for the
subsequent time point (it produces an increment, a decrease,
or no change), the counters cI, c0, cD are incremented. The
produced results are used to build global explanations in the
form of an event graph.

4) Global Explanations through Event Graphs: We focus
on events that occur over the entire execution of the case under
study: here whether the system acted based on exploration
(event ER) or exploitation (event ET). As shown in Fig. 6,
the event graph represents how frequently the system acts one
way or the other, and how often it changes between the two
behaviours. Additionally, we were interested on the effects
of these events on the system’s overall goal (rewards). These
ER and ET events produced the subsequent events; R+ the
event of an increase in the reward, R the event where the
reward stayed the same as in the previous time point and,
R− the event of a decrease in the reward. The features of the
summarised final event graph are:

• Events:
– Start: initial event.
– ER: action chosen by exploration.
– ET : action chosen by exploitation.
– R+: reward increased.
– R: reward stayed the same
– R−: reward decreased.

• State Variables:

Algorithm 1 EPL pattern to detect the impact of actions taken
by exploration and exploitation. M is the current runtime
model, T the set of instances of M , A the type of actions
either exploration or exploitation, R the rewards (users con-
nected), cI, c0, cD counters for the type of impact on rewards
(Increased, no impact, Decreased) of action A

1: Result = {}
2: cI, c0, cD = 0
3: for each t ∈ T do
4: for each a ∈ A do
5: if Ra(t) = Ra(t+ 1) then
6: Add (t, cI, c0 + +, cD) to Result
7: else if Ra(t) < Ra(t+ 1) then
8: Add (t, cI ++, c0, cD) to Result
9: else if Ra(t) > Ra(t+ 1) then

10: Add (t, cI, c0, cD ++) to Result
11: end if
12: end for
13: end for
14: Result: Sequences showing the impact of actions taken by

exploration or exploitation in the rewards over the time.

– NxR: number of ER events detected.
– NxT : number of ET events detected.
– Nr+: number of R+ events detected.
– Nr: number of R events detected.
– Nr−: number of R− events detected.

• Parameters:
– {To} = time delay between Start and ER.
– {Ta} = sequence of time delays between ER and ET .
– {Tb} = sequence of time delays between ET and ER.
– {Tc} = sequence of time delays between ET and ET .

A1(ER)

A2(ET)

A3(ER)

A4(ER)

Filtered
Events

Hierarchy of complex eventsEvent Window: Length 2
at t at t+1 at t+2 at t+3 ([1] ER => ER), ([2] ER => ET)

([3] ET => ET), ([4] ET => ER)

ER

ET

ER

ET

ER ER

ER ER

Time

X

[2]

[4]

[1]

Information passed
to callbacks

count [1] = 0, count [2] = 0
count [3] = 0, count [4] = 0

count [1] = 0, count [2] = 1
count [3] = 0, count [4] = 0

count [1] = 0, count [2] = 1
count [3] = 0, count [4] = 1

count [1] = 1, count [2] = 1
count [3] = 0, count [4] = 1

Fig. 5: Hierarchy of complex events. Ai = Actions marked as exploration (ER) or exploitation (ET) from the filter stage.

ET

ER

(b)

(c)

Tb

(a)

Ta

d(d)

Td

Tc

Start
To

{NxR++}

{NxT++}

R+

R

R-

(h) (i)

(j)

(g)

(f)

(e)TER

TET

{Nr+++}

{Nr++}

{Nr-++}

Fig. 6: Global explanations: exploration & exploitation in RL

– {Td} = sequence of time delays between ER and ER.
– {TER

} = sequence of time delays between ER and
[R+, R,R−] ∈ {To, Ta, Td}

– {TET
} = = sequence of time delays between ET and

[R+, R,R−] ∈ {Tb, Tc}
– (a): (U(0, 1) < pa) where pa = probability of a

ER ⇒ ET transition and U(0, 1) a random value cho-
sen in the [0, 1] range following a uniform distribution.

– (b): (U(0, 1) < pb) where pb = probability of a
ET ⇒ ER transition.

– (c): (U(0, 1) < pc) where pc = probability of a
ET ⇒ ET transition.

– (d): (U(0, 1) < pd) where pd = probability of a
ER ⇒ ER transition.

– (e): (U(0, 1) < pe) where pe = probability of a
ER ⇒ R+ transition.

– (f): (U(0, 1) < pf) where pf = probability of a
ER ⇒ R transition.

– (g): (U(0, 1) < pg) where pg = probability of a
ER ⇒ R− transition.

– (h): (U(0, 1) < ph) where ph = probability of a
ET ⇒ R+ transition.

– (i): (U(0, 1) < pi) where pi = probability of a
ET ⇒ R transition.

– (j): (U(0, 1) < pj) where pj = probability of a
ET ⇒ R− transition.

D. Results

For this experiment a Lenovo Thinkpad T480 with an Intel
i7-8550U CPU at 1.80GHz, running Ubuntu 18.04.2 LTS
and Oracle Java 1.8.0 201, using Paho MQTT 1.2.2, Eclipse
Hawk 2.0.0, and Esper 8.0.0 was used. As mentioned, the
experiment consisted of a training run over 20 000 iterations
for 2 ABSes. This produced 40 000 versions for the runtime
model (20 000 for each ABS). In total, 36 395 of the actions
(90.99%) were chosen by exploitation (the system was in
the ET state), whereas 3 605 actions (9.01%) were taken by
exploration (the system was in the ER state). The simulation
began with a “Start” event and always transitioned to ER

first, starting with exploration. From ER, it was observed
from the complex events that there was a 90.98% (3 280
out of 3 605) chance that the subsequent action is chosen by
exploitation (ET), and a 9.02% (325 out of 3 605) chance
that the system keeps exploring. Likewise, from ET it was
observed that there was a 90.96% (33 104 out of 36 395)
chance to stay in ET , and a 9.04% (3 291 out of 36 395)
chance to transition to ER. Moreover, from the 36 395 of
actions chosen by exploitation, 5 159 produced an increase
(R+) on the rewards, 5 101 produced a decrease (R−) on

the rewards and, 26 135 kept the same (R) reward from the
previous time point. Correspondingly, after an action taken by
exploration there was a 14.18% chance that the number of
users connected increased, a 14.01% chance that it decreased,
and a 71.81% that it stayed the same. In case of the 3 605
actions chosen by exploration 474 increased, 555 decreased
and 2 576 kept the same reward. Furthermore, there was a
chance of 13.15% that an action taken by exploration led to
an increase of the reward, a 15.4% that it led to a decrease
and a 71.45% chance that the reward stayed the same.

E. Discussion

For this initial case study, we knew in advance that the
ABS SAS changed between two behaviours (exploration and
exploitation), and sought to build an event graph that approx-
imated the way in which it changed between the two events.
These results can help to prove hypothesis about the systems
behaviour. With the global explanation presented, the user can
discover how frequent and interrelated are these events. With
this information, the developer was able to confirm that the
system was acting as expected by contrasting the results with
the hyper-parameters defined at design time in the RL agent
(e.g. in this case, a parameter for exploiting 90% of the time).

The changes in the runtime model used by the ABS SAS
were turned into simple events, filtered into complex events
representing the state that the system was in, and further
grouped into complex events representing the transitions. The
observed numbers of transitions between the two events and
to themselves were counted, and these counts were used to
populate the transition conditions in the event graph. The case
shown above is an example of how event filtering, grouping,
and summary capabilities can be used with the runtime models
of a SAS to complete an approximated model of its behaviour
from a global point of view. The level of detail of the
explanation could vary according to the needs of the reader
of the explanation. More events could be required, such as for
example which events typically follow after R+, R and R−.
The results are encouraging for a first study, but it has required
manual intervention: the states and transitions were manually
postulated by the users, as well as the hierarchy of events, and
the associated Esper EPL queries had to be manually coded.

Further work will involve the gradual lifting of these restric-
tions by providing additional automated support for populating
an event graph from the observed events on the runtime model.
A first approximation is to follow a model-driven approach
where a designer would model the basic structure of the
event graph to be populated, describing the conditions on
the runtime model that define each state and (potentially)
transition. The approach would then generate the appropriate
Esper EPL queries to produce the data needed to complete any
randomized transitions, and evaluate how close the template
event graph matches the actual system behaviour. Calculating
this “closeness of fit” is an area where known approaches in
the field of conformance checking within process mining could
be adapted [43]. In this first step presented in this paper, the

user receives support on collecting the data to complete an
event graph and evaluate it.

We will also study the automatic derivation of the recurrent
states of the system, by considering the most common situ-
ations that the runtime models can be in. In this regard, one
option would be to study the similarity of the various versions
of the runtime model against each other over time, and use
this similarity to cluster the models at certain values. In order
to manage the difficulty of clustering of complex entities like
runtime models, we envision that users would be provided with
an approach to specify the key model features to be used for
clustering, and the system would do the rest given a certain
target number of clusters. Those states could be later used by
the previously mentioned modelling environment, giving the
users some guidance to start the diagram.

The final step would be the reduction of the need for manual
definition of the expected transitions themselves, allowing
the approach to produce a first approximation of the most
common conditions. In a way, this is similar to the problem
of inferring a state machine from a collection of traces: while
it is known to be NP-complete, there have been advances
recently using SAT solvers that can manage longer traces by
operating in an incremental manner [44]. This problem has
also been considered in the search-based software engineering
space, with approximations inspired on living organisms such
as Avida-MDE [45].

V. RELATED WORK

A. Explainable Reinforcement learning

Different approaches have been proposed for explaining
AI algorithms. One popular approach is LIME (Local Inter-
pretable Model-agnostic Explanations) [46]. LIME focuses on
learning an interpretable model locally around a classifiers’
prediction. This work shows its flexibility by explaining dif-
ferent AI techniques. However, it focuses on local explanations
to understand a single prediction different from our work
that focuses on global explanations. An approach that tackles
global explainability is the one presented by Van der Waa et
al. in [25]. They propose illustrating how the actions affect
the total value of the policy allowing users to ask contrasting
questions about why the RL algorithm followed a certain
policy instead of an alternate simulated policy. Their approach
focuses on simulating what if scenarios to explain the different
possible outcomes which can be computationally costly and
adds latency which is an advantage of using CEP (low latency).
Cashmore et al. also used contrasting questions to design
an approach for explainable planning. It allowed developers
to see the consequences of forcing a particular action to be
taken (rather than the one suggested by the algorithm) [24]:
their work mentioned the risks in improperly interpreting
the question, and the difficulties in formalising questions
about plan structures. Further, the PIRL (Programmatically
Interpretable Reinforcement Learning) framework proposed by
Verma et al. in [47] focuses on generating interpretable and
verifiable agent policies at runtime. For this purpose, the RL
algorithm to be explained has to be modified, which contrasts

with our approach of monitoring the system in an post-hoc
way using CEP.

B. Runtime Monitoring

In regard to the event-driven and CEP-based approaches for
runtime monitoring, Fowler [48] proposed an event sourcing
model that facilitates the traceability of the changes over time
of the application state as an event sequence. However, event
sourcing can be costly in terms of performance [49] since
this model tracks every change leading up to a state. The
present work describes an event-driven approach integrating
CEP to both monitor event streams efficiently, and also deal
with scalability problems. Moser et al. [50] used CEP tech-
nology to create a flexible monitoring system with support for
causal and temporal dependencies between messages for WS-
BPEL service composition infrastructures. The proposal by
Moser addresses several requirements: unobtrusive platform
agnosticism, integration with other systems, multi-process
monitoring, and anomaly detection. Wang et al. [35] proposed
an staged monitoring approach using CEP to process RFID
data by devising RFID application logic into complex events.
Additionally, Romano et al. [51] proposed the detection of
contract violations through a quality of service (QoS) moni-
toring approach for cloud computing platforms. This approach
integrated Content Based Routing (CBR) with CEP. None of
the approaches shown above use CEP to provide explanations
in AI. In our most recent work [18], we conducted a feasibility
study on the combination of temporal models (TMs) and CEP
for software monitoring. In particular, the proposed architec-
ture was able to respond to meaningful events (using CEP)
as well as flexibly access relevant linked historical data (using
TMs) which motivated the present study. In this previous work,
we focused on monitoring the QoS of a runtime model-based
SAS while focusing on the system behaviour at specific points,
which differs from the proposal in the present paper.

VI. CONCLUSION AND FUTURE WORK

Existing approaches for integrating explanatory capabilities
into SAS have focused on local explanations, which help
stakeholders understand specific decisions. In this paper, we
propose a different but complementary research direction,
aimed at providing higher-level abstractions to underpin global
explanations in order to convey a general understanding of
the behaviour of the system. For this purpose, we propose
an event-driven monitoring approach for explanation, which
is based on the use of runtime models and the timeline of
the running system. The approach helps users to understand
the system behaviour in a summarised and understandable way
based on events of interest. We have shown a proof-of-concept
case study related to the training of a RL-based SAS.

In its current version, the approach requires the creation of
an event graph with manual intervention, where the nodes
are specified by a stakeholder as events of interest in the
system (e.g., whether the RL algorithm is using exploration or
exploitation), and the transitions are stochastic. The transition
probabilities are efficiently extracted from the actual running

system using Complex Event Processing: the system sends
runtime model change events, and event patterns filter and
group them into state events and then into state transition
events. Further research into this area will focus on reducing
the effort involved in creating and populating such an event
graph, to improve its expressive power beyond stochastic
transitions (i.e., including conditions on the runtime model).
The first step will be designing a model-driven approach to
describe the general structure of the event graph and the
equivalence classes in the state of the runtime model, and
produce the Esper EPL queries.

The model-driven approach offers different abstractions
from which different research lines can be underpinned. For
example, integrating results from the conformance checking
field within process mining [43] would allow users to evaluate
how well does the event graph representation fit later runs
of the system. Further, clustering over selected features of
the runtime model could extract the potential nodes of the
event graph, by finding the higher-level states that the system
is going through. Finally, finding the transitions between the
states has similarities with the problem of learning discrete
finite automata from traces [44].

In broader terms, we argue that there is potential in ex-
tracting approximated models from observed behaviour to
explain the general inner workings of systems. Also, there are
techniques such as CEP and formalisations that can prove to be
helpful. Such approaches will need to balance the accuracy and
conciseness of the models. It may have been possible to add
more states and transitions to produce a more detailed event
graph. However, this would result in a global explanation that
may be more difficult to understand. Beyond a certain point,
there is the risk of “overfitting” the observed behaviour due
to machine learning and data mining practice. Studying this
balance is also be part of our future work.

ACKNOWLEDGMENTS

This work has been partially sponsored by The Lerverhulme
Trust Grant No. RF-2019-548/9 and the EPSRC Research
Project Grant No. EP/T017627/1.

REFERENCES

[1] R. Murch, Autonomic computing. IBM Press, 2004.
[2] N. Bencomo, S. Götz, and H. Song, “Models@run.time: a guided tour

of the state-of-the-art and research challenges,” Software and Systems
Modeling, vol. 18, no. 5, 2019, springer-Verlag.

[3] G. Blair, N. Bencomo, and R. B. France, “Models@ run.time,” Com-
puter, vol. 42, no. 10, 2009.

[4] P. Sawyer, N. Bencomo, J. Whittle, E. Letier, and A. Finkelstein,
“Requirements-Aware Systems: A Research Agenda for RE for Self-
adaptive Systems,” in Proceedings of RE’10, Sep. 2010.

[5] N. Bencomo and A. Belaggoun, “A world full of surprises: bayesian
theory of surprise to quantify degrees of uncertainty,” Companion Pro-
ceedings of the 36th International Conference on Software Engineering,
2014.

[6] T. Roth-Berghofer, S. Schulz, D. B. Leake, and D. Bahls, “Explanation-
aware computing,” AI Magazine, 2007.

[7] A. Garcı́a-Domı́nguez, N. Bencomo, J. M. Parra-Ullauri, and L. Garcia,
“Querying and annotating model histories with time-aware patterns,”
in 2019 ACM/IEEE 22nd International Conference on Model Driven
Engineering Languages and Systems (MODELS). IEEE, 2019.

[8] J. M. Parra-Ullauri, A. Garcı́a-Domı́nguez, L. H. Garcı́a-Paucar, and
N. Bencomo, “Temporal models for history-aware explainability,” in
Proceedings of the 12th System Analysis and Modelling Conference,
2020.

[9] N. Li, J. Cámara, D. Garlan, and B. Schmerl, “Reasoning about when
to provide explanation for human-involved self-adaptive systems,” in
2020 IEEE International Conference on Autonomic Computing and Self-
Organizing Systems (ACSOS). IEEE, 2020.

[10] O. Reynolds, A. Garcı́a-Domı́nguez, and N. Bencomo, “Automated
provenance graphs for models@ run. time,” in Proceedings of the
23rd ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems: Companion Proceedings, 2020.

[11] W. Samek, T. Wiegand, and K.-R. Müller, “Explainable artificial in-
telligence: Understanding, visualizing and interpreting deep learning
models,” arXiv preprint arXiv:1708.08296, 2017.

[12] E. Puiutta and E. M. Veith, “Explainable reinforcement learning: A sur-
vey,” in International Cross-Domain Conference for Machine Learning
and Knowledge Extraction. Springer, 2020.

[13] A. Adadi and M. Berrada, “Peeking inside the black-box: a survey on
explainable artificial intelligence (xai),” IEEE access, vol. 6, 2018.

[14] E. L. Savage, L. W. Schruben, and E. Yücesan, “On the generality of
event-graph models,” INFORMS Journal on Computing, vol. 17, no. 1,
2005.

[15] M. Atzmueller, S. Bloemheuvel, and B. Kloepper, “A framework for
human-centered exploration of complex event log graphs,” in Discovery
Science, P. Kralj Novak, T. Šmuc, and S. Džeroski, Eds. Cham: Springer
International Publishing, 2019.

[16] D. Kranzlmüller, Event graph analysis for debugging massively parallel
programs. na, 2000.

[17] D. C. Luckham and B. Frasca, “Complex event processing in distributed
systems,” Computer Systems Laboratory Technical Report CSL-TR-98-
754. Stanford University, Stanford, vol. 28, 1998.

[18] J. M. Parra-Ullauri, A. Garcı́a-Domı́nguez, J. Boubeta-Puig,
N. Bencomo, and G. Ortiz, “Towards an architecture integrating
complex event processing and temporal graphs for service
monitoring,” in Proceedings of the 36th Annual ACM Symposium
on Applied Computing, ser. SAC ’21. New York, NY, USA:
Association for Computing Machinery, 2021. [Online]. Available:
https://doi.org/10.1145/3412841.3441923

[19] M. T. Cox, “Metareasoning, monitoring, and self-explanation,” Metar-
easoning: Thinking about thinking, 2011.

[20] B. Y. Lim, A. K. Dey, and D. Avrahami, “Why and why not explanations
improve the intelligibility of context-aware intelligent systems,” in
Proceedings of CHI 2009. ACM, 2009.

[21] P. Carey, Data protection: a practical guide to UK and EU law. Oxford
University Press, Inc., 2018.

[22] S. Liu, X. Wang, M. Liu, and J. Zhu, “Towards better analysis of
machine learning models: A visual analytics perspective,” Visual In-
formatics, vol. 1, no. 1, 2017.

[23] S. Anjomshoae, A. Najjar, D. Calvaresi, and K. Främling, “Explainable
agents and robots: Results from a systematic literature review,” in 18th
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2019), Montreal, Canada, May 13–17, 2019. International
Foundation for Autonomous Agents and Multiagent Systems, 2019.

[24] M. Cashmore, A. Collins, B. Krarup, S. Krivic, D. Magazzeni, and
D. Smith, “Towards explainable ai planning as a service,” arXiv preprint
arXiv:1908.05059, 2019.

[25] J. van der Waa, J. van Diggelen, K. v. d. Bosch, and M. Neerincx, “Con-
trastive explanations for reinforcement learning in terms of expected
consequences,” arXiv preprint arXiv:1807.08706, 2018.

[26] P. Sequeira and M. Gervasio, “Interestingness elements for explainable
reinforcement learning: Understanding agents’ capabilities and limita-
tions,” Artificial Intelligence, vol. 288, 2020.

[27] Z. Juozapaitis, A. Koul, A. Fern, M. Erwig, and F. Doshi-Velez,
“Explainable reinforcement learning via reward decomposition,” in
IJCAI/ECAI Workshop on Explainable Artificial Intelligence, 2019.

[28] Software Freedom Conservancy, “Git,” May 2021, date of last
access: May 14th, 2021. Archived in http://archive.is/DD6qG. [Online].
Available: https://git-scm.com/

[29] Eclipse Foundation, “CDO Model Repository,” date of last access: May
14th, 2021. Archived at http://archive.is/nYpNb. [Online]. Available:
http://www.eclipse.org/cdo/

[30] K. Barmpis and D. S. Kolovos, “Towards Scalable Querying of Large-
Scale Models,” in Proceedings of ECMFA’14, 2014.

[31] L. Mouline, A. Benelallam, F. Fouquet, J. Bourcier, and O. Barais, “A
temporal model for interactive diagnosis of adaptive systems,” in 2018
IEEE International Conference on Autonomic Computing, ICAC 2018,
Trento, Italy, September 3-7, 2018, 2018.

[32] R. Klar, A. Quick, and F. Sötz, “Tools for a Model-driven Instrumen-
tation for Monitoring,” in Proceedings of TOOLS 1991. Torino, Italy:
Elsevier, Feb. 1991.

[33] A. J. Demers, J. Gehrke, B. Panda, M. Riedewald, V. Sharma, W. M.
White et al., “Cayuga: A general purpose event monitoring system.” in
Cidr, vol. 7, 2007.

[34] J. Boubeta-Puig, G. Ortiz, and I. Medina-Bulo, “MEdit4CEP: A model-
driven solution for real-time decision making in SOA 2.0,” Knowledge-
Based Systems, vol. 89, 2015.

[35] F. Wang, S. Liu, P. Liu, and Y. Bai, “Bridging physical and virtual
worlds: complex event processing for rfid data streams,” in International
Conference on Extending Database Technology. Springer, 2006.

[36] E. Wu, Y. Diao, and S. Rizvi, “High-performance complex event
processing over streams,” in Proceedings of the 2006 ACM SIGMOD
international conference on Management of data, 2006.

[37] A. Buss, “Basic event graph modeling,” Simulation News Europe,
vol. 31, no. 1, 2001.

[38] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and
D. Pedreschi, “A survey of methods for explaining black box models,”
ACM computing surveys (CSUR), vol. 51, no. 5, 2018.

[39] S. Ehmes, L. Fritsche, and K. Altenhofen, “Grapel: Combining graph
pattern matching and complex event processing,” in International Con-
ference on Systems Modelling and Management. Springer, 2020.

[40] C. Zheng, S. Yang, J. M. Parra-Ullauri, A. Garcia-Dominguez, and
N. Bencomo, “Reward-reinforced generative adversarial networks for
multi-agent systems,” IEEE Transactions on Emerging Topics in Com-
putational Intelligence, 2021.

[41] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[42] M. Coggan, “Exploration and exploitation in reinforcement learning,”
Research supervised by Prof. Doina Precup, CRA-W DMP Project at
McGill University, 2004.

[43] C. dos Santos Garcia, A. Meincheim, E. R. Faria Junior,
M. R. Dallagassa, D. M. V. Sato, D. R. Carvalho, E. A. P.
Santos, and E. E. Scalabrin, “Process mining techniques
and applications – a systematic mapping study,” Expert
Systems with Applications, vol. 133, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0957417419303161

[44] F. Avellaneda and A. Petrenko, “Fsm inference from long traces,” in
Formal Methods, K. Havelund, J. Peleska, B. Roscoe, and E. de Vink,
Eds. Cham: Springer International Publishing, 2018.

[45] H. J. Goldsby and B. H. C. Cheng, “Automatically generating behavioral
models of adaptive systems to address uncertainty,” in Model Driven
Engineering Languages and Systems, K. Czarnecki, I. Ober, J.-M. Bruel,
A. Uhl, and M. Völter, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008.

[46] M. T. Ribeiro, S. Singh, and C. Guestrin, “” why should i trust you?”
explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and
data mining, 2016.

[47] A. Verma, V. Murali, R. Singh, P. Kohli, and S. Chaudhuri, “Pro-
grammatically interpretable reinforcement learning,” in International
Conference on Machine Learning. PMLR, 2018.

[48] M. Fowler, “Event sourcing,” 2005-12-12, last accessed on May
14th 2021. Archived at https://archive.is/U6Gsl. [Online]. Available:
https://martinfowler.com/eaaDev/EventSourcing.html

[49] M. Overeem, M. Spoor, and S. Jansen, “The dark side of event sourcing:
Managing data conversion,” in 2017 IEEE 24th International Conference
on Software Analysis, Evolution and Reengineering (SANER). IEEE,
2017.

[50] O. Moser, F. Rosenberg, and S. Dustdar, “Event Driven Monitoring
for Service Composition Infrastructures,” in Web Information Systems
Engineering – WISE 2010, ser. Lecture Notes in Computer Science,
L. Chen, P. Triantafillou, and T. Suel, Eds. Berlin, Heidelberg: Springer,
2010.

[51] L. Romano, D. De Mari, Z. Jerzak, and C. Fetzer, “A Novel Approach to
QoS Monitoring in the Cloud,” in 2011 First International Conference
on Data Compression, Communications and Processing, 2011.

