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Abstract—One of the current challenges in the context of
Metamorphic Testing (MT) is the formalization and validation
of metamorphic relations (MRs), as there is no single method
or homogeneous way of doing it. It is a part of this software
testing technique that, unlike others, is not yet developed. On
one hand, the fact of having an artifact that formally validates
these main elements in MT, facilitates the task for developers
and testers and ensures that the technique applied fulfills its
function with guarantees. On the other hand, nowadays, there
are numerous accessible tools based on highly consolidated
and mature constraint solvers that can help in this process
of validation. Interpreting MRs as a set of constraints, their
validation with these tools is directly applicable. This paper
presents a proposal based on a use case, in which MRs are
implemented as a set of restrictions. The experiments and the
results are described and future lines of research are outlined.

Index Terms—Metamorphic relations, constraint solvers, con-
straint programming systems, validation

I. INTRODUCTION

In the context of software testing, Metamorphic Testing
(MT) has proven to be a useful and effective technique in vari-
ous fields and disciplines. With a maturity of twenty years [1],
and several recent major reports backing it [2], [3], the number
of publications per year is increasing and an exclusive event
has already been created to discuss and exchange advances in
this technique [4], [5], [6]. Metamorphic Testing tries to solve
the oracle problem by using Metamorphic Relations (MRs),
which are known relationships between inputs and outputs
for multiple executions of the program to test [3]. However,
there are still challenges to be addressed and aspects that need
to be researched and developed, as highlighted in the recent
review by Chen et al. [3]. Among them, the second challenge
consists of “Systematic MR identification and selection”: in
the applications carried out, there is neither a unique format
nor a systematic way of identifying the MRs. In addition, there
are some studies that guide or propose some formats [7], [8],
[9], but this aspect of the technique is still in a preliminary
stage.

This paper presents a proof of concept with a case study
in which several MRs have been represented as a set of
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constraints. To this effect, we have investigated the most
commonly used constraint solvers and have opted for one of
them, MiniZinc. With this approach, once the MRs have been
represented as constraints, they can be automatically checked
for contradictions and used to generate the following test cases.

This paper is structured as follows. Section II highlights the
background behind this work. Next, Section III defines the
MiniZinc language. Then, Section IV shows how to represent
MRs in MiniZinc. Section V shows a case study. Next, Section
VI carries out an evaluation of the case study. Section VII
analyzes the threats to validity. Finally, the last section presents
the conclusions and future lines of research.

II. BACKGROUND

This section introduces the concepts necessary to understand
the rest of the work. It briefly describes the MT technique
and its main elements, as well as the most commonly used
constraint satisfaction programs nowadays.

A. Metamorphic Testing

This technique has as fundamental elements the MRs, which
are expected or existing properties on a series of different
inputs and their corresponding results for multiple evaluations
of an objective function [3].

We take as an example a function f , which given m +
1 natural numbers, n0, n1, . . . , nm, calculates their mean. If
the inputs are rearranged (for example, n0, n2, n1, ....nm), the
result has to be the same, since it is a known property of the
arithmetic mean. Formally, we can express this as:

MR1 ≡ (∃xL2 = perm((n0, n1, n2, ...nm), x))

−→ mean(L2) = mean((n0, n1, n2, ...nm))

where (n0, n1, n2, ...nm), is the original input and L2

will be the following test case (the x-th permutation of
(n0, n1, n2, ...nm)):

• Initial: ((n0, n1, . . . , nm),mean((n0, n1, . . . , nm)))
• Following: (L2,mean(L2))

If the output is different, a defect has been detected in f .
In general, given an initial test case t0, its next test case tf
(“follow-up test case”) is obtained by applying a MR to t0.



B. Constraint Programming Systems

In constraint programming (CP), a program is made up of
a set of constraints (a model), such that when it is executed
it finds a solution that satisfies those constraints. The exact
procedure is up to the constraint solver, a piece of software
which implements the appropriate decision processes. Users
have little to no control over this.

This paradigm has its beginnings in the 80s, although there
is some prior work. For example, SketchPad (Sutherland,
1963) is an interactive constraint-driven drawing tool, and
ALICE (1978) had a generic system of constraints. In the
1990s, they were used more in practice, in general as an
extension of logic programming languages: the approach was
called Constraint Logical Programming (CLP). Charme, CHIP
V4 or ILOG are from this stage. They are, in general,
software development environments and were used mainly
for the development of applications for planning (personnel,
production, etc.) and design problems [10].

Constraint Programming Systems (CPS) are being used
more often and in a wider range of domains ([11], [12]).
CPSes are based on different programming languages and
paradigms, and many different tools exist. Hakan provided
a recent comparison of the available CPS in [13]. For the
present work, a number of different options were studied,
considering the conciseness of the syntax, its ease of use, the
community behind the tool, the quality of the documentation
and their capabilities. Among others, JaCoP, Choco, Comet,
Gecode, Tailor/Essence, Zinc, and MiniZinc were studied.
Table I shows a fragment of that comparison.

Finally, the family of tools based on the Minizinc language
has been chosen for the following reasons:

• Many solvers can parse MiniZinc.
• MiniZinc is easy to model with, providing high level

elements and logical operators.
• There is plenty of documentation [14].
• It has a support community and recent updates.
• It is open source.

C. Constraint solving and MT

Constraint solving and metamorphic testing have been com-
bined in different ways in the past. However, the existing
works have focused on different aspects, and their approaches
are unlike ours. Firstly, Gotlieb and Botella in [15] use
constraint logic programming to find test cases that do not
satisfy a given MR. They present some examples where the
program can be proved to satisfy this MR. The paper presents a
prototype implementation of their approach using the existing
INKA test case generator [16].

On the other hand, a recently published paper [17] proposes
using MT to validate constraint programming systems. The
complexity of these systems makes testing them difficult
otherwise. Specifically, they evaluate using MT to validate the
Minion CPS [18]. They show that MT is effective in finding
artificial bugs introduced through random code mutation.

Fig. 1. Map of the provinces of Andalusia

1% Colouring Andalusia using this many colours
2int : nc = 3;
3
4var 1.. nc: al ; var 1.. nc: ca; var 1.. nc: co;
5var 1.. nc: gr ; var 1.. nc: hu; var 1.. nc: ja ;
6var 1.. nc: ma; var 1.. nc: se ;
7
8constraint al != gr ; constraint gr != ja ;
9constraint gr != co; constraint gr != ma;
10constraint ja != co; constraint co != ma;
11constraint co != se ; constraint ma != ca;
12constraint ma != se; constraint se != ca;
13constraint se != hu;
14
15solve satisfy ;
16
17output ["al =\( al )\ t ca=\(ca )\ n",
18"co=\(co )\ t gr=\(gr )\ t <hu=\(hu)\n",
19" ja =\( ja )\ t ma=\(ma)\n",
20"se =", show(se), " \n" ];

Listing 1. Sample MiniZinc model

III. THE MINIZINC LANGUAGE

MiniZinc is an open source constraint modeling lan-
guage [19]. It can be used to model constraint satisfaction
and optimization problems regardless of the resolver to be
used. The default distribution of MiniZinc includes a graphical
interface for ease of use, as well as examples [20]. The data file
is separate from the model file. Both are translated to obtain
a FlatZinc model, which depends on the specific solver used.

A MiniZinc model consists of a set of variable and param-
eter declarations, followed by a set of constraints. Model files
use the extension mzn, while data files use dzn.

To illustrate the different parts of the model, a simple
example is described in which the aim is to colour the map of
the 8 provinces of Andalusia of Figure 1 with three different
colours, so that the adjacent provinces have a different colour.

As we see in the example of Listing 1, the variable decla-
ration region is clearly set apart from the constraint definition
region. Optionally, a part where custom output formats can be
defined is allowed.



TABLE I
COMPARISON OF THE SYSTEMS, SUBJECTIVE FEATURE MATRIX (RANGE: 1..5 WHERE 5 IS VERY GOOD, 1 IS NOT GOOD (OR N/A))

Feature MiniZinc Comet Choco JaCoP Gecode Tailor/Essence Zinc

Ease of modelling 5 5 3 3 4 4 5
Documentation,site 3 4 4 4 4 3 4

Num. examples 4 4 3 4 4 3 3
Active community 2 5 4 2 4 1 2

Open source 5 1 5 5 5 3 4

Compiling andalucia .mzn
Running andalucia .mzn
al=2 ca=3
co=3 gr=1 <hu=2
ja=2 ma=2
se =1
−−−−−−−−−−
Finished in 17msec

Listing 2. Output produced by MiniZinc for sample model

The first line is a comment, beginning with the symbol
%. Then, int: nc = 3; is a parameter definition. In the
example, it represents the number of possible colors, as
described in the example are 3. Parameters are allowed in
which the type must be indicated. Supported types are: integer
numbers ( int), floating point numbers ( float ), Boolean (bool)
and strings (string ). It also supports arrays and sets.

The following lines that begin with var are variable dec-
larations. In addition to parameters, decision variables are
supported, which do not need to be initialized, but are given
values when the constraint set is executed. However, it is
necessary to define the domain of these variables, that is,
the set of values they can take. As we see in the example,
each variable refers to one of the provinces of Andalusia and
all can be set to any number between 1 and the value of
the parameter previously defined (nc), which represented the
number of possible colors.

Decision variables can be integers, Boolean values, floating
point numbers, or sets. It is also possible to define arrays
whose elements are decision variables.

Constraints specify the logical expressions that the decision
variables must satisfy in a valid solution to the model. They
are statements like constraint al != gr; that begin
with constraint. Relational operators are commonly used
in constraints: equal (=, ==), not equal (!=), greater than (>),
less than (<), greater than/equal (>=), and less than/equal (<=).

The solve statement indicates the type of problem (satis-
faction or minimization/maximization). For example, solve
satisfy is written for constraint satisfaction problems. Op-
tionally, an output statement can define what to print once
a solution has been found.

Once the model is written, it must be compiled, either in
the command line or in the graphical interface. The example
above produces the output in Listing 2. This output includes

Fig. 2. Loan Approval BPMN diagram

the compiled and executed files, the values for the decision
variables, and the execution time.

IV. MAPPING MR TO MINIZINC

In this section we try to describe the representation of the
MRs as a set of constraints in MiniZinc language. For this
purpose, MRs as defined in Section II involve both the initial
and the follow-up test cases. At a high level, the MiniZinc
program will be made up of two sections:

• Decision variable and parameter declarations are used to
define each value of interest for the initial and follow-up
test cases. The declarations are typed according to the
requirements of the test cases.
Whether to use decision variables or parameters depends
on the intended use of the program. The initial test and
follow-up test can both be inputs (parameters) or outputs
(decision variables) independently. The most typical sce-
nario, which would be generating a follow-up test case
from an initial one, would use parameters for the initial
test and decision variables for the follow-up test. The case
study will highlight other setups for different purposes.

• A set of constraints over the previously defined decision
variables and parameters. Some of the constraints may be
unique to the MR itself, while others may be related to
variable/parameter domains or the context of the problem.
These domain- or problem-related constraints are shared
among all MRs in the same program. MiniZinc allows
for modularity, so it is possible to extract all the shared
declarations and problem-based constraints into a sepa-
rate file, and include those from the MR-specific file. This
prevents code duplication.

V. CASE STUDY

This section will present a case study on the use of MiniZinc
to model the MR of a program. The program is a Web Service
(WS) composition that is common in the WS literature: the



LoanApproval composition. This implements a new WS on
top of other two: an assessor service and an approver service.
The Business Process Model and Notation (BPMN) diagram
for the composition is shown in Figure 2. The version of this
program is described in [21]. The customer requests a loan of
a certain amount: depending on the amount and the estimated
risk, the composition decides whether it is granted or not.

As can be seen in the diagram on Figure 2, there is a
threshold to decide whether an amount is “high”. In this
composition it is 10,000. There are two cases:

• For a low amount (< 10,000), the assessor service will
be asked to estimate the risks associated to granting the
loan. There are two possible answers:

– “Low” risk loans are approved straight away (final
reply is “true”).

– “High” risk loans require further checks and are
passed to the approver service, who has the final say.
The composition will approve the loan (answering
“true”) if the approver answers with “true”, and will
deny the loan (answering “false”) otherwise.

• For a high amount (≥ 10,000), the approver is called
directly and has the final say. The assessor does not
influence the execution in this case.

Based on the requirements of the composition, an initial set
of test cases has been established, and several MRs have been
proposed that the composition should meet. The following
sections will be devoted to describing, formalizing and using
these test cases and MRs through MiniZinc.

A. Metamorphic relations

We recall that each MR relates an initial test case (here
it is represented by 1) to a subsequent test case (here it is
represented by 2). The elements of each test case are:

• req_amountN is the amount requested by the customer,
N can be 1 or 2 (depending on the initial case or the next
case, generated by the MR).

• ap_replyN is the response from the approver service
(“true” if approved, “false” if not).

• as_replyN is the assessor’s response (“true” is high,
“false” if low).

• accepted is the final answer given to the customer.
Given these elements, we designed the following MRs by

considering the conditions that activated each of the available
execution paths, and how the perturbation of one of the values
would propagate to the others in each scenario (potentially
even changing the activated branch):

• MR1.1 (increasing high amount):
req_amount2 = req_amount1∗10∧ req_amount1 >=

10000 ∧ ap_reply2 = ap_reply1 ∧ as_reply2 =
as_reply1 =⇒ accepted2 = accepted1

• MR1.2 (increasing low amount):
req_amount2 = req_amount1 ∗ 10∧ req_amount1 <

10000 ∧ req_amount2 < 10000 ∧ ap_reply2 =
ap_reply1 ∧ as_reply2 = as_reply1 =⇒

accepted2 = accepted1

• MR1.3 (going from low to high amount):
req_amount2 = req_amount1 ∗ 10∧ req_amount1 <
10000 ∧ req_amount2 >= 10000 ∧ ap_reply2 =
ap_reply1 ∧ as_reply1 = true =⇒ accepted2 =

accepted1

• MR2.1 (reducing high amount):
req_amount2 = req_amount1/2 ∧ req_amount1 >=
10000 ∧ req_amount2 >= 10000 ∧ ap_reply2 =

ap_reply1 ∧ as_reply2 = as_reply1 =⇒
accepted2 = accepted1

• MR2.2 (reducing low amount):
req_amount2 = req_amount1/2 ∧ req_amount1 <
10000 ∧ req_amount2 < 10000 ∧ ap_reply2 =

ap_reply1 ∧ as_reply2 = as_reply1 =⇒
accepted2 = accepted1

• MR3 (negating the approver on a high amount):
req_amount2 = req_amount1 ∧ req_amount1 >=
10000 ∧ ap_reply2 = not(ap_reply1) ∧ as_reply2 =

as_reply1 =⇒ accepted2 = not(accepted1)

• MR4 (negating the assessor on a high amount):
req_amount2 = req_amount1 ∧ req_amount1 >=
10000 ∧ ap_reply2 = ap_reply1 ∧ as_reply2 =
not(as_reply1) =⇒ accepted2 = accepted1

It can be observed that in MR1.1, MR1.2, MR2.1 and
MR2.2 the following cases are similar to the initial cases,
except that an arithmetic operation has been performed on
the amount (multiply by a number in MR1.X, divide by an
integer in MR2.X).

On the other hand, in MR3 a logic operation (negation) has
been applied to the approver’s response, leaving the rest of
the data of the following case equal to those of the initial test
case. Note that the restriction that the amount be greater than
10,000 is specified.

In MR4, the advisor’s response has been modified by
applying a logical operation (negation), leaving the rest of
the data of the following case equal to those of the initial test
case. As in the previous case, the amount must be greater than
10,000 to make sense according to the composition diagram.

The following section codifies some of the MRs described
in MiniZinc language.

B. Mapping to MiniZinc

In this section, we are going to introduce the previous MRs
in MiniZinc, and prove their validity.

We note that the types of test case data to be run are
common to all MRs. It is also observed that there are re-
strictions that have to do with composition, therefore they are
also common to all MRs. This common part is extracted to a
separate file, which will be included from each MR file.

Listing 3 represents the common part of all MRs. The four
elements in Section V-A are listed for the old and new test
cases: the initial test case is a collection of parameters that
will be set through the .dzn file, and the follow-up test
case is a collection of decision variables that will contain



1 % PARAMETERS (OLD TEST CASE)
2 int : req_amount1;
3 bool: ap_reply1 ;
4 bool: as_reply1 ;
5 bool: accepted1;
6
7 % VARIABLES (NEW TEST CASE)
8 var int : req_amount2;
9 var bool: ap_reply2;

10 var bool: as_reply2 ;
11 var bool: accepted2;
12
13 %% COMPOSITION−SPECIFIC CONSTRAINTS
14 constraint req_amount1 >= 0;
15 constraint req_amount2 >= 0;

Listing 3. Common MiniZinc model for LoanApproval

include "loanAp_common.mzn";

%% MR−SPECIFIC CONSTRAINTS
constraint req amount1 < 10000 ;
constraint req amount2 < 10000 ;
constraint req_amount2 = req_amount1 ∗ 10;
constraint ap_reply2 = ap_reply1;
constraint as_reply2 = as_reply1;
constraint accepted2 = accepted1;

Listing 4. MiniZinc model of MR1.2 (increasing low amount) of
LoanApproval

MiniZinc’s solution to the defined constrains. There are some
basic constraints about the valid domain for the variables: loan
amounts must be non-negative.

This common part is shared across all MRs. Listings 4 to 6
show the MiniZinc mappings for MR1.2, MR3 and MR4. The
mapping from the original logic was relatively straightforward.
However, mapping constraints on more complex data struc-
tures may prove to be trickier: this will have to be evaluated
in more complex case studies.

include "loanAp_common.mzn";

%% MR−SPECIFIC CONSTRAINTS
constraint req_amount1 >= 10000 ;
constraint req_amount2 = req_amount1;
constraint ap_reply2 = not ap_reply1;
constraint as_reply2 = as_reply1;
constraint accepted2 = not accepted1;

Listing 5. MiniZinc model of MR3 (negating the approver on a high amount)
of LoanApproval

include "loanAp_common.mzn";

%% MR−SPECIFIC CONSTRAINTS
constraint req_amount1 >= 10000 ;
constraint req_amount2 = req_amount1;
constraint ap_reply2 = ap_reply1;
constraint as_reply2 = not as_reply1;
constraint accepted2 = accepted1;

Listing 6. MiniZinc model of MR4 (negating the assessor on a high amount)
of LoanApproval

1% VARIABLES (OLD TEST CASE)
2var int : req_amount1;
3var bool: ap_reply1 ;
4var bool: as_reply1 ;
5var bool: accepted1;
6
7% VARIABLES (NEW TEST CASE)
8var int : req_amount2;
9var bool: ap_reply2 ;
10var bool: as_reply2 ;
11var bool: accepted2;
12
13%% COMPOSITION−SPECIFIC CONSTRAINTS
14constraint req_amount1 >= 0;
15constraint req_amount2 >= 0;

Listing 7. Common MiniZinc model of LoanApproval with variables

C. Checking satisfiability

A minimum requirement that every MR must meet is that it
is not a logical contradiction. For example, an MR could not
require that a variable be smaller and larger than 10 at a time.
This check can be automated with MiniZinc by leaving all
identifiers in the program as decision variables. The MiniZinc
solver will find at least one case meeting all restrictions.

This is done by modifying the file of Listing 3 with the
common information, leaving it as shown in Listing 7. Some
examples of outputs are shown for some of the MRs cited
above. For MR1.2, we see the output generated by the system
in the Listing 8: the MR modified the requested amount by
multiplying it by a number (in this case 10).

It is interesting to see that the outputs of Listing 8 are not
valid test cases: when the risk is low (as_reply = false)
the credit should be approved (accepted = true). MRs
depend on the validity of their initial test cases, and the original
values (ending in “1”) did not represent an original case. In
this step we have only checked that MR1.2 is satisfiable: in
the following section we will check whether given an original
valid test case, it can produce a new valid test case as well.

All MRs were tested in this way, and they produced at least
one solution. Therefore, they were found to be satisfiable. In
the following section, the usual use of MRs to generate new
valid test cases from other valid test cases is shown.



Compiling LoanApMR1_2.mzn
Running LoanApMR1_2.mzn
req_amount1 = 1
ap_reply1 = false
as_reply1 = false
accepted1 = false
req_amount2 = 10
ap_reply2 = false
as_reply2 = false
accepted2 = false
−−−−−−−−−−
Finished in 46msec

Listing 8. MiniZinc output of MR1.2 of LoanApproval with variables

TABLE II
GENERATED TESTS, WITH SOURCE MRS (HIGH AMOUNT)

MR Initial test case Following test case

MR1.1 (15000, true, true, true) (150000, true,true, true)
MR2.1 (15000, true, true, true) (7500, true,true, true)
MR3 (15000, true, true, true) (15000, false,true, false)
MR4 (15000, true, true, true) (15000, true, false, true)

D. Generating new cases

Once the satisfiability of the proposed MRs has been
checked, this section tries to use these MRs to generate new
test cases (the follow-up test cases). These new test cases
extend the original test suite, and can detect errors which were
not picked up before.

This is the traditional use of MRs in the MT technique. In
MiniZinc, the common model file will use parameters for the
values of the original test, and variables for the following test.
The solver will compute the values the variables should take,
based on the values given for the parameters.

Three initial test cases were selected by looking at the
various paths available in Figure 2:

• For high amounts, (amount = 15000, ap_reply
= true, as_reply = false, accepted =
true) was used. While the common model file requires
a value for as_reply, this value did not impact
executions: as seen in Figure 2, the assessor is not used
for large amounts. Table II lists the generated test cases
and the MRs which produced them.

• For low amounts, there are two options: low risk or high
risk. For low risk, (amount = 150, ap_reply
= false, as_reply = false, accepted =
true) could be used with MR1.2 and MR2.2. For high
risk, (amount = 15000, ap_reply = false,
as_reply = true, accepted = false) was
used with MR1.3. Table III lists the generated test cases.

In short, the initial suite with three test cases was extended
with seven new test cases. The next section will check if these
new test cases resulted in a more effective test suite.

TABLE III
GENERATED TESTS, WITH SOURCE MRS (LOW AMOUNT)

MR Initial test case Following test case

MR1.2 (150, false, false, true) (1500, false,false, true)
MR2.2 (150, false, false, true) (75, false, false, true)
MR1.3 (1500, false, true, false) (15000, false, false, false)

VI. EVALUATION

After generating an extended test suite, the next step was
to see if these new test cases are useful or not: specifically,
whether they can detect defects where the original tests could
not. To do this, the MuBPEL mutation testing tool [22] was
used. MuBPEL implements the mutation operators defined by
Estero-Botaro et al. [23], [24], which produce mutants of the
original program with small changes — these may introduce
defects that a good test suite should pick up.

The following steps were performed with MuBPEL:
1) The composition was analyzed, finding the locations

where each mutation operator can be applied.
2) All possible mutants were generated.
3) The original composition was executed against each

initial test case, collecting its outputs.
4) The mutants were executed against the same initial test

cases, and their outputs are compared against those
of the original composition. If they produced different
outputs, they were said to be killed and were discarded
for the rest of the procedure.

5) The original composition was executed against each
following test cases, collecting its outputs.

6) The remaining mutants were executed against the fol-
lowing test cases, and their outputs were compared
against those of the original composition.

Useful MRs will produce tests that kill mutants (i.e. defects)
which the initial tests could not. On the other hand, if the MRs
fail to kill any more mutants we can either expand the set of
MRs, or try again with an expanded set of initial tests.

In this case study, the initial test suite consists of the three
test cases shown in the second column of Tables II and III.
Table IV collects the results of applying mutation testing on
Loan with the initial and following test suites.

MuBPEL produced 98 mutants from the Loan composition,
using 33 mutation operators. The initial test suite killed 50
mutants, and 2 of the mutants failed to deploy: 46 mutants
survived the initial test suite. The following test suite killed
34 of the remaining mutants, leaving 12 mutants still alive.

These results show that the initial test suite has been
improved through the above MRs: the expanded test suite (the
combination of initial and following tests) was able to detect
defects that the initial test suite could not.

Closer inspection of the 12 surviving mutants shows that 5
of them simply require very specific values of the amount
variable. One option would be to complement metamorphic
testing with a technique that took into account constant values
in the program. Another option would be adding a more



TABLE IV
MUBPEL VALIDATION RESULTS

Suite Total Killed Alive # tests

Initial 96 50 46 3
Follow-up 96 84 12 3 + 7

specific MR which changed the amount, and an initial test case
with an amount closer to the condition threshold (10,000).

The remaining 7 surviving mutants can be considered equiv-
alent: manual inspection of the differences did not show any
meaningful changes in behaviour.

VII. THREATS TO VALIDITY

The results in Section VI show that our approach can
automate the generation of new test cases by reusing an
existing constraint solver, and that the new test cases can detect
more defects. However, the results are subject to some threats
to validity: some of these are due to potential flaws in our
study (internal), while others limit the ability to generalize
our results to other programs and languages (external).

A. Internal threats

The initial test cases were created by hand, making sure
that there was one for each path through the composition.
It is possible that picking different initial values or creating a
different number of tests could have produced different results
for the study.

Seven MRs were defined by only modifying one of the
initial test values in each of them. This has made it easier to
create simple and understandable MRs, which can be quickly
mapped to the MiniZinc language. However, further study
would be required to see if this is the right number of MRs:
fewer MRs may have been just as good, or more MRs could
have improved results even further. It may be possible to define
MRs that subsume several of the MRs presented above.

Using constraint solvers to implement MRs helps validate
them against inconsistencies. However, it is still necessary
to validate the tests against our domain knowledge and our
expectations from the program: the MRs operate on the
assumption that the initial test is valid. Applying an MR as
implemented above to an invalid test case will only produce
another invalid test case.

In this work, the follow-up test cases have been evaluated by
checking if they could kill the surviving mutants. Ideally, the
metamorphic relations themselves should have been used as
test oracles to check the quality of the follow-up test cases. In
future work, we will change the experimental procedure to use
MRs as test oracles, as the concept of MRs would normally
suggest.

It would have been useful to check if simply generating
more test cases randomly would have produced similar results.
However, the focus of this study was on providing a guided
approach for test generation: it is unlikely that random gen-
eration would scale up to more complex programs under test.

We plan to add this evaluation to future studies with larger
programs.

B. External threats

The chosen case study (the LoanApproval composition)
is a small one. However, the proposed approach of using
constraint solvers to formalize MRs should be extensible to
larger programs written in other languages — particularly, the
MiniZinc solver has been used for much larger optimisation
problems. Most limitations would come from the expressive
power of the solver to be used.

While the selected case study used scalar value types (inte-
gers and booleans), there are extensions to MiniZinc that allow
for more complex data types, such as vectors or character
strings. These extensions must be supported by the solver,
though: MiniZinc is just a common constraint programming
language.

In this case study, all inputs and outputs were known. In
other domains and programs, only some of these may be
known. In this case, the set of parameters and variables would
be limited accordingly, based on the information that was
available.

In this first study, the designed MRs are all based on input-
only and output-only relations, as described by Chen [3].
However, looking at Figure 2, it would have been possible
to define an MR where the amount was under 10000 and the
risk was high: in that case, the reply from the composition
(an output) would have been that same as the reply from the
approver (an input). In future work, we will study further this
other type of MRs in more complex scenarios, using constraint
solvers.

VIII. CONCLUSION AND FUTURE WORK

Metamorphic testing (MT) has seen considerable advances
in the recent years, but still has some pending challenges.
One of them is the definition, design and implementation of
metamorphic relations (MRs) in a formal and uniform manner.
The present work has proposed a way to represent MRs
through MiniZinc, a popular constraint programming language
for which many solvers are available.

A case study has been presented to show the feasibility of
the approach, with MRs and initial test cases. With MiniZinc,
it was possible to both check the internal logical consistency
of the MRs and have them generated the following test
cases, with only minor changes to the constraint models. The
effectiveness of the following test cases was checked through
mutation testing: the following test cases were able to detect
34 defects that were not picked up by the initial test cases.

As future work to further improve defect detection, several
possibilities are raised: including new test cases, including new
MRs that generate new test cases, iterate the process, or using
the test cases generated as initial test cases in a subsequent
iteration of the process.

The proposed approach has given promising initial results
in this small case study. However, further evaluations need
to be performed with larger and more complex programs,



and the efficiency and effectiveness of the MRs must be
studied. Beyond expanding the set of case studies, future work
will include a systematic approach to elicit and specify MRs
through constraint programming, providing additional support
to users of metamorphic testing.
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