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Abstract

The intertidal gastropod Littorina saxatilis is a model system to study speciation and local adaptation. The repeated occur-
rence of distinct ecotypes showing different levels of genetic divergence makes L. saxatilis particularly suited to study dif-
ferent stages of the speciation continuum in the same lineage. A major finding is the presence of several large 
chromosomal inversions associated with the divergence of ecotypes and, specifically, the species offers a system to study 
the role of inversions in this divergence. The genome of L. saxatilis is 1.35 Gb and composed of 17 chromosomes. The first 
reference genome of the species was assembled using Illumina data, was highly fragmented (N50 of 44 kb), and was quite 
incomplete, with a BUSCO completeness of 80.1% on the Metazoan dataset. A linkage map of one full-sibling family en-
abled the placement of 587 Mbp of the genome into 17 linkage groups corresponding to the haploid number of chromo-
somes, but the fragmented nature of this reference genome limited the understanding of the interplay between divergent 
selection and gene flow during ecotype formation. Here, we present a newly generated reference genome that is highly 
contiguous, with a N50 of 67 Mb and 90.4% of the total assembly length placed in 17 super-scaffolds. It is also highly 
complete with a BUSCO completeness of 94.1% of the Metazoa dataset. This new reference will allow for investigations 
into the genomic regions implicated in ecotype formation as well as better characterization of the inversions and their role 
in speciation.
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Introduction
Speciation and local adaptation are key evolutionary pro-
cesses that have been successfully studied in the marine snail, 
Littorina saxatilis (Fig. 1A), and related taxa (Johannesson et al. 
2010; 2017; Rolán-Alvarez et al. 2015; Johannesson 2016; 
Blakeslee et al. 2021). Multiple ecotypes have been described 
in this species and its close relatives (Reid 1996; Johannesson 
et al. 2024). In particular, two ecotypes are repeatedly found 
in close proximity on the North Atlantic shores from Portugal 
to Norway and have been studied in detail. The “crab” eco-
type is typically found in areas with intense crab predation 
while the “wave” ecotype is present in shore areas battered 
by waves. Their distributions often partially overlap in contact 
zones. The two ecotypes differ in several traits such as shell 
size, shape, thickness, ornamentation, and behavior. Across 
the species distribution, gene flow is occurring at different 
rates between the two ecotypes. In Sweden, allelic frequen-
cies present a clinal pattern from crab to wave habitat 
(Westram et al. 2021), while in Spain, two distinct genetic 
clusters are found in upper and lower shore areas (Raffini 
et al. 2023). This particular configuration enables the charac-
terization of genomic, phenotypic, and organismal differ-
ences between pairs of populations from the same species 
at various stages of divergence, making L. saxatilis a most ap-
propriate system to study the speciation process (Johannesson 
et al. 2024). Ecotypes also form in other species, providing op-
portunities for comparative studies of divergence mechanisms 
for population pairs along the speciation continuum 
(Johannesson et al. 2024).

Moreover, several genomic inversions showing allelic 
frequency differences between ecotypes (Faria et al. 
2019a; Westram et al. 2021), sex association (Hearn 
et al. 2022), and association with adaptive traits (Koch 
et al. 2021; 2022) have been identified in L. saxatilis and 
other species of the genus (Le Moan et al. 2024; Reeve 
et al. 2023). Inversions can promote the process of local 
adaptation and speciation and are associated with ecotype 
divergence in several other natural systems, e.g. (Faria et al. 
2019b; Merot 2020).

Furthermore, L. saxatilis and its near relatives have direct 
development, i.e. no planktonic stage (Reid 1996), resulting 
in low dispersal; however, L. saxatilis is ovoviviparous while 

the other species lay eggs on the substrate. The shift in re-
productive mode compared to other members of the genus 
provides an outstanding opportunity to study the evolution 
of this key innovation (Stankowski et al. 2024).

Therefore, L. saxatilis and the whole Littorina genus con-
stitute a particularly interesting system to study the import-
ance of chromosomal inversions in local adaptation and 
reproductive isolation. However, for this, a contiguous ref-
erence genome is needed.

The L. saxatilis genome is composed of 17 chromosomes 
for a total haploid size of around 1.35 Gbp (Janson 1983; 
Birstein and Mikhailova 1990; Rolán-Alvarez et al. 1996). 
The first reference genome of L. saxatilis (hereafter 
“L. saxatilis genome v.1”) was 1.6 Gbp in length and com-
posed of 388,619 contigs placed in 116,262 scaffolds 
(Westram et al. 2018). This genome was highly fragmented 
with a N50 of ∼44 kbp, with only 10% of its contigs (repre-
senting 50% of its total length) placed into 17 linkage 
groups by linkage mapping, with a BUSCO completeness 
of 80.1% against the Metazoa reference (Westram et al. 
2018). This has constituted an obstacle to the precise char-
acterization of the genomic architecture of, for example, the 
divergence between ecotypes. Such characterization is ne-
cessary to properly address questions regarding speciation, 
local adaptation, and to achieve a detailed understanding of 
the involvement of inversions in these processes.

Here, we present the first chromosome scale, annotated 
genome of L. saxatilis (hereafter “L. saxatilis genome v.2”). 
This new reference constitutes a major improvement com-
pared to the existing one and will enable us to further en-
hance our understanding of evolution in this system.

Results and Discussion
A total of 24,891,710 PacBio CLR reads were generated re-
presenting 174,323,538,425 base pairs. Assembling with 
CANU (Koren et al. 2017) produced 23,755 contigs for a to-
tal length of 2,278,220,962 bases. After two rounds of 
haplotig removal with purge_dups (Guan et al. 2020) and 
long read polishing, the assembly contained 9,667 contigs 
for a total length of 1,261,606,186 bases.

While BUSCO (Manni et al. 2021) completeness re-
mained at 95.2% for the Metazoa dataset after the two 

Significance
The rough periwinkle, Littorina saxatilis, has become a model to study adaptation, evolutionary innovation, and speci-
ation, including the role of chromosomal inversions in these processes. Chromosomal inversions have also been iden-
tified in other species of Littorina providing a valuable opportunity for investigating their origin and evolution. Here, 
we present a new chromosome-scale reference genome of L. saxatilis generated from long reads and Hi-C chromatin 
proximity mapping replacing an earlier highly fragmented genome. This will enable detailed investigations of how in-
versions contribute to adaptation and reproductive isolation in L. saxatilis and related taxa, including studies of the ef-
fects of individual loci within and outside inversions.
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rounds of haplotig removal with purge_dups, the “complete 
and duplicated” score went from 72% to 2.9%. Merqury 
(Rhie et al. 2020) copy number spectra (spectra_cn) plots 
also showed a clear decrease in the amount of haplotypic du-
plication retained in the assembly (supplementary fig. S1, 
Supplementary Material online). Some level of haplotypic du-
plication could still be seen on the spectra graphs, but neither 
an additional round of purge_dups nor parameter tuning 
could remove the remaining haplotypic duplication. The 
high levels of haplotypic duplication obtained in the raw 
assembly are most likely due to the high heterozygosity 
of our genome (∼1.5% based on k-mer analysis using 
GenomeScope (Vurture et al. 2017)) combined with potential 
polymorphic inversions detected in the L. saxatilis genome 
being heterokaryotypic in the individual we sequenced. The 
final k-mer spectra (supplementary fig. S1, Supplementary 
Material online) showed a high number of k-mers only found 
in the assembly and a high frequency of k-mers found only in 
the reads set (peak of the black line around 30×). This is likely 
due to the fact that the Illumina reads used for the k-mer ana-
lysis came from a different individual than the individual used 
to assemble the genome.

Using Blobtoolkit (Laetsch and Blaxter 2017; Challis 
et al. 2020), a total of 55 contigs identified as bacteria 
or Ciliophora (known commensals of L. saxatilis (Fenchel 
1965)) were removed from the assembly prior to scaffolding.

A total of 280 million reads was obtained for Hi-C se-
quencing. The scaffolding produced a total of 4,322 
scaffolds, and the scaffolded assembly had a N50 of 
around 82 Mb. Several errors made by the automatic 
scaffolding procedure implemented in YaHS (Zhou et al. 
2023) were corrected by manual curation (Fig. 1B, 
supplementary fig. S2, Supplementary Material online). 

The final assembly was composed of 4,070 scaffolds includ-
ing 17 super-scaffolds (composed of contigs joined by gaps 
with a minimum arbitrary size of 200 bp) that contained 
90.4% of the total base pairs in the assembly (Fig. 2A, 
supplementary fig. S3, Supplementary Material online). 
The hexamer telomere motif of TTAGGG was found 
on 16 scaffolds, but given the noisy nature of CLR long 
reads, the assembly of these regions is likely inaccurate 
and under-representing the length of these regions. The 
generated assembly was highly contiguous with an N50 
of 67 Mb and a completeness BUSCO score of 98.4%, 
94.1%, and 79.2% for the Eukaryota, Metazoa, and 
Mollusca databases, respectively (Fig. 2B, supplementary 
table S1, Supplementary Material online). The 17 super- 
scaffolds corresponded to the number of expected chromo-
somes for L. saxatilis (Janson 1983, Birstein and Mikhailova 
1990, Rolán-Alvarez et al. 1996, Faria et al. 2019a) and 
were matched to the linkage groups from the L. saxatilis 
genome v.1 (supplementary table S2, Supplementary 
Material online). Using RepeatMasker (v 4.1.5) in quick 
search mode, simple repeats were identified comprising 
7.81% of the genome, while low complexity regions com-
prised 0.89% of the genome. Additionally, 199 small RNAs 
were identified.

There were 25,144 protein coding genes predicted by 
the Braker3 pipeline (Gabriel et al. 2023). The majority of 
these genes had only one protein predicted, but 3,486 
had two or more protein variants. The number of predicted 
proteins is slightly higher, but still quite similar to other gas-
tropods: 21,438 Gigantopelta aegis (Lan et al. 2021), 
21,533 Pomacea canaliculata (Liu et al. 2018), and 
23,800 Lottia gigantea (Simakov et al. 2013). BUSCO 
scores of completeness for the predicted proteins were 

FIG. 1.—Littorina saxatilis “crab” ecotype photograph and Hi-C map. A) Photograph of Littorina saxatilis “crab” ecotype on Swedish shore (Photo: Patrik 
Larsson). B) Hi-C contact map of the new Littorina saxatilis assembly after manual curation, visualized in HiGlass. Chromosomes are arranged in size order from 
left to right and top to bottom.
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93.0% and 82.2% for the Metazoa and Mollusca data-
bases, respectively (Fig. 2B, supplementary table S1, 
Supplementary Material online).

A mitochondrial genome of L. saxatilis was previously as-
sembled using the Illumina data (Marques et al. 2017) and 
is available on GenBank (NC_030595.1).

Conclusion
We combined PacBio CLR reads and Hi-C chromatin prox-
imity mapping data to generate the first chromosome-level 
genome assembly for L. saxatilis. The L. saxatilis genome v.2 
achieved a scaffold N50 of 67 Mb with more than 90% of 
the total assembly length (1.2 Gb) placed in 17 super- 
scaffolds. Moreover, this genome is highly contiguous 
with a 98% completeness BUSCO score on the Eukaryota 
dataset and contained 25,144 protein coding genes. The 
L. saxatilis genome v.2 constitutes a major improvement 
compared to the L. saxatilis genome v.1 and will underpin 
significant advances in the study of speciation and evolu-
tion, specifically the evolution of chromosomal inversions 
and their role in diversification within the Littorina genus.

Materials and Methods
High molecular weight DNA was extracted from fresh head 
and foot tissue of one female “crab” ecotype of L. saxatilis 
collected in Sweden (N58°52′28″, E11°6′59″) following the 

protocol developed by Grohme et al. (2018) with minor ad-
justments. The protocol consisted of three parts: mucus re-
moval using N-acetyl-L-cysteine, gDNA isolation using a 
phenol–chloroform-isoamyl alcohol solution and post- 
purification of gDNA using CTAB (see full protocol in 
Supplementary Material). The library was prepared with 
PacBio’s SMRTbell Express Template Prep Kit 2.0, and se-
quenced using the Sequel Binding Kit 3.0, Sequel 
Sequencing Plate 3.0, and Sequel DNA Internal Control 
3.0. A total of 16 PacBio ZMW cells were sequenced using 
a Sequel instrument. Raw PacBio BAM files were converted 
to fastq files using bam2fastq v1.0.0 (https://github.com/ 
jts/bam2fastq) from the SMRT suite. CLR PacBio raw reads 
were assembled using CANU v2.0 (Koren et al. 2017) with 
default parameters. Haplotypic duplications were removed 
from the raw assembly using the purge_dups v1.2.5 (Guan 
et al. 2020) pipeline two times in a row with default para-
meters. We used the short Illumina reads that were as-
sembled to generate L. saxatilis genome v.1 (Westram 
et al. 2018) in the Merqury, Merfin, and Nextpolish analysis 
described hereafter. Levels of haplotypic duplication at the 
different steps were assessed using spectra-cn plot from 
Merqury (Rhie et al. 2020) based on Illumina reads. The ob-
tained genome was polished first using the raw CLR long 
reads with the arrow_grid wrapper (Chin et al. 2013; 
Koren et al. 2017). The vcf file obtained was corrected using 
Merfin v1.1-development (Formenti et al. 2022a) based on 
Illumina reads. This polishing procedure was run two times. 

FIG. 2.—Genome assembly of Littorina saxatilis: metrics. A) BlobToolKit Snailplot shows N50 metrics. The main plot is divided into 1,000 size-ordered bins 
around the circumference with each bin representing 0.1% of the 1,256,336,603 bp assembly. The distribution of scaffold lengths is shown in dark gray with 
the plot radius scaled to the longest scaffold present in the assembly (111,777,080 bp, the smallest of the three arcs, also shown in red). Next two sectors in 
size (orange and pale-orange arcs) show the N50 and N90 scaffold lengths (67,515,031 and 44,900,717 bp), respectively. The pale gray spiral shows the 
cumulative scaffold count on a log scale with white scale lines showing successive orders of magnitude. The dark-blue and pale-blue area around the outside 
of the plot shows the distribution of GC, AT, and N percentages in the same bins as the inner plot. B) BUSCO scores for the genome and predicted proteins for 
the Eukaryota, Metazoa, and Mollusca datasets.
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Finally, raw Illumina reads were trimmed and filtered using 
fastp (Chen et al. 2018) with the following parameters 
--cut_front --cut_front_window_size 1 --cut_front_mean_ 
quality 30 --cut_right --cut_right_mean_quality 3. The ob-
tained quality filtered reads were used in a final round of 
polishing implemented in NextPolish v1.3.1 (Hu et al. 
2020). Prior to scaffolding, contigs were examined for con-
taminants using the Blobtoolkit v2.6.4 pipeline (Laetsch 
and Blaxter 2017; Challis et al. 2020) and 55 of the contigs 
were removed from the assembly.

A different “crab” ecotype female snail from the same 
location in Sweden was used to build a Dovetail Hi-C library 
using the DpnII enzyme. Paired end reads (2 × 150 bp) were 
generated at SciLife on one lane of a NovaSeq 6000 SP in-
strument. Raw Hi-C reads were mapped to the contigs fol-
lowing the Arima mapping pipeline (https://github.com/ 
ArimaGenomics/mapping_pipeline/tree/master), and con-
tigs were placed into scaffolds using YaHS v1.1a-r3 (Zhou 
et al. 2023). The obtained scaffolded genome was further 
manually curated (Howe et al. 2021) using pretext 
(https://github.com/wtsi-hpag/PretextView), and HiGlass 
(Kerpedjiev et al. 2018).

Finally, assembly contiguity and completeness were as-
sessed using gfastats v1.3.6 v5.0.2 (Formenti et al. 2022b) 
(supplementary table S3, Supplementary Material online), 
BUSCO v5.4.7 (Manni et al. 2021) (supplementary table 
S2, Supplementary Material online), and the Blobtoolkit 
v2.6.4 pipeline (Laetsch and Blaxter 2017; Challis et al. 
2020) (supplementary fig. S3, Supplementary Material
online).

To establish correspondence between the super- 
scaffolds from L. saxatilis genome v.1 and the linkage 
groups of L. saxatilis genome v.2, the following procedure 
was followed. For each SNP placed in the linkage map from 
the L. saxatilis genome v.1, a 200 bp sequence centered on 
the SNP was extracted and mapped to the L. saxatilis gen-
ome v.2 using minimap2 (Li 2018). Alignments were fil-
tered by removing duplicates and partial mappings that 
did not include the SNP. Then for each 200 bp fragment, 
the best alignment was selected. RepeatMasker (v 4.1.5) 
was used to identify simple repeats using the quick search 
option (http://www.repeatmasker.org).

RNAseq data from GenBank BioProject PRJNA550990 
along with RNAseq from mantle tissue from three “crab” 
ecotype females from Sweden were mapped to the genome 
assembly using HiSat2 v2.2.1 (Kim et al. 2019). Reads were 
sorted and filtered to include only mapped reads using 
SAMtools v 1.16.1 (Li et al. 2009). BRAKER3 (Gabriel et al. 
2023) and the algorithms therein (Stanke et al. 2006; 
Gotoh 2008; Iwata and Gotoh 2012; Hoff et al. 2016; 
Hoff et al. 2019; Brůna et al. 2021, and Stanke et al. 
2008) were used to predict protein coding genes in the as-
sembly using both the RNAseq data from L. saxatilis and 
mollusk proteins from OrthoDBv11 (Kuznetsov et al. 

2023). In addition to the algorithms employed by 
BRAKER3, the pipeline also uses various tools to gather evi-
dence for protein sequences from the RNAseq data and the 
protein data using the following tools: DIAMOND (Buchfink 
et al. 2015), Stringtie2 (Kovaka et al. 2019), GFF utilities 
(Pertea and Pertea 2020), BamTools (Barnett et al. 2011), 
and BEDTools (Quinlan 2014). The protein evidence ob-
tained was used for training GeneMark-EPT (Brůna et al. 
2023) and later, AUGUSTUS (Stanke et al. 2006), and 
then the two sets of predictions were combined using 
TSEBRA (Gabriel et al. 2023). The Braker3 Docker container 
version v.1.0.4 was used for this analysis. BLASTP was 
then used to identify the predicted proteins using a 
custom database of mollusk proteins (taxid 6447) from 
OrthoDBv11 (Kuznetsov et al. 2023) (supplementary table 
S4, Supplementary Material online).

Supplementary Material
Supplementary material is available at Genome Biology and 
Evolution online.
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Data Availability
The PacBio CLR sequencing reads, the sequences from the 
Hi-C library, and the Illumina short reads are deposited 
in NCBI under accession number PRJNA850123. The tran-
scriptome short-read sequences were deposited under 
accession number PRJNA550990. This Whole Genome 
Shotgun project has been deposited at DDBJ/ENA/ 
GenBank under the accession JBAMIC000000000. The ver-
sion described in this paper is version JBAMIC010000000.
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Brůna T, Hoff KJ, Lomsadze A, Stanke M, Borodovsky M. BRAKER2: auto-
matic eukaryotic genome annotation with GeneMark-EP+ and 
AUGUSTUS supported by a protein database. NAR Genom 
Bioinform. 2021:3(1):lqaa108. https://doi.org/10.1093/nargab/ 
lqaa108.
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Rafajlović M, Panova M, Ravinet M, Johannesson K, et al. Multiple 
chromosomal rearrangements in a hybrid zone between Littorina 
saxatilis ecotypes. Mol Ecol. 2019a:28(6):1375–1393. https://doi. 
org/10.1111/mec.14972.

Faria R, Johannesson K, Butlin RK, Westram AM. Evolving inversions. 
Trends Ecol Evol. 2019b:34(3):239–248. https://doi.org/10.1016/ 
j.tree.2018.12.005.

Fenchel T. Ciliates from Scandinavian molluscs. Ophelia. 1965:2(1): 
71–174. https://doi.org/10.1080/00785326.1965.10409598.

Formenti G, Rhie A, Walenz BP, Thibaud-Nissen F, Shafin K, Koren S, 
Myers EW, Jarvis ED, Phillippy AM. Merfin: improved variant filter-
ing, assembly evaluation and polishing via k-mer validation. Nat 
Methods. 2022a:19(6):696–704. https://doi.org/10.1038/s41592- 
022-01445-y.

Formenti G, Abueg L, Brajuka A, Brajuka N, Gallardo-Alba C, Giani A, 
Fedrigo O, Jarvis ED. Gfastats: conversion, evaluation and manipu-
lation of genome sequences using assembly graphs. 
Bioinformatics. 2022b:38(17):4214–4216. https://doi.org/10. 
1093/bioinformatics/btac460.

Gabriel L, Brůna T, Hoff KJ, Ebel M, Lomsadze A, Borodovsky M, Stanke 
M. BRAKER3: fully automated genome annotation using RNA-seq 
and protein evidence with GeneMark-ETP, AUGUSTUS and 
TSEBRA. bioRxiv 544449. https://doi.org/10.1101/2023.06.10. 
544449, 3 September 2023, preprint: not peer reviewed

Gotoh O. A space-efficient and accurate method for mapping and 
aligning cDNA sequences onto genomic sequence. Nucleic Acids 
Res. 2008:36(8):2630–2638. https://doi.org/10.1093/nar/gkn105.

Grohme MA, Vila-Farré M, Rink JC. Small- and large-scale high mo-
lecular weight genomic DNA extraction from planarians. 
Methods Mol Biol. 2018:1774:267–275. https://doi.org/10.1007/ 
978-1-4939-7802-1_7.

Guan D, McCarthy SA, Wood J, Howe K, Wang Y, Durbin R. Identifying 
and removing haplotypic duplication in primary genome assem-
blies. Bioinformatics. 2020:36(9):2896–2898. https://doi.org/10. 
1093/bioinformatics/btaa025.

Hearn KE, Koch EL, Stankowski S, Butlin RK, Faria R, Johannesson K, 
Westram AM. Differing associations between sex determination 
and sex-linked inversions in two ecotypes of Littorina saxatilis. 
Evol Lett. 2022:6(5):358–374. https://doi.org/10.1002/evl3.295.

Hoff KJ, Lange S, Lomsadze A, Borodovsky M, Stanke M. BRAKER1: 
unsupervised RNA-Seq-based genome annotation with 
GeneMark-ET and AUGUSTUS. Bioinformatics. 2016:32(5): 
767–769. https://doi.org/10.1093/bioinformatics/btv661.

Hoff KJ, Lomsadze A, Borodovsky M, Stanke M. Whole-genome anno-
tation with BRAKER. Methods Mol Biol. 2019:1962:65–95. https:// 
doi.org/10.1007/978-1-4939-9173-0_5.

Howe K, Chow W, Collins J, Pelan S, Pointon D-L, Sims Y, Torrance J, 
Tracey A, Wood J. Significantly improving the quality of genome 
assemblies through curation. Gigascience. 2021:10(1):giaa153. 
https://doi.org/10.1093/gigascience/giaa153.

Hu J, Fan J, Sun Z, Liu S. NextPolish: a fast and efficient genome polish-
ing tool for long-read assembly. Bioinformatics. 2020:36(7): 
2253–2255. https://doi.org/10.1093/bioinformatics/btz891.

Iwata H, Gotoh O. Benchmarking spliced alignment programs includ-
ing Spaln2, an extended version of Spaln that incorporates add-
itional species-specific features. Nucleic Acids Res. 2012:40(20): 
e161–e161. https://doi.org/10.1093/nar/gks708.

Janson K. Chromosome number in two phenotypically distinct popula-
tions of Littorina saxatilis Olivi, and in specimens of the Littorina obtu-
sata (L.) species-complex. J. Molluscan Stud. 1983:49(3):224–227. 
https://doi.org/10.1093/oxfordjournals.mollus.a065716.

Johannesson K. What can be learnt from a snail? Evol Appl. 2016:9(1): 
153–165. https://doi.org/10.1111/eva.12277.

Johannesson K, Butlin RK, Panova M, Westram AM. Mechanisms of 
adaptive divergence and speciation in Littorina saxatilis: integrat-
ing knowledge from ecology and genetics with new data emer-
ging from genomic studies. In: Oleksiak M Rajora O, editors. 
Population genomics: marine organisms. Population genomics. 
Cham: Springer; 2017. p. 277–301.

Johannesson K, Faria R, Le Moan A, Rafajlović M, Westram AM, Butlin 
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