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mization, principally because they offer the potential for a
parallel search aimed at both good convergence and good
distribution. Despite arguments for the existence of a meta-
trade-off between convergence and distribution in a posteriori
methods [2], good performance can generally be achieved
for decision problems with two or three conflicting criteria.
However recent evidence has indicated that the meta-trade-
off becomes increasingly difficult to manage as the number
of conflicting criteria rises beyond three [3]–[5]. Much of the
analysis has focused on Pareto-based algorithms, where the
convergence process relies on a partial ordering of candidate
solutions imposed by a dominance operator. This partial or-
dering collapses rapidly with increasing numbers of conflicting
criteria, leading to either a random search or an illusory search
for a ‘good’ distribution, depending on the mechanics of the
algorithm [4], [6].

Decomposition-based methods, which transform a single
multi-objective decision problem into multiple single-objective
problems to be solved in parallel [7], [8], have recently gained
favour as they are believed not to possess the convergence
issues associated with the dominance operator. Although this
assertion feels intuitive – and is reinforced by empirical
findings [5], [6], [8]–[10] – it cannot logically be concluded
that decomposition-based methods are not affected by similar
issues. For example, the Chebyshev scalarizing function, which
is very often employed in decomposition-based methods, is
identical to the dominance relation in terms of the probability
of finding an improved solution, which has implications for
convergence [11].

The seminal decomposition-based methods, e.g. MOEA/D
[8], have employed a set of weighting vectors that is unchanged
over the course of the optimization. This means that the
subproblems to be solved remain fixed. If we are prepared to
speculate that, in Pareto-based methods, the dominance relation
is equivalent to a Chebyshev scalarizing function under certain
conditions, then we can reinterpret a population of candidate
solutions as defining a set of subproblems to be solved. Since
the population changes during the course of the optimization,
this implies that the subproblems are varying also. Intuitively,
trying to solve a fixed problem is easier than trying to solve one
that varies. Could this be the key reason why decomposition-
based methods offer improved performance?

Decomposition-based methods have a requirement to iden-
tify a suitable distribution of weighting vectors that can pro-
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I. INTRODUCTION

Many decision problems have multiple performance criteria, 
or objectives, that must be considered simultaneously. If these 
objectives are in conflict, such that an improvement in one 
objective cannot be achieved without detriment to another 
objective, then the problem will have more than one solution 
that can be considered optimal. In order to select a single 
solution to the problem, it is necessary to resolve the trade-
off between competing solutions by introducing subjective 
preferences that a decision-maker has for varying levels of 
performance across the objectives.

Expression of preferences is often difficult for a decision-
maker, and so the analyst will typically develop a decision 
support system that attempts to reveal the performance trade-
offs prior to eliciting the preference information that can 
identify a single desired solution. The task of the optimizer 
in this system is to find a set of Pareto optimal solutions that 
can well describe the trade-offs. This process is known as a 
posteriori multi-objective optimization [1, pp. 63]. The quality 
of the solution set is measured in terms of (i) the convergence, 
or proximity, to global optimality; and (ii) the distribution, or 
diversity, of solutions across the range of available trade-offs.

Population-based optimizers, such as evolutionary algo-
rithms, have proved a popular choice for a posteriori opti-



duce a desired (usually even) distribution of Pareto optimal
solutions. Whilst pioneers of decomposition recognised this
requirement, they remained somewhat incoherent on the extent
to which proposed weighting schemes (e.g. even distribution
on the (k − 1)-simplex [8]), when combined with favoured
scalarizing functions (e.g. Chebyshev [8]), would produce
the desired outcome. This incoherence provided an early
motivation for adaptive approaches that would progressively
identify a suitable distribution of weighting vectors during the
optimization process. In recent work, [12], we have shown that
if the geometry of the problem is known then an optimal set of
weighting vectors can, in fact, be readily identified. However,
given that the geometry is rarely available in practice for real-
world problems, the motivation for adaptation remains.

In one of the earliest attempts at adaptation, Jin et al.
[13], [14] employed concepts from control theory, e.g. bang-
bang control, to sweep the entire Pareto front in the hope of
obtaining a representative Pareto optimal set. Although these
ideas are inspired, there are several questions that are troubling.
For instance, what would be an optimal rate of change for the
weighting vectors, or, how would the weighting vectors be
scanned for problems with more than two objectives? Later,
Jaszkiewicz [15] suggested the use of uniformly distributed
weighting vectors on the (k − 1)-simplex. As in the pre-
vious case, the method introduced by Jaszkiewicz was not
constrained to a particular region of the Pareto front; rather,
weighting vectors were allowed to change across the entire
(k − 1)-simplex thus scanning the entire front. A similar
method to [15] was also employed by Mahfouf et al. [16], cou-
pled with a particle swarm optimization algorithm. In a more
elaborate method, Jiang et al. [17], [18] attempted to identify
the Pareto front geometry and then use this information to
find a set of weighting vectors that will define subproblems
that will result in solutions that are well distributed across
the Pareto front. However, again, the weighting vectors were
adapted on every iteration of the optimization procedure. Later
it was shown that the weighting vectors, in combination with
the selected scalarizing function, fully determine the location
to which solutions tend to converge [12].

In this work, we argue that there is an associated and
potentially non-negligible cost – in terms of convergence –
to adapting the weighting vectors in decomposition-based al-
gorithms. Varying the weighting vectors inadvertently changes
the set of subproblems over the course of the optimization. This
can potentially create difficulties for the algorithm which may
lead to slower convergence, while there is no guarantee that
the promised benefits from this adaptation will materialise. We
argue further that this adaptation may lead to an equivalence
with Pareto-based methods under certain conditions. Although
much more effort is required to clarify this connection, the
results presented in this work can be considered as the first
step in this direction. So, the questions we explore in this work
can be summarised as follows: given the fact that variation
of weighting vectors in decomposition-based algorithms is
equivalent to variation of the problem for which a solution
is sought, does this affect algorithm convergence? If so, to
what extent?

The contributions of this work can be summarised as
follows:

• We highlight that Pareto-based algorithms essentially
attempt to solve a varying problem. This is mainly due
to the interplay of clustering, fitness assignment and
archiving in Pareto-based methods.

• We test a hypothesis that we introduced in [11],
namely, that decomposition-based algorithms that em-
ploy the Chebyshev scalarizing function appear to ex-
hibit superior performance to Pareto-based algorithms
simply because the former use constant weighting
vectors. This amounts to solving a fixed problem as
opposed to a varying problem.

• We signal that the current trend to adaptive
decomposition-based methods should be reevaluated
as it appears that if this path is followed it is highly
likely to obtain decomposition-based methods that in
essence replicate Pareto-based algorithms and as such
inherit their deficiencies.

The rest of this paper is organised as follows. In Sec-
tion II we present the necessary background information. In
Section III we describe our experiments and present the results.
In Section IV we discuss our findings and present further
hypotheses. Finally we summarise and conclude the present
work in Section V.

II. BACKGROUND

The standard definition of a multi-objective problem (MOP)
is:

min
x

F(x) = (f1(x), f2(x), . . . , fk(x)) ,

subject to x ∈ D ⊆ R
n,

(1)

where k is the number of scalar objective functions f(·) and
also the dimension of the problem in objective space. D is the
feasible region. The vector of variables, x, in this context is
often referred to as decision vector while z = F(x) is referred
to as objective vector. We typically assume that the individual
scalar objective functions in (1) are in conflict [19], leading
to a potentially (k − 1)-dimensional trade-off required to be
represented via a posteriori methods.

Two mainstream methods employed for comparing candi-
date solutions in an a posteriori approach are Pareto-based
and decomposition-based techniques. Both labels disguise a
wide range of heterogeneity, however the methods be briefly
contrasted as follows:

• Pareto-based methods directly employ a relationship
that induces a partial ordering in objective space, and
an implicit partial ordering in decision space. A va-
riety of supplementary schemes – often based around
regularizing solution density in objective-space – are
used to direct the search towards a good distribution.

• Decomposition-based methods use a scalarizing func-
tion to decompose the mutli-objective problem into
a set of single-objective problems. The quality of
distribution is implicitly encoded by the subproblems.

Although there are several concepts of optimality in multi-
objective optimization, weak Pareto optimality is arguably the
most commonly employed [1, pp. 19]. In what follows we



Fig. 1. Experiment setting. Note that scales have been exaggerated for
illustrative purposes.

assume, without loss of generality, that all objectives are to be
minimized. In brief, a solution, x weakly dominates a solution
y iff fi(x) < fi(y) ∀i. This relation allows a partial ordering
to be imposed across all x ∈ D. If there exists no other solution
y ∈ D such that fi(y) < fi(x) ∀i then x is defined as weakly
Pareto optimal.

A widely used family of scalarizing functions, especially
in the evolutionary multi-objective optimization community, is
the weighted metrics. This function is usually defined as:

gp(x) = ‖w ◦ |F(x)− z⋆|‖p, (2)

where ◦ is the Hadamard product and represents element-wise
vector or matrix multiplication and z⋆ is the ideal vector [1,
pp. 15]. Taking the limit, p → ∞, is a special case of (2) and
is commonly referred to as the Chebyshev scalarising function:

g∞(x) = ‖w ◦ |F(x) − z⋆| ‖∞
= max{w1|f1(x)− z⋆

1
|, . . . , wk|fk(x) − z⋆k|}.

(3)

Although (3) is not differentiable it can guarantee to produce
all Pareto optimal solutions for some weighting vector, if
the underlying algorithm can converge. Namely, it can reach
every Pareto optimal point. As mentioned in the introduction,
this scalarizing function has a very similar effect to Pareto-
dominance relations.

Using (2) for some p > 1, and a set of weighting vectors,
all of which must be w � 0, a good representation of the
Pareto-front can be obtained, see for example [7], [8], [20],
[21].

III. EXPERIMENT SETTING

To test our hypotheses we have devised the following
experiment. A generic random search algorithm is employed,
namely, a decision vector is selected at random, using a uni-
form distribution in decision space. Subsequently, after evalu-
ating the resulting decision vector to obtain its corresponding
objective vector, the Euclidean distance of the objective vector
from the target Pareto optimal point is measured. These two
vectors are denoted as S and T in Fig. 1, respectively, and
their distance dST . This concludes the initialisation phase
of the random search algorithm. Next, the decision space
is sampled sequentially 1 000 000 times and the following

decision procedure is employed after the generation of a new
sample:

• Evaluate the new sample using the objective function,
F(x).

• Evaluate the fitness of the new sample using the
Chebyshev scalarizing function (3) the corresponding
objective vector and a weighting vector, w.

• If the resulting fitness from the Chebyshev function
is smaller than the best so far solution then the best
solution is updated.

• When a better solution is generated, its Euclidean
distance from the previous solution is added to a
running total, dSE in Fig. 1. This sum represents
the distance covered in objective space, and is the
trajectory that solutions follow as they attempt to
approach the target Pareto optimal point, T .

The same procedure is applied twice for the same seed in
the random number generator, once with a constant weighting
vector, wC , and one more time with a varying weighting
vector, wV . The neighbourhood of variation for the weighting
vector can be seen in Fig. 1. This neighbourhood is selected by
calculating the mean nearest neighbour distance of algorithms
employed for the selected dimensions in objective space -
namely 3, 5, 7 and 11 as shown in Table I. In the following
section we elaborate on the details in selecting the varying
weighting. This experiment was conducted on a subset of
the DTLZ [22] and WFG [23] problem sets. The criterion
for inclusion in this work was that the Pareto front have a
geometry that would allow us to predict the location on the
Pareto front to which a subproblem will converge. This for
example could be accomplished for the WFG3 test problem,
however as the objective space is like an acute cone the number
of solutions near the Pareto front, which is a line, would
pose significant difficulties for the random search algorithm.
Additionally, to remove any bias towards a particular objective,
we have normalized these problems so that the Pareto front is
either the positive orthant of the unit hypersphere (WFG4-9
and DTLZ2-4) or the (k − 1)-simplex, which is the case for
DTLZ1. Therefore in the case of the DTLZ1 test problem
the following condition holds for Pareto optimal solutions:∑k

i=1
fi(x) = 1.

TABLE II. MEAN NEAREST NEIGHBOUR DISTANCE, h, FOR THE

DIFFERENT PROBLEM INSTANCES USED IN THIS WORK. N IS THE

EQUIVALENT POPULATION SIZE THAT IF DISTRIBUTED EVENLY ACROSS

THE PARETO FRONT WOULD RESULT IN A MEAN NEAREST NEIGHBOUR

DISTANCE h.

Objectives, k 3 5 7 11

h 0.0524 0.1571 0.2357 0.2828
N 406 715 924 3003

A. Weighting Vectors

In our experiment we specify a desired location on the trade-
off surface (which would be a component of some desired
trade-off distribution). We simulate an adaptive process as a
region of uncertainty around this desired location. In terms of



TABLE I. THE LEFT FOUR COLUMNS ILLUSTRATE THE MEAN DISTANCE AND ITS STANDARD DEVIATION, OF THE BEST SOLUTION FOUND TO THE

TARGET SOLUTION T FOR CONSTANT AND VARYING WEIGHTING VECTOR RESPECTIVELY. THE RIGHT FOUR COLUMNS ILLUSTRATE THE MEAN AND

STANDARD DEVIATION OF THE
dSE

dST
QUANTITY. THIS REPRESENTS THE DISTANCE TRAVERSED IN OBJECTIVE SPACE WITH RESPECT TO THE INITIAL

DISTANCE OF THE POINT S FROM T .

l2 distance to target point T Multiple of dSE distance traversed

Constant - wC Varying - wV Constant - wC Varying - wV

mean std mean std mean std mean std

3 obj

DTLZ1 144.4935 16.7053 144.2508 16.8302 3.2194 0.9754 3.1512 1.1481

DTLZ2 0.6845† 0.0469 0.6952† 0.0556 4.9076 1.8303 4.9555 1.9927
DTLZ3 190.5301 31.9463 192.9661 29.6660 3.7472 1.1408 3.7814 1.1897

DTLZ4 0.7519† 0.0448 0.7482† 0.0535 2.7291 0.8677 2.7910 0.8825
WFG4 0.0794 0.0142 0.0798 0.0143 3.7938 1.1758 4.0920 1.3697

WFG5 0.0724 0.0075 0.0777 0.0087 3.1386† 1.1049 3.6714 1.1690
WFG6 0.0790 0.0153 0.0825 0.0160 3.9585 1.1342 3.9273 1.1171
WFG7 0.0531 0.0097 0.0568 0.0093 3.3947 0.9296 3.5258 1.0358
WFG8 0.0956 0.0092 0.0985 0.0100 3.1991 1.2054 3.1846 0.9957

WFG9 0.0326 0.0078 0.0382 0.0108 4.1610† 1.4493 4.2759 1.6581

5 obj

DTLZ1 67.8381 10.4022 68.7036 10.0983 4.7688 1.7869 4.6265 1.3961

DTLZ2 0.8343 0.0319 0.8414 0.0292 2.6253† 1.1343 2.8659 1.1989
DTLZ3 97.7828 19.9067 99.9511 19.1352 4.6545 1.7736 4.5705 1.6507
DTLZ4 0.8792 0.0290 0.8873 0.0262 2.3701 0.6079 2.4859 0.6948
WFG4 0.1809 0.0316 0.2117 0.0427 4.2611 1.1664 4.8248 1.4613
WFG5 0.1310 0.0135 0.1527 0.0244 5.4966 1.8136 6.6102 2.0830
WFG6 0.1301 0.0189 0.1517 0.0269 5.7494 1.5537 6.9240 2.2242
WFG7 0.1240 0.0177 0.1512 0.0221 4.8372 1.7918 5.5069 1.6631

WFG8 0.2170† 0.0207 0.2277 0.0203 5.9583 1.8287 6.9868 2.1210
WFG9 0.0893 0.0211 0.1247 0.0357 5.6870 1.7024 6.4356 2.2510

7 obj

DTLZ1 35.2566 5.9010 36.7003 5.9289 5.0804 1.5432 5.3688 1.5851
DTLZ2 0.8942 0.0165 0.8991 0.0201 1.6928 0.6557 1.7088 0.6122
DTLZ3 58.3713 10.7935 58.8268 9.7380 5.6023 1.9782 5.7535 2.1258

DTLZ4 0.9335 0.0180 0.9363 0.0141 2.1783 0.5273 2.4194† 0.7649
WFG4 0.3085 0.0709 0.3886 0.0729 4.3738 1.0940 5.1883 1.2384
WFG5 0.1723 0.0319 0.2069 0.0379 7.1909 2.2791 7.6020 2.4588

WFG6 0.1533 0.0230 0.2062 0.0426 7.7440† 2.5615 9.1902 3.0116
WFG7 0.1867 0.0187 0.2381 0.0445 5.7042 1.8572 5.9257 2.0361

WFG8 0.2660† 0.0330 0.3142 0.0471 7.3345 2.3912 8.0492 2.4481

WFG9 0.1269† 0.0374 0.1700 0.0425 7.0071 1.9931 8.1374 2.5252

11 obj

DTLZ1 12.0409 1.7214 13.5004 2.4425 5.3972 1.3233 5.6889 1.8210

DTLZ2 0.9472 0.0128 0.9505 0.0096 0.8766† 0.2369 0.7858 0.2092
DTLZ3 20.9175 4.1670 20.8809 3.6253 5.5481 1.5725 5.7157 1.9170
DTLZ4 0.9651 0.0111 0.9698 0.0091 1.8171 0.4847 1.9608 0.5237
WFG4 0.5440 0.0657 0.5824 0.0767 4.3602 1.2820 4.8900 1.2743
WFG5 0.2777 0.0364 0.3515 0.0598 6.9273 1.9601 7.8535 2.5710

WFG6 0.2420 0.0312 0.3176 0.0600 7.7897 1.9793 9.1467† 2.6586
WFG7 0.3314 0.0527 0.4231 0.0675 5.7006 1.8121 6.0291 1.5542

WFG8 0.3600† 0.0454 0.4634 0.0771 6.8620 1.9413 7.5327 2.3058
WFG9 0.2604 0.0606 0.3212 0.0823 8.1595 2.7932 9.0655 2.6091

implementation, our pair of experiments differ only in the se-
lection of the weighting vector. The constant weighting vector
has been set to wC = 1

k
1, where k is the number of objectives

and 1 is a vector of ones of in R
k. The reason for this selection

is based primarily to preserve symmetry in the problem and to
avoid potential truncation in the density used for the varying
weighting vector, as is explained in what follows. However,
an interesting point, which we have left for future studies, is
that variation of the weighting vectors - even for symmetrical
Pareto front geometries such as these employed in this work
- could potentially have a more pronounced effect on the
convergence rate of the algorithm. Nevertheless this hypothesis
still remains untested.

The selection of the varying weighting vector, wV , is more
involved. For instance, if we vary directly the weighting vector,
the comparison could be biased because the mapping from
objective space to weighting vector space is nonlinear [12].

1 Instead, we make the assumption that the algorithm can in
fact produce a set of weighting vectors that cannot precisely
target the point, T , but can generate weighting vectors to target
points in its neighbourhood which is within a radius h

2
from

the point T Fig. 1. Therefore, for every new sample, a point
in the neighbourhood of T is generated with equal probability
within the hypersphere defined by (T, h

2
). This way, even for

the varying weighting vector the target point still is T , although
in this case this holds true in the mean.

Once a neighbouring point to T , say T̃ , is selected, we must
identify the weighting vector that would produce a subproblem
which will tend to converge to T̃ . To accomplish this we use
generalized decomposition, which we introduced in [12]. Gen-
eralized decomposition solves the following problem: Given a
point on the Pareto front, what is the weighting vector by which

1It should be noted however that methods exist that employ this scheme for
perturbing their weighting vectors: see for instance [15], [16]. Nevertheless
such methods are not commonly used by state-of-the-art optimization algo-
rithms.



we can define a subproblem using a scalarizing function from
the family of the weighted metrics (2), to obtain the given
Pareto optimal solution. Although generalized decomposition
can be applied to a much wider context, here, we employ it in
the following form:

min
w

‖w ◦ F(x)‖∞,

subject to

k∑

i=1

wi = 1,

and wi ≥ 0, ∀ i ∈ {1, . . . , k},F(x) ≥ 0.

(4)

It should be noticed that in (4), the optimization is with respect
to w. We also make the assumption that the ideal vector, z⋆ =
0, which holds for the selected problem set. For further details
on generalized decomposition the reader is referred to [12],
[21].

And therefore, the procedure that we employ to generate the
varying weighting vector, wV can be summarised as follows:

• Sample a Pareto optimal point within h
2

distance of
the target point T with equal probability.

• Use generalized decomposition to identify the weight-
ing vector that will produce a subproblem that will
converge to the sampled point, T̃ .

• Use the obtained weighting vector, wV , and the
Chebyshev decomposition to assign a fitness to the
new solution.

The above procedure is performed for every new decision
vector produced by the random search algorithm described in
Section III.

The results shown in Table I have been obtained by 50
independent trials. To test whether the obtained data can
reasonably be represented by a normal distribution we have
used the Lilliefors test for normality [24, pp. 532] with
α = 0.01 which corresponds to 99% confidence. The results
in Table I that failed this test are marked with a dagger†. This
means that the data are unlikely to originate from a normal
distribution. The reason for this deviation is beyond the scope
of this work, and is to be further investigated in a future work.

IV. DISCUSSION

A glance at Table I illuminates the clear correlation between
the use of a constant weighting vector and faster convergence.
This behaviour is consistent for a number of test problems
across a variety of objective-space dimensions. Additionally,
although the mean target vector for both the constant weighting
vector, wC , and the varying weighting vector, wV , is the
same, it can be clearly seen that there is a strong tendency for
solutions to wander in the objective-space when the weighting
vector is varying. These results are intuitive: convergence
will be hindered when the decision problem to be solved is
varying. Nevertheless, as there is a trend towards extending
adaptive weighting vectors in decomposition-based methods,
our findings show that care must be taken when considering
such adaptive schemes. It is also worth noting that our results
are consistent across dimensions of objective-space: meaning

that the cost of adaptation is apparent for even three-objective
problems.

It should also be noted that in this scenario we have made
conservative assumptions that will be difficult to be achieved
in a practical situation. For instance, there is no guarantee
that the varying weighting vector will in fact converge to
the mean of the target vector. Since this target vector, when
extended to the entire Pareto front, represents the set of Pareto
optimal solutions that are evenly spaced, this means that such
adaptation bears the risk of not accomplishing its aim, which
is to distribute solutions well.

In terms of previous results, for instance the work of Zhang
and Li [8], where the authors compare their algorithm to a
version of the multi-objective genetic local search algorithm
(MOGLS) [15], the reason for its superior performance is
clarified. This is because, if a fair variation of weighting
vectors, as employed in this work has such a profound effect
in terms of convergence, then, the selection employed in [15]
where weighting vectors are varied across the entire simplex,
will result in even worse performance as seen in [8]. This also
means that a comparison of decomposition-based methods with
fixed and varying weighting vectors is not entirely fair - as the
latter attempt to solve a more complicated problem which in
turn stalls their convergence rate.

Our current experiment is set up to compare, via simulation,
fixed weighting vectors and adaptive weighting vectors in
decomposition-based algorithms. An advantage of the frame-
work is that it is readily extendible to simulate the operation
of Pareto-based algorithms. In future work we will identify
the distribution of solutions over the course of operation
of a Pareto-based algorithm and then recast this distribution
in terms of varying weighting vectors. We anticipate that
these new experiments will further illuminate the source of
difficulties in controlling the convergence-distribution meta-
trade-off that Pareto-based algorithms face with decision prob-
lems featuring more than three conflicting objective functions.
Alongside the experiments, we hope to more clearly formulate
the theoretical linkages between Pareto-based algorithms and
decomposition-based algorithms that employ varying weight-
ing vectors. To see this, consider the aim of a posteriori
optimization methods: that is, the relatively even distribution
of solutions across the entire trade-off surface. To accomplish
this, Pareto-based algorithms employ archiving and clustering
methods that in a sense segment the Pareto front in even
regions and only a certain number of solutions are allowed
inside them. This imposes an implicit constraint on the den-
sity of Pareto-optimal solutions and this constraint could be
represented by something very similar to the region defined
by (T, h

2
) in Section III-A. However, as Pareto-based methods

do not have a constant weighting vector to clearly guide their
search, solutions move randomly within the constraints of that
region - as did the target solutions in our experiment. This
hypothesis is further supported by the results in [11], where
it is shown that the Chebyshev decomposition, that is more
than often employed in decomposition-based algorithms, is
equivalent to the Pareto dominance relationship in the sense
that the probability of finding an improved solution is identical
for both cases.



V. CONCLUSION

In this paper we have provided evidence to support the hy-
pothesis that varying the weighting vectors in a decomposition-
based algorithm will impose a non-negligible cost in terms of
convergence, when compared to methods that employ fixed
weighting vectors. We speculate that this cost is probably the
distinguishing line between decomposition-based and Pareto-
based algorithms. Specifically, the apparent poor performance
of Pareto-based methods in optimization problems with more
than three objectives is likely to be due to this cost rather the
loss of selection pressure as suggested in [4], [6]. Further, our
findings suggest that adaptive decomposition-based schemes
are likely to replicate the known issues for Pareto-based
algorithms.

At this point we feel that we should clarify that we are not
advocating against adaptive decomposition-based algorithms.
We simply suggest that there are numerous difficulties yet
to be overcome for such algorithms to become viable –
in the sense that they at least do not significantly hinder
convergence to a solution that is already difficult to approach.
Therefore we conclude that, for now at least, the new wave of
decomposition-based methods offer no panacea to the familiar
conflict between convergence and distribution that has proved
the bane of Pareto-based methods over the previous decade.

Concluding, we believe that there is a need for a shift
in perspective in the multi-objective optimization community.
Namely, it is becoming increasingly obvious that there is
a need for what we refer to as optimization problem iden-
tification. That is, the focus should shift from algorithmic
frameworks towards broadening the class of problems that
we can deal with efficiently and the development of strategies
to address specific challenges. This will of course inevitably
lead to the introduction of novel procedures, however the
setting will be rather different. We envisage that such an
approach would greatly enhance the ability of algorithms that
are designed for nonconvex optimization problems, in a single
or multi-objective context. This can potentially lessen the gap
between industry and academia so eloquently exposed by
Michaelowicz [25].
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