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ABSTRACT: Neural network models have become a popular
machine-learning technique for the toxicity prediction of
chemicals. However, due to their complex structure, it is difficult
to understand predictions made by these models which limits
confidence. Current techniques to tackle this problem such as
SHAP or integrated gradients provide insights by attributing
importance to the input features of individual compounds. While
these methods have produced promising results in some cases,
they do not shed light on how representations of compounds are
transformed in hidden layers, which constitute how neural
networks learn. We present a novel technique to interpret neural
networks which identifies chemical substructures in training data
found to be responsible for the activation of hidden neurons. For
individual test compounds, the importance of hidden neurons is determined, and the associated substructures are leveraged to
explain the model prediction. Using structural alerts for mutagenicity from the Derek Nexus expert system as ground truth, we
demonstrate the validity of the approach and show that model explanations are competitive with and complementary to explanations
obtained from an established feature attribution method.

■ INTRODUCTION

Quantitative structure−activity relationship (QSAR)models are
statistical models that attempt to link the chemical structure of a
compound to a measured bioactivity. QSAR modeling has seen
extensive applications in drug discovery and toxicity assessment1

with many different chemical descriptors and machine learning
(ML) techniques used. Typical machine learning methods
include k-nearest neighbors,2 support vector machines,3 random
forest,4 gradient tree boosting,5 and more recently deep neural
networks (DNN).6 Chemical fingerprints are widely used as
input features, however, a recent focus has been on the use of
different types of descriptors including, for example, string
representations such as SMILES,7,8 depictions of chemical
structures as inputs to DNNs,9 and 2D and 3D chemical
graphs10−12 which have been used with both classical machine
learning methods and with more novel graph-based DNN
architectures.
DNNs have gained a lot of attention for QSAR modeling

following successes in modeling competitions.6,13 When tradi-
tional chemical descriptors are selected as input, feedforward
neural network architectures are used. These consist of one
input layer, one or more hidden layers (when there is more than
one hidden layer neural networks (NNs) are referred to as
deep),14 and one output layer. The activation of neurons in the
hidden layers for a given input consists of a linear combination of
the neurons in the previous layer, followed by a nonlinear
transformation. This gives NNs the flexibility to fit complex

relationships between the input and the modeled output. While
DNNs may be able to generate more accurate models than
classical machine learning methods, they are often referred to as
“black box” methods due to their apparent lack of interpret-
ability15 and, there may be a trade-off between interpretability
and performance for more complex problems.
Having the ability to interpret the predictions made by a

model can increase its utility both in determining what molecule
to make next (e.g., in a drug discovery project) as well as in a
regulatory context. For example, in the case of toxicity
prediction, when a model predicts the presence of a hazard,
understanding the cause for the prediction in terms of the
presence of a particular structural motif can provide insight on
where to focus modifications to the structure to mitigate the risk.
In the regulatory context and in the case of mutagenicity
prediction, the ICH (International Council for Harmonisation
of Technical Requirements for Pharmaceuticals for Human
Use) M7 guidelines on the assessment and control of DNA
reactivity impurities allow for the use of negative predictions
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from two complementary QSAR systems to reason that the
impurity is of no mutagenic concern.16 These systems should
adhere to the Organisation for Economic Co-operation and
Development (OECD) guidelines for (Q)SAR modeling where
principle 5 states that predictions should be associated with “a
mechanistic interpretation, if possible”.17 Furthermore, expert
review may be required such as when the systems disagree. In
such cases, the more information a system can provide the easier
it is to reason about the prediction, and therefore interpretation
can become an important facet to use when performing the
expert review.
Recently, several approaches to achieve interpretability for

NNs in the context of QSAR modeling have been described.18

Most widely used are techniques that assign importance to the
input features of the model. This can be done either globally
(i.e., the importance of features for the model’s overall
performance) or locally (i.e., the importance of features for
individual predictions made by the model).19 Methods that
determine local feature importance are also called attribution
methods. Some attribution methods have been specifically
developed for NNs such as integrated gradients (IG),20 while
others can be applied to any ML technique (e.g., Local
Interpretable Model-Agnostic Explanations (LIME),21 SHapley
Additive exPlanations (SHAP),22 and perturbation meth-
ods23,24).
Some studies have attempted to interpret the chemical

information that is learned in the hidden layers of a NN. In
analogy to classical chemical fingerprints, the activations of
neurons in a hidden layer can be considered as a neural
fingerprint that has learned features of a training set.25 In the
cited work, the neural fingerprint was used in a similarity-based
virtual screening experiment. A DNNwas first trained to predict
activity for the target of interest and then a query compound was
input to the model and its neural fingerprint used to identify
compounds with similar neural fingerprints. In another study,
Sosnin et al. used DNNs to predict acute toxicity and analyzed
the hidden layer representations of chemicals with the t-SNE (t-
distributed stochastic neighbor embedding) method, which
embeds them in a 2D space.26 Distinct clusters of compounds
having high acute toxicity emerged, which presumably
correspond to different mechanisms of toxicity. These studies
demonstrate that hidden representations of chemicals in NNs
are meaningful in the context of the investigated bioactivity or
toxicity tasks, although the meaning of those hidden
representations is not well understood.
Unpacking the information learned by NNs has been studied

extensively in image recognition tasks. For example, it has been
shown that a convolutional neural network (CNN) trained on
images constructs features of increasing complexity throughout
the different layers of a network.27 Thus, when detecting faces
lower layers detect simple structures like blobs and edges from
the raw pixels, while deeper layers combine the simple structures
into more complex objects such as eyes and noses. Different
techniques, referred to as feature visualization or activation
maximization, have been developed to understand what visual
patterns are detected by individual hidden neurons.28,29 These
techniques include: inspecting exemplary images that strongly
activate a neuron;30 optimizing images in the input space to
strongly activate a neuron;31 and using generative models to
create images that strongly activate a neuron.32

Analogously, when learning representations for chemicals, it
could be that a NN detects the presence of simple substructures
in the lower layers and combines these with more complex

substructures that are meaningful for the task at hand. Some
attempts have been made to understand the chemical features
learned in hidden neurons of a NN. For example, it was shown
that the activation of hidden neurons can be correlated with the
presence of toxicophores (known toxicophores for various
toxicity end points were considered) in the compounds of the
Tox21 data set.13 Furthermore, it was shown that the size of the
detected toxicophores (in number of atoms) increases in deeper
layers.33 However, these studies did not investigate if the
detected toxicophores are related to the modeled toxicity end
points of the Tox21 data set. In principle, a hidden neuron may
be responsive to a chemical pattern without the network using
this information for the eventual prediction. The two cited
studies shed some light on the mechanisms by which NNs may
learn features, but no attempts were made to leverage this
information to interpret predictions made by a specific model.
Attribution methods that operate on the input data can only

study the impact of individual features on a prediction
independently of each other. In contrast, the activation of
hidden neurons corresponds to a nonlinear transformation of
input features learned explicitly to solve the prediction task at
hand. Hence the hidden representations can be associated with
chemical substructures that are distinct from those identified by
analyzing information provided in the input layer.
In this study, we describe the development and validation of a

method to interpret predictions made by DNNs by extracting
information encoded in hidden layers of a NN. Our approach is
aimed at providing explanations for end points where the activity
is due to the presence of particular chemical substructures,
hence the use of structural fingerprints as descriptors. We have
validated the approach on the Ames mutagenicity data set since
this is a well-understood data set where the causes of toxicity are
known and can therefore provide ground truth. While there are
other data sets that are relevant for toxicity prediction such as
Tox21, previous studies on this data have mainly focused on
prediction performance and the data are not so well understood
in terms of reasoning about toxicity. We first demonstrate that
the activation of hidden neurons is linked to the presence of
toxicophores for mutagenicity. Next, we describe a method to
automatically identify chemical substructures found to activate a
given hidden neuron. Finally, we use these substructures to
interpret individual predictions made by a NN. The model
explanations are evaluated by comparing to the ground truth
(i.e., substructures that are known to be linked to mutagenicity)
and by comparison with an established IG approach based on
assigning importance to input features.

■ METHODOLOGY

Data Sets. Ames mutagenicity was selected as the studied
toxicity end point as it represents a well-understood mechanism
of toxicity with many different known toxicophores.34,35 This
means that structural features identified by a NN can be
compared to known toxicophores as a form of validation. Hence
the data set allows us to systematically evaluate the quality of
model explanations provided by different model interpretation
techniques. The Ames data set used here was constructed by
combining data from the following public sources: a curated
version of the Hansen data set,36,37 the ISSSTY data set,38 the
EURL-ECVAM Ames positive DB,39 the CGX database40 and
the Genotoxicity and Carcinogenicity database for marketed
pharmaceuticals.41 The ISSSTY data set contains data on
compounds that have been tested against a number of different
bacteria strains with each compound also labeled with the
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“overall call” (positive if at least one strain is positive). The
overall call was used here and only compounds labeled as
negative or positive were kept; compounds labeled as equivocal
or inconclusive were removed. The other sources contain
compounds with an overall call only (that is, a single label). The
compounds in the curated Hansen data set have binary labels
and no further changes were made. For the EURL-ECVAM data
set, compounds labeled as equivocal were removed. This data set
did not contain SMILES strings and so, where possible, SMILES
strings were retrieved using CAS numbers and the CIRpy
package in Python (Version 1.0.2).42 For the remaining data
sources, compounds with missing or equivocal labels were
removed. After these processing steps, each compound was
labeled with a binary outcome for the Ames Test.
Subsequently, the SMILES of all compounds were stand-

ardized using RDKit (Version 2021.03.3)43 and MolVS
(Version 0.1.1).44 In particular, metal atoms, inorganic frag-
ments, and solvents were removed and, where possible, charges
were neutralized. Chemotypes and tautomers were transformed
into a canonical form. Duplicates were identified by calculating
InChIs45 with the InChIs being converted back to SMILES.
Compounds consisting of mixtures of different organic
components were discarded. Finally, data instances with
identical SMILES were aggregated, and the majority vote of
the labels was used. If equal numbers of positive and negative
labels were found for a given SMILES, the compound was
removed from the final data set. The final data set consists of
7662 compounds.
In addition to using experimental Ames labels, the Derek

Nexus software46 was used to label the compounds according to
the presence of structural alerts for mutagenicity. This was done
to obtain a labeling that is defined by clear rules and is not
subject to experimental uncertainty. Of the 7662 unique original
structures, 7336 could be processed in Derek Nexus. The
remaining structures were discarded. The Derek Nexus software
returned an SDF (structure-data file) containing each
compound structure in a MolFile (connection table) format,
the alerts matched by the compound (with more than one
possible), and the atoms of the substructure responsible for the
alert(s) beingmatched. According to its internal rules, the Derek
Nexus software labels compounds as “INACTIVE”, “EQUIV-
OCAL”, “PLAUSIBLE” or “PROBABLE”. The latter three
categories indicate the presence of one or more alerts and those
compounds were labeled as the “positive” (i.e., toxic) class, with
the others labeled as “negative” (i.e., nontoxic). Across the whole
data set, 105 distinct alerts were fired and each of these was
assigned an identifier (Alert1−Alert105). Note that these
identifiers are distinct from alert identifiers in the Derek
Nexus software and are used here for reference in the text.

Model Training. Three feedforward NN models were
trained: a single-layer model trained on experimental Ames
labels; a single-layer model trained on Derek labels; and a two-
layer model trained on Derek labels. All models were trained
using RDKit’s Morgan fingerprints (FP) with radius 1, hashed to
2048 bits as input features. In all cases, the NN was trained on
80% of the data (random split), with 10% used as a validation set
for early stopping of model training and a further 10% retained
as a test set for final model evaluation. The same splits were used
for all the models. Model hyperparameters that differed between
the models are reported in Table 1. In all cases, the hidden
layer(s) of the models contained 512 neurons. The ReLU
activation function was used, and the models were trained for a
maximum of 10 epochs using batches of size 16 and the Adam

optimizer. Early stopping was employed to prevent overfitting.
Specifically, the performance on the validation set was recorded
after each epoch, and the best-performing model (ROC-AUC
score) instance (after a particular epoch) was retained. The loss
was evaluated using binary cross entropy. The models were
implemented in Pytorch (Version 1.9.0),47 and the model
instance trained on experimental Ames data (one-layer Ames) is
shared in the accompanying code repository.

Overview of Methods. The first step of the method is to
associate chemical substructures with each of the neurons in a
trained NN. Chemical substructures are identified for each
neuron by combining information about input features (bits of
the Morgan FP) that have high learned weights with training
compounds that strongly activate the neuron. The rationale is to
first identify combinations of input features and then to identify
substructures consistent with these by examining the training
compounds that activate the neuron strongly. Thus, the atom
environments corresponding to the highly weighted bits are
searched in the strongly activating training compounds.
However, not all the bits will be present in all the compounds
and formal concept analysis (FCA), described below, is used to
identify subsets of bits and compounds from which
substructures are identified. This process is applied to each
hidden neuron in the NN so that each neuron is represented by a
set of substructures that are associated with activation. The
substructures can then be used to highlight features of a test
compound that give rise to the prediction made using the
following procedure. First, the importance of each neuron in
making a prediction is determined. Then, for each neuron, its
associated substructures are matched to the test compound, and
the corresponding atoms of the compound are weighted
according to the importance of each neuron in making the
prediction. The weights (or atom attributions) are aggregated
over all neurons to take account of all neurons in the network
and to provide an overall explanation for the prediction.
Each of the steps is described in detail below. The

methodology contains several hyperparameters that can be
selected by the user. These are presented below (and written in
italics) along with the hyperparameter values used for the
reported experiments.

Substructure Extraction Method. The method for
identifying substructures associated with a neuron is illustrated
in Figure 1. The subset of training compounds that are identified
as strongly activating a neuron is determined using a threshold
on the compound’s activation value. The threshold applied is
that the activation value should be greater than two standard
deviations from the mean value of the activation values for the
neuron (ThreshCompound = 2). Similarly, the subset of input
features (or bits in the Morgan FP) is determined using a
threshold on the learned weights for the neuron. The threshold
used is that the learned weight of a feature should be at, or above,
the 90th percentile considering the magnitudes of all the weights

Table 1. Neural Network Hyperparameters

hyperparameter one-layer Ames one-layer Derek two-layer Derek

number of hidden
layers

1 1 2

learning rate 0.001 0.001 0.0001

dropout in hidden
layer

0.5 0.5 0.2

L2 regularization of
hidden neuron
weights

0.001 0.001 0
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connecting the input feature to the neuron (ThreshBits = 0.1).
This means that the 10% of bits with the highest learned weights
are chosen. The selected training compounds and input features
are then subjected to FCA as described below. The distributions
of activation values and learned weights are shown below in the
Results section for an example neuron (see Figure 5).
FCA was introduced as a method for hierarchically organizing

data into “formal concepts”48 and has been used previously in
chemoinformatics to mine substructures associated with
bioactivity/toxicity.49 A formal concept (FC) in FCA is a triple
(U, A, R) consisting of sets of objects U (i.e., the extent), sets of
attributes A (i.e., the intent), and binary relations R (indicating
whether an object u possesses attribute a). Here, objects are
chemical compounds, and their attributes are bits of the Morgan
FP indicating the presence of certain atom environments in the

compounds. The binary relations describe whether a compound
has a given FP bit set on. In a FC, all objects represented by the
FC share all the attributes of the FC. Furthermore, the FC is
closed in the sense that there are no further attributes shared by
all the objects, and, in turn, no further objects exist that possess
all included attributes. A hierarchical lattice (i.e., a Hasse
diagram) consisting of all existing FCs for a given data set can be
derived. An illustrative example of how FCA is applied here is
shown in Figure 2 and Table 2. Table 2 shows a set of
compounds and a set of FP bits and indicates which bits are set
to “on” in which compounds. Figure 2 shows how the
compounds and FP bits are arranged hierarchically as a Hasse
diagram. Each box corresponds to a FC and consists of a set of
compounds and a set of FP bits. The FC at the top of the Hasse
lattice represents all the identified bits and the subset of

Figure 1.Overview of the substructure extractionmethod. For individual hidden neurons FCA is applied to compounds strongly activating the neuron
and FP bits with high weights. Substructures are extracted from relevant FCs and organized hierarchically. Detailed explanations can be found in the
main text.
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compounds that contain them all (which may be none as is
shown in Figure 2). As the Hasse lattice is descended, the FCs
contain fewer bits but more compounds. For instance, the FC
with compounds 1, 3, and 4 in the extent contains all the azides
(which are characterized by FP bits 487 and 1838), whereas the
FC with only compound 1 in the extent contains only aromatic
azides (characterized by FP bits 487, 1838, and 1854) and hence
is more specific. The latter FC (aromatic azides) is a subconcept
of the former (generic azides) and vice versa, i.e., the former is a
superconcept of the latter. A FC, therefore, corresponds to a
chemical concept defined by a set of atom environments and the
training compounds that contain these environments (i.e., for
which all the bits in the FC are set “on”). In this work, we used
the implementation of FCA in the Python package concepts
(Version 0.9.2).50

The next stage of the substructure extraction process is to
convert each FC into a set of chemical substructures. For each
compound in the extent of a FC, atoms matching any of the FP
bits contained in the intent are identified using the atom
environments provided in the RDKit. Then, connected
substructures are obtained by connecting neighboring identified
atoms. Since not all identified atoms are necessarily connected,
more than one connected substructure may be obtained for each
compound.
The substructure extraction process is controlled by several

parameters which aim to ensure that the substructures are
meaningful. First, not all FCs will correspond to chemical
substructures of interest. For instance, a FC may contain just a

single FP bit and this feature alone may not be sufficient for
strong neuron activation. Hence, only FCs whose intent (set of
FP bits) reaches a certain relevance were considered. This is
assessed by calculating the sum of weights of the fingerprint bits
in the intent and applying a threshold. The threshold
(ThreshWeight) is defined as a fraction of the threshold
described above for the inclusion of compounds (Thresh-
Compounds). In the results presented here, ThreshWeight was
selected to be 1 (i.e., the same value as for ThreshCompounds) as
lower fractions were not found to be beneficial (results not
shown).
Second, only the most relevant substructure for each

compound is retained. This is the substructure with the highest
sum of weights for bits included in the substructure (which may
be a subset of the bits of the intent). Third, only substructures
causing a sufficiently strong activation on the neuron are
included. Thus, a substructure is only retained if the sum of
weights is higher than a given threshold. Here the same
threshold was used as applied to the summed weights of all bits
of the intent (i.e., ThreshWeight, see above). Finally, a
substructure is discarded if there is a more generic one (i.e., a
smaller substructure) with the identical summed weight of FP
bits. This is done because the more generic substructure in such
a case seems sufficient to explain the neuron activation and is
more likely to match test compounds.
The FCs are considered for substructure extraction in order of

decreasing support (number of compounds represented by the
FC) to ensure substructures corresponding to the most generic

Figure 2.Hasse diagram depicting the lattice derived using FCA. Each box contains a FC consisting of an extent (set of compound identifiers in the first
line) and an intent (set of FP bits). None of the considered bits is shared by all the compounds (hence the empty intent in the FC at the top) and none
of the compounds sets all the FP bits on (hence the empty extent in the FC at the bottom). The remaining FCs describe a certain chemical concept
defined by a set of FP bits and all compounds having those bits set on.
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FCs (highest support) are included. The number of extracted
substructures per neuron is limited to a maximum of 200.
Moreover, the bits that are already included in the intent of
selected FCs are recorded for each neuron. If all bits of a given
FC have been included in selected FCs at least once, the FC is
directly skipped to accelerate the extraction and to avoid too
many very similar substructures. The substructures are then
organized into a hierarchical network according to substructure-
superstructure relationships to form networks of more generic
(smaller) and specific (larger) chemical substructures. This was
done to facilitate the matching of test compounds to extracted
substructures, see below. This approach of hierarchically
organizing chemical substructures is comparable to that used
in the self-organizing hypothesis networks (SOHN),51 however,
here the substructures are organized purely according to
substructure-superstructure relationships, whereas, in the
SOHN approach, the hierarchical networks are used to analyze
structure−activity relationships (e.g., if a certain substructure is
mutagenic or not).

Attribution Methods. The substructures associated with
the hidden neurons can be used to assign atom attributions to
test compounds in order to provide an explanation for the
prediction made by the model. Attribution methods are a
common strategy used to highlight atoms in a structure that are
important for a QSAR prediction.19 As mentioned in the

Introduction, these techniques are usually applied to the input
features, with IG20 an established method that has been applied
to a NN trained on Morgan FPs as input.33 The approach
developed here also uses IG but, in this case, IG is applied to the
hidden neurons of the DNN to first indicate the importance of
the neuron to the prediction. The importance is then combined
with the substructures associated with the neurons that are
present in the test compound. A comparable approach to our
method (i.e., combining feature visualization with attribution)
has been proposed for computer vision models.52

In the following, the approach of applying the attribution to
the hidden neurons which has been developed here is referred to
as IG_hidden, whereas the established approach of applying
attribution to the input features is referred to as IG_input. A
theoretical background to IG in general is provided below,
followed by the details of the attribution methods.

IG Overview. IG belongs to the gradient-based methods53

which assign importance to an input feature by determining its
gradient with respect to the model output (i.e., the partial
derivative for the feature value of a given instance). Gradient-
based methods can only be applied to differentiable models,
which include NNs. In the IG method, the gradient of each
feature is integrated along a straight line between an input vector
x and a baseline vector x′ (in the case of chemical fingerprints the

Table 2. Binary Relations between Compounds and FP Bits As Basis for FCAa

aA small number of compounds and FP bits was selected to illustrate the foundations of FCA. The table indicates which FP bits are set on for each
compound.
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baseline vector is when all bits are set to zero). The linear path
between x′ and x can be described with the term

+ ×x x x( ) (1)

where β takes values in the range [0,1]. The attribution a for a
feature i of an instance x is computed by

=
+ ×

=

a x x x
F x x x
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( ) ( )
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i i i

i
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where F() is the NN model. In practice, the integral can be
approximated by replacing it with a sum of partial derivatives
evaluated at m equally spaced steps on the path from x′ to x as
follows:
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A useful property of IG is that the sum of all attributions for a
given instance x is equal to the difference in the model’s output
for x and the baseline x′.

IG_Input. IG determines the importance (positive or
negative) of each input feature toward the prediction of a

given test compound. In the implementation used here, the
attributions obtained for features (i.e., bits of the Morgan FP)
are mapped to the atoms in a procedure comparable to the
previous study.33 First, all-atom environments belonging to a
given FP bit are collected. Multiple environments for a given bit
may exist due to multiple occurrences of identical environments
in a compound or due to bit collisions (i.e., when different
environments map to the same position in the bit vector). If
necessary, the total attribution for a given bit is shared equally
between all environments it is associated with. Then, the
attribution assigned to an atom environment is shared equally
among the atoms. Atoms may receive multiple attributions due
to being in the environments of multiple bits and the attributions
may be positive or negative. All attributions for a given atom are
summed to obtain the final attribution for the atom. To simplify
the calculations, only FP bits with an attribution of at least 1% of
the most important feature (positive or negative) are
considered. An illustration of the method is provided in Figure
3. The IG_input method was implemented using the
IntegratedGradient class provided in the Python library Captum
(version 0.4.0).54

IG_Hidden. In the IG_hidden method, IG is used to assign
importance (i.e., attribution) to each neuron of the hidden layer

Figure 3. Illustration of IG_input. In this simplified illustration, attributions for two bits (Bit 1 and Bit 2) are depicted. (Note that themapping between
bits and atom environments has been selected for illustration purposes and does not correspond to RDKit’s implementation of Morgan FPs.) Bit 1
belongs to a single atom environment. Therefore, the full attribution for Bit 1 (0.16) is assigned to the environment and is shared equally between all
atoms in the environment (1, 2, 3 and 4). A rare case of bit collision is illustrated for Bit 2 where two different atom environments map to the same bit.
Therefore, the bit attribution is shared equally between both environments. The first of the two environments contains four atoms and the
environment attribution is shared among the respective atoms (2, 4, 5 and 9). The second of the two environments contains just a single atom, but has
five occurrences in the compound. The environment attribution is shared between those five atoms (5, 6, 7, 8, 9). To obtain the depiction, the atom
attributions obtained from all bits are aggregated. Details of how the highlight colors are obtained are described in the text.
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for the prediction of a test compound and this attribution value
may be positive or negative. Then, for each neuron, the
substructures associated with it are matched to the test
compound, and the neuron’s attribution value is shared between
the atoms of the most specific substructures that match the test
compound. As described above, each hidden neuron is
associated with multiple chemical substructures organized in
hierarchical networks. The substructures in the networks are
matched to the test compound starting with the most generic
substructures. If the test compound does not contain a given
substructure, none of its (more specific) child substructures will
match. If a test compound does not match any of the
substructures extracted for a given neuron, the attribution for
that neuron is ignored. This means that the attributions for some
of the neurons may not be used to explain the prediction (i.e.,
will not contribute to the atom coloring which is described
below). On the other hand, if multiple substructures are found,
the importance of the neuron is shared among them equally.
Two different schemes were investigated to map the attributions
of a substructure to individual atoms. In the first, the attribution
for a given substructure is shared equally by all atoms of the
substructure (as is done for environments in the IG_input
method). In the second case, in addition to sharing the
attribution among the atoms, different weights are considered
for the atoms forming a substructure based on the weights the
individual FP bits have for the neuron. The weights are intended
to indicate the relative importance of each atom of the
substructure with respect to the neuron activation in order to
make the eventual model explanations more accurate. For a
given substructure, there is a set of associated FP bits each with a
corresponding weight (network weight from input neuron to the
hidden neuron). The weights assigned to the atoms of the
substructure are proportional to the summed weight of FP bits
that the atom is associated with. The values obtained for each
atom are scaled so that the weights of all atoms of a substructure
sum to 1. Overall, model explanations were slightly better when
the weights were used and therefore the results shown here are
based on the weighted contributions only.
To obtain a model explanation, the steps described above are

repeated for all hidden neurons. The general principle of the
IG_hidden method is illustrated in Figure 4 for a simplified case
of three hidden neurons. An attribution (positive or negative) is
assigned to each neuron and for each neuron the matching
substructures for the test compound are found and the neuron
attribution value is shared across all atoms of the substructure.
This is repeated for each neuron and the atom attributions are
summed to give a final model explanation. In the case shown, no
weights were used for the atoms of extracted substructures, for
simplicity. As for IG_input, the Python library Captum was used
(here: LayerIntegratedGradient class).

Depiction of Atom Attributions. Atom attributions for
individual compounds are depicted using a color map. Positive
attributions (contributing to a toxic prediction) are highlighted
in red, while negative attributions (contributing to a nontoxic
prediction) are highlighted in blue. Neutral atoms (attribution =
0) are not highlighted (white “highlight”). To make the coloring
between different compounds comparable, colors are scaled
according to the maximum atom attribution observed in a data
set, which may be positive or negative. The maximum atom
attribution receives full color intensity and all atoms of the
compounds in the data set are assigned colors relative to this
maximum. The color intensity for individual atoms is assigned
by interpolating in RGB color space. To obtain better

discrimination of atoms in the lower range of attributions, the
maximum color intensity is assigned to all atoms with
attributions at least 70% of the maximum, which is consistent
with a previous study.55 Separate scales are used for IG_input
and IG_hidden due to the observation that larger atom
attributions are generally obtained for IG_input. The reason
for this mostly seems to be that attributions for IG_hidden are
ignored when no matches are found for a given neuron. As a
result, color intensities between IG_input and IG_hidden are
not directly comparable.

Evaluation of Atom Attributions. The quality of atom
attributions for individual predictions was evaluated using the
data set based on Derek Nexus labels (i.e., structural alerts) as
ground truth. The output fromDerek Nexus is a report of which
atoms are responsible for an alert being fired. For a given
compound, the ground truth is defined as the union of all atoms
responsible for all alerts that are fired. The concordance of atom
attributions output by IG_hidden with the ground truth for a
compound with a positive prediction of toxicity was measured
using ROC-AUC.56 The atoms are ranked on their attribution
and at each threshold the TPR (true positive rate, i.e., recall) and
FPR (false positive rate, i.e., 1-specificity) with respect to the
ground truth are recorded and the area under the obtained ROC
curve is determined. Note that the attribution ROC-AUC
cannot be computed for compounds where all atoms form the
ground truth for toxicity because no FPR can be computed.
Naturally, attribution AUC values can only be determined for

compoundsmatching an alert (actual positives). These cases can
be further discriminated into TPs (true positives: correctly
predicted as positive) and FNs (false negatives: incorrectly

Figure 4. Illustration of IG_hidden. In the first step, an attribution
(positive or negative) is determined for each hidden neuron for the test
compound. Then, the neuron attributions are converted to atom
attributions using matching substructures. In this case, one matching
substructure is found for each neuron. The substructure for the first
neuron is a nitro group with an aromatic carbon (four heavy atoms).
Therefore, the neuron attribution is divided by 4 and an atom
attribution of 0.06 is obtained. The same procedure is applied to the
other neurons’ attributions. Notably, the attribution for neuron 2 is
negative, hence the blue coloring. Details for the atom coloring are
provided in the text. In this case, no weighting has been applied to the
atoms of a substructure to simplify the illustration. The rightmost
structure contains atom colorings aggregated from the individual
neurons’ atom attributions.
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Table 3. Model Performances (Validation/Test)

accuracy ROC-AUC precision recall MCC

Ames model (one layer) 0.825/0.806 0.905/0.890 0.817/0.816 0.837/0.813 0.650/0.611

Derek Nexus label model (one layer) 0.903/0.900 0.970/0.965 0.889/0.897 0.929/0.922 0.807/0.799

Derek Nexus label model (two layers) 0.918/0.906 0.977/0.964 0.918/0.932 0.923/0.892 0.836/0.812

Figure 5. Training compound activations and learned weights for neuron 1−153. (A) Distribution of activations for training compounds sorted in
descending order (Top-1500 compounds shown). (B) Distribution of learned weights connecting input neurons to neuron 1−153.

Figure 6.Most relevant training compounds and FP bits for neuron 1−153. Shown are the Top-8 training compounds (strongest activation) and the
Top-12 FP bits (highest weights), as well as two further bits linked to the aromatic nitro group (bottom row of lower panel).
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predicted as negative). For an FN compound, the explanation
cannot be expected to match the true cause of toxicity, since the
model did not predict the compound as toxic. This is a mistake
made by the NN. However, the objective of this analysis is to
evaluate the performance of the attribution method. Therefore,
attribution AUC scores were only computed for TP compounds
and the distribution of attribution AUC scores was calculated.
This process was repeated for the TP compounds using the
IG_input method in order to compare the performance of
IG_hidden with the more established attribution method.
A deeper understanding of the performance of attribution

methods can be gained by analyzing attribution AUC scores
obtained for specific alerts. It may be that an attribution method
performs very well for some alerts, but poorly for others. For this
analysis, only compounds matching a single alert were
considered. Two alerts (Alert39 and Alert87) were almost
always found co-occurring with the alert for alkylating agents
(Alert53) and in this case, they were added to the support set for
Alert53 to be included in the analysis. Then, for each alert, the
mean attribution AUC across compounds matching this alert
was computed.

■ RESULTS

Model Performance. Model classification performance on
both validation and test sets is reported in Table 3 using several
metrics for the three different models: the single-layer model
trained on experimental Ames labels; the single-layer model
trained on Derek labels; and the two-layer model trained on
Derek labels. Good performance is achieved for the model
trained on experimental Ames labels with an accuracy of above
0.8, an ROC-AUC score of around 0.9, and anMCC score above
0.6 on both validation and test sets. While optimizing model
performance was not the focus of this work, we note that our
reported scores are in a comparable range to other recent models
reported in the literature that predict Ames mutagenicity.57,58

Even better performances were observed for models trained on
Derek Nexus labels. This may be because it is less challenging to
predict well-defined chemical rules that are not prone to
experimental uncertainty. For the Derek Nexus labels, the two-
layer model slightly outperformed the single-layer model.

Exploration of Chemical Features Learned in Hidden
Neurons. A preliminary investigation was conducted as a proof
of concept to explore whether the activation of hidden neurons
can be linked to the presence of certain chemical features. This
used the single hidden layer NN trained on the Ames data set.

Two sources of information were considered: the training
compounds most strongly activating a given neuron; and the
Morgan FP bits associated with the neuron that have high
learned weights. The distribution of training compound
activation values for neuron 1−153 can be seen in Figure 5
alongside the distribution of weights for all input fingerprint bits.
The strongest activation is at 0.395 and many training
compounds have activations of comparable magnitude (e.g.,
312 training compounds have activation values >0.2). The
weights for the FP bits range between 0.056 and −0.057 with
many bits having a weight close to zero. The eight training
compounds that most strongly activate the neuron and the FP
bits with the highest learned weights are shown in Figure 6.
All of the Top-8 compounds for neuron 1−153 contain an

aromatic nitro group, which is a known toxicophore for
mutagenicity. The nitro group is attached to different aromatic
rings, namely phenyl, furane, and bi- or tricyclic systems. When
inspecting the Top-12 bits (top two rows of the lower panel in
Figure 6), several can be identified that are bits linked to the
aromatic nitro group, including those with the highest and third
highest weights. Moreover, two further bits indicative of an
aromatic nitro group but which are outside the Top-12 bits are
shown in the bottom row. The weights for these bits, while lower
than those in the Top-12, still make an appreciable contribution
to the neuron activation observed for aromatic nitro
compounds. From these observations, it can be concluded
that neuron 1−153 detects aromatic nitro compounds. Notably,
it is connected to the output neuron with a positive weight
(0.05), indicating that its activation increases the probability of a
mutagenic prediction being made by the NN.
The Top-8 compounds and Top-12 bits for further example

neurons are shown in the Supporting Information. These
include examples of neurons that detect epoxides (Figure S1,
neuron 1−43), polycyclic aromatic hydrocarbons (Figure S2,
neuron 1−180), both azides and acridine (Figure S3, neuron 1−
69) as well as a further neuron that detects aromatic nitro
compounds (Figure S4, neuron 1−71). These examples show
that a single neuron may detect multiple relevant chemical
features and conversely, different neurons may detect the same
or similar chemical features.
It can be concluded that inspecting training compounds with

high activation and bits with high weights may provide some
insights into the chemical features a hidden neuron responds to.
However, a manual analysis for all hidden neurons would be
cumbersome and subject to human bias. Moreover, focusing on

Figure 7. Example extracted substructures. (A) Aromatic nitro alert. (B) Nitrogen or sulfur mustard alert.
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a small subset of compounds and FP bits might lead to relevant
chemical features that cause neuron activations of medium
strength to be missed. Therefore, the automated method for
identifying substructures linked to activation of hidden neurons
was developed as described in the Methodology. The results of
applying this approach are described below.

Atom Attributions for Models Trained on Derek Nexus
Alerts. The automated method for identifying substructures
that cause activation of hidden neurons was evaluated both
globally (considering the entirety of extracted substructures)
and locally (considering individual predictions).
Global Analysis.The NN trained on Derek Nexus alert labels

was used for this evaluation, where the cause of labels is known.
In total, 39,164 substructures were extracted across all hidden
neurons of the network (identical substructures may be
extracted for different neurons). The median number of
extracted substructures per hidden neuron was 138. The
extracted substructures cover all but one of the Derek Nexus
alert structures: of the 102 Derek Nexus alerts contained in the
training data set, superstructures for 101 of them are among the
extracted substructures across all hidden neurons.
Some extracted substructures are shown for two selected

Derek Nexus alerts, in Figure 7 (panel A: aromatic nitro alert;
panel B: nitrogen or sulfur mustard alert). In total, 4999
substructures containing aromatic nitro were extracted from 213
different neurons, and 327 substructures containing a nitrogen/
sulfur mustard group were extracted from 166 different neurons.
This suggests that chemical features related to a specific alert are
detected by many neurons across the network. However, a
substructure may contain more than one relevant chemical
feature (see below).
Extracted substructures may be small (e.g., a nitro group

attached to a single aromatic carbon atom) or quite large (e.g., a
nitro group attached to a larger ring system). Notably, a
substructure may contain more than one chemical group
associated with mutagenicity. For instance, the rightmost
structure in the top row of Figure 7 contains an aldehyde and
an epoxide group in addition to the aromatic nitro. The bottom
row shows that both nitrogen and sulfur mustard groups were
among the extracted substructures. In the majority of cases, the
mustard group is formed with one or two chlorine atoms, yet the
rightmost substructure contains a bromine atom. Overall, this
shows that the extracted substructures may cover different
variants of a particular alert.
Local Analysis. The IG_hidden method was applied to

compounds in the validation set (and later the test set) to
evaluate if the extracted substructures may be used to explain
individual predictions made by the NN. The results were
compared with the established IG_input approach where IG is
used to determine the importance of input features which are
subsequently mapped to test compounds. The results in Table 4

show: the quality of model explanations as median attribution
AUCs; the proportions of compounds with attribution AUC of
≥0.8; the median alert attribution AUCs; and the proportion of
alerts with attribution AUCs of ≥0.8 for the validation set.
Moreover, in Figure 8 attribution AUCs of individual
compounds (A) and alerts (B) are compared. IG_hidden was
also used to color the atoms of a validation compound according
to the substructures extracted from the highly activating neurons
as described above.
While both approaches achieve good explanations for the

majority of compounds (AUC of at least 0.8 for 82 and 73% for
IG_input and IG_hidden, respectively), IG_input outperforms
IG_hidden overall when evaluating individual compounds.
Figure 8A shows the AUC scores for individual compounds
where for some compounds IG_input clearly outperforms
IG_hidden, whereas the opposite is the case for other
compounds. For a few compounds, IG_hidden provides very
poor scores (AUC≤ 0.5). However, this is a biased evaluation as
some alerts are muchmore frequent in the data set and hence the
distribution of attribution AUC scores is dominated by a few
alerts. Figure 8B shows the average explanation scores for
individual alerts and can be considered a more robust
comparison, as all alerts are considered equally important. In
this evaluation scheme, neither of the approaches is clearly
superior and, as for individual compounds, each method
outperforms the other for a subset of alerts. Similar conclusions
can be drawn when evaluating the test set (see Figure S5).
Model explanations obtained by IG_input and IG_hidden for

some example compounds are provided in Figure 9 and are
compared with the “ground truth” as presented by Derek Nexus
alerts. An AUC of 1 will be achieved if all the atoms reported in
the Derek Nexus match are given the highest contribution. An
AUC of 1 can also be obtained where additional atoms show
positive attributions provided that their values are lower than
those of the atoms in the Derek Nexus alert.
For the first compound (Figure 9A), a perfect attribution

AUC score of 1 was achieved by IG_input which means that all
atoms belonging to the Derek Nexus alert (which forms the
ground truth) were assigned higher attribution values than all
remaining atoms. On the other hand, IG_hidden received a
lower AUC of 0.83 due to equal contribution from atoms in the
phenyl ring not covered by the Derek Nexus alert. The AUC
score depends on the definition of the alert and in this case,
highlighting the complete phenyl ring may still be considered a
correct explanation even though it is not included in the atom
match list for the Derek Nexus alert which conveys mutagenicity
of Àromatic Nitro ̀ compounds, more generally.
In the example in Figure 9B, the AUC for the IG_input

approach is lower than the AUC of the IG_hidden approach.
The IG_input method receives a lower AUC due to the
relatively high contribution of the bromine atom, whereas,
although the bromine atom is also highlighted in the IG_hidden
method, it has a lower ranking than the other highlighted atoms.
In this example, even though the IG_hidden approach has a
higher AUC, subjectively the IG input method gives a clearer
picture with minimal contribution from the non nitro atoms.
In the example in Figure 9C, the AUC is 1 in both cases with

the Aromatic nitro atoms identified by the Derek Nexus alert
having the highest ranks, however, the IG_hidden method
attributes greater contribution to atoms in the aromatic ring that
are not explicitly covered by the Derek Nexus aromatic nitro
alert, compared to IG_input.

Table 4. Evaluation of Model Explanations on the Validation
Seta

median AUC AUC ≥ 0.8 median alert AUC
alert

AUC ≥ 0.8

IG_input 0.964 0.817 0.894 0.692

IG_hidden 0.935 0.727 0.903 0.712

aShown are the median attribution AUC across TP compounds; the
proportion of compounds with an attribution AUC of ≥0.8; the
median alert attribution AUC; and the proportion of alerts with an
attribution AUC ≥ 0.8.
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In the example in Figure 9D, for the IG_hidden method, the
contribution is shared across all atoms in the fused ring system
resulting in low intensity for all atoms. The IG_input method
yields a high intensity around the aziridine group, however, it has
attributed a negative score to the nitrogen. This example
demonstrates a limitation of IG_hidden where low intensity is
seen for a large substructure (the total color intensity is divided
among atoms).
In the example in Figure 9E, the IG_hidden method yields a

higher AUC than the IG_input and is a closer match to the
ground truth. The IG_input method has identified unrelated
atoms in the neighboring ring which are rankedmore highly than
the attachment point of the nitro group.
When explaining the prediction of a compound using

IG_hidden, it may be that the compound does not match any
of the substructures extracted for a given neuron. In that case,
the attribution for this neuron does not contribute to atom
coloring (see Methodology). Figure 10A shows the proportions
of positive attributions that are accounted for by the IG_hidden
explanation model for the validation compounds.
For many TP compounds, only a small proportion of positive

attribution was accounted for in the obtained model
explanations. For many compounds, this value was below 0.2,
while the highest observed proportion across all TP compounds
was 0.666. However, the magnitude of the proportions is not
correlated with the quality of model explanations (Figure 10B).
High AUC scores were obtained for low, medium, and high
proportions of accounted-for attributions. Two example
compounds are shown in Figure 10C and D, respectively. The
compound in Figure 10C is an example where a high proportion
of positive attributions is accounted for. As is shown, the two
neurons with the highest positive attributions are both
associated with substructures matching the test compound.
On the other hand, for the compound in Figure 10D, a very low
proportion of positive attribution is accounted for (0.047). In
particular, the neuron with the 40th largest proportion is the first
neuron for which a matching substructure (aromatic hydroxyl-
amine) has been extracted. This is associated with a poor model
explanation for this compound (AUC= 0.167). Also shown is an

extracted substructure for the neuron with the highest
attribution for this compound. This substructure contains an
aromatic nitroso group (like the test compound), but also a nitro
group and hence does not match. This suggests that the neuron
is activated by the presence of the nitroso group, but the absence
of a matching substructure associated with the neuron (e.g., a
generic aromatic nitroso), means that this information is not
used in the model explanation by IG_hidden. This is an example
where the extraction of more generic substructures could have
improved the quality of model explanations.

Atom Attributions for Models Trained on the
Experimental Ames Data. Next, the IG_hidden method
was evaluated using the model trained on experimental Ames
labels, which is howQSARmodels are used in practice. As in the
previous experiment, the Derek Nexus alert atoms are used as
ground truth, and the quality of the model explanations was
evaluated on individual compounds and averaged for alerts. For
this evaluation, the validation and test set were pooled. Median
scores are reported in Table 5 and scatter plots contrasting
individual scores for IG_input and IG_hidden are shown in
Figure S6. All the median scores for IG_input are slightly higher
than for IG_hidden, yet, as before, there are subsets of
compounds where IG_hidden provides more accurate model
explanations. Overall, the scores are somewhat lower compared
to the model trained on Derek Nexus labels. This was expected,
as the model in this case was not trained on the ground truth
used to evaluate model explanation. Nonetheless, it can be
concluded that both IG_input and IG_hidden provide good
model explanations for a majority of compounds.
Having established that the methods are successful in

identifying substructures associated with positive predictions,
they were then applied to attempt to explain negative
predictions made by the NN. Model explanations for two
example compounds that were correctly predicted as Ames
negative are presented in Figure 11.
The first example shows an aromatic nitro compound with a

deactivating trifluoromethyl group in the ortho position. This
compound is negative in the Ames Test, as the trifluoromethyl
group withdraws electron density from the aromatic system

Figure 8. Attribution AUC scores of individual compounds (A) and alerts (B).
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thereby reducing the stability of the nitrenium ion responsible

for its mutagenic potential.59 This compound was correctly

predicted as negative by the model and both IG_input and

IG_hidden assign negative attributions to the trifluoromethyl

Figure 9. Comparison of atom attributions for individual compounds (A to E, respectively). Shown are compounds with Derek Nexus alerts
highlighted (first column); atom attributions along with the corresponding attribution AUC for IG_input (second column) and IG_hidden (third
column).
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group, although this is more pronounced in IG_input. In the
second example, negative attribution is assigned to the alkyl
chain by both approaches, while the nitro group is assigned
positive attribution. Aliphatic nitro compounds are not listed as
toxicophores for mutagenicity in the public ToxAlert database.35

It can be concluded that explanation methods may correctly
assign negative attribution to chemical features that reduce or
eliminate the mutagenic potential of compounds. However, and
as was the case for infrequent toxicophores in a data set, the
IG_hidden method may fail to extract relevant substructures for
some of the relevant neurons resulting in pale coloring or a total
miss of deactivating features. It is to be expected that evaluating
negative (nonmutagenic) model explanations is more difficult,
as they may result either from the absence of mutagenic features
or the presence of deactivating features, which are generally less
well understood than toxicophores for mutagenicity.

Exploration of Deep Neural Networks. All experiments
so far were applied to NNs with a single hidden layer to
demonstrate the validity of the approach for a relatively simple
model. In practice, DNNs (i.e., more than one hidden layer)

Figure 10. Analysis of positive attributions accounted for in model explanations by IG_hidden. (A) Histogram showing proportions of positive
attributions accounted for in TP compounds of the validation set. (B) Scatter plot showing proportions of positive attributions and attribution AUC
values for individual TP compounds in the validation set. (C) Example with high proportion of positive attribution accounted for. Ground truth: nitro
groups and the attached aromatic carbon atoms. (D) Example with low proportion of positive attribution accounted for. Ground truth: nitroso group
and hydroxylamine as well as the attached aromatic carbon atoms.

Table 5. Evaluation of Model Explanations for the Model Trained on Experimental Ames Labelsa

median AUC AUC ≥ 0.8 median alert AUC alert AUC ≥ 0.8

IG_input 0.905 0.726 0.848 0.574

IG_hidden 0.883 0.640 0.814 0.537
aShown are the median attribution AUC across TP compounds, the proportion of compounds with an attribution AUC of ≥0.8, the median alert
attribution AUC, and the proportion of alerts with an attribution AUC ≥ 0.8.

Figure 11. Example explanations for Ames negative predictions.

Table 6. Evaluation of Model Explanations for the Two-Layer Modela

median AUC AUC ≥ 0.8 median alert AUC alert AUC ≥ 0.8

IG_input 0.984 0.841 0.907 0.714

IG_hidden 0.938 0.725 0.906 0.735

aShown are the median attribution AUC across TP compounds, the proportion of compounds with an attribution AUC of ≥0.8, the median alert
attribution AUC, and the proportion of alerts with an attribution AUC ≥ 0.8.
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may achieve higher prediction scores than those consisting of a
single layer. Therefore, the IG_hidden approach was applied to
the two-layer neural network trained on the Derek Nexus alert
labels. First, the substructure extraction method was applied to
the first layer of the network and the extracted substructures
were used to explain predictions made by the model. The quality
of the explanations obtained by IG_hidden was evaluated in the
same manner as for the simpler models and compared to the
IG_input method. The AUC scores on the validation set are
reported in Table 6.
Overall, the scores are similar to those for the single hidden

layer NN. IG_input achieved higher scores when considering
the attribution AUC on individual compounds (median 0.984 vs
0.938), while the performance is nearly identical when
considering the average scores for alerts (median 0.907 vs
0.906). As for the one-layer NN, IG_input and IG_hidden each

perform better on different subsets of compounds and alerts (see
Figure S7). It was hence shown that IG_hidden can be applied
to the first hidden layer of a two-layer NN to achieve good
explanations for a majority of compounds.
Next, neurons of the second hidden layer were investigated.

Before attempting to extract substructures from these neurons,
their role in the NN was investigated. First, the pairwise
correlation of compound activation between hidden neurons
was investigated. A positive correlation indicates that the pairs of
neurons are activated by the same compounds. The distribution
of pairwise correlations (i) within the first hidden layer, (ii)
between the first and second hidden layer, and (iii) within the
second hidden layer are shown in Figure 12.
Neuron pairs within the first hidden layer have mostly no or

very little correlation (blue histogram). This suggests that there
is a diversity in the chemical features that are detected by

Figure 12.Correlation analysis of hidden neurons. Pairwise correlations are grouped into: pairs of neurons in the first layer (“within first layer”�blue;
pairs of neurons in the first and second layer ('between first and second layer'�red); and pairs of neurons in the second layer (“within second layer”�
green). The histogram of pairwise correlations for each group is shown. Correlations of neurons with themselves were ignored.

Figure 13. ROC_AUC scores for individual neurons. Each neuron in the first and second hidden layers is evaluated as a classifier.
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different neurons in the first hidden layer. The existence of
moderately strong correlations between neurons in the second
and first hidden layer (red histogram) suggests that neurons in
the second hidden layer, to some extent, detect similar chemical
features to those detected in some of the first hidden layer.
However, the vast majority of neuron pairs within the second
hidden layer (green histogram) either have a strong positive
correlation (>+0.9) or a moderately strong negative correlation
(<−0.5). This means that many of the neurons in the second
layer detect the same chemical features and that there is little
diversity between the neurons.
ROC-AUC scores for individual neurons were then examined

to investigate if hidden neurons detect specific chemical features.
In this analysis, each hidden neuron is considered to be a
classifier and the activation of the neuron for a compound is
considered to be a prediction. An AUC score of 1 would mean
that all toxic compounds cause a stronger activation than all
nontoxic compounds (nonspecific detection of toxic com-
pounds). On the other hand, an intermediate AUC (0.6−0.8)
would mean that some but not all toxic compounds cause a
strong activation which would be observed if only one (or a few)
chemical features related to the toxicity are detected in the
neuron. Equivalently, an AUC score of 0 would mean that all
nontoxic compounds cause higher activation than toxic
compounds. AUC scores for hidden neurons of the first and
second hidden layers evaluated on training compounds are
summarized in Figure 13.
It can clearly be seen that while neurons in the first hidden

layer detect one or a few specific features for mutagenicity,
neurons in the second hidden layer seem to directly detect
mutagenicity (AUC close to 1) or absence of mutagenicity
(AUC close to 0). It seems that in this model, neurons in the
second hidden layer aggregate chemical features detected in the
first layer instead of detecting novel chemical features. Similar
observations were made on models trained on endpoints from
the ChEMBL and ToxCast data sets (examples are shown in the
Supporting Information: adenosine A1 receptor in Figure S8;
ATG_ERa_TRANS_up in Figure S9).60−62 Hence, applying
IG_hidden to the first layer can be expected to be sufficient to
detect relevant chemical features, and no attempts were made to
extract chemical substructures from neurons in the second
hidden layer.

■ DISCUSSION AND CONCLUSIONS

Although there has been significant interest in the use of NNs
across a wide range of domains they are notorious as being
“black boxes” with little or no rationale provided for the
predictions made. As such, although they may provide more
accurate predictions than traditional MLmethods, they may not
be themethod of choice. In chemoinformatics applications, such
as bioactivity or toxicity prediction, it can be more useful to
understand the reasons why a certain prediction has been made
as this may then inform future experiments, for example, in lead
optimization, this information can be used to determine which
parts of a molecule should be retained or changed as a project
progresses. Furthermore, having the ability to interpret
predictions is important in the regulatory context relating to
the toxicity of chemicals.
Previous work aimed at opening the “black box” of NNs when

applied to QSAR predictions has been based on assigning
importance to the input features, such as the bits in a fingerprint,
by integrating the weights over successive layers of the NN.
While these can be used to assign atom attributions, they do not

make direct use of the hidden layers of a NN where the input
features are weighted, and combinations of features are
identified as being associated with predictions. Here we have
developed a method to exploit the information in hidden layers
of a NN to assemble substructures from sets of highly weighted
bits learned by individual neurons. The substructures are
assembled by identifying co-occurrences of highly weighted bits
in training compounds that strongly activate the neuron. The
substructures are then associated with the hidden neurons of the
NN and can be used to provide explanations for toxicity
predictions when the NN is applied to previously unseen
compounds. This approach was inspired by the method
described in,52 and to our knowledge has not previously been
attempted in the chemoinformatics field.
We have validated the method globally by comparing the set

of substructures extracted from Ames toxicity training data that
has been labeled according to Derek Nexus structural alerts
which have been compiled manually. Substructures were found
that are closely related to all but one of the expected 102 Derek
Nexus alerts demonstrating that the data-driven approach is able
to identify substructures that correspond to known toxico-
phores. We also evaluated the method locally by comparing the
explanations provided for compounds not included in the
training data and compared its performance against IG_input, a
closely related andmore established approach, which is based on
the input features only. Both methods performed well in
providing explanations for predictions that correspond closely to
known toxicophores, measured using attribution ROC-AUC as
the metric.56 However, neither of the methods was clearly
superior, with each method performing better on certain
mutagenicity alerts. Hence, it appears that leveraging
information extracted from hidden neurons provides model
explanations that are complementary to those found using input
features only.
While IG_hidden yielded competitive performance to the

established IG_input, we make several observations that make
this approach challenging. First, it was observed that one neuron
may be activated by a range of diverse chemical substructures
related to the end point (i.e., different toxicophores). Hence, it is
usually impossible to assign a single cause to the activation of a
particular neuron. This is different from the input features where
a Morgan fingerprint bit is assigned to a defined chemical
environment (although bit collisions might occur). Moreover,
relevant chemical features may activate a large number of
different neurons across the NN. This means that many different
neurons may be of relevance to understanding a given model
prediction. A further observation is that it could be that none of
the identified substructures associated with a highly activated
neuron match the test compound. This is a limitation of the
approach that could be mitigated by using more generic
representations of substructures such as would be provided by
SMARTS representations.63

When we extended the approach to investigate deep layers of
NNs, it was observed that the individual neurons in the second
hidden layer do not detect a subset of specific chemical features
linked to the toxicity, but instead, they appear to aggregate all the
chemical features found to be relevant for toxicity.
Benchmarking the performance of model interpretability

techniques has been recognized as a crucial step to advance the
state of the art.64,65 Here, we used an artificial data set (i.e.,
Derek Nexus alerts to determine class labels and ground truth
atoms) which is related to a real toxicity end point (i.e.,
mutagenicity). This end point is interesting for benchmarking,
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as the model is required to learn a wide range of different
chemical features. Although the data set used is proprietary,
publicly available toxicity alerts (e.g., ToxAlerts, OECD QSAR
Toolbox)35,66may be leveraged as useful public benchmark data
sets.
We further note that several challenges remain when

attempting to evaluate the quality of model explanations.
When a model explanation does not match the true cause of
toxicity, this may be either because the model made the
prediction for the wrong reason (see Clever Hans effect67) or
because the explanation method does not correctly capture the
model behavior. The inability of a model to correctly predict
toxicity may be due to a limited number of training examples
(e.g., for a certain chemical class) or to errors in the data (e.g.,
due to experimental variability). In our study, the quality of
model explanations dropped slightly when moving from the
Derek Nexus data set (where the labels correspond to well-
defined chemical rules) to the experimental Ames data set
(which is prone to experimental errors). Nevertheless, the
model explanations were still in good agreement with the known
toxicophores which suggests that the explanations for this data
set were not strongly impacted by data errors.
Finally, the interpretation method has been developed to

explain classification models. However, the IG technique has
been successfully applied to regression models,68 and we believe
that our method should hence also be applicable to regression
models, although this was beyond the scope of this work.
To conclude, our study presents a novel method to extract

learned chemical information from hidden layers of NNs and
use these to explain model predictions. We believe that this
paradigm can complement more established techniques for
understanding NN models for toxicity prediction.
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