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Stokes-parameter representation for Compton scattering of entangled
and classically correlated two-photon systems
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A Stokes parameter representation for two-photon systems is developed to calculate cross sections for both
entangled and classically correlated mixed states scattering off unpolarized and polarized Compton electrons.
The cross section of Compton scattering for pairs of maximally entangled annihilation photons, generated by the
disintegration of para-positronium, is compared with classical analogs. An analysis of the symmetrical properties
and basis independence of these systems is conducted to elucidate the observed differences. We propose a method
to establish an upper bound for identifying correlations influenced by entanglement. Furthermore, we calculate
the cross section for Compton scattering of annihilation photons from spin-polarized electrons. A qualitative
analysis reveals a contradiction to the contemporary assumption that Compton scattering acts as an entanglement
kill switch. These findings contribute to a broader understanding of photon systems and their behavior in various
scattering scenarios. Although the primary focus of this article is on Compton scattering, the formalism can be
adapted to other interactions, provided that the Mueller matrix representation of the interaction is available.
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I. INTRODUCTION

In the past decade, there has been a renewed focus on
0.511-MeV polarization entangled annihilation photons, both
at a foundational level [1] and in the understanding of the
information content arising from the polarization entangle-
ment of these photons and its potential practical uses. The
latter is motivated in large part by the potential application
to the development of quantum-entangled positron emission
tomography (QE-PET) [2,3].

In practical applications, widely employed materials used
for polarization filters face limitations in their efficacy at ex-
tremely short wavelengths found in the x-ray or gamma-ray
range. Notably, gamma rays at MeV energies have wave-
lengths on the order of the Compton wavelength of the
electron. The exceptionally short wavelengths introduce phys-
ical barriers that impede the development of polarization
filters for sampling the state of polarization of both nonen-
tangled and entangled gamma rays.

As a result, polarization filters capable of sampling the
state of polarization at these wavelengths currently do not ex-
ist. In the absence of such filters, Compton scattering offers an
alternative statistical method for detecting polarization. This
approach indirectly analyzes the polarization state of incident
photons by studying the distribution of scattered photons,
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providing valuable insights into the polarization properties at
MeV energies [4–6].

For these reasons, QE-PET uses Compton polarimeters
to analyze the information content of entangled annihilation
photons. These devices fall into the category of position-
sensitive devices capable of determining the trajectory of a
scattering photon [7–9]. They achieved this by pinpointing
the locations within the device where an incoming photon
undergoes Compton scattering and photoelectric absorption.
The scattered trajectory is represented by the vector that
passes through these two interaction points. With the incident
trajectory of a photon known, the incident and scattered pho-
ton trajectories enable the determination of the orientation of
the scattering plane. In coincidence mode, two Compton po-
larimeters can be employed to indirectly measure the impact
of polarization entanglement on the scattering distributions
of two-photon systems. This is achieved by measuring the
coincident count rates as a function of the relative azimuthal
angle between the scattering planes [10,11].

However, because of the absence of a detailed theory,
the impact of Compton scattering on the entanglement be-
tween annihilation photons remains inadequately understood.
Prevailing assumptions take the conservative position that a
single Compton scattering event of an annihilation photon
results in the total loss of entanglement [2,12]. The heightened
interest in the dynamic role that Compton scattering plays
in the entanglement of annihilation photons underscores the
need for a comprehensive theory to address this fundamental
question.

In both classical and quantum optics, Stokes parameters
have proven valuable in characterizing quantum entanglement
[13–18]. Expanding on their versatile applications and build-
ing on the work of Wightman [19], Fano [20], and McMaster
[21], this article utilizes Stokes parameters to establish a
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theoretical framework for the initial stage of modeling Comp-
ton scattering involving a two-photon system in an entangled
or classically correlated state to bridge the gap between theory
and experiment.

II. PRELIMINARIES

We use the particle physics representation employed by
Schmidt and Simons [22] to derive various cross sections for
Compton scattering. This representation adopts the right cir-
cularly polarized state |R〉 and the left circularly polarized
state |L〉 as the operational basis. These bases are associated
with the σ3 Pauli matrix, which gives the spin projection
of a photon along its trajectory, taking values of ±1 units
of spin angular momentum. The definitions of the circular
polarization states |R〉 and |L〉, along with the σ3 matrix, are
as follows:

|R〉 =
[

1
0

]
, |L〉 =

[
0
1

]
, and, σ3 =

[
1 0
0 −1

]
. (1a)

By combining |R〉 and |L〉 states in different amounts and
phases we obtain other polarization basis sets such as the
vertical |V 〉 and horizontal |H〉 set, and the diagonal | + 45〉
and antidiagonal | − 45〉 basis set, where

|V 〉 = 1√
2

[
1
1

]
, |H〉 = 1√

2

[
1

−1

]
(1b)

and

| ± 45〉 = 1√
2

[
1
±i

]
. (1c)

The kets |V 〉, |H〉, and | ± 45〉 are in states of indefinite
spin angular momentum since they are in a superposition
of |R〉 and |L〉 states with equal probability of one of these
operational bases being observed.

We adopt the McMaster coordinate system convention [21]
to define the kinematics of Compton scattering; see Fig. 1.
The state of polarization of an incident photon γi is defined in
the x-y plane of a coordinate system in which the direction of
travel of an incident photon is along the z axis, having the unit
vector ẑ. The Compton scatter angle θ is the angle between the
trajectory with unit vector n̂ of the scattered photon γ f and the
ẑ such that ẑ · n̂ = cos θ . The kinetic energies of the photons
are expressed in units of mc2 = 511 keV where h̄, c = 1.
This means, for example, E0 = 1 for photons with an incident
energy of 511 keV. The energy of the Compton scattering
photon E (θ ) is given by the Compton relation formula

E (θ ) = E0

1 + E0(1 − ẑ · n̂)
= E0

1 + E0(1 − cos θ )
. (2)

In these units, the linear momentum of γi and γ f are, respec-
tively,�ki = E0ẑ and�k f = E (θ )n̂, where

n̂ = cos φ sin θ x̂ + sin φ sin θ ŷ + cos θ ẑ,

and where φ is the azimuthal angle (refer to Fig. 1).
The spin of an incident electron in a Compton polarimeter

is defined by a unit vector Ŝ relative to a system of coordinates
associated with a Compton polarimeter and will be discussed
in more detail in Sec. III.

FIG. 1. Defining incident photon polarization and direction: The
incident photon γi is characterized by its polarization state and di-
rection, represented by the set of unit vectors {x̂, ŷ, ẑ}. The photon
scatters off a stationary electron at the origin, with the scatter angle θ

determined by the angle between the unit vector ẑ and the trajectory
of the scattered photon γ f defined by the unit vector n̂. A second
set of axes, {x̂′, ŷ′, ẑ′}, is obtained by rotating anticlockwise around
ẑ′ = ẑ by azimuthal angle φ. The unit vector x̂′ is normal to the scat-
tering plane formed by the ŷ′ − ẑ′ unit vectors. (Scattered electron
not shown.)

In this work, the scattered electron is not observed. For
this reason, we do not show the scattered electrons in any
figure that visually illustrates the scattering geometry. What
this means in terms of calculating differential cross sections is
that we have summed and averaged over the scattered electron
spin.

III. DENSITY OPERATOR FOR A PAIR
OF SPIN-POLARIZED ELECTRONS

Consider an incident photon in an arbitrary state of polar-
ization denoted by |ϕi〉 expanded in terms of the |R〉 and |L〉
basis set such that

|ϕi〉 = c1|R〉 + c2|L〉, (3)

where the probability amplitudes c1 and c2 are complex num-
bers that satisfy the normalization condition |c1|2 + |c2|2 =
1. The density matrix ρi of |ϕi〉 can be expressed in terms of
the Stokes parameters Sia (a = 0, 1, 2, 3) and Pauli matrices
such that

|ϕi〉〈ϕi| = ρi = 1

2
(Si0σ0 + Si1σ1 + Si2σ2 + Si3σ3)

= 1

2

[
Si0 + Si3 Si1 − iSi2

Si1 + iSi2 Si0 − Si3

]
, (4)
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FIG. 2. Schematic of an ideal position-sensitive Compton po-
larimeter (CP) that outputs coordinates of Compton scattering and
scattered photoelectric absorption of the incident photon. The incli-
nation of the scattering plane is characterized by the azimuthal angle
φ. The incident trajectory and state of polarization are assumed to
be known. The angle φ is obtained by the dot product x̂′ · x̂ = cos φ,
where the x′ axis is normal to the scattering plane.

where

σ0 =
[

1 0
0 1

]
, σ1 =

[
0 1
1 0

]
, and σ2 =

[
0 −i
i 0

]
,

and σ3 is given in Eq. (1a).
It is convenient to write the Stokes parameters in the form

of a four-vector in this way:⎡
⎢⎢⎢⎢⎣

Si0

Si1

Si2

Si3

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

〈ϕi|σ0|ϕi〉
〈ϕi|σ1|ϕi〉
〈ϕi|σ2|ϕi〉
〈ϕi|σ3|ϕi〉

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

|c1|2 + |c2|2
c1c∗

2 + c2c∗
1

i(c1c∗
2 − c2c∗

1 )

c1c∗
1 − c2c∗

2

⎤
⎥⎥⎥⎥⎦. (5)

Figure 2 is a schematic of an ideal Compton polarimeter.
The spin Ŝ of a stationary Compton electron is defined relative
to a system of orthogonal coordinate axes labeled {xp, yp, zp}
associated with the polarimeter itself. In this example, the
plane xp-yp is parallel to the side of the polarimeter from
which a γi enters the device. The spin Ŝ of the electron is
defined as

Ŝ = cos φs sin θsx̂p + sin φs sin θsŷp + cos θsẑp.

To determine the Compton scattering cross section of an
incident photon with energy E0 and scattered energy E (θ ),
we proceed by defining a density matrix ρe for a Compton
electron, shown in Fig. 2, expressed in terms of a new set of
Stokes parameters given by

ρe = 1

2

[
S0 + S3 S1 − iS2

S1 + iS2 S0 − S3

]
, (6)

where the subscript “e” denotes electron. The Stokes param-
eters Sa of the Compton electron have units of cm2 sr−1 per
electron, unlike the Sia of the state |ϕi〉, which are unitless
quantities.

The differential cross section can be computed via the trace
operator such that

dσ

d�
= Tr(ρiρe) (cm2 sr−1 per electron), (7)

where the term on the left of the equal sign is the usual
definition for the differential scattering cross section, and the
term on the right is the trace of the matrix multiplication of
the incident photon density matrix ρi of Eq. (4) with the den-
sity matrix of a spin-polarized Compton electron of Eq. (6).
Evaluating Eq. (7) gives

Tr(ρiρe) = 1
2 (Si0S0 + Si1S1 + Si2S2 + Si3S3). (8)

The unknown parameters Sa are found using the Compton
scattering matrix formalism [21]. The Stokes parameters in
this formalism are defined in the optics representation and
are labeled P0, P1, P2, and P3. The correspondence between
the Stokes parameters expressed in the optical and particle
physics representations are P0 = S0, P1 = S1, P2 = S2,
and P3 = −S3. The appearance of the negative sign in the
third parameter P3 = −S3 occurs because the helicities of
circular polarization in the optical representation are opposite
to the particle-physics representation.

Performing the substitution Pia �→ Sia in matrix formalism
prescribed by McMaster gives the following result for the
Compton scattering cross section for a single photon:

dσ

d�
= r2

0

2

(
E (θ )

E0

)2[
1 0 0 0

]

×

⎡
⎢⎢⎣

t11 t12 0 t14

t12 2 − t12 0 t24

0 0 t33 t34

t41 t42 t43 t44

⎤
⎥⎥⎦

×

⎡
⎢⎢⎣

1 0 0 0
0 cos 2φ sin 2φ 0
0 − sin 2φ cos 2φ 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

Si0

Si1

Si2

−Si3

⎤
⎥⎥⎦, (9)

where the interpretation of the tmn matrix elements are dis-
cussed in Ref. [20]. The elements tmn given in Table I can
be separated into two groups: one dependent on and one
independent of the spin Ŝ of a Compton electron. Evaluating
Eq. (9) gives

dσ

d�
= r2

0

2

(
E (θ )

E0

)2

× (Si0t11 + Si1t12 cos 2φ + Si2t12 sin 2φ − Si3t14).
(10)

Comparing Eqs. (8) and (10) term by term, one can obtain
the Sa parameters for a Compton electron in terms of the tmn

matrix elements. Substituting in Eq. (6) gives

ρe = r2
0

2

(
E (θ )

E0

)2
[

t11 − t14 t12e−2iφ

t12e2iφ t11 + t14

]
. (11)
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TABLE I. Definitions of the tmn matrix elements.

(a) Spin-independent terms (b) Spin-dependent terms

t11 = 1 + cos2 θ + [E0 − E (θ )](1 − cos θ ) t14 = −(1 − cos θ )[E0 cos θ ẑ + E (θ )n̂] · Ŝ
t12 = t21 = sin2 θ t24 = E0(1 − cos θ )(n̂ × ẑ) · (ẑ × Ŝ)
t13 = t23 = t31 = t32 = 0 t34 = E0(1 − cos θ )(ẑ × n̂) · Ŝ
t22 = 2 − t12 = 2 − sin2 θ t41 = −(1 − cos θ )[E (θ ) cos θ n̂ + E0 ẑ] · Ŝ
t33 = 2 cos θ t42 = E (θ )(1 − cos θ )(ẑ × n̂) · (n̂ × Ŝ)
t44 = 2 cos θ + [E0 − E (θ )](1 − cos θ ) cos θ t43 = −E (θ )(1 − cos θ )(ẑ × n̂) · Ŝ

Let the density matrix ρ
(sp)
e denote a pair of space-like sepa-

rated Compton polarimeters operating in coincidence mode,
where the superscript “sp” labels a pair of electron Compton

polarimeters in the spin-polarized configuration. Let the den-
sity operator for electrons 1 and 2 be denoted by ρ (1)

e and ρ (2)
e ,

respectively, such that ρ
(sp)
e = ρ (1)

e ⊗ ρ (2)
e , or more concretely,

ρ (sp)
e = r4

0

4

(
E (θ1)

E0

)2(E (θ2)

E0

)2

×

⎡
⎢⎢⎢⎢⎢⎣

(
t (1)
11 − t (1)

14

)(
t (2)
11 − t (2)

14

)
t (2)
12

(
t (1)
11 − t (1)

14

)
e−2iφ2 t (1)

12

(
t (2)
11 − t (2)

14

)
e−2iφ1 t (1)

12 t (2)
12 e−2i(φ1+φ2 )

t (2)
12

(
t (1)
11 − t (1)

14

)
e2iφ2

(
t (1)
11 − t (1)

14

)(
t (2)
11 + t (2)

14

)
t (1)
12 t (2)

12 e−2i(φ1−φ2 ) t (1)
12

(
t (2)
11 + t (2)

14

)
e−2iφ1

t (1)
12

(
t (2)
11 − t (2)

14

)
e2iφ1 t (1)

12 t (2)
12 e2i(φ1−φ2 )

(
t (1)
11 + t (1)

14

)(
t (2)
11 − t (2)

14

)
t (2)
12

(
t (1)
11 + t (1)

14

)
e−2iφ2

t (1)
12 t (2)

12 e2i(φ1+φ2 ) t (1)
12

(
t (2)
11 + t (2)

14

)
e2iφ1 t (2)

12

(
t (1)
11 + t (1)

14

)
e2iφ2

(
t (1)
11 + t (1)

14

)(
t (2)
11 + t (2)

14

)

⎤
⎥⎥⎥⎥⎥⎦, (12)

where the superscript l = 1, 2 of the t (l )
mn matrix elements

labels the matrix elements associated with the Compton elec-
trons involved in the scattering of γ1 and γ2, respectively.

IV. PROPERTIES OF ANNIHILATION PHOTONS

Let |	en〉 represent the wave vector for a pair of entan-
gled annihilation photons generated by the annihilation of
an electron and a positron. Prior to their annihilation, the
electron-positron pair is assumed to be momentarily bound
together in a singlet state called para-positronium, often ab-
breviated as p-Ps. Determining |	en〉 requires an examination
of both the physical properties of the p-Ps state itself and the
conservation laws with which it must comply. In the ensuing
discussion, we work in the rest frame of the p-Ps system and
assume that it exists in a field-free environment. In the event
of annihilation, we only consider the prevalent decay channel
characterized by the emission of two maximally entangled
photons.

In the rest frame of p-Ps disintegration, both photons
are emitted with kinetic energy E0 and possess identical
magnitudes of linear momentum, denoted k. The net lin-
ear momentum of the emitted photons must sum to zero
to conserve linear momentum. Working in a global coordi-
nate system, if we detect photon 2 moving to the right with
momentum +�k, then the conservation of linear momentum
dictates that photon 1 must travel in the opposite direction
(to the left) with momentum −�k. However, it is important
to note that in the subsequent sections we adopt a specific
nomenclature in which each photon is defined within its own
local coordinate system, as depicted in Fig. 3. Consequently,
we denote the momentum of photon 1 in its local coordinate
system so that �k1 = −�k, while the momentum of photon 2

is denoted as �k2 =�k. During the initial moment of creation,
the wave functions of the two photons overlap, and at this
point, the two photons are identical and indistinguishable.
Consequently, it is equally likely that photon 1 is emitted
with momentum +�k while photon 2 carries momentum −�k,
or vice versa. This implies that the state |	en〉 must have two
degrees of freedom in linear momenta, each with an equal
probability of being observed. Thus, within the framework
of the local coordinate system, two distinct momentum basis
states arise: | − k, k〉 (that is, |k1, k2〉) and |k,−k〉 (that is,
| − k1,−k2〉). That is, the normalized linear momentum part,
denoted by |ψ±

k 〉, of the state |	en〉, can be described in one

FIG. 3. In the method used here, the basis states |R1〉 and |R2〉 of
photon 1 (γi1) and 2 (γi2), respectively, are each defined in terms
of a local coordinate system represented by the set of unit vec-
tors {x̂1, ŷ1, ẑ1} and {x̂2, ŷ2, ẑ2}, such that x̂1 = x̂2, ŷ1 = −ŷ2,
ẑ1 = −ẑ2, and�k1 = −�k2.
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of two possible ways such that

|ψ±
k 〉 = 1√

2
|k1, k2〉 ± 1√

2
| − k1,−k2〉, (13)

where the subscript “k” in |ψ±
k 〉 denotes the momentum state.

The singlet state of p-Ps possesses a net spin angular mo-
mentum of zero regardless of the choice of coordinate system.
For the conservation of the angular momentum of the spin to
hold, the spin basis vectors can only be |R1, R2〉 and |L1, L2〉.
For this reason, the state |	en〉 must also have two degrees of
freedom in spin momenta. In other words, the normalized spin
angular momentum part of the state |	en〉 can be described in
one of two possible ways. Specifically,

|ψ±
c 〉 = 1√

2
|R1, R2〉 ± 1√

2
|L1, L2〉, (14)

where the subscript “c” denotes circular polarization basis.
Note that both |ψ±

k 〉 and |ψ±
c 〉 represent Bell state wave vec-

tors. This implies that the annihilation photons are maximally
entangled in both linear and spin angular momenta.

Considering that the disintegration of p-Ps into two pho-
tons is an electromagnetic process, where parity is a conserved
quantity, and given that p-Ps exhibit odd behavior under a
parity transformation, it follows that the state |	en〉 must also
exhibit odd behavior under such a transformation. When a par-
ity operator �̂ is applied to the linear and angular momentum
basis states, it results in the following transforms:

�̂| ± k〉 = | ∓ k〉 and �̂|R〉 = |L〉, �̂|L〉 = |R〉.
For completeness, it can be shown using the definitions for
|V 〉, |H〉, and | ± 45〉 in Eqs. (1b) and (1c) that

�̂|V 〉 = |V 〉, �̂|H〉 = −|H〉, �̂| ± 45〉 = ±i| ∓ 45〉.
By utilizing Eqs. (13) and (14), we can combine the even

parity of the linear momentum state with the odd parity of
the polarization state, and vice versa. This combination yields
two potential candidates for the state |	en〉, both of which are
normalized. Let us refer to these candidates as |	A〉 and |	B〉
such that

|	A〉 = |ψ−
c 〉 ⊗ |ψ+

k 〉 (15a)

and

|	B〉 = |ψ+
c 〉 ⊗ |ψ−

k 〉. (15b)

Upon examining |	A〉 and |	B〉 in the given equations and
referencing Eqs. (13) and (14), it becomes apparent that both
states exhibit symmetry under the exchange of photons. This
symmetry is expected since each state represents a configura-
tion of two bosons.

Furthermore, it is relatively straightforward to show that
both |	A〉 and |	B〉 are odd under a parity transform, and thus
parity is conserved in the annihilation of p-Ps into a pair of
entangled photons. That is,

�̂|	A〉 = (−|ψ−
c 〉) ⊗ |ψ+

k 〉 = −|	A〉,
and

�̂|	B〉 = |ψ+
c 〉 ⊗ (−|ψ−

k 〉) = −|	B〉.

Since 〈ψ−
k ||ψ+

k 〉 = 0 and 〈ψ−
c ||ψ+

c 〉 = 0, then |	A〉 is or-
thogonal to |	B〉, that is, 〈	A||	B〉 = 0, implying that |	A〉
and |	B〉 represent two distinct candidates for the state |	en〉.

To determine which state |	A〉 or |	B〉 is the correct solu-
tion for state |	en〉, we direct our attention to the |ψ±

c 〉 states.
Specifically, we expand the |R〉 and |L〉 in terms of the vertical
|V 〉 and |H〉 states, such that

|R〉 = 1√
2
|V 〉 + 1√

2
|H〉,

|L〉 = 1√
2
|V 〉 − 1√

2
|H〉.

(16)

Substituting into the two solutions given in Eq. (14) gives

|ψ−
c 〉 ⇒ 1√

2
|V1, H2〉 + 1√

2
|H1,V2〉 (17)

and

|ψ+
c 〉 ⇒ 1√

2
|V1,V2〉 + 1√

2
|H1, H2〉. (18)

The results of the linear polarization transformation of
Eqs. (17) and (18) lead to two significant conclusions. First,
the transformation from a circular to a linear polarization basis
converts a Bell state into another Bell state. Second, the linear
polarization transformation of |ψ−

c 〉 yields a cross-polarized
Bell state. This implies that if one photon is randomly po-
larized in a certain plane, the other photon, traveling in the
opposite direction, will be linearly polarized in a plane per-
pendicular to the first.

On the contrary, when the linear polarization transforma-
tion is applied to |ψ+

c 〉, it results in a coplanar polarized
Bell state in which both photons are polarized in the same
plane. Previous theoretical studies have demonstrated that the
coincidence count rates of Compton scattering differ between
photon pairs with cross- and coplanar polarization [3]. This,
coupled with experimental observations which align with co-
incidence count rates consistent with the cross-polarized Bell
state |ψ−

c 〉 [2,23–27], implies that the state |	B〉 can be ex-
cluded as a valid solution for |	en〉.

One other conceivable polarization state labeled as |φ−〉
that could serve as a potential model for describing annihila-
tion photons is given by

|φ−〉 = 1√
2
|V1, H2〉 − 1√

2
|H1,V2〉.

However, upon transforming |φ−〉 into the circular basis, we
obtain

|φ−〉 ⇒ 1√
2
|L1, R2〉 − 1√

2
|R1, L2〉.

Given that the p-Ps state has a spin of zero, upon transforming
|φ−〉 into the circular polarization basis, it is crucial to note
that the resulting state has a total spin angular momentum of
two units. This observation shows that |φ−〉 cannot represent
a viable model for entangled photons from the annihilation of
p-Ps in its ground state, as it violates the conservation of the
spin angular momentum.

In summary, for a state to be considered a valid candidate
for annihilation photons represented by |	en〉, it must meet

033719-5



CARADONNA, D’AMICO, JENKINS, AND WATTS PHYSICAL REVIEW A 109, 033719 (2024)

FIG. 4. Nomenclature for p-Ps entangled photons Compton scattering in the rest frame of p-Ps. Two 0.511-MeV photons, γ1 and γ2, move
in opposite directions along a common line. Each Compton photon scatters at a polar angle θi (i = 1, 2) with a spin-polarized stationary
electron. Photon states described in respective coordinate systems with the Compton electron at the origin. Insert: The perspective of viewer
2 shows the relative angle between the scattering planes as x̂′

1 · x̂′
2 = cos(φ1 + φ2), where φ1 and φ2 are azimuthal angles. The trajectories of

scattered photons γ f 1 and γ f 2 lie in the yellow shaded scattering plane, with unit vectors x̂′
1 and x̂′

2 perpendicular to their planes.

several requirements. First, it should exhibit rotational sym-
metry, ensuring the conservation of spin angular momentum
(for more details, see Appendix A). Second, it must con-
serve parity and linear momentum. Moreover, the state should
demonstrate Bose symmetry under the exchange of photons,
while accounting for the indistinguishable nature of the pho-
ton pair creation. Taking these constraints into account, it is
reasonable to conclude that |	A〉 satisfies all these criteria.
Therefore, we can conclude that

|	en〉 = |	A〉 = |ψ−
c 〉 ⊗ |ψ+

k 〉, (19a)

or explicitly,

|	en〉 = 1
2 (|R1, R2〉 − |L1, L2〉)(|k1, k2〉 + | − k1,−k2〉).

(19b)

V. BASIS INDEPENDENCE

The objective of this section is to demonstrate the basis
independence of the 2-Compton cross section, more com-
monly referred to as the Pryce-Ward joint differential cross
section, for Compton scattering of annihilation photons [10].
To establish this independence, we will use the Stokes vector
formalism as outlined in Refs. [21,22]. In Sec. VI, this re-
sult will be used to examine the possibility of entanglement
breaking between a pair of annihilation photons through an
intermediate Compton interaction.

For the purpose of the following proof, we only need
to consider the polarization component |ψ−

c 〉 provided in
Eq. (14), of the state vector |	en〉 given in Eq. (19). Thus,

|ψ−
c 〉 has the explicit form

|ψ−
c 〉 = 1√

2
|R1, R2〉 − 1√

2
|L1, L2〉. (20)

In Sec. IV, it was demonstrated that the expansion of
|ψ−

c 〉 in terms of the linear basis |V 〉 and |H〉 results in the
transformation into another Bell state, given in Eq. (17). Let
|ψl〉 represent this transformed Bell state, with the subscript
“l” indicating that it is expanded in terms of the linear basis.
Specifically, we have the following:

|ψ−
c 〉 ⇒ |ψl〉 = 1√

2
|V1, H2〉 + 1√

2
|H1,V2〉. (21)

Finally, one could equally have chosen to expand |R〉 and |L〉
in terms of the diagonal basis | + 45〉 and | − 45〉 (refer to
Appendix B), and performing the necessary calculations, we
find that |ψ−

c 〉 undergoes a transformation into a Bell state rep-
resented in terms of the diagonal basis, denoted as |ψd〉. Here,
the subscript “d” signifies the diagonal bases. Therefore, we
have the following:

|ψ−
c 〉 ⇒ |ψd〉 = 1√

2
| + 451,+ 452〉 + 1√

2
|−451,−452〉.

(22)
In the above expression, it is implied that the kets | ±
451,±452〉 are cross-polarized relative to each other. To clar-
ify, consider an example: The ket | + 451〉 represents a plane
of vibration that lies in the first and third quadrants with re-
spect to the local coordinate system {x1, y1, z1}. Similarly, the
plane of vibration of | + 452〉 lies in the first and third quad-
rants with respect to the local coordinate system {x2, y2, z2}.
However, from the perspective of the {x1, y1, z1} coordinate
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system, the vibration plane of | + 452〉 is placed in the second
and fourth quadrants.

Let the density matrices corresponding to the polariza-
tion states |ψ−

c 〉, |ψl〉, and |ψd〉 be represented as ρ−
c =

|ψ−
c 〉〈ψ−

c |, ρl = |ψl〉〈ψl |, and ρd = |ψd〉〈ψd |, respectively.
Since |ψ−

c 〉 = |ψl〉 = |ψd〉, it follows then that

ρ−
c = ρl = ρd = ρen = 1

2

⎡
⎢⎢⎣

1 0 0 −1
0 0 0 0
0 0 0 0

−1 0 0 1

⎤
⎥⎥⎦, (23)

where the existence of the off-diagonal elements in the density
matrix ρen is the quantum signature of an entangled superpo-
sition of product states.

The Compton scattering cross section, which describes the
scattering distributions of annihilation photons in coincidence
measurement using a pair of space-like separated spin polar-
ized electrons (as depicted in Fig. 4), can now be performed by
taking the trace of the matrix product between ρen, as defined
in Eq. (23), and ρ

(sp)
e , Eq. (12). This can be expressed as

follows:

∂2σ

∂�1∂�2

∣∣∣∣∣
sp

= 1

4
Tr

(
ρenρ

(sp)
e

)
. (24)

Expressed in terms of the matrix elements t (l )
mn, Eq. (24) evalu-

ates to

∂2σ

∂�1∂�2

∣∣∣∣∣
sp

= r4
0

16

(
E (θ1)

E0

)2(E (θ2)

E0

)2

× [
t (1)
11 t (2)

11 + t (1)
14 t (2)

14 − t (1)
12 t (2)

12 cos 2(φ1 + φ2)
]
.

(25)

The term t (1)
14 t (2)

14 in Eq. (25) represents the spin-spin coupling
between the incoming annihilation photons and the spin-
polarized Compton electrons.

For experiments using unpolarized electron spin Comp-
ton polarimeters, cross sections can be computed by setting
Ŝ =�0. In this case, the spin-dependent tmn terms in Table I
evaluate to zero. Let ρ (un)

e be a density operator that describes
a pair of independent unpolarized electrons, with the subscript
“un” indicating unpolarized electrons. Consequently, Eq. (12)
simplifies to

ρ (un)
e = r4

0

4

(
E (θ1)

E0

)2(E (θ2)

E0

)2

⎡
⎢⎢⎢⎢⎢⎣

t (1)
11 t (2)

11 t (2)
12 t (1)

11 e−2iφ2 t (1)
12 t (2)

11 e−2iφ1 t (1)
12 t (2)

12 e−2i(φ1+φ2 )

t (2)
12 t (1)

11 e2iφ2 t (1)
11 t (2)

11 t (1)
12 t (2)

12 e−2i(φ1−φ2 ) t (1)
12 t (2)

11 e−2iφ1

t (1)
12 t (2)

11 e2iφ1 t (1)
12 t (2)

12 e2i(φ1−φ2 ) t (1)
11 t (2)

11 t (2)
12 t (1)

11 e−2iφ2

t (1)
12 t (2)

12 e2i(φ1+φ2 ) t (1)
12 t (2)

11 e2iφ1 t (2)
12 t (1)

11 e2iφ2 t (1)
11 t (2)

11

⎤
⎥⎥⎥⎥⎥⎦. (26)

It follows that the Compton cross section for annihilation pho-
tons scattering off unpolarized Compton electrons evaluates to

∂2σ

∂�1∂�2

∣∣∣∣∣
un

= r4
0

16

(
E (θ1)

E0

)2(E (θ2)

E0

)2

× [
t (1)
11 t (2)

11 − t (1)
12 t (2)

12 cos 2(φ1 + φ2)
]
. (27)

By substituting E0 = 1 into Eq. (27), we obtain the Pryce-
Ward differential cross section [10]. This finding emphasizes
that the cross section described in Eq. (27), i.e., the Pryce-
Ward formula itself, is not restricted to solely describing
the probability of scattering of cross-polarized annihilation
photons, defined in Eq. (21). Instead, it serves as a valid
framework for describing the scattering probability of anni-
hilation photons when employing the basis change defined in
Eqs. (20), (21), or (22).

VI. CONTRADICTION IN ENTANGLEMENT
BREAKING ASSUMPTION

When entangled particles interact with the environment,
their entanglement can be lost or significantly reduced. In a
recent experiment, it was reported that a complete loss of
entanglement of the annihilation photons was achieved by
allowing one of the annihilation photons to undergo an inter-
mediate Compton scattering event before reaching a Compton

polarimeter [12]. In these experiments, the angular correla-
tions of the maximally entangled annihilation photons were
found to be identical to those of the reported “unentangled
photons.” However, no conclusive evidence was provided
to demonstrate the production of completely unentangled
photons. In the absence of such evidence, the reported pro-
duction of unentangled annihilation photons is treated as an
assumption.

A change of basis in the initial annihilation photon state,
as part of any valid description for an entanglement-breaking
mechanism, should have no effect on the measured scattering
distributions. Using the results presented in Sec. V, partic-
ularly Eq. (23), where the density matrix, denoted ρen, can
be equivalently expressed in terms of the linear or circular
basis (ρen = ρl = ρ−

c ), we will demonstrate that the assumed
hypothesis leads to contradictory results.

The consequences of complete loss of entanglement are
investigated by first considering the density matrix ρen = ρl

associated with the state vector |ψl〉, given in Eq. (21). In
terms of the linear polarization basis, ρl is defined as follows:

ρen = ρl = |ψl〉〈ψl | = 1
2 |V1, H2〉〈V1, H2| + 1

2 |H1,V2〉〈H1,V2|
+ 1

2 |V1, H2〉〈H1,V2| + 1
2 |H1,V2〉〈V1, H2|. (28)

The density matrix ρl represents maximally entangled an-
nihilation photons before any Compton interactions have
occurred, as illustrated in Fig. 5(a). In the linear basis
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FIG. 5. Examining the consequences of the entanglement-
breaking mechanism between annihilation photons (Bell state), as
discussed in Ref. [12], in which the polarization correlations are
preserved at small scattering angles (<25◦). A pair of Compton
polarimeters operating in coincidence mode is used to measure the
scattering distributions of the resulting photons. (a) Creation of the
Bell state ρen = ρl = ρ−

c [Eq. (23)]. (b) Considering the Bell state
in the linear polarization basis, denoted by ρen = ρl , it must col-
lapse into the mixed state ρml [Eq. (29b)] in order to maintain the
cross-polarization correlations. (c) Counterscenario: The experimen-
tal setup mirrors (b) but is considered in the circular polarization
basis. To maintain the right-right or left-left polarization correlations,
the state ρen = ρ−

c must collapse into the mixed state ρmc [Eq. (31b)].
Since the setups in (b) and (c) are not physically different, the
assumption of entanglement breaking holds true only when the mea-
sured scattering distributions are identical.

representation, the polarization of the annihilation photons
exhibits cross-polarization correlations. The assumption of
complete entanglement loss holds that, to a good approxi-
mation, these cross-polarization correlations persist following
Compton scattering at small angles (<25◦). Thus, to satisfy
the condition of complete entanglement loss while preserving
cross-polarization correlations at small scattering angles, the
third and fourth terms in Eq. (28) must vanish following the
intermediate scattering, as depicted in Fig. 5(b). This results
in a density matrix denoted ρml given by

ρml = 1
2 |V1H2〉〈V1H2| + 1

2 |H1V2〉〈H1V2|, (29a)

where “ml” represents a linearly mixed cross-polarized state,
which evaluates to

ρml = 1

4

⎡
⎢⎢⎣

1 0 0 −1
0 1 −1 0
0 −1 1 0

−1 0 0 1

⎤
⎥⎥⎦. (29b)

The density matrix ρml is the mixed state assumed to be
created in an intermediate Compton scattering interaction.

However, the entangled annihilation state can be equally
described in the circular basis represented by the state vector
|ψ−

c 〉 [refer to Eq. (14)]. In this equivalent scenario, one could
consider the entangled state in terms of the density matrix
ρen = ρ−

c , where

ρen = ρ−
c = |ψ−

c 〉〈ψ−
c |

= 1
2 |R1, R2〉〈R1, R2| + 1

2 |L1, L2〉〈L1, L2|
− 1

2 |R1, R2〉〈L1, L2| − 1
2 |L1, L2〉〈R1, R2|, (30)

In the circular basis representation, the polarization of the
annihilation photons exhibits right-right and left-left polar-
ization correlations. If we again invoke the same assumption
that the polarization correlations persist following Compton
scattering at small angles, as depicted in Fig. 5(c), then the
third and fourth terms in Eq. (30) must also vanish after the
intermediate scattering event. This leads to a density matrix
denoted by ρmc, such that

ρmc = 1
2 |R1, R2〉〈R1, R2| + 1

2 |L1, L2〉〈L1, L2|, (31a)

which evaluates to

ρmc = 1

2

⎡
⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎦. (31b)

If the states ρml or ρmc are then measured using a pair of
Compton polarimeters in coincidence mode, as depicted in
Figs. 5(b) and 5(c), then the cross sections for ρml and ρmc

can be evaluated, respectively, as follows:

1

4
Tr(ρmlρ

(un) ) = r4
0

16

(
E (θ1)

E0

)2(E (θ2)

E02

)2

× (
t (1)
11 t (2)

11 − t (1)
12 t (2)

12 cos 2φ1 cos 2φ2
)

(32a)

and

1

4
Tr

(
ρmcρ

(un)
e

) = r4
0

16

(
E (θ1)

E0

)2(E (θ2)

E02

)2

t (1)
11 t (2)

11 , (32b)

where E02 is the incident energy of γ2 as it enters the polarime-
ter on the right in Figs. 5(b) and 5(c) such that E02 < E0.

Upon examination of Eqs. (32a) and (32b), it becomes
evident that, in general, the proposed assumption of complete
entanglement breaking leads to nonequivalent cross sections.
Only for specific values of φ1 = φ2 = ±π/4,±3π/4 will
the assumption of breaking the entanglement, as stipulated,
not lead to contradictory experimental results. Therefore, this
qualitative line of reasoning, involving a change in basis,
demonstrates that a single intermediate Compton scattering
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event cannot, in general, completely break entanglement in the
manner adopted by the assumption, as it would lead to para-
doxical experimental outcomes. Consequently, conclusions
based on this proposition would require a reinterpretation.

VII. CLASSICAL VS QUANTUM CORRELATIONS

This section aims to address the conflicting reports [28–32]
concerning the predicted azimuthal correlations of the mixed
state ρml .

To quantify the azimuthal correlations between pairs of
photons in Compton scattering experiments, we consider the
case where both θ1 and θ2 are equal to a common value θ .
By comparing the counting rate N⊥ when the sum of the
azimuthal angles φ1 and φ2 is 90◦ with the counting rate N‖
when the sum is 0◦, we can calculate the asymmetric ratio

Z (θ ) = N⊥
N‖

. (33)

The functions of the asymmetric ratios Zen and Zml are
defined in terms of the tmn matrix elements. These functions
can be obtained using the Compton cross sections for ρen

[Eq. (27)] and ρml [Eq. (32a)], such that

Z (θ )en = t2
11 + t2

12

t2
11 − t2

12

(34a)

(refer to Appendix E) and

Z (θ, φ2)ml = t2
11 + t2

12 cos2 2φ2

t2
11 − t2

12 cos2 2φ2
(34b)

(refer to Appendix F).
This analysis shows that the asymmetric ratio Z (θ, φ2)ml

has a value of 1 for any scattering angle θ only when φ2 has
values of ±π/4, ±3π/4, which is different from the reported
result in Refs. [28,33], where it is claimed that Z (θ, φ2)ml is
unity for all values of θ and azimuthal angles.

Upon further examination of the asymmetric ratios given in
Eq. (34), we find that the ratio for the annihilation photons, as
described by Eq. (34a), remains invariant with respect to the
azimuthal angle. However, setting φ2 = 0 in Eq. (34b) results
in Z (θ )en = Z (θ, φ2 = 0)ml .

Indeed, setting φ2 = 0 in the cross sections for ρen

[Eq. (27)] and ρml [Eq. (32a)], we obtain the following
identity:

∂2σ (φ2 = 0)

∂�1∂�2

∣∣∣∣∣
ml

= ∂2σ (φ2 = 0)

∂�1∂�2

∣∣∣∣∣
unp

= r4
0

16

(
E (θ1)

E0

)2

×
(

E (θ2)

E0

)2(
t (1)
11 t (2)

11 − t (1)
12 t (2)

12 cos 2φ1
)
.

(35)

This situation for the mixed state ρml is depicted diagrammat-
ically in Fig. 6.

Hiesmayr et al. [3] also observed a similar identity using
Kraus-type structures to calculate Compton scattering cross
sections. However, it is important to note that this identity
does not require mutually unbiased bases to distinguish be-
tween states ρml and ρen. The reason for this lies in the

FIG. 6. The scenario where the Compton cross section for the
ρml mixed state matches that of maximally entangled annihila-
tion photons represented by the density matrix ρen. A hypothetical
mixed-state photon emitter releases 0.511-MeV photon pairs, each
undergoing subsequent Compton scattering. In the case ρml , the
photon polarization is exclusively aligned along the x or y axis. The
counting rates depend on the chosen coordinate system relative to
the direction of polarization. To achieve identical coincidence rates
as annihilation photons, the x and y axes of a local coordinate system
must align with the states |V 〉 and |H〉 of the emitted pair. To achieve
this, we set φ2 = 0 and allow γ1 to scatter at any (θ1, φ1). In contrast
to annihilation photons, the counting rate remains invariant under a
rotation about the propagation axis.

conservation of the spin angular momentum during the dis-
integration of p-Ps, which prevents the production of ρml with
polarization states exclusively aligned along the x axis or the
y axis. In contrast, ρen (detailed in Appendix A) is rotationally
symmetric about the propagation axis.

VIII. WITNESSING ENTANGLEMENT
IN ANNIHILATION PHOTONS

In the previous section, it was demonstrated that the asym-
metric ratio of the state ρml lacks rotational invariance around
the axes of propagation, unlike the ratio for annihilation pho-
tons denoted as ρen. This invariance is a consequence of the
state ρml no longer representing, as it did in the original
system of coordinates, a state in which the two photons have
orthogonal directions of polarization. Instead, it can be shown
that, in a rotated frame, these directions can be orthogonal or
parallel.

Bohm and Aharonov [34] showed that the correct wave
function for the annihilation photons must ensure that the
polarization of the two photons maintains orthogonality, re-
gardless of the chosen x-y axes. To allow for this symmetry in
a classical model of the annihilation photons, where the quan-
tum superposition principle is not present, they supposed that
when the annihilation photons are created and each photon has
separated sufficiently from the other, the annihilation photons
are no longer described by the wave function |ψl〉, Eq. (21),
which has a definite phase relation between its components.
Instead, they considered a classically cross-polarized corre-
lated mixed state ρ(α)l (refer to Appendix C for more details)
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given by

ρ(α)l = 1
2 |V1(−α), H2(α)〉〈V1(−α), H2(α)|
+ 1

2 |H1(−α),V2(α)〉〈H1(−α),V2(α)|. (36)

Relative to a rotated frame about the propagation axis by an
angle α, each photon of the cross-polarized mixed state ρ(α)l

has some definite state of linear polarization, which is at right
angles to that of the other. To obtain symmetry in the final sta-
tistical results, they supposed, wherever necessary, that there
is a uniform statistical distribution over any direction that may
be favored in each individual case.

Let the density matrix ρls denote this supposed mixed state.
This state can be obtained by taking the sum of the individual
cases denoted by ρ(α)l , where the azimuthal angle α ranges
from 0 to 2π , weighted by a probability of 1/2π for each
angle α, such that

ρls = 1

2π

∫ 2π

α=0
ρ(α)lrdα = 1

4

⎡
⎢⎢⎣

1 0 0 −1
0 1 0 0
0 0 1 0

−1 0 0 1

⎤
⎥⎥⎦, (37)

where the subscript “s” refers to a rotationally symmetric
cross-polarized mixed state.

In many cases, one obtains the same probability for an
arbitrary direction of polarization of any one of the photons.
While ρ(α)l itself does not maintain a net spin of zero under
rotation around the propagation axis, on average, the conser-
vation of angular momentum holds for ρls (for more details,
see Appendix D).

The cross section for ρls is given by

1

4
Tr

(
ρlsρ

(un)
e

) = r4
0

32

(
E (θ1)

E0

)2(E (θ2)

E0

)2

× [
2t (1)

11 t (2)
11 − t (1)

12 t (1)
12 cos 2(φ1 + φ2)

]
. (38)

The corresponding asymmetric ratio Z (θ )ls of ρls is given by
(see Appendix G for more detail)

Z (θ )ls = 2t2
11 + t2

12

2t2
11 − t2

12

. (39)

As can be seen, Eq. (39) is invariant under a rotation about
the propagation axis. The density matrix ρls serves as a suf-
ficient classical counterpart of the entangled state ρen since
it maintains similar polarization correlations and symmetrical
properties of the wave function given in Eq. (21) of the entan-
gled annihilation photon. Figure 7 plots the asymmetric ratio
for both the maximally entangled state ρen and its classical
counterpart ρls.

The analytical solution for the ratio of ρls is compared
to the QE-GEANT4 simulation of the same state provided by
Watts et al. [2]. The simulated and theoretical results for the
mixed state ρls agree well. Furthermore, the upper bound of
the mixed state ρls, found to be 1.63, aligns with the result re-
ported in Ref. [34]. The asymmetric ratio of the mixed state ρls

serves as an upper bound that delineates between azimuthal
correlations influenced by entanglement and those not. Any
experimental data falling within the shaded yellow region
signifies azimuthal correlations influenced by entanglement.

FIG. 7. Entanglement witnessing (shaded region) for annihila-
tion photons in asymmetric ratio-type measurements, as a function
of the Compton scattering angle θ1 = θ2 = θ for the ideal geometry.
The annihilation state (–), Eq. (34a), is compared to its classical
counterpart ρsl (–), Eq. (39). QE-GEANT4 generated results for state
ρsl (°) by Watts et al. [2].

An alternative approach to witnessing entanglement in an-
nihilation photons is through a quantity R(θ, η). It is defined
as

R(θ, η) = 1 + 1 − Z (θ )

1 + Z (θ )
cos 2η, (40)

where η = φ1 + φ2. The quantity R(θ, η) has several useful
properties. Firstly, deviations of R(θ, η) from unity indicate
correlations between the momenta [24]. When the momenta
of the scattered photons are uncorrelated, R(θ, η) equals unity
for all values of η. Lastly, to discern between azimuthal cor-
relations influenced by entanglement and those that are not,
a modified function denoted by R(θ, η) can be obtained by
changing R(θ, η) so that the minimum value of R(θ, η) is
unity. For an ideal geometry with θ1 = θ2 = θ = 81.7◦, we
can evaluate R(θ, η) for states ρen and ρsl as

R(θ = 81.7◦, η)en = 1.479 − 0.479 cos 2η (41a)

and

R(θ = 81.7◦, η)ls = 1.240 − 0.240 cos 2η. (41b)

For a detailed derivation of Eqs. (41a) and (41b), please refer
to Appendixes F and G, respectively.

The plots of R(θ, η)en and R(θ, η)ls are presented in
Fig. 8. The function R(θ, η)ls serves as an upper bound for
classically induced correlations. Data points above this bound
indicate correlations influenced by entanglement.
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FIG. 8. Entanglement witnessing (shaded region) for annihila-
tion photons as a function of the angle η = φ1 + φ2 between the
scattering planes in the case of an ideal geometry and where (θ1 =
θ2 = θ = 81.7◦). Annihilation photons (–), Eq. (41a), and their clas-
sical counterparts (–), Eq. (41b).

IX. CONCLUSION

We have developed a flexible theoretical framework that
serves as the foundation for a scalable program encompass-
ing the multiple scattering of spin-polarized and unpolarized
electrons, that can be also applied to various interaction types.
Our investigation reveals that the Compton cross section for
annihilation photons remains independent of the photon po-
larization basis. This finding leads us to present a qualitative
argument demonstrating that a single Compton scattering
event does not necessarily result in complete entanglement
breaking between annihilation photons.

Furthermore, we demonstrate that there is no need to
invoke the contemporary theoretical requirement of mutu-
ally unbiased bases to conduct unambiguous entanglement-
witnessing measurements on annihilation photons. Instead, a
comparison with a hypothetical classical counterpart is suffi-
cient to distinguish between azimuthal correlations influenced
by entanglement and those unaffected by it.

As part of our program, we will incorporate theory to
advance QE-GEANT4, enabling it to account for the behavior
of entangled photons involved in multiple scattering events,
and a theoretical description is currently being developed to
quantify the degree of entanglement in Compton interactions.
Indeed, the use of principles derived from x-ray quantum op-
tics in the MeV wavelength range shows substantial potential
for advancements in various domains, including quantum-
enhanced detection [35], quantum cryptography [36], ghost
imaging, quantum lithography [37], and the facilitation of
quantum coherence, as well as enabling quantum teleportation
over extensive interstellar distances [38,39]. The successful

measurement of pairs of x-ray photons with minimal back-
ground noise serves as evidence of the feasibility of observing
quantum optic phenomena using x-ray photons [37]. Con-
sequently, we anticipate that the framework outlined in this
paper will provide a basis for evaluating the practicality of
extending quantum optics into the MeV energy regime.
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APPENDIX A: ROTATIONAL SYMMETRY
OF ANNIHILATION PHOTONS

Rotating the x-y coordinate axes by an angle β is equivalent
to applying the matrix M(β ) to a Jones vector [40] such that

M(β ) =
[

eiβ 0
0 e−iβ

]
. (A1)

For state |ψ−
c 〉, Eq. (20), to conserve spin angular momen-

tum, it must be rotationally invariant under rotation of the z
axis. This article describes the quantum state of photons 1 and
2 in relation to local coordinate systems defined by the set
of axes {x1, y1, z1} and {x2, y2, z2}, respectively. If viewer 2
applies a counterclockwise rotation of the axes by an angle
β about the z2 axis, then viewer 1 must apply a clockwise
rotation by −β about the z1 axis, ensuring that both local
coordinate systems rotate in unison. Under this rotation, the
state transforms into

|ψ−
c 〉 �⇒ |ψ−

c (β )〉 = M(−β ) ⊗ M(β )|ψ−
c 〉, (A2)

which implies that

|ψ−
c (β )〉 = 1√

2
M(−β )|R1〉 ⊗ M(β )|R2〉

− 1√
2

M(−β )|L1〉 ⊗ M(β )|L2〉. (A3)

Evaluating gives

|ψ−
c (β )〉 = 1√

2
e−iβ |R1〉 ⊗ eiβ |R2〉

− 1√
2

eiβ |L1〉 ⊗ e−iβ |L2〉. (A4)

Since e±iβ are pure phases and e−iβeiβ = 1, then it follows
that

|ψ−
c (β )〉 = |ψ−

c 〉. (A5)

Therefore, this implies that the density operator ρen of |ψ−
c 〉 is

also invariant under a rotation of the coordinate system, such
that

|ψ−
c (β )〉〈ψc(β )| = |ψ−

c 〉〈ψ−
c |. (A6)
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APPENDIX B: CHANGE OF BASIS

The expansion of |R〉 and |L〉 basis in terms of the diagonal
basis | ± 45〉 is given by

|R〉 = 1√
2
| + 45〉 + 1√

2
| − 45〉,

|L〉 = i√
2
| − 45〉 − i√

2
| + 45〉. (B1)

APPENDIX C: BASIS ROTATION

If the SU(2) matrix M(α) in Eq. (A1) represents a rotation
of a local coordinate system around the z axis by an angle
α, then M(α)† represents a rotation of a Jones vector about
the z axis by an angle α. To clearly differentiate between the
rotation of a coordinate system and the rotation of a Jones
vector, we introduce a rotation matrix N (α), where

M(α)† = N (α) =
[

e−iα 0
0 eiα

]
. (C1)

The rotation of the vertical |V 〉 and horizontal |H〉 basis,
given in Eq. (1b), with respect to the local coordinate systems
labeled 1 and 2, can be expressed as follows:

N (−α)|V 〉 = |V1(−α)〉 = 1√
2

[
eiα

e−iα

]
,

N (−α)|H〉 = |H1(−α)〉 = 1√
2

[
eiα

−e−iα

]
, (C2a)

and

|V2(α)〉 = N (α)|V 〉 = 1√
2

[
e−iα

eiα

]
,

|H2(α)〉 = N (α)|H〉 = 1√
2

[
e−iα

−eiα

]
. (C2b)

APPENDIX D: ROTATIONAL SYMMETRY OF STATE ρsl

Using the SU(2) matrix M(α) in Eq. (A1), we can rotate
around the z axis with respect to the mixed state ρls given in
Eq. (37). This rotation yields the density matrix in the rotated
frame, denoted as ρ(β )ls, which can be expressed as

ρ(β )ls = M(−β ) ⊗ M(β )ρls[M(−β ) ⊗ M(β )]†. (D1)

Evaluating the above equation, it can be shown that

ρls(β ) = ρls. (D2)

Hence, it follows that ρls exhibits rotational symmetry.

APPENDIX E: ASYMMETRIC RATIO AND AZIMUTHAL
CORRELATION FUNCTIONS OF ρen

By utilizing the cross section presented in Sec. V, Eq. (27),
which characterizes the Compton scattering of the state ρen of
annihilation photons, we define the function

F (θ, η)en = t2
11 − t2

11 cos 2η, (E1)

where we have set θ1 = θ2 = θ and η = φ1 + φ2.

The theoretical counting rate for η = π/2 is proportional
to the function denoted as F (θ )(⊥)

en such that

F (θ )(⊥)
en = t2

11 + t2
12. (E2a)

The theoretical counting rate for η = 0◦ is proportional to the
function denoted as F (θ )(‖)

en such that

F (θ )(‖)
en = t2

11 − t2
12. (E2b)

Hence, the asymmetric ratio Z (θ )en for annihilation photons
is given by

Z (θ )en = t2
11 + t2

12

t2
11 − t2

12

Q.E.D. (E3)

The associated azimuthal correlation function R(θ, η)en is
given by

R(θ, η)en = F (θ, η)en

t2
11

= 1 − t2
12

t2
11

cos 2η. (E4)

Using Eq. (E3), we can show that

t2
12

t2
11

= −1 − Z (θ )en

1 + Z (θ )en
. (E5)

Substituting Eq. (E5) into Eq. (E4) gives

R(θ, η)en = 1 + 1 − Z (θ )en

1 + Z (θ )en
cos 2η Q.E.D. (E6)

We analyze the azimuthal correlation function at the scattering
angle of 81.7◦. The minimum of R(θ, η)en occurs at η = 0,
so that R(81.7◦, 0) = 0.521. Therefore, the shifted function
R(η)en is given by

R(η)en = R(81.7◦, η)en + (1 − 0.5214), (E7)

which evaluates to

R(η)en = 1.479 − 0.479 cos 2η Q.E.D. (E8)

APPENDIX F: ASYMMETRIC RATIO AND AZIMUTHAL
CORRELATION FUNCTIONS OF ρml

Utilizing the cross section presented in Sec. VII, Eq. (35),
which characterizes the Compton scattering of the mixed
cross polarized state ρml , we define the function

F (θ, η)ml = t2
11 − t2

12 cos 2φ1 cos 2φ2, (F1)

where we have set θ1 = θ2 = θ .
The theoretical counting rate for φ1 + φ2 = π/2 is ob-

tained by substituting φ1 = π/2 − φ2 into Eq. (F1) and is
proportional to the function denoted as F (θ )(⊥)

ml such that

F (θ )(⊥)
ml = t2

11 + t2
12 cos2 2φ2. (F2a)

The theoretical counting rate for φ1 + φ2 = 0 is obtained by
substituting φ1 = −φ2 into Eq. (F1), and is proportional to the
function denoted as F (θ )(‖)

ml such that

F (θ )(‖)
ml = t2

11 − t2
12 cos2 2φ2. (F2b)

Hence, the asymmetric ratio Z (θ )ml is given by

Z (θ )ml = t2
11 + t2

12 cos2 2φ2

t2
11 − t2

12 cos2 2φ2
Q.E.D. (F3)
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APPENDIX G: ASYMMETRIC RATIO AND AZIMUTHAL
CORRELATION FUNCTIONS OF ρls

By employing a similar line of reasoning as described in
Appendix E, we can deduce the asymmetrical ratio Z (θ )sl for
the mixed state ρsl given in Sec. VIII [Eq. (37)]. This mixed
state, when subjected to Compton scattering, is governed by
the cross section given in Eq. (38). We define the function

F (θ, η)ls = 2t2
11 − t2

11 cos 2η, (G1)

where we have set θ1 = θ2 = θ and η = φ1 + φ2.
The theoretical counting rate for η = π/2 is proportional

to the function denoted as F (θ )(⊥)
ls such that

F (θ )(⊥)
ls = 2t2

11 + t2
12. (G2a)

The theoretical counting rate for η = 0◦ is proportional to the
function denoted as F (θ )(‖)

ls such that

F (θ )(‖)
ls = 2t2

11 − t2
12. (G2b)

Hence, the asymmetric ratio Z (θ )ls is given by

Z (θ )ls = 2t2
11 + t2

12

2t2
11 − t2

12

Q.E.D. (G3)

The associated azimuthal correlation function R(θ, η)ls is
given by

R(θ, η)ls = 1 + 1 − Z (θ )ls

1 + Z (θ )ls
cos 2η. (G4)

We analyze the azimuthal correlation function at the scattering
angle of 81.7◦ and find that the minimum value of R(θ =
81.7◦, η = 0◦)ls is equal to 0.761. Hence,

R(η)ls = R(θ, η)ls + (1 − 0.761). (G5)

Upon evaluation, we obtain

R(η)ls = 1.240 − 0.240 cos 2η Q.E.D. (G6)
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