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Abstract

As the global climate continues to change, plants will increasingly experience abiotic

stress(es). Stomata on leaf surfaces are the gatekeepers to plant interiors, regulating

gaseous exchanges that are crucial for both photosynthesis and outward water

release. To optimise future crop productivity, accurate modelling of how stomata

govern plant–environment interactions will be crucial. Here, we synergise optical

and thermal imaging data to improve modelled transpiration estimates during water

and/or nutrient stress (where leaf N is reduced). By utilising hyperspectral data and

partial least squares regression analysis of six plant traits and fluxes in wheat

(Triticum aestivum), we develop a new spectral vegetation index; the Combined

Nitrogen and Drought Index (CNDI), which can be used to detect both water stress

and/or nitrogen deficiency. Upon full stomatal closure during drought, CNDI shows a

strong relationship with leaf water content (r2 = 0.70), with confounding changes in

leaf biochemistry. By incorporating CNDI transformed with a sigmoid function into

thermal‐based transpiration modelling, we have increased the accuracy of modelling

water fluxes during abiotic stress. These findings demonstrate the potential of using

combined optical and thermal remote sensing‐based modelling approaches to

dynamically model water fluxes to improve both agricultural water usage and yields.

K E YWORD S

drought, evapotranspiration, hyperspectral, nitrogen, photosynthesis, remote sensing, stomata,

thermal imaging

1 | INTRODUCTION

Agriculture is the largest consumer of freshwater, accounting for

approximately 70% of the total global usage (Plett et al., 2020). As the

human population continues to grow, demand for water is expected to

outstrip supply in many regions, which could well be exacerbated by a

changing climate and shifting temperature and precipitation regimes

(López‐Serrano et al., 2020). To protect future crop yields, optimisation

of crop water‐use and productivity will be critical, as will the

implementation of targeted irrigation strategies (Bertolino et al., 2019;
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Hatfield & Dold, 2019). To regulate gaseous exchanges and to prevent

desiccation, plants use finely tuneable pores called stomata, which are at

the nexus of plant‐environment interactions. By increasing pore

aperture, stomata permit CO2 to diffuse into plants for photosynthesis

(A), and by reducing pore aperture, stomata also prevent excessive

water loss (Buckley, 2019; Hatfield & Dold, 2019). Over longer

durations, plants can further refine gaseous exchanges by altering

stomatal size and stomatal density as new leaves develop (Bertolino

et al., 2019; Franks & Beerling, 2009; Franks et al., 2012; Haworth

et al., 2023). Transpiration (T), which is coupled with stomatal water

release, allows the mass flow of water and nutrients from the soil to

roots, and then up to shoots leading to plant growth and cooling

(Matimati et al., 2014). Despite being frequently used to model water

fluxes, measurements of modelled T over space and time are

complicated, and models need to be enhanced if we are to optimise

how future crops will use water. If predicting plant water‐use can be

improved, incidences of water‐related plant stress will decrease leading

to increases in productivity and ultimately yields.

Nitrogen (N) enhances plant A, T and yields (Mengel et al., 2006;

Topcu et al., 2007). Such is its importance to agriculture, that global

use of synthetic N‐based fertilisers has increased ninefold, from

12 TgN year−1 in 1961 to 108 Tg N year−1 in 2014 (Xu et al., 2020),

contributing toward an approximate 250% increase in crop yields

(Blomqvist et al., 2020). Within mature C3 leaves, N is invested within

both photosynthetic and structural leaf components, where on

average 75% of N is contained within chloroplasts (whereupon the

majority is split between leaf chlorophyll, photosystem I and II,

ATPase and RUBISCO), 10% in cell walls, 7.5% in cytosol, 5% in

mitochondria and 2.5% in peroxisomes (Evans & Clarke, 2019). These

respective allocations can differ according to environmental growth

conditions and may change under plant stress. In a recent review of

the literature, Mu and Chen (2021) highlight that under N stress,

plants usually invest relatively more N in bioenergetics to maintain a

high electron transport rate, and less N into photosynthetic enzymes

and light harvesting proteins, which may act as N storage reservoirs.

To optimise carbon capture and to maximise future crop yields, it is

crucial that crops receive enough N to maximise productivity. It is

also important to consider how the independent and combined

interactions of N and water application affect crop physiology and

productivity, due to N uptake being inherently linked with T, and T

with N (Kunrath et al., 2020; Matimati et al., 2014; Shimshi, 1970).

Distinguishing N from water limitation can be difficult, particularly as

water and N depletion often have combinatorial effects on plant

phenotypes during abiotic stress (Araus et al., 2020; Yang et al., 2020).

When water is limited in soils, stomatal closure leads to reductions in

stomatal conductance to water vapour (gsw), which reduces both A and T

(Caine et al., 2019; Gerhards et al., 2016; Gupta et al., 2020;

Shimshi, 1970). With continued drought, desiccation ensues, which

impacts the efficiency at which the photosystems in the leaf can use light

for photochemistry, and can be detected by changes in chlorophyll

fluorescence (Caine et al., 2023; Woo et al., 2008). Over time, reductions

in leaf chlorophyll content occur, which visually manifests as leaf

yellowing as plants wilt, and leaf relative water content (RWC) drops

(Yang et al., 2021). Like a drought stimulus, N deficiency also leads to

reduced gsw (and T), but in this case, stomatal closure is driven by a lower

requirement for CO2 due to a lower chlorophyll content (Mu &

Chen, 2021). In the case of both drought and N deficiency, reduced gsw

causes leaf temperature rises, and it can be difficult to decipher which

abiotic stress is driving the phenotypic response. Optical reflectance data

from multispectral and/or hyperspectral sensors can be used to predict

traits such as leaf chlorophyll, N, water content and plant gaseous

exchanges (Cotrozzi et al., 2020; Croft et al., 2014; Curran et al., 1990;

Mertens et al., 2021; Mohd Asaari et al., 2022; Yu, 2000), and this could

hold the key for disentangling water stress from N stress when such data

is combined with thermal imaging data. From remote sensing data, leaf N

content is often derived via it's close relationship with leaf chlorophyll

content, which has strong absorption in the visible spectrum, (Croft

et al., 2017; Sage et al., 1987). N containing compounds (cellulose, lignin)

also have absorption features in near infrared wavelengths

(~1300–1600 nm); providing additional information for modelling N

content. Water absorption features have been reported at 970, 1240,

1450, 1950, 2130nm wavelengths (Caturegli et al., 2020).

Modelling changes in water fluxes and quantifying plant water‐use

permits a detailed understanding of crop water requirements over

space and time. Dynamically modelling T and canopy conductance can

be achieved through a surface energy balance approach (Jones

et al., 2018; Page et al., 2018), which accounts for the sum of radiative

energy received and lost by the leaf, and the mass transfer processes

to the atmosphere (Zotarelli et al., 2010). The difficulty in obtaining

longwave radiation measurements in agricultural field settings

(Anderson & Kustas, 2008; Chen & Liu, 2020), has led to the use of

thermal imaging, with the inclusion of dry references surfaces (DRS;

Jones, 2002; Jones et al., 2018) to remove the need for radiation and

humidity measurements (Vialet‐Chabrand & Lawson, 2019). This

method assumes that the DRS broadly imitates a nontranspiring leaf

having similar emissivity and radiative properties to those of a plant

canopy (Jones et al., 2018). However, there are caveats with current T

models developed by combining the full energy balance of a DRS and

the canopy. One limitation is a missing parameterization scheme for a

range of crop water and nutrient stresses, which may cause

uncertainties under different drought and/or fertilizer treatments

due to changes in leaf emissivity. Optical‐based remote sensing

techniques have been shown to model both nutrient and water status

of crops, which presents an opportunity to integrate optical‐based leaf

biochemistry trait data into thermal flux‐based T modelling.

To investigate the individual and combined effects of water or

nutrient stress on plant fluxes and traits, we develop an integrated

approach, utilising the sensitivities to nutrient content and water

fluxes from hyperspectral and thermal imaging data respectively. We

combine a time‐series of optical and thermal measurements with

infrared gas analysis, porometry, and leaf area index (LAI) measure-

ments across a nutrient and/or drought treatment, to address the

following three questions: (1) Which technologies best detect early

plant stress associated with drought or nutrient deficiency? (2) Can

we develop a novel hyperspectral index that accurately describes the

impact of multiple abiotic stresses on leaf water content? (3) Can we
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combine hyperspectral and thermal imaging data to improve

modelled T estimates for plants exposed to multiple abiotic stresses?

2 | MATERIALS AND METHODS

2.1 | Plant materials and growth conditions

To investigate plant responses to high N content nutrient fertiliser and/

or water deficiency, we conducted a multiabiotic stress experiment on

the elite British wheat (Triticum aestivum L) variety Mulika (Blackman

Agriculture Ltd; Figure 1a). Seeds were sown on to 5:1 Levington

M3:Perlite filled 0.8 l pots (IPP). Plants were grown continually at 15°C,

with a 16 h:8 h, light:dark cycle with a photosynthetically active

radiation (PAR) of 1000μmolm−2 s−1 provided at canopy level. Relative

humidity was set continually at 65% with CO2 concentration at

450 ppm. A total of 128 plants were grown for 35 days with deionised

water (dH2O) applied to pot bases in trays when required. From Day 35,

plants were divided into two subsets (64 plants each), where 64 plants

were fed with soluble N‐based fertiliser of 5 g of Chempak® High

Nitrogen Feed—Formula 2 (Thompson and Morgan) dissolved in 2 L of

dH2O on a weekly basis until Day 60. The 64 plants receiving no

additional high N fertiliser continued to receive DH2O. From Days 60 to

83, fertilised and nonfertilised plants were divided into two further

subsets with 32 plants from the fertiliser and DH2O groups applied with

drought, while 64 plants continued to receive DH2O or soluble fertiliser.

For both sets of droughted plants, tray water was removed at Day 60

and no subsequent water (or fertiliser) was added.

Field‐grown wheat plants (variety Graham) were grown in North

Grimston in North Yorkshire during the spring–summer season of

2021. N fertilised plants were supplied with 290 kg/ha in three equal

splits during the growing season.

2.2 | Plant gas exchange

Stomatal conductance to water vapour (gsw) was collected using a

LI‐600 porometer set to a flow of 150 μmol m−2 s−1 (LI‐COR). Steady‐

state measurements were collected using LI‐6800 Portable Photo-

synthesis Systems and attached Multiphase Flash Fluorometer (6800‐

01A) (LI‐COR). Environmental conditions within the leaf chamber were

set to light intensity = 1000μmolm−2 s−1 PAR, 60% RH, Tair= 15°C,

flow = 400μmol s−1 and [CO2]ref = 450 ppm. For each plant, 10 readings

were taken under steady‐state conditions over a 5‐min period and

averaged (n = 8 plants). To produce ACi curves to model photosynthetic

traits, the same leaf chamber conditions were used, except Tleaf was set

to 25°C, and light intensity set to 1800μmolm−2 s−1 PAR. The [CO2]ref

sequence applied was: 450, 325, 200, 150, 100, 75, 50, 25, 450, 450,

450, 450, 600, 800, 1000, 1250, 1500, 1800 with a match conducted

before each measurement with 2–4min permitted between each

[CO2]ref treatment for stabilisation. The maximum carboxylation rate of

rubisco (Vcmax) and the maximum rate of photosynthetic electron

transport (Jmax) were modelled using the Plantecophys package on R

software (Duursma, 2015; R Team, 2021). Steady‐state measurements

were collected between Days 68 and 70 and Aci curve measurements

between Days 76 and 77. For leaf stomatal analysis methodology see

Caine et al. (2023). For all gas exchange measurements, the middle of

the last fully expanded leaf was assessed.

2.3 | Thermal imaging

Thermal images of plants were captured using a FLIR T650sc thermal

imaging camera. The central region of three fully expanded leaves

from each plant were measured for each treatment for each time

point, and were averaged to give an average leaf temperature per

plant. Average leaf values were subtracted from the temperature of

the green plastic hemispherical dry reference surface to calculate

relative leaf temperature differences across the experiment. Images

analysis was conducted in FLIR Researcher IR MAX (www.flir.co.uk)

with heatmaps produced in Matlab (Mathworks).

2.4 | Hyperspectral data collection, analysis and

vegetation index calculations

Leaf‐level hyperspectral reflectance data (350–2500 nm) was collected

using a PSR+ spectroradiometer (Spectral Evolution), with an attached

Spectral Evolution leaf clip assembly equipped with a separate tungsten

halogen illuminator light source. Target and reference panel measure-

ments from a radiometrically calibrated 99% Spectralon panel were

sampled sequentially. Data was imported into R via the Spectrolab

package and to undertake partial least squares regression (PLSR)

analysis, the Spectratrait package was used (Burnett et al., 2021a;

Meireles et al., 2017). For all hyperspectral measurements, the middle of

the last fully expanded leaf on the adaxial surface was assessed. The

vegetation indices used in this study are set out in beneath.

Vegetation index name Equations References

MERIS Terrestrial Chlorophyll

Index (MTCI)

((R754 − R709)/

(R754 − R709))

Dash and

Curran (2007)

Normalised Difference

Vegetation Index (NDVI)

((R800 − R680)/

(R800 + R680))

Banerjee

et al. (2020)

Water Balance Index (WBI) R970/R900 Peñuelas

et al. (1993)

Water Potential Index 1 (WPI1) ((R665 − R715)/

R715)

Mertens

et al. (2021)

Relative water content R1430/R1850 Yu (2000)

Combined Nitrogen and

Drought Index (CNDI)

R1353/(R706 +

R1402 + R1451 +

R1878)

Developed in this

study
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2.5 | Leaf biochemical and canopy structural

measurements

To sample leaf chlorophyll content, two leaf discs of 6 mm in

diameter were weighed and placed into 5mL of N,N‐

Dimethylformamide ≥99.8% ACS (Thermo scientific) and stored at

4°C for 3 days to enable chlorophyll extraction. Chlorophyll

absorbance was measured at following wavelengths: 663.8, 646.8

and 480 nm (Wellburn, 1994), using a Shimadzu UV2600i spectro-

photometer. To derive leaf water content (LWC), fresh leaf weight

was measured and leaves were dried at 80°C for 7 days and weighed

again to obtain dry weight. LWC was calculated by dividing the dry

weight by the wet weight and then subtracting this value from 1 and

subsequently multiplying by 100%. Isotope analysis of δ13C and % N

content were obtained as in Field et al. (2016). For all leaf trait

measurements, the area spanning the middle of the last fully

expanded leaf was assessed. For each treatment of 32 plants, 24

measurements of LAI were collected using a LI‐COR LAI‑2200C Plant

Canopy Analyzer.

2.6 | Transpiration modelling

For detailed formulations and step‐by‐step derivations of modelling

transpiration (T) using the full energy balance‐based equation,

readers are directed to previous literature (Guilioni et al., 2008;

Jones et al., 2018; Leinonen et al., 2006). A semi‐empirical, full

energy balance‐based approach to modelling T can be achieved by

integrating of a transpiring canopy (Tc) and a nontranspiring artificial

DRS (Tdry) within the surface energy balance equation, by establishing

a linear relationship between the Tdry and Tc temperature delta and T

(Jones et al., 2018) as follows:

T ρC T T= αg ( − ).p cHR dry (1)

Tdry and Tc are the DRS and leaf temperature respectively in unit

Kelvin, ρ and Cp are the density and specific heat of air at the current

temperature. The gHR denotes the conductance to radiative transfer

g =R
σεT
ρC

4 a

p

3

and boundary layer conductance to heat transfer g( )h in

series arrangement considering that conductance is the inverse of

resistance (based on (Leinonen et al., (2006)). Ta is air temperature, ε is
surface emissivity, and the Stefan–Boltzmann constant is repre-

sented with σ . To reduce uncertainties in modelled T due to

erroneous spectral absorptance of the DRS, Jones et al. (2018) used

a scaling coefficient (α), with a constant value of 0.5. To estimate gH

we implemented the formulations at the canopy scale (Monteith &

Unsworth, 2013) as follows:

( )
g

k u
=
[log ]

,H
c

h d

z

2

− 2
o

(2)

( )
( )

u u= ×
log

log
,c

h d

z

Ah d

z

Ah

−

( − )

o

o

(3)

where, k is von Karman's constant, h is canopy height, d is zero plane

displacement height which is taken as 0.64*h, zo is roughness height

which is taken as 0.13*h, uc is wind speed at the top of canopy, and

uAh is wind speed at anemometer height (Ah) of 2 m in current study.

To model gH in this study, uAh was scaled to uc by using the previous

formulations to simulate T at canopy height (Jones, 2013; Monteith &

Unsworth, 2013). Modelled T units were converted from energy unit

(Wm−2) to water depth unit (mm/day) for consistency by scaling the

latent heat of vaporization to the growth chamber temperature.

The scaling coefficient α in Equation 1 accounts for the

differences in optical absorbance properties between the leaf and

the DRS. While Jones et al. (2018) set the value at 0.5, it is expected

that the optical properties of the leaf will change according to both

drought and nutrient status leading to a changes in emissivity. To

account for these changes we developed a new vegetation index: the

Combined Nitrogen and Drought Index (CNDI) which reflects

changes in LWC and or N status as plants become increasingly

stressed (Figures 7 and 8). Wavelengths used to calculate CNDI were

obtained via PLSR and variable influence on projection (VIP) analyses

of 6 different leaf traits and fluxes measured at Days 82 or 83

(Figure 6). At this stage in the experiment, wheat plants were either

well‐watered and fertilised, droughted and previously fertilised, well‐

watered and not fertilised or droughted and not previously fertilised.

Using CNDI, we derived a dynamic scaling factor by integrating CNDI

values into the sigmoid function set out beneath (Equation 4). A

dynamic scaling factor (SF) was used to replace the α scaling factor

(Equation 1) used by Jones et al. (2018).



( )

x
e

SF = +
1

1 +
.

y− ×(CNDI z−
(4)

The coefficients: x, y and z of the sigmoid function are estimated

using a nonlinear optimization; generalized reduced gradient (GRG)

method. The optimum values of the coefficients of sigmoid function

are determined by taking root‐mean‐square error (RMSE) as an

F IGURE 1 Leaf, plant and canopy‐level impacts of wheat plants exposed to nutrient deficiency and or drought treatment. (a) Experimental

overview of the drought and nutrient treatments. (b) RGB image of the four different treatments at Day 83. (c) Leaf stomatal conductance to

water vapour values. (d) Thermal images of the four different treatments taken at Day 83, showing the hemispherical reference surface in the

top right corner of each image. (e) Leaf temperature differences relative to the reference surface of four treatments. (f–i) Leaf level Normalized

Difference Vegetation Index (NVDI), (g) leaf‐level MERIS Terrestrial chlorophyll index (MTCI), (h) leaf area index (LAI) and (i) plant height

measurements. Error bars equal ±1 SE. For simplicity, notations implying significant differences between treatments have not been applied to

graphs. See Supporting Information S1: Figure 1 for statistical analysis. For (c, e–g), n = 32, for (h) 24 measurements per canopy were taken, and

for (i), n = 10.
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objective function during optimization. The sigmoid function in the

model parameterization leads to a particularly lower modelled T for

highly stressed plants, and also corrects for leaves that are a darker

green than the DRS (indicative of very healthy leaves). This robust

parameterization method corrects for both water limitation and/or

nutrient/N deficiencies that might be impacting on the estimation of

T. The updated formula for modelling T is as follows:

T ρC g T T= SF ( − ).p cCNDI HR dry (5)

2.7 | Crop water stress estimation

To measure crop water stress, we calculated the crop water stress

index (CWSI; Katimbo et al., 2022) by measuring leaf temperature to

acquire Tc, Tdry and wet canopy temperature (Twet) using thermal

imaging and computed CWSI using the following equation:

T T

T T
CWSI =

−
−

.
c dry

wet dry
(6)

3 | RESULTS

The structural, physiological and optical response of wheat (Triticum

aestivum L) plants to individual and combined nutrient and water

stress are shown in Figure 1. During Days 35–60, the impacts of high

N nutrient fertiliser addition are visible. From Days 60–83, the

additional impacts of water stress are included to give four

treatments: fertilised, watered (FW); fertilised, droughted (FD)

unfertilised, watered (UW); and unfertilised, droughted (UD).

During Days 35–60, Figure 1 shows the impacts of N‐fertiliser

addition on water fluxes, leaf optical properties and plant structural

characteristics. After 1 week (Day 42), plants not supplied with high

N nutrient fertiliser had significantly reduced gsw (Figure 1c,

Supporting Information S1: Figure 1; t test, p < 0.0001), which

corresponded to increased leaf temperature relative to the DRS

(Supporting Information S1: Figure 1, t test, p < 0.05). Differences in

both gsw and leaf temperature continued to significantly differ

between fertilised and unfertilised plants, with unfertilised plants

showing a particularly marked reduction in gsw (Figure 1c,e, Support-

ing Information S1: Figure 1). To assess leaf optical differences

between treatments we calculated leaf normalized difference

vegetation index (NDVI) and MERIS Terrestrial chlorophyll index

(MTCI) from hyperspectral data. We chose these two indices for their

known sensitivity to leaf area index (NDVI) and chlorophyll content

(MTCI) (Huang et al., 2021; Viña et al., 2011). Both indices showed

decreased values for unfertilised plants relative to fertilised plants by

Day 42 (Figure 1f,g, Supporting Information S1: Figure 1; NDVI: t

test, p < 0.05, MTCI: t test, p < 0.0001). For NDVI this trend was not

observed at Day 60 (Supporting Information S1: Figure 1), but for

MTCI there was an increasingly large difference between the values

of fertilised and unfertilised plants. Lack of fertiliser also led to fewer

leaves per unit area (Figure 1h) and smaller plants (Figure 1i), with

significant differences for LAI and plant height detectable by Days 42

and 49, respectively (Supporting Information S1: Figure 1).

Imposition of drought at Day 60 resulted in a swift reduction in

gsw for FD plants (Figure 1c), with a significant difference detected

comparatively to FW plants by Day 68 (Figure 1c, Supporting

Information S1: Figure 1; t test, p < 0.0001). Assessment of leaf

temperature differences at an equivalent stage (Day 69), showed that

FW plants were significantly cooler than FD equivalent plants

indicative of stomatal closure (Figure 1e, Supporting Information

S1: Figure 1; p < 0.0001). Near the end of the drought (Day 82), FD

plants had leaf gsw values very close to 0 with markedly increased leaf

temperatures (Day 83) (Figure 1c,e, Supporting Information S1:

Figure 1). For leaf NDVI measurements, drought was only detectable

in FD plants by Day 82 (t test, p < 0.01), whereas for MTCI, a drought

signal was present by Day 76 (Figure 1f,g and Supporting Information

S1: Figure 1; t test, p < 0.01). Removal of water led to lower LAI in FD

plants by Day 68, and plant wilting and lack of growth resulted in FD

plants being significantly shorter by Day 76 (Figure 1h,i, Supporting

Information S1: Figure 1; t test, p < 0.0001). For UD plants that had

not previously received high N nutrient fertiliser, a continually

reducing gsw (and increase in temperature) did not occur during

drought (Figure 1c,e, Supporting Information S1: Figure 1). Only at

Day 82 did UD plant gsw show a significant reduction comparatively

to UW plants (which had continued to receive water, Figure 1c,e,

Supporting Information S1: Figure 1; p < 0.01) but this was not the

case for UD plant leaf temperature, which remained similar to UW

plants. For LAI and NDVI, UD values were also lower comparatively

to UW plants, whereas for MTCI and plant height, values remained

similar between unfertilised plants (Figure 1f–i, Supporting Informa-

tion S1: Figure 1). Overall, FD plants were severely affected by the

drought relative to FW plants, whereas for UD plants, only minor

drought responses were detectable compared to UW control plants.

3.1 | The unequal contribution of leaf sides to

wheat stomatal gas exchange

Previous work in wheat has shown that the adaxial leaf surface

potentially contributes more to stomatal gas exchange than the

abaxial surface (Wall et al., 2022). To ascertain whether this was also

the case under different fertilisation regimes, we compared stomatal

size (SS) (via stomatal length measurements), stomatal density (SD)

and gsw of both leaf surfaces (Figure 2). High N nutrient fertilisation

resulted in an overall increase in SS and decrease in SD comparatively

to unfertilised plants (two‐way ANOVAs, SS: p < 0.001 and SD:

p < 0.05; Figure 2a–d). The adaxial leaf surfaces of both fertilised and

unfertilised plants had larger SS and higher SD than on abaxial

surfaces (two‐way ANOVA, SS: p < 0.01 and SD: p < 0.001;

Figure 2a,b). When the gsw of both sides were compared throughout

the season it was apparent that the majority of gas exchange took

place on the adaxial surfaces for both fertilised and unfertilised

plants, with the abaxial values of either treatment rarely exceeding

0.1mol m−2 s−1 (Figure 2e,f).
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3.2 | Infrared gas analyser assessment of plant

biochemical and physiological traits according to

water and or nutrient stress

To further investigate how plant gaseous exchanges responded to

differences in drought and/or nutrient deficiency, we used infrared

gas analysers (IRGA) to measure photosynthesis (A), gsw, intrinsic

water‐use efficiency (iWUE), the maximum carboxylation rate of

rubisco (Vcmax) and the maximum rate of electron transport (Jmax)

(Figure 3).

As expected, plants grown with high N nutrient fertiliser had

significantly higher rates of A, gsw, Vcmax and Jmax than unfertilised plants

F IGURE 2 Anatomical and physiological assessment of both leaf surfaces of plants grown under different fertiliser regimes. (a) Stomatal size

and (b) stomatal density on abaxial and adaxial leaves of fertilised and unfertilised plants. Representative images of (c) fertilised and (d)

unfertilised adaxial leaf surfaces. Stomatal conductance measurements (e) abaxial and (f) adaxial leaf surfaces of fertilised and unfertilised plants

across the experiment. For (a and b), two‐way ANOVAs, post hocTukey tests were undertaken. Boxplot whiskers indicate variability at the upper

and lower extremes and different letters on graphs indicate significant differences between means (p at least <0.05). Diamonds represent sample

means. For (a and b), n = 8, for (e and d) n = 32. Scale bars in (c and d)=50 µm.
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(Figure 3a,b,d,e), but no significant differences were detected for iWUE

(Figure 3c). To assess the impacts of nutrient deficiency combined with

drought stress we measured plants at earlier (Day 9) and later stage

(Day 16) of the imposed drought (Figure 3f–j). There was a significant

reduction in all measured parameters for FD plants following drought

treatment relative to FW plants (Figure 3f–j). Conversely, drought onset

had no significant impact on UD plants relative to UW plants. For Vcmax

and Jmax measurements taken at drought Days 16–17, values of FD

plants dropped markedly being significantly lower than FW plants

(Figure 3i,j). The relationship between Vcmax and chlorophyll content,

and Vcmax and Jmax remained on the same slope, which indicates that the

plants had not altered their N allocation strategy between

photosynthetic N pools according to drought or N stress caused by

lack of high N nutrient fertiliser (Figure 3k–m).

3.3 | Modelling stress‐imposed trait acclimations

using hyperspectral vegetation indices

To assess if optical remote sensing data could be used to detect the

biochemical and physiological shifts in response to nutrient and/or

water limitation, we first tested a subset of commonly used

hyperspectral indices against plant biochemical and physiological

traits measured at Days 16–17 of the imposed drought (Figure 4).

F IGURE 3 Leaf level gas exchange assessment showing adaptive changes in response to nutrient deficit and/or drought. (a–e) Initial gas

exchange measurements conducted on fertilised or unfertilised measurements before drought assessing (a) photosynthesis (A), (b) stomatal

conductance (gsw), (c) intrinsic water‐use efficiency (iWUE), (d) maximum carboxylation rate of rubisco (Vcmax) and (e) maximum electron

transport rate (Jmax). (f–h) Early drought gas exchange at Days 68–70 measuring (f) A, (g) gsw and (h) iWUE. (i and j) Vcmax and Jmax conducted on

later stage drought at Days 76–77 and (k) leaf chlorophyll content at Days 76–77. (l and m) Regression analyses between (i) Vcmax and

chlorophyll content and (m) Vcmax and Jmax. Boxplot whiskers indicate variability at the upper and lower extremes and different letters on graphs

indicate significant differences between means (p at least <0.05). Diamonds represent sample means. For (a–e), Students t tests were performed,

for (f–k) one‐way ANOVAs with post hoc Tukey HSD tests were undertaken. For (a–h), n = 8, for (i–m) n = 5.
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The results in Figure 4 demonstrate that vegetation indices (VIs)

such as MTCI, NDVI and water balance index (WBI) do not typically

represent good proxies for plants traits such as leaf chlorophyll

content, Vcmax and gsw under nutrient and drought stress. Differences

caused solely by high N nutrient fertiliser application often had the

potential to lead to significant relationships between VIs and

biochemical traits (e.g., Figure 4a; MTCI vs. leaf chlorophyll, yellow

regression line: r2 = 0.84; p < 0.001), but such relationships broke

down when both nutrient treatment and drought effects were

considered simultaneously (Figure 4a; MTCI vs. leaf chlorophyll black

regression line: r2 = 0.172; p = 0.069). This was often due to FD plants

not displaying a linear relationship with FW plants (e.g., Figure 4a; red

regression line: r2 = 0.0689; p = 0.28). Such failures of VIs to model

plant traits under multiple abiotic stresses potentially limits the

applicability of optical remote sensing for capturing deficiencies

arising in heterogenous fields where water and nutrients (including N)

might be simultaneously limited.

3.4 | Identifying unique spectra associated with

multiple abiotic stresses via partial least squares

regression analysis of optical hyperspectral data

The impacts of drought and/or nutrient deficiency at the end of the

experiment (at Day 82/83) on selected leaf traits, including

chlorophyll, N and LWC, δ13C, leaf temperature and adaxial leaf

gsw are displayed in Figure 5 (for latter two traits see also

Figures 1e, 2f and Supporting Information S1: Figure 1).

FD plants had significantly less leaf chlorophyll, N and LWC than

FW equivalents, whereas δ13C values were significantly increased for

F IGURE 4 Assessment of potential relationships between leaf biochemical, physiological and water‐related traits and leaf‐level spectral

vegetation indices on plants exposed to nutrient deficiency and/or drought. (a–c) Regression analyses of MERIS terrestrial chlorophyll index and

(a) leaf chlorophyll content, (b) maximum rate of rubisco carboxylation (Vcmax) and (c) leaf stomatal conductance (gsw) (d–f) Equivalent regressions

comparing Normalized Difference Vegetation Index with (d) leaf chlorophyl content, (e) Vcmax and (f) leaf gsw. (g–i) Water Balance

Index regression analysis with (g) leaf chlorophyll content, (h) Vcmax and (i) leaf gsw. No significant relationships between the three VIs and

measured leaf traits were detectable. Measurements collected between Days 76–77. n = 5.
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FD, indicative of better water‐use efficiency during the drought

comparatively to FW plants (Figure 5). For UD plants we detected an

increases in both chlorophyll content and δ13C values relative to UW

controls, whereas N content and LWC remained unchanged. The

strength of PLSR modelled results for each trait (Figure 6a,c,e,g,i),

along with wavelengths that show the strongest relationships with

the respective traits are highlighted via variable influence on

projection (VIP) plots (Figure 6b,d,f,h,j).

Results of traits measured at Day 82/83 showed chlorophyll

content to have the weakest relationship with reflectance spectra

(Figure 6a; R2 = 0.44, RMSEP 7.35, %RMSEP = 17.84), whereas N

content (Figure 6b; R2 = 0.6, RMSEP 0.36, %RMSEP = 16.28), gsw

(Figure 6c; R2 = 0.65, RMSEP 0.1, %RMSEP = 18), leaf temperature

difference (Figure 6d; R2 = 0.59, RMSEP 0.6, %RMSEP = 14.59) and

δ13C (Figure 6e; R2 = 0.65, RMSEP 0.77, %RMSEP = 14.54) had

stronger relationships. Overall, measured LWC had the strongest

relationship with hyperspectral reflectance (Figure 6f; R2 = 0.84,

RMSEP 2.8, %RMSEP = 8.36). VIP analysis of all six traits revealed

distinct absorption features most related to the measured

biochemical traits and water‐related fluxes (Figure 6g–l). Wave-

lengths at R706, R1402, R1451 and R1878 were identified as key

spectra for describing differences in N and/or drought treatment,

with all four peaks being clearly detectable on leaf gsw, temperature

difference and LWC VIP graphs (see Figure 6l for peak markings).

For leaf chlorophyll content, N content and δ13C VIPs, R706 values

were larger, whereas the other three identified peaks were less

pronounced or close to undetectable. Previous research has shown

that R706 is in the red‐edge region known to be particularly

sensitive to leaf chlorophyll content and thus useful for measuring

biochemical traits (Curran et al., 1990). To assess whether R706,

R1402, R1451 and R1878 might also be important for modelling

drought over time, we also employed PLSR to assess individual

treatments over the duration of the drought. We found in FD plants

specifically, that gsw and leaf temperature VIP plots identified the

same four wavelengths as being important (Supporting Information

S1: Figures 2 and 3).

F IGURE 5 Leaf biochemical and water‐related traits of plants exposed to nutrient deficiency and/or drought treatment at experiment Day

82. (a) Leaf chlorophyll, (b) nitrogen, (c) leaf water content and (d) δ13C. Boxplot whiskers indicate variability at the upper and lower extremes

and different letters on graphs indicate significant differences between means (p at least <0.05). Due to unequal variances in all four traits

measured, Student's t tests were performed to assess drought impact for a given nitrogen fertiliser treatment (separately analysed samples

divided by dashed lines). n = 32.
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3.5 | A new multi‐stress vegetation index for

identifying drought and or nitrogen stress

The difficulty in using VIs to model leaf traits under different types of

abiotic stress are demonstrated in results from this study (Figures 4

and 6), and in previous work (Croft et al., 2014; Gerhards et al., 2016).

To address this issue, we leverage biochemical information from

different spectral regions identified in Figure 6 to develop a new VI

that is sensitive to LWC under different nutrient and or drought

stress. The CNDI (Equation 7) is calculated from the four identified

wavelengths in Figure 6 along with a normalising wavelength (R1353),

which is insensitive to water and N content:

R R R R RCNDI = ( /( + + + )).1353 706 1402 1451 1878 (7)

The relationship between CNDI and measured LWC shown in

Figure 7 confirms that CNDI more accurately describes measured

LWC (r2 = 0.702; p < 0.0001) than a variety of other previously

published VIs that look at leaf water properties (Mertens et al., 2021;

Figure 7a–d). CNDI also accurately predicted LWC changes as

stomata reached closure during drought (at Day 76; r2 = 0.427;

p < 0.01), but this was not the case for the other VIs we surveyed

(Supporting Information S1: Figure 4). When viewed over the

duration of the experiment, CNDI initially detects significant

differences between high N nutrient fertiliser treatments by Day

42 of the experiment (Students t test, p < 0.0001), and this difference

gradually increases over time until for FD plants, the drought effect

causes CNDI to fall rapidly as leaves dry out (Figure 7e).

Our CNDI data shows that healthy green wheat leaves have a

CNDI value of above 0.5 (0.52–0.56 in our growth rooms) whereas

during stress, CNDI gradually falls, which by the end of the

experiment resulted in CNDI mean values of 0.45 for nutrient

deficient plants and 0.38 for FD plants. To understand whether CNDI

has the potential to be used more broadly to understand plant stress,

F IGURE 7 The Combined Nitrogen and Drought Index (CNDI) models changes in leaf water content (LWC) caused by nitrogen and/or

drought stress. (a–d) Regression analyses of measured leaf LWC with the following vegetation indices: (a) Water Band index (WBI), (b) Water

Potential Index 1 (WPI1), (c) Relative water content (RWC) (d) CNDI. (e) CNDI values calculated via hyperspectral data over the duration of the

experiment. n = 64 before drought and 32 once drought has begun. Error bars equal ±1 SE.

F IGURE 6 Partial least squares regression (PLSR) and variable influence on projection (VIP) analysis identify hyperspectral signatures

involved with drought and/or nutrient deficiency. (a–l) PLSR and VIP analysis of (a and b) leaf chlorophyll content, (c and d) % nitrogen content,

(e and f) stomatal conductance to water vapour (gsw), (g and h) leaf temperature difference relative to the dry reference surface, (i and j) δ13C

and (k and l) leaf water content. Wavelengths with a VIP of above 1 were highlighted as being particularly important for downstream

phenotyping: 706, 1402, 1451 and 1878 nm. n = 128.
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we calculated CNDI from several additional hyperspectral data sets,

starting first with field‐grown wheat which differed in N fertiliser

application (Figure 8). We found that flag leaves of N fertilised plants

had a mean CNDI of 0.58 whereas unfertilised equivalent plants had

a significantly lower CNDI mean of 0.43 (Students t test, p < 0.0001)

(Figure 8a–c). These values are in accordance with what we would

expect based on the data generated in our growth chamber

experiments.

To investigate whether CNDI might also be applicable for use

with assessing stress in other crops, we assessed data relating to the

drought responsiveness of different glasshouse‐grown crops via

hyperspectral data made freely available by Burnett et al. (2021b)

(Supporting Information S1: Figure 5). Both cayenne pepper (Capsi-

cum annuum L) and sorghum (Sorghum bicolor L) had higher MTCI

values (2–4) than growth chamber‐grown wheat MTCI (1.5–2, see

Figure 1g). Based on the separation of RWC values, it seems that the

overall drought stress experienced by cayenne pepper (which was

droughted for longer) may have been greater than that of sorghum.

Despite this, CNDI means both dropped below 0.5 by the end of the

respective drought experiments (0.381 for cayenne pepper and 0.496

for sorghum) (Supporting Information S1: Figure 5). In both cases,

values appeared to have not finished falling, but this was where the

respective experiments were concluded. Fertilised nondroughted

plants typically had CNDI values above 0.5, with cayenne pepper

displaying values of 0.669–0.821 and sorghum having values of

0.595–0.689. These higher CNDI values appeared to be linked to

higher MTCI values, meaning that both sets of glasshouse crops

probably had dark green leaves when fertilised.

3.6 | Modelling leaf transpiration under multiple

abiotic stresses

As we have shown, it is possible to employ hyperspectral remote

sensing methods to detect changes in LWC when plants experience

nutrient and/or water stress (Figures 6 and 7). However, optical

reflectance values fail to capture dynamic fluxes associated with early

stomatal closure during drought (as observed via porometry and

thermal imaging at Days 68 and 69). Conversely, porometry and

thermal imaging cannot differentiate between a partially droughted

leaf and a nutrient deficient leaf when leaves are operating at similar

level of water flux, which affects crop management decision making.

Further, within thermal‐based approaches, it is assumed that

biochemical and structural properties of leaves are the same, but

this research has shown that this might not always be the case

(Figures 1–7). Combining hyperspectral and thermal imaging offers an

opportunity to improve modelled water fluxes by integrating leaf

reflectance parameters into current T models. This will in some ways

counterbalance the erroneous temperature readings associated with

lighter colours being cooler (Figure 9a) and thus assumed to have

higher gsw.

By building on the thermal‐based model formulated by Jones

et al. (2018) (Equation 1), we apply sigma factor transformed CNDI

to replace the fixed α scaling factor, thus accounting for temporal

and dynamic differences in leaf reflectance and emissivity (relative

to the DRS) caused by the imposition of nutrient fertiliser N stress

and/or drought stress (Figure 9b,c; Equations 4 and 5). We present

in‐situ modelled adaxial gsw for all four treatments alongside

average adaxial leaf T values modelled either via the original Jones

model (TOrg) or the new TCNDI model (Figure 9d–h). Overall the

results show an improvement in modelled transpiration for the

TCNDI model across nutrient deficiency and/or drought conditions,

with relationships against measured porometry‐based (in‐situ T)

estimates of r2 = 0.46 for TOrg (p < 0.001) and r2 = 0.61 for TCNDI

(p < 0.001) (Figure 9g,h). To further assess the accuracy of TCNDI

for predicting measured in‐situ T, we performed Repeated K‐fold

Cross Validation (Witten & James, 2013) and confirmed TCNDI to be

a good indicator of in‐situ T when modelling water fluxes during

nutrient deficiency and or drought (k = 5, repeats = 3, r2 = 0.641,

RMSE = 0.476, MAE = 0.372).

F IGURE 8 Combined Nitrogen and Drought Index (CNDI) assessment of field‐grown wheat grown under differing nitrogen fertiliser

application. Representative leaf images of (a) regular fertiliser application (regular N) or (b) no fertiliser application (none). (c) CNDI values of

wheat grown with regular N or no fertiliser application. The dashed line denotes a CNDI of 0.5. Boxplot whiskers indicate variability at the upper

and lower extremes and different letters on graphs indicate significant differences between means (p at least <0.0001, Wilcoxon rank sum exact

test). n = 15. Scale bars in (a and b)=2 cm.
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3.7 | Spatio‐temporal variations in leaf and canopy

T and water stress

To ascertain how TCNDI measurements and water stress measure-

ments overlap both spatially and temporally, we present

modelled TCNDI at the leaf‐level (Leaf‐TCNDI) and canopy‐level

(Canopy‐TCNDI) alongside an empirical, temperature index‐based

approach for measuring water stress at the leaf level: the crop

water stress index (CWSI; Figure 10). Canopy‐TCNDI values were

calculated using a ‘big‐leaf approach’ for simplicity, where

Leaf‐TCNDI values were multiplied by its proportionate fraction

of LAI measurements.

F IGURE 9 Integrating transformed hyperspectral CNDI values boosts the accuracy of modelled leaf transpiration (T) modelling during

nitrogen and/or drought stress. (a) RGB and thermal images highlighting differences in emissivity caused by differences in colour. (b) RGB and

thermal image of the hemispherical dry reference surface (DRS) used to calculate leaf Tdry. (c) Schematic overview of nitrogen and/or drought

stress impacts on leaf visible reflectance. (d) In‐situ T based on stomatal conductance measurements collected over the duration of the

experiment. (e) Original T modelled (TOrg) from Jones et al. (2018). (f) Updated TCNDI model (g and h) Regression analyses between in‐situ T

measurements and (g) TOrg and (h) TCNDI.

F IGURE 10 Spatio‐temporal variations in water fluxes and water stress caused by nutrient deficiency and/or drought. (a–c) Heatmaps of

(a) CNDI modelled leaf‐level transpiration (Leaf‐TCNDI), (b) canopy‐level transpiration (Canopy‐TCNDI) and (c) crop water stress index (CWSI).

(d) Thermal images. (e) Crop water stress index over time (CWSI) and (f) regression analysis between CWSI and in‐situ T based on stomatal conductance

measurements. (g–j) RGB images at the end of the combined stress experiment of (g) UW=unfertilised, water treatment, (h) UD=unfertilised, drought

treatment (i) FD= fertilised plants followed by drought and (j) FW= continual fertilised plants. Error bars equal ±1 SE. Scale bars = 5 cm.
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Assessment of both leaf and canopy TCNDI models (Figure 10a,b)

reveals the effects of N‐based fertiliser application on total canopy T.

For both Leaf‐TCNDI and Canopy‐TCNDI, high N nutrient fertiliser

treatment increased water fluxes by Day 42 (compare FD and FW

with UW and UD), leading to higher T levels. However, as canopies

developed over time, the cumulative effect of fertiliser application is

much more apparent in the Canopy‐TCNDI model, which accounts for

the reduced number of leaves at the beginning of measurements.

Comparisons between Leaf‐TCNDI and Canopy‐TCNDI responses and

the thermally derived CWSI and raw thermal data responses reveal

some similarities in detectable water flux versus water stress

patterns, but as the drought became increasingly severe, this did

not continue to be the case (Figure 10a–e). By Day 83, CWSI (and

raw thermal images) no longer identified increasing water stress

despite the sustained drought, instead water stress appeared reduced

as plants appeared cooler on Day 83 than Day 78. For both Leaf‐

TCNDI and Canopy‐TCNDI, T values continued to decrease indicating

that water was becoming increasingly exhausted as plants dried out.

Assessment of thermal and RGB images reveal that FD leaf angle and

reflective properties, as well as canopy and structural changes caused

by wilting, may well have been contributing to the discrepancies

observed between CWSI and Leaf‐TCNDI and Canopy‐TCNDI mea-

surements at Days 77 and 83 (Figure 10d,f). Compared to Leaf‐TCNDI

(r2 = 0.61) and TOrg (r2 = 0.46) relationships with in‐situ T (based on

gsw porometry data), the relationship between CWSI and in‐situ T

produced an r2 of 0.57 (Figure 10f).

4 | DISCUSSION

4.1 | Plant gas exchange responses to nitrogen

and/or water stress

In future climates where water and/or N will be increasingly limited,

innovative approaches will be required that boost crop yields that at

the same time minimises resource expenditure. Heterogeneity within

fields will require robust mathematical modelling to optimise the

spatial and temporal growth of our crops, and remote sensing

technologies will be critical for providing accurate input data

(Li et al., 2020; Plett et al., 2020; Sarić et al., 2022). Here, we have

integrated a variety of different phenotyping technologies in unison

to increase the accuracy of how plant water fluxes are modelled

when two abiotic stresses are occurring concurrently. We observed

sizeable differences in gas exchange between fertilised and un-

fertilised plants before drought (Figures 1–3), with adaxial leaf

surfaces contributing to the majority of leaf gsw. While our leaf

surface analysis results broadly follow those of Wall et al. (2022), our

porometry measurements highlight that under steady‐state chamber

conditions, that the abaxial leaf surface only had a small contribution

to overall gaseous exchange. Why such partitioning of gas exchange

occurs in wheat is intriguing, and further studies are required to

elucidate the underpinning molecular and physiological mechanisms

that regulate such processes.

The gas exchange differences we observed between fertilised

and unfertilised plants seems to be inherently linked with differences

in investment of N in light‐harvesting pigments and RuBisCO

biosynthesis (Kubar et al., 2022; Ookawa et al., 2004). Nutrient‐

limited N starvation reduced both A and gsw under well‐watered

conditions comparatively to fertilised plants in our experiments, but

this did not impact on iWUE that remained equal to fertilised plants.

Similar A, gsw and iWUE responses have previously been detected in

poplar (Liu & Dickmann, 1996), but such responses are not always the

same. Guehl et al. (1995) found in oak that all three gas‐exchange

parameters reduced, whereas in pine, gsw actually increased whereas

A and iWUE decreased. As others have detected before us (Seibt

et al., 2008), we found that δ13C values do not necessarily follow the

same pattern as iWUE measurements when N was limited, although

during drought, FD plants did have increased δ13C and iWUE relative

to FW plants as stomata were closing. Unfertilised plants had the

highest values of δ13C, which is surprising given previous studies

have shown that δ13C is typically linked with a higher N content (Cao

et al., 2019; Verlinden et al., 2015). These data together highlight the

complex nature of understanding plant water‐use at the leaf level

when multiple abiotic stresses are concurrently occurring.

Chlorophyll content has been shown to be a strong proxy for

Vcmax owing in large part to the optimum investment of N across

photosynthetic components (Croft et al., 2017; Wang et al., 2018),

and this is supported here even under differing drought and nutrient

treatments where N was limited. In our study, Vcmax measurements

on FD plants were undertaken when stomata were nearly closed,

which most probably led to reduced T restricting the flow of N to

leaves (as evidenced by reduced N at Day 83), as chlorophyll was

breaking down as water stress was increasing (Figure 5). We

questioned whether commonly used hyperspectral indices such as

MTCI, NDVI and WBI, which are routinely used in remote sensing

approaches, could serve as good proxies for chlorophyll content and

Vcmax during a dynamic drought scenario, but found no discernible

relationships between any of the VIs and water stress. This result

supports previous work also showing that VIs do not always serve as

good markers for plant photosynthetic performance when water

stress is introduced (Liu et al., 2018; Shiratsuchi et al., 2011). This

latter finding highlights why caution must be taken when using VIs on

a global level to interpret productivity when little information is

known about the prevailing plant water status.

4.2 | Detecting multiple stresses simultaneously

using remote sensing technology

In this study, we first addressed which phenotyping technologies

were best at detecting the onset of early plant stress. Our results

showed it was possible to detect differences in LAI, porometry,

thermal imaging and hyperspectrally derived MTCI and NDVI from 1

week (42 dpg) after fertilisation had first been applied (Figure 1).

Following drought imposition at Day 60 we did not detect such a

uniform response between different phenotyping technologies, with
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porometry and thermal imaging at Days 68–69 (and LAI at Day 68)

being much quicker to identify drought stress than MTCI and NDVI

(at Days 76 and 82 respectively). This finding is similar to those of

Gerhards et al. (2016) who also found porometry and thermal

measurements to be good markers of early water stress detection

whereas optical imaging stress detection typically took longer. Recent

research in maize has showed that hyperspectral stress detection can

be complicated further due to overlapping reflectance signals of

multiple stressors (in this case drought and western corn root worm;

WRC) (Peron‐Danaher et al., 2023). While the authors could detect

WRC under well‐watered conditions, this was not the case when

drought was simultaneously applied, which highlighted the limitations

of using hyperspectral imaging to study multiple stressors. We also

found hyperspectral reflectance signal overlapped during combined

drought and nutrient stress (particularly Days 76 and 82), which re‐

affirmed the limitations found by Peron‐Danaher et al. (2023).

Using the full hyperspectral range of wavelengths within PLSR

and VIP analysis of measured LWC (and five other trait and fluxes),

we identified wavelengths at 706, 1402, 1451 and 1878 nm as being

important for capturing phenotypic variations arising from drought

and differences in leaf N and water content at Day 82/83 (Figures 5

and 6). Sun et al. (2022) also highlighted that changes in reflectance

at 706 nm (and 688 nm) can identify N status under different

watering regimes, due to the sensitivity of the red‐edge region to

chlorophyll and N content (Curran et al., 1990; Li et al., 2014). Two of

the three VIP highpoints detected in the short‐wave infrared (SWIR):

1402 and 1450 nm span regions often associated with differences in

LWC and are regularly associated with drought (Carter, 1993;

Gausman & Allen, 1973; Mertens et al., 2021; Seelig et al., 2008).

The same is true of 1878 nm which is also often linked to equivalent

water thickness, otherwise referred to as area‐weighed moisture

content (Cao et al., 2015). By combining reflectance from these

sensitive wavelengths in the CNDI formula, it is possible to capture

changes in leaf reflective properties associated with N and or drought

stress to improve modelled plant water‐use under both abiotic

stresses (Figures 7–10). We have provided evidence that CNDI

values could be applicable across different wheat growth environ-

ments and between different crop types (Figure 8, Supporting

Information S1: Figure 5), but this is only a small sampling of single

stress data sets, and so further research is still required to validate

whether TCNDI can be applied broadly across different environmental

and crop scenarios where both drought and N deficiency are

occurring simultaneously. It should be re‐emphasised here that

because gsw typically decreases before LWC (and other biochemical

changes associated with drought) (Bhusal et al., 2020; Du et al., 2012),

that flux‐based technologies such as thermal imaging are still very

much key for capturing the earliest signs of plant water stress.

Currently most leaf spectroradiometers cover either the visible

near infrared (VNIR; 400–1000 nm) or the SWIR (1000–2500 nm),

and those that cover the full spectrum (400–2500 nm) are typically

quite expensive (Liu et al., 2020; Sarić et al., 2022). For unoccupied

aerial vehicles (UAVs) with hyperspectral cameras, including drones,

this is especially the case, with technology that covers the full

spectrum still under development (Oliveira et al., 2024; Saari

et al., 2017). Both of these limitations (excessive cost and limited

wavelength coverage) represent technological bottlenecks that are

currently preventing indices such as CNDI from being employed over

large scales. To obtain values of T from synergised optical and

thermal data such as with TCNDI, there is a need for remote sensing

technology prices to fall and at the same time the speed of UAV

innovations needs to accelerate. One shorter‐term option for

employing optical and thermal technologies together in the present

would be to minimum–maximum normalise MTCI values and then use

a sigma function to compute the most appropriate alpha scaling

factor for thermal modelling. The downside to this approach would

be that water band information from the SWIR would not be

available and thus such an approach may well be less accurate,

particularly when drought occurs.

4.3 | Balancing fertiliser application with water

availability to maximise productivity

Despite receiving fertiliser, by Day 82 FD plants had the lowest

chlorophyll and gsw values of all the plants, with Leaf‐TCNDI and

Canopy‐TCNDI values close to 0 and leaves that had markedly reduced

LWC. This indicates that fertilised FD plants with higher LAI and T

rates are much more susceptible to drought and closed stomata far

more rapidly than UD plants (Figures 1, 5, and 10). These findings

highlight the potential risk fertilisation application can have in

drought‐prone locations. Termed ‘haying off’, larger crop canopies

have been shown to be more prone to prematurely drying out before

forming grain, caused in large part due to the increased evaporative

demand of a larger vegetative biomass (Van Herwaarden et al., 1998).

On the other hand, it has also been shown that wheat crops that do

not receive enough fertiliser early in the season fail to produce

maximal yields when water is plentiful later in the season (Plett

et al., 2020; Van Herwaarden et al., 1998). Insufficient N application

can also reduce grain protein content due to excessive nutrient

leaching when water is plentiful, further complicating the balance

between applying the correct amount of fertiliser and managing plant

water‐use. Clearly, to optimise fertiliser use and maximise grain

yields, plant water‐use and water availability, along with N

availability, must be considered both before and throughout the

growing season.

5 | CONCLUSION

Temperature‐based energy balance T models are capable of

dynamically modelling water fluxes due to the evaporative cooling

effects of stomatal‐regulated water release on leaf temperature. To

overcome the difficulty in obtaining net radiation, a DRS is used to

normalise the canopy surface temperatures. We have shown that a

key limitation of this method is that the reflectance properties of the

leaves and canopies may change over time and depart from those of
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the DRS leading to inaccurate predictions of T. By integrating a novel,

hyperspectral remote‐sensing‐based transformed version of CNDI to

represent changes in leaf biochemistry, water content, and emissivity,

we highlight the potential to improve thermal remote‐sensing‐based

T modelling when drought and/or N stress occur simultaneously. Our

results show that the future utilisation of combined thermal and

hyperspectral technologies on regional or even global scales has the

potential to markedly improve crop irrigation strategies and bolster

future food security.
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