
This is a repository copy of Spectroscopic analysis of hot, massive stars in large 
spectroscopic surveys with de-idealized models.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/210744/

Version: Published Version

Article:

Bestenlehner, J.M. orcid.org/0000-0002-0859-5139, Enßlin, T., Bergemann, M. 
orcid.org/0000-0002-9908-5571 et al. (3 more authors) (2024) Spectroscopic analysis of 
hot, massive stars in large spectroscopic surveys with de-idealized models. Monthly 
Notices of the Royal Astronomical Society, 528 (4). pp. 6735-6750. ISSN 0035-8711 

https://doi.org/10.1093/mnras/stae298

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



MNRAS 528, 6735–6750 (2024) https://doi.org/10.1093/mnras/stae298 
Advance Access publication 2024 January 30 

Spectroscopic analysis of hot, massi v e stars in large spectroscopic sur v eys 

with de-idealized models 

J. M. Bestenlehner , 1 , 2 ‹ T. Enßlin, 3 M. Bergemann , 2 P. A. Crowther , 1 M. Greiner 3 and M. Selig 
4 

1 Department of Physics & Astronomy, University of Sheffield, Hounsfield Road, Sheffield S3 7RH, UK 
2 Max Planck Institute for Astronomy, K ̈onigstuhl 17, D-69117 Heidelberg, Germany 
3 Max Planck Institute for Astrophysics, Karl-Sc hwarzsc hildstr aße 1, D-85748 Garching, Germany 
4 DBFZ Deutsches Biomasseforschungszentrum g emeinn ̈utzig e GmbH, Torgauer Straße 116, D-04347 Leipzig, Germany 

Accepted 2024 January 22. Received 2023 December 21; in original form 2023 August 3 

A B S T R A C T 

Upcoming large-scale spectroscopic surv e ys with e.g. WEAVE (William herschel telescope Enhanced Area Velocity Explorer) 
and 4MOST (4-metre Multi-Object Spectroscopic Telescope) will provide thousands of spectra of massive stars, which need 

to be analysed in an efficient and homogeneous way . Usually , studies of massive stars are limited to samples of a few hundred 

objects, which pushes current spectroscopic analysis tools to their limits because visual inspection is necessary to verify the 
spectroscopic fit. Often uncertainties are only estimated rather than derived and prior information cannot be incorporated without 
a Bayesian approach. In addition, uncertainties of stellar atmospheres and radiative transfer codes are not considered as a result 
of simplified, inaccurate, or incomplete/missing physics or, in short, idealized physical models. Here, we address the question 

of ‘How to compare an idealized model of complex objects to real data?’ with an empirical Bayesian approach and maximum a 
posteriori approximations. We focus on application to large-scale optical spectroscopic studies of complex astrophysical objects 
like stars. More specifically, we test and verify our methodology on samples of OB stars in 30 Doradus region of the Large 
Magellanic Clouds using a grid of FASTWIND model atmospheres. Our spectroscopic model de-idealization analysis pipeline 
takes advantage of the statistics that large samples provide by determining the model error to account for the idealized stellar 
atmosphere models, which are included into the error budget. The pipeline performs well o v er a wide parameter space and 

derives robust stellar parameters with representative uncertainties. 

Key words: atomic data – methods: data analysis – methods: statistical – techniques: spectroscopic – stars: fundamental param- 
eters – stars: massive. 

1  I N T RO D U C T I O N  

With the advent of large spectroscopic surveys using instruments 
such as WEAVE (William herschel telescope Enhanced Area Ve- 
locity Explorer, Jin et al. 2023 ) and 4MOST (4-metre Multi-Object 
Spectroscopic Telescope, de Jong et al. 2019 ), tens of thousands 
of spectra of massive stars ( � 10 M ⊙) will be obtained, which will 
need to be analysed in a homogeneous and efficient way (e.g. Bensby 
et al. 2019 ; Chiappini et al. 2019 ; Cioni et al. 2019 ). Current pipelines 
of large spectroscopic surv e ys are largely designed for FGK stars, 
which are either data driven (e.g. Ness et al. 2015 ; Guiglion et al. 
2020 ) or model driven (e.g. Allende-Prieto & Apogee Team 2015 ; 
Ting et al. 2019 ). Traditionally, and still widely performed today, 
massiv e stars hav e been analysed by ‘e ye’, which limits the sample 
size to < 100 massive stars. In addition, stellar parameters as well as 
uncertainties are estimated rather than determined. Larger samples 
of a couple of hundreds of stars are usually analysed with a χ2 - 
minimization algorithm, where the final fit often needs to be visually 
verified depending on the goodness of fit. 

⋆ E-mail: j.m.bestenlehner@sheffield.ac.uk 

Multidimensional probability distribution functions are obtained 
depending on the number of free parameters and uncertainties are 
then defined on confidence intervals rather than Gaussian standard 
deviations. Those uncertainties can be highly asymmetric and very 
large in the case of degenerated parameters. In the massive star 
community, there are two main fla v ours of χ2 -minimization algo- 
rithms, grid based (e.g. Sim ́on-D ́ıaz et al. 2011 ; Castro et al. 2012 ; 
Bestenlehner et al. 2014 ) and genetic algorithms on the basis of 
natural selection (e.g. Mokiem et al. 2007 ; Brands et al. 2022 ). All 
those algorithms use a pre-defined selection of spectral line regions 
for their analysis. 

Theoretical models of complex physical systems are necessarily 
idealizations. The implied simplifications allow us to focus the view 

on the essential physics, to keep the model computationally feasible, 
and to investigate systems for which not all of their components 
are perfectly known. In contrast to solar-like stars, massive stars 
have strong stellar winds, which influence the structure of the 
stellar atmospheres (line blanketing). In extreme cases, the stellar 
wind can be optically thick. The location, where the optical depth 
of the atmosphere is 2/3 and therefore where the ef fecti ve radius 
and temperature are defined, can be well within the stellar wind 

© The Author(s) 2024. 
Published by Oxford University Press on behalf of Royal Astronomical Society. This is an Open Access article distributed under the terms of the Creative 
Commons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), which permits unrestricted reuse, distribution, and reproduction in any medium, 
provided the original work is properly cited. 
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volume. The inclusion of line-driven winds into stellar atmosphere 
models requires the assumption of spherical geometry in the co- 
moving frame of the star (expanding atmosphere). In addition to 
ef fecti ve temperature and surface gravity, mass-loss rate, velocity 
la w, terminal v elocity, wind inhomogeneity, and line blanketing 
need to be included into the stellar atmosphere code. The stellar 
atmospheres of massive stars significantly depart from local thermal 
equilibrium (LTE) and therefore must be computed in fully non- 
LTE, which is computationally e xpensiv e (e.g. Santolaya-Re y, Puls & 

Herrero 1997 ; Hillier & Miller 1998 ; Gr ̈afener, Koesterke & Hamann 
2002 ). This limits state-of-the-art stellar atmosphere codes for hot, 
massive stars to 1D. 

When faced with real data of the actual system, these models often 
perform insufficiently when judged on a goodness-of-fit basis. The 
difference between real and modelled data can easily exceed the error 
budget of the measurement. The reason is that the idealized models 
do not capture all aspects of the real systems, but they are still present 
on the data. To discriminate these missing aspects from measurement 
errors or noise, we use the term model errors to describe these 
imperfections of our theoretical description (Oberpriller & Enßlin 
2018 ). 

Often, one tries to determine the model parameters from the 
data via a likelihood-based methodology such as χ2 -minimization, 
maximum likelihood, or Bayesian parameter estimation that uses the 
measurement uncertainties as a metric in data space. The resulting 
parameter estimates can be strongly distorted by the desire of the 
method to minimize all apparent differences between predicted and 
real data, indifferently if these are due to measurement or model 
errors. 

Thus, the model errors should be included into the error budget 
of the parameter estimation. This would require that we have a 
model for the not yet captured aspects of the system or at least 
for the model errors these produce. To do this thoroughly, we 
would need to undertake a case-by-case analysis of the missing 
physics. 

Ho we ver, this would be quite impractical in cases of the spec- 
troscopic analysis of complex astrophysical objects. Instead, we 
want to construct a plausible, but by no means perfect, ef fecti ve 
description of the model errors. In the construction of the de- 
idealization model, we will follow a pragmatic route, but try 
to indicate the assumptions, approximations, and simplifications 
made. 

In Section 2 , we introduce the methodology, which is used in our 
spectroscopic analysis pipeline (Section 3 ). Using grids of stellar 
atmospheres (Section 3.3 ), the pipeline is applied to observational 
data (Section 3.4 ). The results are discussed in Section 4 . We close 
with a brief conclusion and outlook (Section 5 ). 

2  M E T H O D  

2.1 Data model 

We assume that we have a set of objects (e.g. stars, galaxies, etc., 
labelled by i ∈ { 1 , 2 , . . . , n } ) with observable signals s ( i) = ( s ( i) x ) x 
o v er some coordinate x , e.g. the emitted spectral energy distribution 
s ( i) = ( s ( i) λ ) λ as a function of the wavelength λ. These signals are 
measured with a linearly responding instrument (response matrix 
R ) with additive Gaussian noise ( n ) according to the measurement 
equation 

d ( i) = R 
( i) s ( i) + n ( i) . (1) 

The individual elements of the data vector ( d ) for the i th object are 
then given by 

d 
( i) 
j = 

∫ 

d x R 
( i) 
j x s 

( i) 
x + n ( i) , (2) 

where in our spectroscopic cases R 
( i) 
j x is the j th bandpass of our i th 

observation as a function of wavelength x = λ. Spectroscopic, colour 
filter, and bolometric measurements can thereby be treated with the 
same formalism and even combined into a single data vector and 
response matrix. In addition, we do not require that all objects are 
observed in the same way by keeping the response matrix dependent 
on the object index i . In this way, the formalism permits to combine 
heterogeneous observations. 

For the measurement noise n ( i ) of the i th observation, we use the 
error spectrum from the data reduction that is assumed for simplicity 
to be Gaussian with zero mean and signal independent, 

P( n ( i) | s ( i) ) = G( n ( i) , N 
( i) ) 

= 
1 

√ 
| 2 πN ( i) | 

exp 

[

−
1 

2 
n ( i) † 

(

N 
( i) 
)−1 

n ( i) 
]

(3) 

with assumed noise covariance N 
( i) = 〈 n ( i) n ( i) † 〉 ( n ( i) | s ( i) ) . The dagger 

denotes the transposed and complex conjugated vector. The noise 
of the dif ferent observ ations is assumed to be independent as well, 
P( n | s) = G( n, N ) = 

∏ 

i G( n ( i) , N 
( i) ) with n = ( n ( i ) ) i and s = ( s ( i ) ) i 

being the combined noise and signal vectors, respectively. 

2.2 Model errors 

Now, we assume that some idealized model for our objects exists that 
predicts a specific theoretical signal t [ p ] given a set of unknown model 
parameters p . These parameters should be physical quantities like 
surface gravity, radius, ef fecti ve temperature, stellar wind properties, 
or chemical composition of the object, so that well-defined values 
p ( i ) exist for each object. 1 Those idealized models can be generated 
with stellar atmosphere and radiative transfer codes. Knowing these 
parameters for each object is the primary goal of the inference. 
In principle, the relation between parameters and signal could be 
stochastic, but for simplicity we concentrate on deterministic models. 
The de-idealization model we develop should serve as an ef fecti ve 
description for the remaining stochasticity. 

The idealized model hopefully captures the dominant properties 
of the system but certainly not all aspects. Therefore, the real signal 
s ( i ) of an object will deviate by an unknown stochastic component 
u ( i ) , the model error, so that 

s ( i) = t [ p i ] + u 
( i) . (4) 

The aim of model de-idealization is to find an appropriate stochastic 
model P( u | p) = 

∏ 

i P( u 
( i) | p 

( i) ) for the model errors. With such, the 
likelihood becomes 

P( d| p) = 

∫ 

D u P( d| s = t [ p] + u ) P( u | p) , (5) 

where 
∫ 
Du denotes a phase space integral for the model errors. 

1 Counterexample would be purely phenomenological parameters, describing 
aspects of the data that contain observation-dependent properties or such that 
only make sense within a specific object description methodology. Although 
the approach proposed here might be applicable to such phenomenological 
descriptions as well, we currently demand the physical existence of the used 
parameters in order to be on epistemologically firm grounds. 
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In our case, we want to restrict ourselves to using the simplest 
possible representation of the model uncertainties. This means that 
we take only the first and second moments of u ( i ) into account, 
v ( i ) = 〈 u ( i ) 〉 ( u | p ) and U 

( i ) = 〈 ( u − v) ( i ) ( u − v) ( i ) † 〉 ( u | p ) , and assume the 
fluctuations of different objects to be independent, 〈 u ( i ) u ( j ) † 〉 ( u | p ) = 

v ( i ) v ( j ) † + δij U 
( i ) . The probability distribution that represents mean 

and variance without further information on higher order correlations 
naturally is a Gaussian with this mean and variance. Among all 
possible probability distributions with given mean and variance, it 
has a maximal entropy (e.g. Jaynes & Bretthorst 2003 ; Caticha 2008 ). 
By adopting a Gaussian for the model errors, 

P( u | p) = G( u − v, U ) , (6) 

the least amount of spurious information is entered into the inference 
system in case only v and U = 〈 ( u − v) ( u − v) † 〉 ( u | p) are considered. 

This does not mean that the model error statistics is a Gaussian 
in reality. It just means that higher order correlations are ignored for 
the time being. Taking such higher order correlations into account 
would most certainly impro v e the method, but is left for future work. 

The Gaussianity of measurement noise and modelling error de- 
scription permits us to integrate equation ( 5 ) analytically leading 
to 

P( d| p, v, M) = G( d − R( v + t [ p] ) , M) , (7) 

with M = N + R U R 
† being the combined error covariance. 

2.3 Implicit hyperprior 

The de-idealization model requires that the auxiliary parameters v 
and U are determined as well, or better marginalized o v er. This 
requires that we specify our prior knowledge on these parameters, 
P( v, U | p), which is a very problem specific task. Using such a 
hyperprior, we could then derive an auxiliary parameter marginalized 
estimator for our desired model parameters p . A good, but numeri- 
cally very expensive approach would be to sample over the joint space 
of model and auxiliary parameters, p , v, and U , for example using the 
Gibbs sampling method (e.g. Wandelt, Larson & Lakshminarayanan 
2004 ; Jasche et al. 2010 ). 

In order to have a generic, affordable, and pragmatic method, 
we introduce a number of approximations and simplifications. The 
first is that we replace the auxiliary parameter marginalization by an 
estimation using the following approximation: 

P( d, p) = 

∫ 

D v 

∫ 

D U P( d| p, v, U ) P( v, U | p ) P( p ) 

≈ P( d| p, v ⋆ , U 
⋆ ) P( p) (8) 

with v ⋆ and U 
⋆ being suitable estimates of the auxiliary parameters 

and P( p) the parameter prior. Instead of constructing these point 
estimators using the so far unspecified and problem specific priors 
we propose to pragmatically specify them with an educated ad hoc 
construction. 

The idea is to assume for a moment that a correct model parameter 
classification p ( i ) for any object exists, which has later on to be 
estimated self consistently with all the other estimates via iteration. 
The difference of the signals reconstructed from the data m 

( i) = 

〈 s ( i) 〉 ( s ( i) | d ( i) , p ( i) ) and the one predicted from the model t [ p 
( i) ] plus the 

current guesses for v ⋆ , 

δ( i) = m 
( i) − t [ p 

( i) ] − v ( i) ⋆ (9) 

can be analysed to provide information on v and U . The signal 
reconstruction can be done via a Wiener filter, since this is optimal 

in case of a linear measurement and Gaussian noise model equation 
( 7 ). For the signal difference this is 

δ( i) = D 
( i) R 

( i) † 
(

N 
( i) 
)−1 

[ 

d ( i) − R 
( i) 
(

t [ p 
( i) ] + v ( i) ⋆ 

)] 

D 
( i) = 

[ 
(

U 
( i) ⋆ 

)−1 
+ R 

( i) † 
(

N 
( i) 
)−1 

R 
( i) 
] −1 

, (10) 

where D 
( i ) is the Wiener variance or uncertainty of the reconstruction. 

For the current case, we have used some guesses for v ⋆ and U 
⋆ that 

need to be updated accordingly to the information contained in the 
statistics of the signal differences δ( i ) . To do so, we introduce a suit- 
able proximity measure in parameter space, ω i i ′ = prox ( p 

( i) , p 
( i ′ ) ), 

that indicates for an object i how much another objects i ′ can 
be used to learn about the model error statistics of i . A naive 
choice would be ω i i ′ = 1 always, assuming that the model error 
statistics is everywhere the same in the model parameter space. 
A more sophisticated method would partition the parameter space 
into characteristic regions (e.g. corresponding to the different known 
star and galaxy classes in our spectroscopic example) and to set 
ω i i ′ = 1 or ω i i ′ = 0 in case i and i ′ belong to the same or different 
classes. Even more sophisticated proximity weighting schemes can 
be imagined with ω i i ′ = 1 / (1 + dist ( p 

( i) , p 
( i ′ ) )) using some distance 

measure in parameter space. Ho we ver, in our case, we group objects 
together with respect to their main line diagnostics and analyse them 

in the same batch. 
Given such a scheme, the update operation for v ⋆ and U 

⋆ are 

v ( i) ⋆ → v ( i) ⋆ + 

∑ 

i ′ 

ω i i ′ 

�i 
δ( i ′ ) , 

U 
( i) ⋆ = 

∑ 

i ′ 

ω i i ′ 

�i 

(

δ( i ′ ) δ( i ′ ) † + D 
( i ′ ) 
)

with (11) 

�i = 

∑ 

i ′ 

ω i i ′ . (12) 

The v ⋆ update operation is a simple absorption of any systematic 
difference into the mean component of the model error v ⋆ . For an 
initial step, it is better to set v ( i) ⋆ iteration#0 = 0 as it would absorb any 
differences between data and model, even though the model might 
be not representative of the objects. However, we find that the best 
choice for v is to represent non-stellar features, which are not part of 
the model, like nebular lines, interstellar bands, or telluric lines. 

The U 
⋆ update incorporates the variance in the signal difference 

reconstructions as well as their Wiener variances. The latter express 
the level of missing fluctuations of the Wiener filter reconstruction. 
The correction with the Wiener variance is done in analogy to 
the critical filter methodology developed in (Enßlin & Weig 2010 ; 
Enßlin & Frommert 2011 ), where a similar variance estimation 
was derived under a non-informative prior on the power spectrum 

of a statistical homogeneous random process. For this study, we 
intuitiv ely e xtended this to non-diagonal co variance structures. This 
means that we adopt implicitly a non-informative hyperprior for the 
model error statistics as summarized by v and U . 

The logic behind this implicit prior is as follows. Assuming we 
would have managed to specify an appropriate non-informative 
hyperprior for v and U . From this, we would derive some recipe 
for our point estimates v ⋆ and U 

⋆ using some approximations. The 
resulting recipe should not incorporate hidden spurious assumptions. 
The v ⋆ and U 

⋆ estimates therefore can only be build from elements 
like δ( i ′ ) , δ( i ′ ) δ( i ′ ) † , and D 

( i ′ ) , the latter being a summary of the former 
elements. Requiring the estimators to be unbiased and to enclose 
the mentioned critical filter as a limiting case, which is an unbiased 
power spectrum estimator, then fixes the numerical coefficients in 
front of δ( i ′ ) , δ( i ′ ) δ( i ′ ) † , and D 

( i ′ ) in equation ( 11 ) to unity. 
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We admit that there are some frequentist elements in this deri v a- 
tion, since it postulates an estimator and argues for its appropriateness 
using bias arguments. We hope that it will be replaced by a more 
stringent calculation once a suitable non-informative hyperprior has 
been specified. For the time being, we use it in iteration with model 
parameter estimation. 

2.4 Method summary 

The combined de-idealized model parameter estimation method 
comprises the following steps: 

(i) Specify the weighting scheme ω i i ′ = prox ( p 
( i) , p 

( i ′ ) ) that de- 
termines how similar the model parameters of two objects have to be 
so that their model error statistics can be assumed to be similar. 

(ii) Adopt some initial guess or default values for the model 
parameters p ( i ) and mode error parameters v ( i ) ⋆ and U 

( i ) ⋆ . A naive 
choice could be p ( i ) = p for some plausible central p within 
the physically permitted parameter space, v ( i ) ⋆ = 0, and U 

( i) ⋆ = 
∑ 

i ′ 

(

R 
( i ′ ) † d ( i) − t [ p] 

) (

R 
( i ′ ) † d ( i) − t [ p] 

)† 
. 

(iii) Calculate δ( i ) and D 
( i ) according to equation ( 10 ) for all 

objects. 
(iv) Update v ( i ) ⋆ and U 

( i ) ⋆ according to equation ( 11 ) for all objects. 
(v) Update the model parameters p ( i ) of all objects using the 

combined likelihoods equation ( 7 ) that incorporates measurement 
and model errors. 

(vi) Repeat steps 3–5 until convergence. 

The resulting estimate will be similar to a joint maximum posteriori 
estimate. A posteriori estimation of the model and model error 
parameters are known to perform worse than a properly marginalized 
posterior with respect to an estimator based on the posterior mean. 
Ho we ver, gi ven the large number of degrees of freedom in the 
signal space (e.g. a highly resolved emission spectrum of a star 
or galaxy), such optimal estimators can be extremely expensive 
computationally. The proposed method might therefore be fa v ourable 
in many circumstances, despite its approximative and partly ad hoc 
nature. 

In order to be explicit about the assumptions and approximations 
adopted, we provide an overvie w belo w. This list should help to judge 
the range of applicability and to find possible impro v ements of the 
proposed method. In particular, we assume 

(i) that the measurement noise is independent for the different 
objects and independent of their signals, it has Gaussian statistics 
with known covariance. 

(ii) a linear and known measurement response. 
(iii) that the model error knowledge can be approximated by a 

multi v ariate Gaussian in signal space. 
(iv) that regions in parameter space exist and are known that have 

similar model error statistics as parametrized by a mean and variance. 
(v) no prior knowledge on the values of this model error mean and 

variances. 
(vi) that an iterated point estimate of all involved parameters 

leads to a reasonable approximative solution of the joint inference 
problem. 

3  SPECTROSCOPIC  ANALYSIS  PIPELINE  

The pipeline has been developed using python3 with commonly 
used libraries such as numpy , scipy , pandas , multiprocessing , and 
ctypes plus astropy.io to read fits files. Using commonly used 
and maintained libraries will ensure that the pipeline is easy 

to maintain and should be usable o v er a long period of time. 
The following section outlines the required pre-processing steps 
(Section 3.1 ), brief o v erview of the pipeline implementation (Sec- 
tion 3.2 ) and, description of the grid of synthetic model spectra 
(Section 3.3 ) and the observational data to verify the pipeline 
(Section 3.4 ). 

3.1 Pr e-pr ocessing 

The pipeline requires that all observational data are read in at the 
beginning as the spectra are required to be analysed all at once to 
determine iteratively the stellar parameters and model uncertainties 
(Section 2.4 ). Radial velocities shifts of the spectra need to be 
provided as the misalignment of observation and synthetic spectrum 

would dominate the model error. After a spectrum is loaded, it 
is corrected for the potential radial velocity shift, transformed to 
the wavelength sampling of the synthetic spectra grid (Section 3.3 ) 
and decomposed into principal components using the decomposition 
matrix calculated from the synthetic spectra to reduce the memory 
usage and speed up the analysis. This is essential, when analysing 
samples of spectra of more than a few hundred sources. 

The decomposed grid of synthetic spectra is loaded into shared 
memory for parallelization purposes. The spectra are pre-convolved 
with combinations of varying broadening parameters of projected 
rotational velocity ( � eq sin i) and macro-turbulent velocity ( � mac ). 
The synthetic grid preparation is also a pre-processing step, which is 
laid out in Section 3.3 . If the sample is small and/or sufficient random 

access memory of the computing system is available, the grid can be 
convolved with the star specific broadening parameters. Even though 
the convolution is applied utilizing the fast Fourier transformation 
library of scipy , this could increase the pre-processing time-scale up 
to a few hours per star depending on the size of the synthetic spectra 
grid ( ≫ 100 000). 

On a standard Desktop computer, 1000 spectra can be analysed 
in less than half a day. For larger data sets, we would advise to sort 
them into groups of similar objects, which will also lead to more 
representative model error at a specific parameter space when testing 
implemented physics or verifying assumptions in the theoretical 
model. 

3.2 Analysis pipeline 

After pre-processing the observational data including observational 
error spectra and loading the synthetic grid of model spectra, the 
pipeline is set up according to equation ( 1 ) with model de-idealization 
equation ( 4 ) assuming a Gaussian noise model for the observational 
error ( 3 ). We are interested in the posterior distribution of the signal 
given the data ( P( s| d)) and apply the Bayes theorem 

P ( s| d) = 
P ( d| s) P ( s) 

P ( d) 
(13) 

with likelihood P( d| s), prior P( s), and evidence P( d) to use, first, the 
likelihood P( d| s) and, secondly, apply the Wiener filter (Section 2.3 ) 
to reconstruct the signal ( P ( d | s ) → P ( s | d )). We modified the likeli- 
hood as described in Section 2.3 ( P( d| s) ⇒ P( d| p)), probability of 
the data d given the stellar parameters p . 

The best model is determined from a χ2 -minimization Ansatz with 
model error variance matrix U (equation 7 ) to maximize the modified 
likelihood P( d| p): 

χ2 = 
(

d ( i) − R 
(i) s ( i) 

)T 
N 

(i) −1 (
d ( i) − R 

(i) s ( i) 
)

. (14) 
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Figure 1. Probability heatmap of surface gravity versus ef fecti ve temperature for VFTS-072 (left) and VFTS-076 (right). Contours indicate 2D standard- 
deviational ellipse confidence intervals of 39.4, 86.5, and 98.9 per cent (e.g. Wang, Shi & Miao 2015 ). Spectroscopic fits of those stars are shown in Fig. 3 . 

For the mean and model error variance matrix v and U , we find 
that it is better to set v = 0 and multiply U by a factor α = [10 −5 , 
0.35, 0.7, 1.0, 1.0], which increases after each iteration, to a v oid 
that bad spectroscopic fits have significant impact on v and U and 
therefore the determination of the best model. v could be also set 
equal to non-stellar features such as telluric bands, diffuse interstellar 
bands, and prominent interstellar lines like Ca II H and K. Ho we ver, 
interstellar contribution can significantly vary with the line of sight 
while telluric bands change with atmospheric conditions and airmass. 
In cases where the non-stellar features vary on a star by star basis, 
those contributions can be combined with the observational error to 
give less weight to those spectral regions. 

ω i i ′ (equation 11 ) can contain any prior information P( p), e.g. 
parameter space of similar objects, stellar structure models, or 
population synthesis predictions. In the current implementation, we 
use a flat prior ( ω i i ′ = 1). 

The pipeline returns a multidimensional PDF for each star while 
U is the same for all sources analysed in one batch. Parameters and 
their uncertainties are determined by defining confidence intervals 
(Fig. 1 ). To increase the accuracy, the PDF can be multiplied by an 
appropriate prior. More details on the implementation can be found 
in the source code of the pipeline. 2 

3.3 Stellar atmosphere grid 

The grid of synthetic model spectra was computed with the non- 
LTE stellar atmosphere and radiative transfer code FASTWIND v10.6 
(Santolaya-Rey, Puls & Herrero 1997 ; Puls et al. 2005 ; Rivero 
Gonz ́alez et al. 2012 ) including H, He, C, N, O, and Si as explicit 
elements. The FASTWIND LINES-list and FORMAL INPUT file is 
well tested and verified in the wavelength range from 4000 to 7000 Å. 
In the FORMAL INPUT file we included H, He I –II , C II –IV , N II –V , 
O II –V , and Si II –IV in the wavelength range from λ3500 to 10 000. 
On the basis of the Vienna Atomic Line Database 3 (VALD, Piskunov 

2 https:// github.com/ jbestenlehner/ mdi analysis pipeline 
3 F or e xample http:// vald.astro.uu.se/ ∼vald/ php/ vald.php . 

et al. 1995 ; Ryabchikova et al. 2015 ) version 3 and NIST data base 4 

(Kramida et al. 2022) , we added the following lines to the FASTWIND 

LINES-list: C II λ6784, C III λ7703 and λ9701–05–16, C IV λ4647 
and λ6592–93, N III λ5321–27–52, λ3935–39 and λ9402–24, N IV 

λ3748, λ5737, λ5776–85, λ6212–15–29, λ7103–09–11–23–27–29, 
λ7425 and λ9182–223, O III λ3703, λ3707–15, λ3755–57–60–74–
91, O IV λ3560–63, λ3729–37, λ7032–54, λ5769 and λ9454–88–92, 
O V λ5114 and λ6500, and Si II λ9413. A full list of included spectral 
lines can be found in the Appendix A1 . 

Some lines are located in the region of telluric bands, but could be 
of great value, if a careful telluric correction has been performed. 
With data from 4MOST (de Jong et al. 2019 ) and in particular 
4MOST/1001MC (Cioni et al. 2019 ), we are going to verify the 
FASTWIND LINES-list beyond the well-tested wavelength range 
utilizing the pipeline of this study. 

One of the pre-processing steps is to transform observations and 
models to a common wavelength sampling (Section 3.1 ). As we use 
a χ2 -minimization algorithm, the strong Balmer lines with many 
wavelength points dominate the χ2 . Even though helium lines are 
weaker than Balmer lines, they are more prominent than metal 
lines. To balance the weights of the spectral lines, we redefined 
the common reference wavelength grid for both the observational 
and synthetic spectra. First, we initialize a wavelength array with 
the wavelength range and spectral resolution of our observational 
data. Secondly, based on our compiled FASTWIND LINES-list, we 
remo v e ev ery other wav elength point around the Balmer lines. 
Thirdly, we doubled the number of wavelength points for metal 
lines. 

Continuum wavelength points contain little to no information 
about the star. If the normalization is not perfect, those points will 
add noise to the χ2 values. Unlike cooler stars, OB stars have 
significantly less spectral lines in the optical and infrared, so that 
the continuum is usually clearly defined, and normalization is in 
most case straightforward as long as there are no prominent emission 
lines. Therefore, we remo v e all wav elength points be yond ±5 Å to 

4 https:// www.nist.gov/ pml/ atomic- spectra- database 
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Figure 2. T eff –log g plane of the computed grid of converged stellar at- 
mospheres with the x -axis in log-scale. The high temperature low surface 
gravity regime (upper left area) is empty as those models are unstable due 
to the Eddington limit ( Ŵ e ≈ 0.7). Low temperature and high surface gravity 
models would be better calculated with a plane-parallel code without stellar 
winds. 

the averaged line width of the spectral lines to reduce the contribution 
of the continuum to the o v erall χ2 . 

The grid co v ers the parameter space for the ef fecti ve temperature 
from T eff = 17 800 K (log T eff = 4.25) to 56 200 K (log T eff = 4.75), 
surface gravity log g /(g cm 

−2 ) = 2.0–4.5, transformed mass-loss rate 
(e.g. Bestenlehner et al. 2014 ) from log Ṁ t / ( M ⊙ yr −1 ) = −6 . 5 to 
−5.0 assuming a constant radius and helium abundances by number 
from Y = 0.07 to 0.15. Three combinations of Carbon, Nitrogen and 
Oxygen (CNO) abundances representing LMC baseline abundances 
plus semi- and fully processed CNO composition due to the CNO 

cycle according to a 60 M ⊙ evolutionary track by Brott et al. ( 2011 ). 
Fig. 2 shows the parameter space of the grid with respect to log g 
and T eff . 

The high-temperature, low surface gravity regime (upper left area) 
is unpopulated as those models are unstable as they exceed the 
Eddington limit at an Eddington parameter Ŵ e ≈ 0.7 considering only 
the electron opacity χ e . Low temperature and high surface gravity 
models can be computed with FASTWIND , T eff between 17 800 K 

(log T eff = 4.25) and 21 400 K (log T eff = 4.33) and log g > 4.0, but 
a significantly larger number of depth points or high mass-loss rates 
would be required to make them converge. The computational time- 
scale exceeds 1 d in contrast to less than an hour. Ho we ver, enhanced 
mass-loss rates are only observed, if the star is in close proximity to 
of the Eddington limit (Bestenlehner et al. 2014 ). Therefore, those 
low-temperature and high surface gravity stellar atmosphere models 
are better calculated with a plane-parallel geometry code without 
stellar winds (e.g. TLUSTY; Hubeny & Lanz 1995 ; Lanz & Hubeny 
2007 ). 

The clumping f actor w as set to f cl = 1, i.e. a homogeneous 
stellar wind is adopted. We assumed a wind acceleration parameter 
of β = 1.0 and a fixed micro turbulence velocity of 10 km s −1 . 
The terminal velocity was calculated based on log g and stellar 
radius of the model using the escape-terminal velocity relation of 
� esc / � ∞ = 2 . 6 for models hotter than 21 000 K and � esc / � ∞ = 1 . 3 
for cooler models (Lamers, Snow & Lindholm 1995 ). In total, we 
computed of the order � 150 000 stellar atmospheres. For around 
∼ 20 per cent of those models the atmospheric structure, ionization 
balance and/or radiation field failed to converge properly leading to 

ne gativ e flux es, discontinuities or ev en failed when the spectral lines 
were synthesized. 

The grid was then convolved with a macro-turbulent velocity of 
� mac = 20 km s −1 and varying projected rotational velocity � sin i = 

[0 , 20 , 50 , 100 , 150 , 200 , 250 , 300 , 400] km s −1 assuming � eq sin i 
is the dominant broadening mechanism, which is a reasonable 
assumption given the spectral resolution of the observational data 
(Section 3.4 ) and that typical � mac are of the order of a few 10s 
km s −1 . This results in a grid of � 1100 000 synthetic spectra, which 
has been used to compute the decomposition matrix to decompose 
the grid into its principal components reducing the size by a factor 
∼200. The decomposition matrix is also used to decompose the 
observational data (Section 3.1 ). 

3.4 Obser v ational data 

To validate the methodology of the pipeline, we used the 
VLT/FLAMES data of VLT/FLAMES Tarantula surv e y (VFTS; 
Evans et al. 2011 ) in the traditional blue-optical wav elength re gime 
with the LR02 ( λ3964–4567, λ/ �λ = 6000), LR03 ( λ4501–5078, 
λ/ �λ = 7500) and HR15N ( λ6470–6790, λ/�λ = 19 000) gratings. 
We selected 240 O-type stars employing the same data and nor- 
malization plus radial velocities from (Sana et al. 2013 ) as used in 
Bestenlehner et al. ( 2014 ), Sab ́ın-Sanjuli ́an et al. ( 2014 , 2017 ), and 
Ram ́ırez-Agudelo et al. ( 2017 ) to a v oid the introduction of biases. 

The second data set we used is the VLT/MUSE observation of 
∼250 OB stars plus radial velocities from Castro et al. ( 2018 ). The 
VLT/MUSE data co v er the wav elength range between 4600 and 
9300 Å at spectral resolution of 2000–4000. The normalization of 
the spectra was fully automated simulating the work flow of the 
spectroscopic analysis of large data sets. 35 stars are in common with 
VFTS, which will allow us to test the reliability of line diagnostics 
towards the red of H α (Section 3.3 ) and the automated normalization 
routine. The normalization is fairly consistent within and between 
the VFTS and VLT/MUSE sample (Fig. A1 ). 

It is advisable to perform a homogeneous and automated spectra 
normalization, so that these are chosen consistently for all stars and 
all wav elength re gions are normalized in a similar fashion for every 
star. We note that the choice of the spectrum normalization has an 
impact on the model error matrix, e.g. it affects in particular the edge 
of the detector spectral co v erage or spectral regions with o v erlapping 
Balmer/Paschen lines and jumps. 

4  RESULTS  A N D  DI SCUSSI ON  

4.1 VLT/FLAMES: Evans et al. ( 2011 ) 

We analysed all 240 O-type stars including stars with low SNR and/or 
strong nebular contamination (e.g. Fig. A2 ), while Bestenlehner et al. 
( 2014 ), Sab ́ın-Sanjuli ́an et al. ( 2014 , 2017 ), and Ram ́ırez-Agudelo 
et al. ( 2017 ) provided reliable results for 173 out of 240 sources. In 
Fig. 3 , we show the spectroscopic fits of a representative early and 
late O star (VFTS-072 and 076). The shaded error area in Fig. 3 
reveals where a general mismatch between model and observations 
occurs and where is the square root of the diagonal elements of 
the model-error uncertainty matrix. In particular, the line centres 
of the Balmer and He I –II lines seemed to be poorly fitted as a 
result of nebular lines, inaccurately determined line broadening, 
insufficient grid resolution and range for helium abundances, fixed 
micro-turbulent velocity, or shape of line profiles (e.g. stellar wind 
parameters or spectroscopic binaries). We are also able to locate 
spectral lines, which are potentially not included in the FASTWIND 
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Figure 3. Left, spectroscopic fit of an fast rotating early O2 V–III(n)((f ∗)) star VFTS-072 and, right, a late O9.2 III star VFTS-076 (right). Blue solid line is 
the observation, red solid line the synthetic spectrum, and the grey shaded area is the square root of the diagonal elements of the model-error uncertainty matrix 
calculated by the pipeline. 

LINES-list or require impro v ed atomic data (e.g. Si III λ4552.6, 
4567.8, and 4574.7). Overall, the spectroscopic fit is good for the 
synthetic spectra (red solid line) to the observations (blue solid line). 

Fig. 1 visualizes the probabilities in the log g –T eff plane. VFTS- 
072 (left panel) shows within 2 σ a dual solution ( ∼49 000 and 
∼46 000 K). At ∼ 45 000 K, the He I lines disappear, but the N IV and 
V lines sufficiently contributed to the χ2 so that the correct solutions 
around 49 000 K have also the highest probabilities. By looking at 
the 3 σ contour, we notice a de generac y between log g –T eff due to 
the proximity of VFTS-072 to the Eddington limit. In contrast, the 
heat map of VFTS-076 (right panel) is well centred on a specific 
log g –T eff region. Ho we ver, a slightly higher surface gravity up to 
0.1–0.2 dex could be probable within 2 σ , which is the result of a 
de generac y between surface gravity and mass-loss rates. High mass- 
loss rates fill in the wings of the Balmer lines mimicking a lower 
surface gravity. 

4.1.1 Model-error uncertainty matrix 

The model-error uncertainty matrix is symmetric ( U 
T = U ) and 

shows correlation between wavelength or pixel regions. An example 
is given in the appendix (Table A2 ), where we reduced the rank of the 
matrix from 11 840 × 11 840 to 37 × 37 for visualization purposes. 
The strongest correlations are between the Balmer lines, which are 
the most prominent lines in O-type stars. On the other hand, He I is 
present in mid to late O stars, while He II lines are only strong in 
early O stars. Therefore, to visualize the model-error matrix and its 
correlations, we plot in Fig. 4 the model uncertainties for wavelengths 
of H α, He I λ4471, and He II λ4686. 

H α and He II λ4686 are anticorrelated with each other, although 
we amplified the uncertainties for He II λ4686 by a factor of 10. 

Figure 4. Model uncertainties extracted from model-error matrix as a 
function of wavelength for H α (solid red), He I λ4471 (black dashed), and 
He II λ4686 (solid blue). For better visualization, uncertainties for He I λ4471 
and He II λ4686 are multiplied by a factor 25 and 10, respectively. 
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Figure 5. Ef fecti ve temperatures (left) and surface gravities (right) determined by the pipeline versus the results from Bestenlehner et al. ( 2014 ), Sab ́ın-Sanjuli ́an 
et al. ( 2014 , 2017 ), and Ram ́ırez-Agudelo et al. ( 2017 ). 

Wav elength re gions of Balmer lines are a blend of hydrogen and 
He II lines. With increasing temperature, the He II lines are stronger 
while the Balmer lines become weaker. In addition, the line strength 
between hydrogen and helium also determines their abundances, e.g. 
o v erall stronger helium lines with respect to hydrogen lines mean 
lower hydrogen abundances. 

He I λ4471 (amplified by a factor of 25) is correlated with He II 
λ4686 for helium lines, but anticorrelated for H δ and higher order 
Balmer lines following the trend of H α. He I λ4471 shows stronger 
correlations with Si III and C III , which are only present in late O 

stars, where He I lines are strongest as well. Under this supposition, 
we would expect that we observe a strong correlation between He II 
and the higher ionized N IV and V , which seems not to be the case. 
A reason might be that the number of early O stars is too small due 
to the stellar mass function to significantly contribute to the model 
error ( < 5 per cent). Grouping similar objects together is advisable 
when testing model assumptions in stellar atmosphere codes. 

4.1.2 Challenges 

The examples shown in Fig. 3 show low and modest nebular 
contamination and the pipeline derives result in good agreement 
with VFTS. Ho we ver, the pipeline has difficulties when spectra 
show strong nebular lines. In the case of VFTS-142 (Fig. A2 ), 
the temperature is still reasonably well reproduced, but the surface 
gravity is by ∼0.3 dex too low. If the spectra is dominated by 
nebular lines, the pipelines will fail, e.g. VFTS 410 (Fig. A3 ). Often 
nebular lines are clipped, but in the case of VFTS-410 only few 

diagnostic lines would remain. Clipping nebular lines could increase 
the accuracy for log g as the latter is derived from the wings of 
the Balmer lines due to pressure broadening, but would reduce the 
capability to derive He abundances or mass-loss rates, which partially 
depend on the absorption depth and line profile. 

Even though we perform a single star analysis, for double-lined 
spectroscopic binaries (SB2s) the pipeline is able to fairly fit the 
primary component, but struggles with the mass-loss rate and helium 

abundances due to the contribution of the colliding wind region of 
VFTS-527 (Fig. A4 ; Taylor et al. 2011 ). 

The goodness of fit is usually e v aluated by calculating the reduced 
chi-square (RCS), which uses in our case the diagonal of the error 

covariance matrix. Due to the nebular contamination and diffuse 
interstellar bands, none of our fits had an RCS close to 1. To visualize 
how well the pipeline performs, we compare our results versus 
tailored analysis of VFTS targets in Fig. 5 . Our results agree well with 
Bestenlehner et al. ( 2014 ), Sab ́ın-Sanjuli ́an et al. ( 2014 , 2017 ), and 
Ram ́ırez-Agudelo et al. ( 2017 ) for fits with RCS < 100. Ef fecti ve 
temperatures show a tighter relation than the surface gravity. The 
determination of surface gravity is based on the wings of the Balmer 
lines, which is influenced by the line broadening and therefore how 

well � mac and � sin i are determined. If the spectroscopic fit is poor, we 
derive systematically lower temperatures and surface gravities. Low 

temperature and gravity models have H α in emission to somehow 

fit the none-stellar H α nebular line while higher order Balmer lines 
remain in absorption. Overall, there is good agreement considering 
that our analysis took less than 30 min while the VFTS analysis 
involved the effort of three PhD theses. 

Looking at the error bars, the pipeline obtains systematically larger 
uncertainties in part due to the inclusion of the model error but 
mostly as a result of the interpretation of the 4D posterior distribution 
function (PDF), which includes the degeneracies between T eff , log g , 
Ṁ t , and Y . The derived errors might be larger, but they are a 
complete representation of the true uncertainties. A representative 
prior could increase the accuracy, but might introduce additional 
biases (Bestenlehner et al. 2020 ). Temperature uncertainties are 
systematically larger in the region around 45 000 K as a result of 
the weakness of He I lines and the ionization balance is not based on 
He I –II , but on the metal ions N III –IV –V . Nitrogen lines in early O star 
are relatively weak compared to He lines and therefore contributed 
little to the global χ2 without specific weighting of spectral lines. 
This can lead to an o v erall lower RCS, but inaccurate temperature 
determination (red outliers in Fig. 5 ). A similar behaviour occurs in 
the transition from late O to early B stars due to the weakness of He II 
lines, where the main temperature diagnostics are Si III and IV lines. 
So a careful weighting scheme should be a very promising way for 
optimizing the pipeline by increasing the accuracy while at the same 
time reducing the degeneracies between parameters. 

A similar plot is shown in Fig. A5 for � sin i in the appendix. 
The projected rotational velocity is only estimated by the pipeline. It 
consists of minimizing the χ2 value, thereby finding the best-fitting 
model while reducing the model error. Stellar parameters can be 
found in the supplementary online material (Table S1). 
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Figure 6. Spectroscopic fit of an O2 If (Mk42, left) and a B2 Ib (VFTS-417, right). Blue solid line is the observation, red solid line the synthetic spectrum, 
and the grey shaded area is the square root of the diagonal elements of the covariant matrix calculated by the pipeline. In the left panel, the newly added N IV 

mulitplet at λ7103–29 is able to reproduce the observed line. 

4.2 VLT/MUSE: Castro et al. ( 2018 ) 

Fig. 6 shows the spectroscopic fit of an of supergiant and a B super- 
giant with �T eff ≈ 25 000 K and � log Ṁ � 2 . 5 dex. This highlights 
that stars co v ering a large spectral-type range can be successfully 
and reliably analysed with a single pipeline set-up at the same time. 
Ho we ver, both stars would not be considered as similar, which has 
implication on the model error U . Such a model error is averaged 
o v er a wide parameter space and is probably not very helpful, when 
testing specific physics (e.g. stellar wind physics or atomic data) in 
the model. Similar to the VFTS data, the pipeline performs not well 
for low-signal-to-noise spectra (S/N � 10–15), spectra with strong 
nebular lines and spectroscopic binaries/multiples. 

In Fig. 7 , we compare our results with those from Castro et al. 
( 2021 ), which is based on the ionization balance of selected He I 
and He II features and the wings of H β. In contrast, we used all 
H, He plus CNO, and Si metal lines available in the VLT/MUSE 

wavelength range. The left panel compares ef fecti ve temperatures, 
which shows a large scatter, but mostly agrees within their large 
uncertainties. Abo v e 45 000 K, when He I lines disappear or is weakly 
present in the spectra, the temperature needs to be derive based on the 
ionization balance of metal lines. In the wavelength range of MUSE, 
we have C III –IV and N III –IV . While C IV and N IV are located in 
relatively clean areas of the spectra, the C III and N III are often found 
in the range of telluric bands or near the Paschen jump, where we 
have issues with the normalization (Fig. 6 ). B-type stars have as 
per definition no He II present in their spectra and the temperature is 
based in the case of early B stars on the ionization balance of Si III –IV 

lines. There is a reasonable number of lines in the MUSE range, but 
the temperature determination suffers with the presence of nebular 
lines or low-SNR spectra. 

The right panel of Fig. 7 compares surface gravities that show 

an even larger scatter and uncertainties. Even though we utilized 
the Paschen lines as well, there are two potential caveats: first, 
the normalization near the Paschen jump is not straightforward as 
the lines o v erlap and therefore no continuum, and secondly, the 
de gree of o v erlapping depends not only on log g but also on the 
line broadening due to the narrowness of the higher order Paschen 
lines, which is only approximately determined during the fitting 
process. This results in a de generac y between log g and � eq sin i. 
Surface gravities cluster in the range of log g = 3.5–4.5, which is 
expected for a young stellar population of 1–2 Myr largely consisting 
of dwarfs and giants in the proximity of R136 (Bestenlehner et al. 
2020 ). 

To better quantify how reliable the analysis based on the 
VLT/MUSE data is, we compare our results to VFTS. 35 VLT/MUSE 

targets are in common with VFTS (Bestenlehner et al. 2014 ; Sab ́ın- 
Sanjuli ́an et al. 2014 ; Ram ́ırez-Agudelo et al. 2017 ; Sab ́ın-Sanjuli ́an 
et al. 2017 ) and the comparison is shown in Fig. 8 . Uncertainties are 
systematically larger. Ef fecti ve temperatures agree within their 1 σ
uncertainties for 26 out 35 stars (left panel) with differences largely 
as a result of the cleanliness and quality of spectra. Surface gravities 
are in agreement for only half of the sample, which is expected due 
to the challenges of the Paschen lines. Overall, the agreement is 
reasonable considering the difficulties in the analysing of the MUSE 

data. 
To place the stars into the Hertzprung–Russell diagram (HRD), 

we derived bolometric luminosity on the basis of optical UBV from 

Selman et al. ( 1999 ) and near-infrared JK s photometry from 2 Micron 
All Sky Survey and Vista Magellanic Clouds survey (Cioni et al. 
2011 ) using the methodology of Bestenlehner et al. ( 2020 , 2022 ). 
The HRD (Fig. 9 ) shows that most stars are populated near and to 
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Figure 7. Ef fecti v e temperatures (left) and surface gravities (right) determined by the pipeline v ersus the results from Castro et al. ( 2021 ). 

Figure 8. Comparison of MUSE targets in common with VFTS: ef fecti ve temperatures (left) and surface gravities (right) determined by the pipeline using 
VLT/MUSE data versus the results from Bestenlehner et al. ( 2014 ), Sab ́ın-Sanjuli ́an et al. ( 2014 , 2017 ), McEvoy et al. ( 2015 ), and Ram ́ırez-Agudelo et al. 
( 2017 ) using VLT/FLAMES data. 

Figure 9. Hertzsprung–Russell diagram of the analysed stars using the 
VLT/MUSE data from Castro et al. ( 2018 ). Thin black lines are stellar 
evolutionary tracks by Brott et al. ( 2011 ) and K ̈ohler et al. ( 2015 ). 

the cool side of the zero-age main sequence (ZAMS). There are a 
couple of exceptions but their uncertainties do not exclude a cooler 
location in agreement with the majority of the sources. This can be 
impro v ed by including a meaningful prior into the analysis, e.g. based 
on evolutionary tracks, and could increase the accuracy of the results, 
as we used only a flat prior ( ω i i ′ = 1). Only hydrogen-deficient stars 
are found to be on the hot side of the ZAMS, e.g. self-stripping 
through stellar winds or binary evolution. A prior would give the 
star a higher probability to be found either on the hot or on the 
cool side of the ZAMS depending on its helium composition. Stellar 
parameters can be found in supplementary online material (Table 
S2) and individual spectroscopic fits for visual inspection are also in 
the supplementary online material. Mass-loss rates, and He, C, N, 
and O abundances are not included. Optical data can only provide 
an upper limit for most stars in our sample (flat PDF towards lower 
mass-loss rates) while the PDF for helium is cut-off at the primordial 
abundance of 25 per cent by mass. CNO abundances are too coarsely 
sampled and linked to the predicted chemical evolution of 60 M ⊙ star 
(Section 3.3 ). 
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4.3 Alternati v e spectroscopic pipeline for large data sets 

Xiang et al. ( 2022 , THE HOTPAYNE ) applied the FGK methodology 
of THE PAYNE (Ting et al. 2019 ) to OBA stars to derive two stellar 
labels/parameters ( T eff and log g ) plus 15 chemical abundances.They 
used the plane-parallel LTE atmospheric models calculated with 
ATLAS12 (Kurucz 1970 , 1993 , 2005 ) and were able to analyse 
330 000 spectra. While T eff and log g are sensible for A and mid–
late B dwarfs, the derived chemical abundances suffer from non- 
negligible systematics due to non-LTE effects. AB supergiants 
require spherical geometry (stellar radius scale height) including 
stellar winds as these effects cannot be neglected. In hotter and 
more luminous stars (early B and O stars), a non-LTE treatment is 
necessary (Mihalas & Auer 1970 ) such that THE HOTPAYNE results 
for T eff and log g are not reliable including stars with weak winds. 
Even the inclusion of a model error will not impro v e much due to 
the fundamental missing physics in the ATLAS12 models. 

To make THE HOTPAYNE usable for OBA stars, the underlying 
stellar models must be replaced with models computed with more 
sophisticated and fully non-LTE stellar atmosphere codes designed 
for hot, massive stars with stellar winds, e.g. CMFGEN (Hillier & 

Miller 1998 ), FASTWIND (Santolaya-Rey, Puls & Herrero 1997 ; 
Puls et al. 2005 ), or POWR (Hamann & Gr ̈afener 2003 ; Gr ̈afener 
et al. 2012 ). The approach of the THE HOTPAYNE needs to be 
expanded: to include the model uncertainties into the error budget 
(e.g. this work) to account for the assumptions and parametrizations 
utilized in those complex stellar atmosphere codes. Additional stellar 
labels/parameters need to be incorporated, such as mass-loss rate, 
v elocity la w , wind inhomogeneity , and terminal and wind-turbulent 
velocity plus helium abundances. The helium abundance increases 
due to the CNO cycle, which in turn increases the mean molecular 
weight ( μ), and impacts the mass–luminosity relation ( L ∝ μ4 M 

3 ), 
electron density, and therefore the structure and ionization balance 
of the stellar atmosphere. When analysing optical spectra, the 
wind parameters can be merged into a wind strength parameter 
Q (Puls et al. 1996 ), transformed radius R t (Schmutz, Hamann & 

Wessolowski 1989 ; Gr ̈afener et al. 2002 ; Hamann & Gr ̈afener 
2004 ), or transformed mass-loss rate Ṁ t (Bestenlehner et al. 2014 , 
Section 3.3 ). 

5  C O N C L U S I O N S  A N D  O U T L O O K  

Large spectroscopic surv e ys with WEAVE and 4MOST will observe 
tens of thousands of massive stars, which need to be analysed in 
a homogeneous and efficient way. The pipeline presented in this 
w ork tak es advantage and utilizes the information that large data sets 
provide by determining the model uncertainties, which are included 
into the error budget. This methodology could also be applied to 
galaxies or other domains like biology and geophysics for which 
approximate and incomplete theoretical models exist as well. 

The runtime of the pipeline scales exponentially with the number 
of spectra, because all stars are simultaneously analysed and the 
error-model uncertainty matrix is iteratively updated (Section 2.4 ). 
Ho we ver , once a con verged error-model uncertainty matrix is ob- 
tained, we can limit the matrix operations to the χ2 -minimization 
and switch to a star by star analysis. In this case, we are able to 
analyse one star in less than a second. 

The fully automated spectroscopic analysis tool of this work 
reduces the human interaction to a minimum to cope with the amount 
of data. It is able to process ∼250 stars in less than half an hour 
( ∼6 CPU hours) delivering results comparable to Bestenlehner et al. 
( 2014 ), Sab ́ın-Sanjuli ́an et al. ( 2014 ), Ram ́ırez-Agudelo et al. ( 2017 ), 

and Sab ́ın-Sanjuli ́an et al. ( 2017 ) o v er a decade. Overall, the quality 
of the spectroscopic fits is good, but around 15 per cent of the stars 
need additional attention as a result of strong nebular contamination, 
low S/N, multiplicity, etc. The pipeline performs well o v er a wide 
parameter space that is supported by the spectroscopic analysis of 
three benchmark stars by several groups within the X-Shooter and 
ULLYSES collaboration (XShootU; Vink et al. 2023 ) of optical 
VLT/X-Shooter data (Sander et al., in preparation). 

Weights of spectral lines could increase the accuracy, but need 
to be adjusted depending on the parameter space that would then 
require human interaction. Determining weights for features (spectral 
lines) is a typical machine learning problem and often solved with 
neural networks (deep learning). Ho we ver, to really take advantage 
of our statistical approach and optimize the pipeline, we will require 
much larger data sets, which will be soon provided by WEAVE and 
4MOST. Future advances of our pipeline will be released on the 
pipeline repository. 
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Figure A1. Comparison of the normalized MUSE (solid blue line) and VFTS (dashed red line): The normalization is fairly consistent between both sample. 
As VLT/MUSE is an integral field unit, Castro et al. ( 2018 ) was able to reasonable well remo v e nebular lines in some cases, but in some instance nebular lines 
where o v er corrected or still present. 

Figure A2. VFTS 142: moderate nebular contamination. Blue solid line is 
the observation, red solid line the synthetic spectrum, and the grey shaded area 
is the square root of the diagonal elements of the covariant matrix calculated 
by the pipeline. Ef fecti ve temperature is well reproduce while the surface 
gravity is 0.2–0.3 dex too low. 

Figure A3. VFTS 410: strong nebular contamination. Blue solid line is the 
observation, red solid line the synthetic spectrum, and the grey shaded area 
is the square root of the diagonal elements of the covariant matrix calculated 
by the pipeline. The pipeline is unable to reproduce the stellar parameters. 
bottom 
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Figure A4. VFTS 527: double-lined spectroscopic binary VFTS-527 (Taylor 
et al. 2011 ). Blue solid line is the observation, red solid line the synthetic 
spectrum, and the grey shaded area is the square root of the diagonal elements 
of the covariant matrix calculated by the pipeline. Ef fecti ve temperature and 
surface gravity of the primary are reproduced, but mass-loss rate is too high 
while helium abundance is too low due to the contribution of the colliding 
wind region largely effecting H α and H β. 

Figure A5. Projected rotational velocity estimated by the pipeline ver- 
sus the results from Bestenlehner et al. ( 2014 ), Sab ́ın-Sanjuli ́an et al. 
( 2014 , 2017 ), and Ram ́ırez-Agudelo et al. ( 2017 ) plus colour coded 
RCS. The grid has been pre-convolved with the following � sin i = 

[0 , 20 , 50 , 100 , 150 , 200 , 250 , 300 , 400] km s −1 , which does not co v ered the 
entire observed range up to 600 km s −1 and is too coarse for an accurate 
determination. Ho we ver, it contributes to reduce the χ2 and the model error. 
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Table A1. List of lines synthesized when calculating the formal integral. Wavelength ranges are multiplets with diverging central wavelengths. 

Ion Wavelength Ion Wavelength Ion Wavelength Ion Wavelength Ion Wavelength Ion Wavelength 
( Å) ( Å) ( Å) ( Å) ( Å) ( Å) 

H I 3835.4 He I 3888.6 C II 3919.0–3920.7 N II 3995.9 O II 3945.0–3954.4 Si II 3853.7–3862.6 
H I 3889.1 He I 3964.7 C II 4267.0–4267.3 N II 4447.0 O II 4069.6–4075.9 Si II 4128.1–4130.9 
H I 3970.1 He I 4009.3 C II 4637.6–4639.1 N II 4530.4 O II 4317.1–4366.9 Si II 5041.0–5056.3 
H I 4101.7 He I 4026.2 C II 5132.9–5151.1 N II 4552.5 O II 4414.9–4452.4 Si II 5957.6–5978.9 
H I 4340.5 He I 4120.8 C II 5648.1–5662.5 N II 4601.5–4643.1 O II 4638.9–4676.2 Si II 6347.1–6371.4 
H I 4861.4 He I 4143.8 C II 6151.3–6151.5 N II 5005.2 O II 4890.9–4906.8 Si II 9412.7–9412.8 
H I 6562.8 He I 4387.9 C II 6461.9 N II 5007.3 O II 4941.1–4943.0 Si III 3791.4–3806.8 
H I 8392.2 He I 4471.5 C II 6578.1–6582.9 N II 5045.1 O III 3703.4 Si III 4552.6–4574.8 
H I 8413.1 He I 4713.1 C II 6783.9 N II 5666.6–5710.8 O III 3707.3–3715.1 Si III 4716.7 
H I 8437.8 He I 4921.9 C III 4056.1 N II 5931.9–5941.7 O III 3754.7–3791.3 Si III 4813.3–4829.0 
H I 8467.0 He I 5015.7 C III 4068.9–4070.3 N II 6482.1 O III 3961.6 Si III 5739.7 
H I 8502.3 He I 5047.7 C III 4152.5–4162.9 N II 6610.6 O III 4072.6–4089.3 Si III 7461.9–7466.3 
H I 8545.2 He I 5875.6 C III 4186.9 N III 3934.5–3938.5 O III 4366.5–4375.9 Si III 8262.6–8271.9 
H I 8598.2 He I 6678.2 C III 4647.4–4651.5 N III 3998.6–4003.6 O III 4799.8 Si III 9799.9 
H I 8664.8 He I 7065.2 C III 4663.6–4665.9 N III 4097.4–4103.4 O III 5268.3 Si IV 4088.9–4116.1 
H I 8750.3 He I 7281.4 C III 5249.1 N III 4195.8–4200.1 O III 5508.2 Si IV 4212.4 
H I 8862.6 He II 3796.3 C III 5253.6–5272.5 N III 4332.9–4345.7 O III 5592.3 Si IV 4950.1 
H I 9014.7 He II 3813.5 C III 5695.9 N III 4379.1 O III 7711.0 Si IV 6667.6–6701.3 
H I 9228.8 He II 3833.8 C III 5826.4 N III 4510.9–4547.3 O IV 3560.4–3563.3 Si IV 7047.9–7068.4 
H I 9545.7 He II 3858.1 C III 6731.0–6744.3 N III 4527.9–4546.3 O IV 3729.0–3736.9 Si IV 8957.3 

He II 3887.5 C III 7707.4 N III 4634.1–4641.9 O IV 3995.1 Si IV 9018.1 
He II 3923.5 C III 8500.3 N III 4858.7–4867.2 O IV 4654.1 
He II 3968.4 C III 9701.1–9715.1 N III 5320.8–5352.5 O IV 4813.2 
He II 4025.6 C IV 4646.6–4647.0 N III 6445.3–6487.8 O IV 7004.1 
He II 4100.1 C IV 5016.6–5018.4 N III 9402.5–9424.5 O IV 7032.3–7053.6 
He II 4199.8 C IV 5801.3–5812.0 N IV 3747.5 O IV 9453.9– 9492.4 
He II 4338.7 C IV 6591.5–6592.6 N IV 4057.8 O V 5114.1 
He II 4541.6 N IV 5200.4–5205.1 O V 6500.2 
He II 4685.7 N IV 5736.9 
He II 4859.3 N IV 5776.3–5784.8 
He II 5411.5 N IV 6212.4–6219.9 
He II 6074.2 N IV 7103.2–7129.2 
He II 6118.3 N IV 7425.3 
He II 6170.7 N IV 9182.2–9223.0 
He II 6233.8 N V 4603.7–4620.0 
He II 6310.9 
He II 6406.4 
He II 6527.1 
He II 6560.1 
He II 6683.2 
He II 6890.9 
He II 7177.5 
He II 7592.8 
He II 8236.8 
He II 9011.2 
He II 9108.6 
He II 9225.3 
He II 9344.9 
He II 9367.1 
He II 9542.1 
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Table A2. Error-model uncertainty matrix based on the VFTS analysis (Section 4.1 ). The rank of the matrix has been reduced by merging elements together for visualization purposes. The 
Balmer lines showing the strongest correlations have been highlighted. 

H δ H γ H β H α

λ ( Å) 3987 4016 4045 4072 4089 4115 4136 4160 4192 4233 4310 4325 4346 4378 4424 4474 4511 4532 4559 4613 4638 4651 4669 4717 4792 4824 4875 4914 4987 5008 5025 6447 6472 6520 6582 6643 6728 
3987 0.03 0.02 0.01 −0.0 0.01 0.02 0.02 0.0 −0.01 0.0 0.01 0.0 0.01 0.01 0.0 0.03 0.0 −0.01 0.02 0.02 0.05 −0.07 −0.02 0.01 0.0 0.02 0.0 0.01 0.0 0.03 0.0 0.01 0.01 0.06 −0.13 0.03 −0.0 
4016 0.02 0.02 0.01 −0.0 0.0 0.01 0.01 0.01 0.01 0.01 0.01 −0.0 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.02 0.02 −0.01 0.01 0.01 0.01 −0.01 0.04 0.01 0.01 0.03 0.02 0.02 0.02 −0.04 0.17 0.0 0.01 
4045 0.01 0.01 0.01 −0.01 0.0 0.0 0.01 0.01 0.01 0.01 0.0 −0.0 0.0 0.01 0.01 0.01 0.01 0.01 0.0 0.01 0.01 0.01 0.01 0.01 0.01 −0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.01 −0.03 0.13 −0.0 0.01 
4072 −0.0 −0.0 −0.01 0.03 −0.03 −0.01 0.0 −0.0 −0.01 −0.0 0.0 −0.0 −0.01 −0.0 0.01 0.0 −0.01 −0.02 0.01 0.0 0.0 −0.03 −0.0 −0.01 −0.0 −0.0 0.02 0.0 0.0 0.0 0.0 0.0 −0.0 −0.01 0.1 −0.01 −0.0 
4089 0.01 0.0 0.0 −0.03 0.03 0.02 −0.0 −0.0 0.0 −0.0 −0.01 0.0 0.01 0.0 −0.01 0.0 0.01 0.01 −0.01 −0.01 0.0 0.01 −0.01 0.0 −0.0 0.01 −0.04 −0.0 −0.01 −0.01 −0.01 −0.01 0.0 0.05 −0.25 0.03 −0.01 
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