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Abstract

While pre-trained language models achieve im-

pressive performance on various NLP bench-

marks, they still struggle with tasks that re-

quire numerical reasoning. Recent advances

in improving numerical reasoning are mostly

achieved using very large language models that

contain billions of parameters and are not ac-

cessible to everyone. In addition, numerical

reasoning is measured using a single score on

existing datasets. As a result, we do not have a

clear understanding of the strengths and short-

comings of existing models on different numer-

ical reasoning aspects and therefore, potential

ways to improve them apart from scaling them

up. Inspired by CheckList (Ribeiro et al., 2020),

we introduce a multi-view evaluation set for nu-

merical reasoning in English, called FERMAT.

Instead of reporting a single score on a whole

dataset, FERMAT evaluates models on various

key numerical reasoning aspects such as num-

ber understanding, mathematical operations,

and training dependency. Apart from providing

a comprehensive evaluation of models on dif-

ferent numerical reasoning aspects, FERMAT

enables a systematic and automated generation

of an arbitrarily large training or evaluation set

for each aspect.The datasets and codes are pub-

licly available to generate further multi-view

data for ulterior tasks and languages.1

1 Introduction

Numerical reasoning is an aspect that is often for-

gotten despite being an integral part of natural

language. It is the ability to interact with num-

bers using the fundamental mathematical prop-

erties and thus model an area of human cogni-

tive thinking (Saxton et al., 2019). Better under-

standing of numbers in language models would

benefit various tasks like fact-checking (Vlachos

and Riedel, 2015), text generation (Moosavi et al.,

2021; Suadaa et al., 2021), and educational tools

1https://github.com/jasivan/FERMAT

(Mandal et al., 2022). Current models’ perfor-

mance are still too weak with respect to numer-

ical accuracy to then be used in downstream tasks

like Infotabs (Gupta et al., 2020) which requires

identifying numbers in tables and then perform-

ing operations to correctly label statements causing

factuality errors in such tasks.

Recently, we have observed improved perfor-

mances on relevant datasets about numerical rea-

soning using very large language models (Wei et al.,

2022b; Lewkowycz et al., 2022; Kojima et al.,

2022). However, there are two main limitations

to this recent trend. First, as models become larger

their access becomes restricted to fewer users, i.e.,

users with the computational resources of large

companies. For example, using one of the best

mathematical models, the 540B parameter model

Minerva (Lewkowycz et al., 2022), would require

over 2212G of memory for inference only. Sec-

ond, the numerical reasoning capabilities of ex-

isting models are measured using a single score,

i.e., mostly accuracy on common benchmarks like

GSM8K (Cobbe et al., 2021). Therefore, their

strengths and shortcomings in different aspects of

numerical reasoning compared to other models are

not clear. As a result, it is unclear what numerical

reasoning aspects should be improved to improve

their performance on datasets requiring numerical

reasoning.

Motivated by CheckList (Ribeiro et al., 2020),

which is a behavioral test set concerning various

linguistic aspects of the input language, we pro-

pose a unique and open Flexible Evaluation set for

Representating Multiviews of Arithmetic Types,2

FERMAT, for evaluating the numerical reason-

ing capabilities of models based on multiple key

aspects . It evaluates models according to (a) dif-

ferent ranges and representations of numbers, (b)

different mathematical operations, and (c) the de-

pendence of models on the fine-tuning data. In

2We use the terms type, aspect and view interchangeably.
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addition, it contains a tool to automatically gener-

ate new instances for each of its aspects. FERMAT

enables (a) the identification of the strength and

shortcomings of models according to its aspects,

and (b) the automatic creation of additional train-

ing and evaluation instances using expert written

templates that reflect FERMAT’s categories.

FERMAT complements the recently proposed

LĪLA benchmark (Mishra et al., 2022a) for math-

ematical reasoning. LĪLA evaluates high-level as-

pects, e.g. whether performing mathematical rea-

soning also depends on commonsense knowledge

or how the performance changes depending on the

difficulty of the input language. However, even the

best-performing model on the LĪLA benchmark,

i.e., a 2.7B parameter model that is fine-tuned on

mathematical datasets, only achieves an accuracy

of around 20-30 points when the input is formu-

lated using a simple language and the test data is

from a different distribution than that of the train-

ing, and it is not clear how to further improve this

performance.

FERMAT, on the other hand, takes a deeper look

at more fine-grained aspects by diving into the core

mathematical abilities of the models and reporting

which specific operations a model can or cannot

perform and on which numbers. It also provides

templates for creating more instances for each as-

pect, e.g., to generate additional data to further train

or evaluate models on certain aspects. FERMAT

formulates the evaluation of numerical reasoning

using the question answering format, which is com-

monly used in NLP for evaluating various skills

(Tafjord et al., 2019; Dasigi et al., 2019; Jin et al.,

2019).

We use FERMAT to highlight that single accu-

racy scores fail to give a holistic understanding of

a model, that template diversity has a high impact

in improving performance, and that number encod-

ings play an important part in numerical reasoning.

The FERMAT framework could subsequently be

adapted for different tasks according to the target

application,3 to give a more targeted approach to

improving models. Moreover, while the expert-

written templates in FERMAT are written in En-

glish, they can easily be translated to be adapted to

other languages.

3For instance, by automatically converting our QA tem-
plates to NLI (Demszky et al., 2018) if NLI is a more suitable
format for the downstream task.

2 Related Work

2.1 Datasets

Mathematical datasets focus on exploring different

levels of difficulties and areas of maths. Some look

at general symbolic maths, where the questions at

least involve algebraic notations. A certain group

of datasets explores numerical reasoning in context,

but the answers may not exclusively be numerical.

Unlike FERMAT, all these datasets evaluate mod-

els’ performances on the whole dataset based on

a single score. Moreover, as a result of the avail-

ability of many datasets, new benchmarks have

also been created based on regrouping the existing

datasets according to specific criteria. Such bench-

marks are created based on high-level aspects, e.g.,

how the performance changes when solving maths

also depends on commonsense reasoning, when the

maths is presented using equations, a simple lan-

guage, or a complex language, or when the input is

presented using a different task format. However,

the performance of existing general-purpose mod-

els is very low, even on the simplest aspects, e.g.,

when the maths is presented using a simple lan-

guage without requiring external knowledge. FER-

MAT, on the other hand, focuses on a fine-grained

analysis of numerical reasoning by aiming to deci-

pher models’ ability to understand numbers, opera-

tions, and their reliance on the training data.

2.1.1 General maths

Dolphin18K (Huang et al., 2016), DeepMind Math-

ematics (Saxton et al., 2019) and AQUA (Ling

et al., 2017) are datasets that have a focus on solv-

ing algebraic problems and therefore use algebraic

notation. These datasets are too complex for ex-

isting general purpose language models, mainly

because they expect multi-hop reasoning.4 For in-

stance, Wei et al. (2022b) only report an accuracy

around 25% for AQUA with a large, 62B parameter,

model.

2.1.2 Numerical context

Instead of the algebraic notation, some datasets are

worded problems but are formulated as multiple

choice questions, e.g. McTaco (Zhou et al., 2019)

and AQUA. This multiple choice format simplifies

the task into a classification which prevents work-

ing with the continuous essence of numbers. Even

if these are formatted into generative output tasks

they then sometimes expect textual outputs like

4E.g. [(6× 8)− (3× 6)]÷ (6 + 4) (Ling et al., 2017).
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DROP (Dua et al., 2019). DROP has textual an-

swers that can be extracted from the context which,

similarly to the multiple choice questions, are dis-

joint from the numerical reasoning skill.

2.1.3 Numerical solutions

The only datasets with textual input that solely ex-

pect numerical answers are GSM8K (Cobbe et al.,

2021), MAWPS (Koncel-Kedziorski et al., 2016),

CommonCore (Roy and Roth, 2015) and Illinois

(Roy and Roth, 2016). GSM8K provides textual

explanation for the solutions which has been effec-

tively used by Wei et al. (2022b). However, similar

to AQUA, GSM8K is very difficult for general pur-

pose language models with reported results below

5% accuracy using an 8B parameter model (Wei

et al., 2022b). Likewise, MAWPS requires some

use of algebra to solve the problems. However,

CommonCore and Illinois, which are subsets of

MAWPS, are constituted of simpler one or two-

hop problems.5 Since FERMAT is designed to

gain better insight by focusing on more accessible

problems, CommonCore and Illinois are the ideal

datasets.

2.1.4 View-based evaluation sets

Ribeiro et al. (2020) explain the motivation to move

away from raw accuracy but towards more informa-

tive evaluation sets which give better insight into

a given model. They look at different aspects of

a test set; the skills needed to correctly solve the

problem, in their case, linguistic phenomena like

negation in sentiment analysis.

NumGLUE (Mishra et al., 2022b), on the other

hand, is a multi-task benchmark that involves nu-

merical reasoning. It combines different tasks like

commonsense, domain specific language, quantita-

tive expressions, with arithmetic understanding to

create a more challenging benchmark. It also uses

different question format such as fill-in-the-blanks,

textual entailment, multiple choice questions, span

extraction and numerical outputs.

A more mathematically expansive set is the

recently introduced LĪLA dataset (Mishra et al.,

2022a) where they regroup 20 existing datasets into

23 reasoning tasks including some of NumGLUE.

These tasks are split into maths domains (e.g. ge-

ometry or arithmetics), language complexity (e.g.

only maths, simple language, or long passages in-

volving co-reference), question format (e.g. gener-

5An n-hop problem is one with the combination of, at
most, n of the basic operations.

ative answer or fill in the blank), and background

knowledge required (e.g. knowledge of formulae

or commonsense). However, as mentioned, exist-

ing models struggle even with simple aspects that

do not require background knowledge or do not

contain complex language or maths. FERMAT

complements LĪLA by looking in-depth at more

fine-grained numerical reasoning aspects . It also

contains expert-written templates associated with

each aspect that can be used to generate an arbi-

trary number of new instances to address the iden-

tified shortcomings or generate more evaluation

instances. We design FERMAT for arithmetic prob-

lems presented using simple language. However,

our methodology can be tailored to refine the anal-

ysis of LĪLA’s other aspects.

2.2 Improving Numerical Reasoning

The literature has two main ways of improving

numerical reasoning: (a) by designing task-specific

models capable of numerical reasoning (Kumar

et al., 2021, 2022; Liang et al., 2022; Dua et al.,

2019; Andor et al., 2019; Yang et al., 2021), and

(b) by scaling up (Brown et al., 2020; Chowdhery

et al., 2022; Chen et al., 2021). Both methods

also attempt to further pre-train existing models on

maths related data (Geva et al., 2020; Cobbe et al.,

2021; Wei et al., 2022b; Lewkowycz et al., 2022;

Zhou et al., 2022). Other existing ways include

using better number encoding (Muffo et al., 2022)

or objective functions (Petrak et al., 2022).

2.2.1 Task-specific models: Maths solvers

Some models have been specifically created to

solve maths problems by outputting expressions

(Kumar et al., 2021, 2022; Patel et al., 2021) or

pseudo-programs (Liang et al., 2022; Dua et al.,

2019) which are then evaluated using an external

module. Notwithstanding the performance of these

models, they can only be used to solve maths prob-

lems that, moreover, need to be represented in a

closed arithmetic form. This restricts the versatility

of these models both in terms of the maths and

tasks that they can solve.

Unlike the other maths solvers, GenBERT (Geva

et al., 2020) and NT5 (Yang et al., 2021) generate

the final output as text, making them more general-

purpose. Both are pre-trained on numerical and

textual tasks to solve mathematical problems. Both

of these models are evaluated on DROP (Dua et al.,

2019) which only provides an accuracy score, so

their general numerical skill performance is not
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well-understood.6

2.2.2 Improving maths by scaling

More general-purpose models that perform well

with respect to mathematical reasoning are GPT3

(175B) (Brown et al., 2020), PaLM (540B) (Chowd-

hery et al., 2022) and Codex (175B) (Chen et al.,

2021) where their parameter size is given in brack-

ets. GPT3 was fine-tuned by Cobbe et al. (2021) on

GSM8K to achieve state of the art results. Similar

works using PaLM and Codex investigate prompt-

ing (Wei et al., 2022b; Zhou et al., 2022) and ex-

tended training (Lewkowycz et al., 2022).

All of these models are general-purpose so are

able to do more than solve maths problems but

are not well understood. Some ablation studies

analyse specific aspects of specific models. For in-

stance, Lewkowycz et al. (2022) conducted a digit

study and highlighted that Minerva is unable to per-

form any multiplication of numbers with more than

seven digits. However, their sizes make it impos-

sible for many research and industry communities

to utilise them, even just at inference time. We

do not have the computation resources or access

for running these large models. However, FER-

MAT, which is publicly available and easily acces-

sible, can be used to perform a more comprehensive

analysis of these models to further identify their

strengths and shortcomings.

3 Multi-view Evaluation Set: FERMAT

FERMAT gives a holistic view of a model by eval-

uating fine-detailed aspects of numerical reasoning.

It is akin to Ribeiro et al. (2020)’s CheckList, which

focuses on linguistic variations for defining its as-

pects. FERMAT is used to interpret models by

evaluating them on three orthogonal views includ-

ing (a) Number Understanding, (b) Mathematical

Operations, and (c) Training Dependency. It also

provides an automated method of generating new

training or evaluation examples for a given number

type or operation.

We collect the initial instances for creating the

FERMAT evaluation set using the established Illi-

nois (Roy and Roth, 2016) and CommonCore (Roy

and Roth, 2015) datasets. After removing dupli-

cates, we collect 1111 unique instances from these

6Both models report a similar performance (below 2%
difference) on DROP, therefore in our work will focus on the
smaller one, NT5.

two datasets which we name the Original set.7 We

choose instances from CommonCore and Illinois

because they perfectly fit with FERMAT’s design

by providing one or two-hop questions. Moreover,

their extensive annotation is supplemented with an

alignment between the numbers in the question and

the corresponding expression that the solution is

calculated from. We leverage these annotations in

FERMAT to create different variations of the same

problem for different aspects.

3.1 Number Understanding

Each instance of the Original set is used to gener-

ate 18 different numerical types where the numbers

change but the language is fixed. These are cate-

gorised as (a) Alternative Representations, and (b)

Range of Numbers. Examples of each is given in

Table 1.

Table 1: Numerical Types with examples.

3.1.1 Alternative Representations

Alternative Representations transforms the num-

bers into 11 different forms. The first four cate-

gories (rows 1 to 4) have the same number as the

Original set but represented differently whereas the

next five categories (rows 5 to 9) use the same dig-

its in the same order but by varying the magnitude

of the number. The last two (rows 10 and 11) form

the digit grouping subcategory where comma and

space separators are used between groups of three

digits.8 This would give insight into the breadth

of representations a model can accommodate, in-

dependent of the specific digit used, for instance,

7The Original set acts as the comparison to existing nu-
merical reasoning benchmarks.

8These have different numbers to the original questions
because the Original set only contains 17 numbers where digit
grouping would be visible. For comparison, the numbers are
identical to the large integers type from Section 3.1.2.
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elucidate whether a model would be able to equally

answer “12×34”, “34×12” and “1.2×3.4”. Note

that the commutative category (row 4) refers only

to operations that are invariant to operand permu-

tation and thus only has 611 associated questions

instead of 1111.

3.1.2 Range of Numbers

The Original set has a highly skewed distribution

towards smaller integers with 94.89% of numbers

being 1 or 2 digit integers. Therefore, a random

number generator is used to create 7 sub-categories

of a “Range of Numbers” split into integers (rows

12 to 16) with large integers (greater than 1000),

small integers (less than 1000) and 2, 3 and 4 digit

integers, and decimals (rows 17 and 18) with 1 or

2 decimal place numbers.

3.2 Mathematical Operations

The operations sought by the model plays a vi-

tal role in numerical reasoning. A one-hop prob-

lem which requires a single operation, to a human,

would seem much easier than a two-hop problem

where an intermediate calculation would need to be

computed first. With regards to this, we consider

9 operation sets generated using basic operations

(addition, subtraction, multiplication and division).

Their distribution is given in Appendix A.

3.3 Training Dependency Classification

The frequency of the occurrence of a number in

pre-training data has a great impact on the perfor-

mance of the model on those numbers (Razeghi

et al., 2022). Motivated by this, FERMAT also

includes a view for training dependency, but at the

fine-tuning or prompting-level only. Despite the

test being unseen, a model could be learning the

training data and focalise on seen numbers or seen

operations. Therefore, we include a Training De-

pendency Classification aspect to FERMAT using

the following classes based on what was seen dur-

ing training:9

(a) Exact: all the numbers and operations are seen

with the same operations modulo commutativ-

ity, e.g. “(3 + 2)× 5”,

(b) All Numbers: all the numbers are seen but

with different operations, e.g. “(5− 2)÷ 3”,

9All the examples are associated to the test expression,
“5× (2 + 3)”.

(c) Number & Operation: at least one number

and operation are seen, e.g. “(5+3)÷ 4”, the

“5” and the addition are at least seen,

(d) One Number: at least one number is seen with

none of the operations, e.g. “9− 5”, the “5” is

seen but nor with the “9”, nor with subtraction,

(e) One Operation: at least one operation is seen

without any numbers, e.g. “4+7”, the addition

is seen but not with these numbers.

It is important to note that all operations from the

test set are seen in the training set, therefore accord-

ing to our classification criteria, the least common

class is always One Operation. Future work may

have more complicated mathematical operations

in the test set that are never seen at training time

such as powers or trigonometric functions, but we

believe these to be too difficult for the models to

learn without prior exposure.

3.4 Generating Training Data

In addition to the evaluation set, FERMAT also pro-

vides a solution for generating an arbitrary length

dataset that targets specific number or operation

types.10 This dataset is generated based on tem-

plates that come from three separate sources that

are completely independent to the FERMAT eval-

uation set. The first set comprises of 100 ques-

tions written by two professional secondary school

mathematics teachers and reviewed by a third one.

The distribution of the templates generated reflect

a uniform distribution over the operations. The

second and third sources are GSM8K and AQUA

where 155 and 71 templates were selected respec-

tively. Only the questions that used at most two

basic operations were extracted and the numbers

were replaced by place holders to transform them

into templates. These templates are only used in

Section 5.4 to enhance the linguistic and mathemat-

ical variety of the templates. The distribution of

operations used in the templates alongside some

examples are given in Appendix B.

4 Experimental setup

To demonstrate the effectiveness of our evaluation

set, FERMAT, we will perform the evaluations in

two settings, (a) zero-shot, where we evaluate ex-

isting models, and (b) fine-tuned, where we further

10In this work, it is used for training but it could also be
used for evaluation.
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train the models on arithmetic data generated using

our training data in Section 3.4.

4.1 Zero-shot Evaluation

For zero-shot performance, we evaluate the follow-

ing models on FERMAT without any training:11

T0 (3B) (Sanh et al., 2022), FLAN-XL (3B) (Wei

et al., 2022a), BHĀSKARA (2.7B) (Mishra et al.,

2022a), FLAN-large (770M), FLAN-base (220M),

T5-base (220M) (Raffel et al., 2020), BART-

base (140M) (Lewis et al., 2020), and NT5 (3M)

(Yang et al., 2021), where the size of the models

is given in brackets. A zero-shot evaluation is ap-

propriate because these models are intended to be

used as off-the-shelf multi-purpose models.

T0, FLAN, BHĀSKARA and NT5 have been

trained using prompts, so we also test them with

and without prompts. We select the prompts by

consulting the original papers and judge which fit

closest with our question answering task (see Ap-

pendix C for the exact prompts used). From the

models we considered, BHĀSKARA, FLAN and

NT5 are the ones that have also been trained for

maths related datasets. BHĀSKARA is trained on

LĪLA and reaches near state of the art performance,

thus is a reliable model to compare numerical rea-

soning capabilities. However, since LĪLA contains

lots of existing data, BHĀSKARA has seen 46.89%

of the Original test set (Mishra et al., 2022a) at

training time. It also includes DeepMind Mathe-

matics (Saxton et al., 2019) in its pre-training data.

FLAN has also seen DeepMind Mathematics in

training. NT5 is pre-trained on synthetic numerical

tasks involving non-worded problems with integers

up to 20000, decimals, negatives and percentages

and textual tasks as described by Geva et al. (2020),

and then fine-tuned on DROP.

4.2 Fine-tuned Evaluation

For this setting, we create a training data called

Base (see Section 4.2.1) on which we fine-tune

the following models: FLAN-large, FLAN-base,

T5-base , BART-base and NT5 accessed from

Huggingface (Wolf et al., 2020). We also use

a digit tokeniser as implemented by Petrak et al.

(2022) which gives more promising results in fine-

tuning experiments compared to using the default

11If the output of the examined model contains more than
the numerical answer, e.g. the explanation of the answer,
we only extract the numerical part from the generated output
based on how the model is originally trained. For example,
BHĀSKARA gives the answer before an explanation, whereas
T0 provides it after.

tokeniser for numbers.12 Due to limitations in com-

putational resources, we are unable to use the 3B

parameter models for fine-tuning. Moreover, de-

spite BHĀSKARA being advertised as a good start-

ing point for maths related data, it is still too big

for us to train.13

4.2.1 Training data

The templates described in Section 3.4 were used

to generate the Base training set of 200K questions

with a uniform distribution over four common num-

ber types, i.e. integers and decimals with 1 or 2

decimal places all between 0 and 1000, and integers

between 1000 and 1000000. This distribution also

means that each of these types have 50K questions,

so we would suspect that all 1000 integers between

0 to 1000 and most of the 10000 1 decimal place

numbers would appear in the training set whereas

all 100000 and 999900 respectively from the other

two categories cannot be seen. Furthermore, all

of the expert templates were used therefore the op-

eration distribution is the same as the one for the

template set (see Appendix B). The same method-

ology was used to create a development set of 1K

questions. This was used to decide on hyperparam-

eters which are described in Appendix D.

5 Results

Table 2 illustrates the zero-shot and fine-tuning

performance of eight models on FERMAT with

green highlighting the stronger performances for

a given arithmetic type and red the poorer ones.

For models that use prompts (T0, BHĀSKARA,

FLAN and NT5), for each type, we report their

mean accuracy using all the prompts and no-prompt

settings. For these models, the standard deviation

between the prompted and non-prompted results

is below 1.5%, therefore the reported results are

representative (see Appendix E for the full results).

5.1 Zero-shot Evaluation

Firstly, from Table 2’s sea of red, we can de-

duce that most of these models, especially T0 and

the base models, tend to perform poorly at arith-

metic reasoning, irrespective of size. The best-

performing models, BHĀSKARA and FLAN-XL,

are ones trained on maths data. But their perfor-

mance is only respectable for a variant of the Orig-

12Note that NT5’s tokeniser already separates the digits, so
we omit the use of digit tokenisation for this model.

13We use NVIDIA V100 GPU nodes with a 32G memory.
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Table 2: Zero-shot and fine-tuned performances. Accuracy shown in percentage and all green scores are above the

arbitrary threshold of 10% to subduce any false strong performances.

inal set where nearly half of the numbers are single

digits.

Secondly, the accuracy level for Original is al-

ways part of the highest values, expect for NT5, so

it is not a representative test set for numerical rea-

soning despite being derived from existing bench-

marks. This could also be due to the poor diver-

sity of the Original set as stressed in Section 3.1.2.

Contrastingly, NT5 has its highest accuracy for ad-

dition and subtraction meaning that it is generally

learning operations over specific number types.

Thirdly, even the larger models that are explic-

itly trained on maths datasets, i.e., BHĀSKARA

and FLAN-XL, perform poorly on numbers that

contain more than one digit indicating a limitation

for their use in real-world tasks where the numbers

can be of any range. This is in line with previous

studies showing the shortcomings of models on

longer digits (Lewkowycz et al., 2022; Muffo et al.,

2022).

5.2 Evaluation after Fine-tuning

As expected, with many greener cells, the fine-

tuned models are better than their zero-shot coun-

terparts and demonstrate more consistent perfor-

mance across all the types. FERMAT’s training and

evaluation set templates, while covering similar as-

pects, are from completely independent sources.

However, we observe that fine-tuning smaller com-

monly used models on this training data outper-

forms larger models like BHĀSKARA that are

fine-tuned on various maths datasets, for instance

BHĀSKARA is trained on over 1.32K distinct

questions and programs. This underlines the bene-

fit of creating the training data based on a diverse

set of mathematical aspects. The larger FLAN

is the only model to consistently improve on the

two-hop questions suggesting that more parameters

may be required to learn more complex reasoning

as observed by Xiong et al. (2021).

Similarly, NT5 only makes significant improve-

ment with addition and subtraction, which it was

pre-trained on with synthetic questions. There-

fore, as a smaller model, NT5 is only able to better

generalise mathematical addition and subtraction

but struggles to learn new operations during fine-

tuning. However, instead of its size, this could

also be due to the complexity of mathematics it has

seen at pre-training. In addition, we observe that

models’ performances on the “Commuted” aspect

within the “Same numbers” subset are considerably

lower than the other aspects. This indicates a po-

tential for developing better number encodings that

learn similar representations for the same number

regardless of the position or input representation,

e.g., “three” and 3, and 3.0.

5.3 Training dependency of performance

Figure 1: Training and test data overlap separated be-

tween correct and incorrect predictions made by FLAN-

large (left bars) and T5-base (right bars).

It is important to understand why our fine-tuned

models are better across multiple types. For this,

we class the expression required to answer the test
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sets using the Training Dependency Classification

described in Section 3.3. Figure 1 presents the de-

pendency of the training data for the FLAN-large

(left bars) and T5-base (right bars) models. For

each bar, the ratio of correct (orange) and incor-

rect (blue) predicted samples are identified (the full

results are given in Appendix F).

The bars’ monotonic trend suggests that if more

of a test expression is seen at training, the model is

more likely to answer it correctly. However, even

for the exact match category, the performance is

only 46%. This is because the language that is used

to describe the targeted equation may be different

in different instances, e.g. the words “another” and

“increases” are only two possible terms suggest-

ing an addition (see Appendix B for their use in

context), indicating that the model needs exposure

to a variety of different ways maths is expressed

and that enriching the training data with higher

language diversity can be beneficial.

In addition, the accuracy for Exact and All Num-

bers classes are similar for both models highlight-

ing that seeing numbers during training, and there-

fore having a correct encoding for them, plays an

important role in solving their corresponding maths

operations, e.g. 89 and 30 appear both in the train-

ing set, “Stacey prints 30 letters to post. The printer

was filled with 89 sheets of paper. How many more

letters could she print?”, and in the 2 digit test set,

“89 beavers were working on their home. 30 went

for a swim. How many beavers are still working on

their home?”. This could be seconded by FLAN-

large having higher accuracy than T5-base for each

class as is has seen more maths at pre-training.

5.4 Impact of training templates

As eluded in Section 5.3, linguistic and mathemat-

ical diversity seem to be key to the improvement

of numerical reasoning. Therefore, we investigate

a model’s performance when trained with the dif-

ferent templates, thus diverse language and mathe-

matics. We fix the distribution of the aspects used

in all those training instances to equal amounts of

“Integers 0 to 1000”, “1000+ random”, “1dp ran-

dom” and “2dp random”. We use FLAN-base for

the experiments of this section as it still has partic-

ularly low performances in mainly two-hop aspects

according to the results of Table 2, even after fine-

tuning. Moreover, it is a small enough model to

train on larger datasets.

In this section, we consider the following three

training sets to compare the effect of template

diversity (see Appendix G for detailed distribu-

tion): (1) Base is the 200K training data from Sec-

tion 4.2.1 which only uses the expert templates,

(2) Base Scaled Up is Base with an addition 100K

instances from the same distribution of aspects.

To make a fair comparison with the next training

set, the language and mathematics is fixed as it

only uses the expert templates, (3) Base Diversi-

fied starts with Base and also adds 100K instances

from the same distribution of aspects. However, un-

like all the other training sets which purely use the

expert templates, this augments the initial set us-

ing templates recovered from GSM8K and AQUA

(see Section 3.4) which enhances the language

and mathematics seen. We compare FLAN-base

fine-tuned on the above training set along with the

model’s zero-shot baseline performance. Figure 2

illustrates the results of these experiments.

Figure 2: Fine-tuning FLAN-base on the three training

sets described in Section 5.4 and the zero-shot results,

see Appendix H for table of results.

First, as already established, training on diverse

templates over a variety of aspects is beneficial by

the shear difference illustrated by Figure 2 between

Zero-shot (black) and the fine-tuned performance

(blue, orange, green). In contrast, when compar-

ing Base (blue) and Base Scaled Up (orange), we

remark that despite seeing 100K more combina-

tions of numbers and operations, the learning stag-

nates when using the same templates meaning that

the model has learnt as much as it could from the

breadth of the available templates. Consequently,
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either linguistic or mathematical diversity is re-

quired to make a sufficient contribution. This phe-

nomenon is, in fact, displayed by the improvement

generated by Base Diversified (green), in certain

aspect by over 21%. The diversity helps the model

map the language used to describe particular math-

ematics better, for instance “share” to mean “divi-

sion”, and possibly observing more variety of this

in different context seems to improve the model.

Therefore, a diversity in the templates used is im-

portant, suggesting that a large variety of language

may be required to attempt to further ameliorate

the performance. Nevertheless, the mathematical

diversity seems to also play a more important role

as the diverse templates from GSM8K and AQUA

have more two-hop operations (see Appendix B).

Relatedly, the mean percentage increase of one-hop

operations from Base to Base Diversified is approx-

imately 95% which is about half the mean percent-

age increase for two-hop operations, i.e. 187%.

This suggests that mathematical variation may be

more central than language diversity.

Second, the variance in accuracy between “1dp

random” and “2dp random” and analogously “Inte-

gers 0 to 1000” and “1000+ random” is also intrigu-

ing. Despite having the same number of training

instances with these aspects the accuracy is always

lower for “2dp random” and “1000+ random” re-

spectively, the reason for this is that these aspects

involve harder skill for which either the additional

100K examples or the size of the examined model

is not enough to learn this skill.14 On the other

hand, for a simpler aspect like “2 digit” represen-

tation, the model’s performance improves consid-

erably using the additional training instances. We

can conclude that template diversity alone may not

improve the models and that work on generalisa-

tion over larger sequence of integers (i.e. integers

larger than 1000, more than two decimal places)

such as tokenisation and representation of numbers

is critical.

Third, a noteworthy observation is that Base Di-

versified (green) performs worse than Base (blue)

only on the “Original 2dp no 0” aspect, e.g., using

“.32” instead of “0.32”. When further analysing

the model’s output of this aspect for Base Diversi-

fied, we note that the model, on top of the 19.8%

accuracy, produces an additional 19.7% of outputs

14This is in line with our preliminary experiments where
we observed that using complex maths datasets like GSM8K
was not beneficial for general-purpose models to learn basic
mathematical reasoning skills.

containing correct digits but an incorrect magni-

tude, e.g., the correct answer might be “1.8”, but

the model predicts “0.18”. The model might be

disturbed by the decimal place or the absence of

zero, implying that number encoding including po-

sitioning is vital, and thus, an accurate encoding of

numbers is crucial.

6 Conclusion

The majority of existing datasets for numerical rea-

soning evaluate models based on a single score,

making it impossible to identify their strengths and

shortcomings to further improve them. Multi-view

benchmarks are the alternative for a more compre-

hensive and informative evaluation of models. In

this direction, we introduce FERMAT, a multi-view

evaluation set that enables a fine-grained analysis of

models based on three key aspects including num-

ber understanding, mathematical operations, and

training dependency. FERMAT’s aspects are as-

sociated with separate templates for generating in-

stances for both evaluation and training sets, which

are collected from completely independent sources

and domains.

Our results confirm that comparing a single accu-

racy score, as with all existing maths datasets, is not

representative of the performance on various nu-

merical reasoning aspects as the evaluation dataset

may be skewed towards a specific data distribution.

Based on our results, a wider language and mathe-

matical variation can improve even smaller models.

However, an apparent future direction is to focus

on improving number encodings in existing models

and understanding how these affect performance.

7 Limitations

Three main limitations with regards to certain as-

pects of this paper are the comparison against very

large models, the distribution of the Original set,

and the restriction of the output length.

Firstly, due to the lack of computational re-

sources and availability of some models, we were

unable to make a rigorous comparison of our fine-

tuned models’ as described in Section 5.2 against

very large models like Minerva (Lewkowycz et al.,

2022) or even Codex (Chen et al., 2021). How-

ever, these larger models can still be evaluated as

FERMAT is made publicly available.

Secondly, another limitation of FERMAT is its

use of Illinois and CommonCore which have highly

skewed distributions of numbers (see Section 3.1.2)
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and their answers are mainly integers which is not

representative of the real-world. This undesired

effect is mirrored in the number types that use the

same numbers as Original. However, this was part

of our design for FERMAT as the alternative would

have been to combined all the ranges of numbers

used with the representation, creating too many as-

pects but mainly conflicting with non-independent

analyses between representation and range of num-

bers. Therefore, we chose to use the same numbers

as Original, and since the templates will be openly

accessible, they can be used to generate more com-

binations for wider aspects.

Lastly, when generating training questions, de-

spite our best intentions, we had to limit the length

of the output to an arbitrary length of 12 digits,

therefore some number combination were not pos-

sible, for example 1÷3 = 0.3333... . This practical

implication could have been avoided with the use

of fractions or rounding. But we judged that it

would have added an extra layer of difficulty for

the models and decided to restrict the output length

instead.
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Appendix

A Distribution of Mathematical

Operations

Table 3 gives the distribution of the various oper-

ations that exist in the Original set and thus FER-

MAT’s evaluation set.

Hops Expression Frequency

a+ b 154

One-hop a− b 162

a× b 113

a÷ b 102

(a+ b)− c 190

a× (b+ c) 100

Two-hop (a+ b)÷ c 90

a× (b− c) 100

(a− b)÷ c 100

Total 1111

Table 3: Distribution of the mathematical operations for

the Original set.

B Templates

The templates’ operation distribution is given by

Table 4.

Operations Freq Operations Freq

a+ b 16 a− b 28

a× b 28 a÷ b 35

a+ b+ c 9 a+ b− c 23

a× (b+ c) 20 a× (b− c) 13

(a+ b)÷ c 20 (a− b)÷ c 17

a− b− c 3 (a÷ b) + c 3

(a× b) + c 13 (a× b)− c 5

(a× b)× c 10 (a× b)÷ c 51

a÷ (b+ c) 6 a÷ (b− c) 8

a× (b÷ c) 6 (a÷ b)× c 12

Total 326

Table 4: Table of operations present in the training

templates with their corresponding frequency. The ones

in bold are the ones present in the expert templates.

Exemplar templates from each of three sources

are given below where number place holders are in

bold:

Expert Template: Britney has num1 knitting

needles. She buys another num2 . How many

needles does she have?

Expert Expression: num1 + num2
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GSM8K Template: a trader sells num1 me-

ters of cloth for $ num2 . what is the cost price of

one metre of cloth ?

GSM8K Expression: ( num2 / num1)

AQUA Template: the average weight of num1

persons increases by num2 kg when a new person

comes in place of one of them weighing num3 kg .

what might be the weight of the new person ?

AQUA Expression: ( num3 +( num1*num2 ))

C Prompts

Examples of the prompts used for the respective

models are given below. In the examples, the

underlined text is the prompt.

Model: T0

Prompt name: Trivia

Example: Answer the following question. What is

2 plus 3?

Model: T0, FLAN

Prompt name: WebQA

Example: Question: What is 2 plus 3? Answer:

Model: FLAN

Prompt name: Trivia

Example: Please answer this question: What is 2

plus 3?

Model: NT5

Prompt name: NT5 prompt

Example: answer_me: What is 2 plus 3?

D Hyperparameters

The hyperparameters were tested on a smaller set

for efficiency. During fine-tuning, we used 100

epochs with an early stopping patience of 10 and

threshold of 1.0. The best model was based on

accuracy of the evaluation set. All experiments

were conducted with a learning rate of 5e-5, weight

decay of 0.005, warm-up of 100, float32 and 3 gen-

eration beams. The rest of the hyperparameters

were as the default setting in Huggingface. The

max input length was 512 and max target length,

16 which is above the 12 digit limit we restrained

ourselves to for the answers when generating ques-

tions. The resource used was an Nvidia Tesla V100

with 32G.

E Zero-shot results with and without

prompts

The full results for each model including when

prompts were used for all the arithmetic types are

given by Table 6.

F Training Dependency Results

The full results for the Training Dependency classi-

fication is shown in Table 5.

Table 5: Training Dependency for all fine-tuned models.

G Distribution of Training sets

Table 7 shows the distribution of the training set

created from the templates, with raw numbers of

instances generated based on the specific number

aspect and mathematical operation design. The

bold mathematical operations are the ones present

in the expert templates.

H FLAN-base template diversity

Table 8 shows the results of FLAN-base for each

numerical reasoning aspects as a zero-shot perfor-

mance and when fine-tuned on different . Accuracy

is given as a percentage. Green cells indicate higher

accuracy and red poorer performance.
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Table 6: Zero-shot results for separate model including different prompts. Accuracy shown in percentage.

Table 7: Distribution of templates for the Base, Base Scaled Up and Base Diversified sets. In bold are the expressions

that appear in the expert templates, whereas all expressions appear in the additional GSM8K and AQUA templates.
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Table 8: Results from fine-tuning FLAN-base on different distribution of templates.
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